
Correctness Analysis and Optimality Bounds of Multi-spacecraft
Formation Initialization Algorithms

Mike Schuresko and Jorge Cortés

Abstract— This paper considers formation initialization for
a class of autonomous spacecraft operating in deep space with
arbitrary initial positions and velocities. Formation initializa-
tion is the task of getting a group of autonomous agents to
obtain the relative and/or global dynamic state information
necessary to begin formation control. We associate a “worst-
case total angle traversed” optimality notion to the execution
of any formation initialization algorithm, and present per-
formance bounds valid for any correct algorithm. We design
the SPATIAL SPACECRAFT LOCALIZATION ALGORITHM and
the WAIT AND CHECK ALGORITHM , analyze their correctness
properties and characterize their performance in terms of
worst-case optimality and execution time.

I. I NTRODUCTION

Motivation and problem statement:Deploying large
structures in space requires multiple spacecraft to coordi-
nate their activities, due, in part, to the limited payload
capabilities of launch vehicles. One application that requires
such coordination is the deployment of large-baseline in-
terferometers for science imaging missions. Key aspects
of spacecraft coordination which are likely to be used in
a broad variety of contexts include: (i) formation initial-
ization, i.e., the establishment and maintenance of relative
dynamic state information (e.g. relative positions and veloc-
ities) and/or on-board inter-spacecraft communication; (ii)
formation acquisition, i.e., making the group of spacecraft
attain a desired geometry; and (iii) formation regulation
and tracking, i.e., maintaining fixed inter-spacecraft range,
bearing, and inertial attitudes with high accuracy along the
execution of a desired trajectory.

In this paper, we focus our attention on the formation
initialization problem. This problem is especially important
for spacecraft operating in deep space, where conventional
Earth-based GPS does not provide sufficiently accurate
position information. Here, we consider a spacecraft model
motivated, in part, by the design possibilities of NASA’s
“Terrestrial Planet Finder” mission. Our spacecraft modelis
similar to the one proposed in [1]. The spacecraft have laser-
based directional relative position sensors, like the kind
described in [2], which require two sensors to lock on to
each other before getting a position measurement. Each of
the spacecraft has a sun-shield which must be oriented so
as to protect sensitive astronomical instruments from solar
radiation. The spacecraft are assumed to be in deep space,
far from the effects of gravitational curvature.

Literature review: A fairly extensive bibliography of
missions which plan to use spacecraft formation flying can

M. Schuresko and J. Cortés are with the Department of
Applied Mathematics and Statistics, Baskin School of Engineering,
University of California at Santa Cruz, CA 95064, USA
{mds,jcortes}@soe.ucsc.edu

be found in [3]. These include Terrestrial Planet Finder [4],
EO-1 [5], TechSat-21 [6] and Orion-Emerald [7]. A driving
motivation behind formation flying research is that of large
aperture adaptive optics in space, e.g. [4]. Optical devices
such as the ones described in [8] could combine the
advantages of multi-mirror adaptive optics with those of
space telescopes. A good overview on current research on
formation flying for optical missions is contained in [2].

The majority of the work on control algorithm design has
focused on formation acquisition and tracking. A survey
of algorithms is given in [9]. Leader-following approaches,
e.g. [10], [11], and virtual structures approaches, e.g. [12],
have been used to prescribe overall group behavior by
specifying the behavior of a single leading agent, either real
or virtual. Motion planning and optimal control problems
are analyzed in [13]. The only work known to us that has
dealt in detail with formation initialization is [1].

Statement of contributions:The contributions of this
paper are twofold. On the one hand, we provide optimality
bounds on the performance of any correct formation ini-
tialization algorithm. Our analysis consists of a systematic
study of optimality of algorithms, both in two and three
dimensions, with regard to worst-case total angle rotated
by any member of the group of spacecraft. As a byproduct
of our analysis, we provide justification for theOpposing
Sensor Constraint in [1] by showing that optimal algo-
rithms exist which invoke it. Our optimality bounds give
rise to necessary conditions, which we use to show that
the rotation phases of the algorithm presented in [1] fail to
achieve formation initialization.

On the other hand, we present two original formation
initialization algorithms. The SPATIAL SPACECRAFT LO-
CALIZATION ALGORITHM achieves formation initialization
through a simple sequence of rotational maneuvers, each of
which sweeps a region of a particular partition of space.
The WAIT AND CHECK ALGORITHM performs a sequence
of rotational maneuvers interspersed with carefully chosen
pauses in order to achieve a nearly-optimal formation ini-
tialization solution. For both algorithms, we assess their
correctness, and formally characterize their performance
with regards to the optimality measures mentioned above. It
should be noted that, from a practical viewpoint, the pauses
employed by the WAIT AND CHECK ALGORITHM make the
SPATIAL SPACECRAFT LOCALIZATION ALGORITHM more
amenable to actual implementations.

Organization: Section II presents a set of definitions
which will be used throughout the remainder of the paper. In
Section III we give necessary conditions for the correctness
of any candidate solution to this problem, from which we
derive lower bounds for the optimality of any working

solution. These conditions will be used to analyze an algo-
rithm from the literature. Section IV presents three provable
formation initialization algorithms, including an algorithm
for formation initialization in 2 dimensions in Section IV-A,
a simple algorithm for 3 dimensions in Section IV-B and
an algorithm that gets close to our optimality bounds at the
expense of long wait times in Section IV-C.

II. PRELIMINARIES

Each spacecraft consists of a rigid body containing in-
struments on one side, which need to be shielded from
the sun (see Fig. 1). To serve this purpose, asun shield

~nSUN(S)

~vsensor(S)

Sun shield

Θfov

Fig. 1. Configuration of spacecraft geometry, and body frame definition.

is mounted to the spacecraft body on the side opposite
the instruments. Thesun shield normal vector, ~nSUN(S),
indicates the direction of the sun shield of spacecraftS. We
make the approximation that the sun is an infinite distance
away, and therefore the vector to the sun,~vSUN, is the same
for each spacecraft. In order to operate without damaging
the instrumentation, each spacecraft must maintain the
constraint~nSUN(S) ·~vSUN≥ cos(Θsun) for some pre-specified
angle Θsun at all times. Relative position and velocity
measurements between two spacecraft are made through the
metrology sensorsof the two craft. The metrology sensor
of spacecraftS senses within a conical region (CS) with
a half angle ofΘfov (assumed here to be greater thenπ

4
unless otherwise stated). Thesensor cone centerlineof S
is an infinite ray down the axis of rotational symmetry
of the sensor cone defined by the unit vector~vSENSOR(S).
Accurate orientation information is available for all space-
craft through measurements of what are known as reference
stars. Thus we only have to worry about obtaining relative
position and velocity information for each spacecraft. The
spacecraft are placed such that the curvature of earth’s
gravitational field has a negligible effect (for instance a
Lagrange point). We therefore assume that if no spacecraft
undergo translational acceleration then the spacecraft move
with constant (initially unknown) velocity in straight lines
relative to each other.

Definition 2.1: The global frame of referenceis an ar-
bitrary orthonormal frame,GF = {Xg,Yg,Zg}, whereXg =
~vSUN. For a spacecraftS, let PS be the position of the center
of mass ofS in the frameGF. Thecenter of mass frameof
S (denotedCMF(S)) corresponds to translating the global
frameGF to PS.

Definition 2.2: Let S be a spacecraft. The body frame,
BF(S) = {X̂S,ŶS, ẐS} is defined byX̂S = ~nSUN(S), ẐS =

~vSENSOR(S) and ŶS = ẐS× X̂S. In this frame,{0,0,0} is at
the center of mass,CM(S), of the spacecraft (see Fig. 1).

Now that we have these reference frames, we can define
the sensor coneCS : R3×SO(3) → 2R3

of spacecraftS as

CS(PS,MS) = {~x∈ R
3 :

[0,0,1]TMS(~x−PS)

‖~x−PS‖
≤ cos(Θfov)}.

(1)

When it is clear from the context, we will use the simpler
notation CS. In order to get a relative position reading
between two spacecraft,S1 and S2, S1’s metrology sensor
must point atS2. This condition is calledsensor lock.
Formally, two spacecraft,S1 and S2, achievesensor lock
if and only if PS1 ∈CS2 andPS2 ∈CS1.

The algorithms we present all require then spacecraft
performing the algorithm to be split into two groups,G1
andG2 such thatG1∪G2 = S1, ...,Sn andG1∩G2 = /0. This
can either be done a priori before launch or (preferably)
with a distributed algorithm prior to running formation
initialization (see [14]).

The state of each spacecraftS∈ {S1, · · · ,Sn} can be
described by(PS,MS) ∈ R3×SO(3). The dimensionality of
the network of spacecraft ({S1, · · · ,Sn}) is therefore 6n.
MS transformsBF(S) onto CMF(S) and PS defines the
translation betweenCMF(S) and GF. The spacecraft are
fully actuated.

Two spacecraft,S1 and S2, are said to be maintain-
ing the Opposing Sensor Constraint if ~vSENSOR(S1) =
−~vSENSOR(S2).While this constraint is not strictly neces-
sary for a correct solution to the Formation Initialization
problem, we will show, in Section III, that it is a conve-
nient and desirable constraint to work with. Note that this
does not fully constrain the relative orientation ofS1 with
respect toS2. When specifying an algorithm requiring the
Opposing Sensor Constraint, we will often specify the
more restrictive constraint

M−1
S1

MS2 = Mopp = diag(1,−1,−1).

We call this constraint theOpposing Frame Constraint.
Lemma 2.3:In addition to maintaining theOpposing

Sensor Constraint, theOpposing Frame Constraint also
guarantees that if spacecraftS1 verifies the sun-angle con-
straint, thenS2 also verifies it.

A. Algorithm definition

In this section we formally define what we mean by an
“algorithm.” In the next definitions, letDmsg be the set of
possible messages a spacecraft can communicate at any
instant, and letDsensor= (Z2 × R3 × R3)n be the set of
possible sensor cone readings for a spacecraft.

Definition 2.4 (Algorithm notion):An algorithm is a tu-
ple AS = (STATES,0,FS,GS,δ tstep), where STATES,0 ∈
DSTATE, the initial internal state of spacecraftS, contains
no information about the location of the other spacecraft
andFS is a map of the form

FS : R×SO(3)×DSTATE → R
3

(t,MS,STATES) 7→ ωS

andGS is a map of the form

GS : R×SO(3)×DSTATE×Dn−1
msg×Dsensor→ DSTATE×Dmsg

(t,MS,STATES,MSGS,in,SENSORS) 7→ (STATES,MSGS,out).

Definition 2.5 (Execution of an algorithm):An
execution by a spacecraftS of an algorithm AS =
(STATES,FS,GS,δ tstep) during the time interval[t0, t f] is the
pair of trajectoriest ∈ [t0, t f]→ (PS(t),MS(t)) ∈ R3×SO(3)
and STATES : [t0, t f] → DSTATE defined as follows:

• ṖS(t) = VS, for some constantVS∈ R3;
• ṀS(t) = ̂FS(t,STATES(t))MS(t), t ∈ [t0, t f], whereω̂ is

the matrix operator for the cross product withω ∈ R3;
• STATES is the piecewise constant function defined by

STATES(ti+1) =

GS((ti ,MS(ti),STATES(ti),MSGS,in(ti),SENSORS)(ti))

for i = 0, . . . ,m−1, with t0, t1, . . . , tm ∈ [t0, t f] a finite
increasing sequence, whereti = kδ tstep for somek∈N

or ti corresponds to the time instant when a change
occurs in the value of the sensor cone readings. The
initial value of STATES(t0) is STATES,0.

The lack of concrete specification ofDmsg and DSTATE
reflects our intent to provide lower bounds on algorithmic
performance for spacecraft with a wide range of compu-
tational and communication capabilities. In practice, the
working algorithms we present in Section IV require basic
computational capabilities on the part of each spacecraft.

B. Total angle traversed and solid angle covered

In this section we present definitions related to our
notion of an optimal solution to the formation initialization
problem.

1) Definition of total angle traversed during an algo-
rithm: In 3 dimensions, recall thatMS = [mx,my,mz] is
an orthonormal basis matrix representing the orientation
of spacecraftS. From Equation 8.6.5 of [15] we have the
formula for ω̂ = ṀSM−1

S .
The total angle traversed during the execution of an

algorithm in 3 dimensions is therefore
∫ t f

t=t0

√

ω̂2
1,2 + ω̂2

1,3 + ω̂2
2,3dt.

One can think of the 2-D problem as the 3-D problem
with rotations confined to the{Y,Z} plane. Under this
constraint, the previous expression reduces to

∫ t f

t=t0
|ω̂2,3|dt.

2) Definition of solid angle traversed during an algo-
rithm: Sometimes it is useful to discuss the total solid angle
covered by the sensor cone (CS) of a spacecraftSperforming
a formation initialization algorithm in 3 dimensions.

If a spacecraft,S, with sensor cone field of viewΘfov
rotates by an angle ofπ about an axis initially at an angle
of Θ > Θfov with respect to~vSENSOR(S), the new solid angle
covered in this sweep (i.e. the solid angle covered during
some portion of the sweep that was not inCS at the time

the sweep started) can be found by tracing a band about
the unit sphere and calculating its area. See Figure 2 for
clarification.

Θ

S
~vSENSOR(S)

Fig. 2. Method to compute rate of change of solid angle swept.

Recall that the solid angle of a cap of half angleα
is

∫ α
0 2π sin(t)dt. The area of this band can be found by

subtracting caps of half anglesΘ−Θfov and π −Θ−Θfov
from the unit sphere and dividing by 2. Dividing byπ gives
a rate of change of coverage of solid angle for this operation.

Definition 2.6: Define the function fsolid(ω)
to be fsolid(ω) = 2‖ω × ~vSENSOR(S)sin(Θfov)‖
when arccos(ω·~vSENSOR(S)

‖ω‖) > Θfov and fsolid(ω) =

‖ω × ~vSENSOR(S)sin(Θfov)‖ + ‖ω‖ − |ω · ~vSENSOR(S)|
for all otherω.

The total solid angle covered by a spacecraft,S, perform-
ing an algorithm,A, between timest0 and t is

Fsolid(t) :=
∫ t

t=t0
fsolid(ω)dt.

We will consider the total solid angle covered bySduring
the course of the algorithm to beFsolid(t f) + α0 where
t f is the earliest time at which formation initialization is
guaranteed to be complete andα0 = 2π(1− cos(Θfov) is
the solid angle contained inCS(t0) at time t0.

Remark 2.7:Note that 0≤ fsolid(ω) ≤ 2‖ω‖sin(Θfov). •
Analogously, the total angle covered by a spacecraftS

performing an algorithmA in 2d between timest0 and t is

Fangle(t) :=
∫ t

t=t0
|ω|dt.

C. Formation initialization problem

Formation initialization solutions entail establishing com-
munication and/or relative position information. Frequently
they also involve moving the spacecraft to an initial forma-
tion from which another formation control algorithm can
take over. Here we restrict ourselves to the establishment of
relative position and velocity information between each pair
of spacecraft. We assume that this information can come
from any combination of direct sensor readings, odometry
and communication with other spacecraft.

Definition 2.8: Let [ts, t f] be the duration of time during
which a formation initialization algorithm runs. LetG(t)
be the relative position connectivity network at time t,
defined byG(T) = (V,E) where v(Si) ∈ V correspond to

the spacecraftSi , and the edge(v(Si),v(Sj)) is in E if and
only if spacecraftSi andSj are in a state of sensor lock. A
solution to the formation initialization problem is one that
guarantees that the graph∪t∈[ts,t f]G(t) is connected, so long
as no two spacecraft collide byt f .

The multi-spacecraft algorithm proposed in [1] to solve
formation initialization is briefly described in Table I. We
discuss its correctness in Section III-A.

Name: Formation Initialization Algorithm
Goal: Solve the formation initialization problem assuming

using translation and rotation
Assumes: Assumptions in Section II.

1: if Si ∈ G1 then
2: Rotate to alignMSi with I3
3: else
4: Rotate to alignMSi with Mopp
5: end if
6: Wait for common start timets
7: Rotate by 3π aboutXSi .
8: Rotate−Θtilt (in this case 25 degrees) aboutYSi .
9: Rotate 2Θtilt aboutYSi .

10: Rotate byπ aboutXSi .
11: Rotate 2Θtilt aboutYSi .

{This is the end of the rotational component of the algorithm}
12: Rotate−Θtilt aboutYSi .
13: Wait for some timetnear field> 0
14: if Si ∈ G1 then
15: Begin translating alongZSi with speedvmax, wherevmax is the

maximum relative velocity between any two craft.
16: end if

TABLE I

FORMATION INITIALIZATION ALGORITHM PROPOSED IN [1]. WHILE

tNEAR FIELD IN STEP13 IS CAREFULLY SPECIFIED IN[1], THE ACTUAL

VALUE OF tNEAR FIELD IS NOT RELEVANT TO OUR ANALYSIS.

III. C ORRECTNESS AND OPTIMALITY OF FORMATION

INITIALIZATION ALGORITHMS

In Section III-A, we provide a necessary condition for the
correctness of any formation initialization algorithm. Then,
in Section III-B, we proceed to use this condition as the
basis for a series of optimality bounds. We also present
optimality results which justify theOpposing Sensor Con-
straint and allow us to more easily reason about then
spacecraft case (wheren > 2).

A. Necessary conditions for correctness

Theorem 3.1 presents a necessary condition for the cor-
rectness of a formation initialization algorithm. Theorem3.3
demonstrates the utility of this result by using it to analyze
an existing algorithm from the literature.

Theorem 3.1:Let S be executing a correct formation
initialization algorithm ind dimensions, withd∈{2,3}. For
everyv∈ Rd, let tv be the first time such thatv∈CS(tv) =
CS(PS(tv),MS(tv)). Then, there must existt∗ > tv such that
−v∈CS(t∗).

Proof: For simplicity, let vers(u) = u/‖u‖, for u∈Rd.
Consider two spacecraft,S1 andS2. S2 travels in the plane
defined by it’s velocity (VS2), and pclosest(S1,S2), where
pclosest(S1,S2) is the point of closest approach betweenS1
and S2 in CMF(S1). At time t S2 makes an angle with

pclosest(S1,S2) of arctan(
‖VS2

‖
‖pclosest(S1,S2)‖ t +t0) for somet0. S2’s

initial conditions can be chosen to match any arbitraryVS2,
pclosest(S1,S2) andt0. Because of this, given anε and times,
t1 and t2, vers(PS2) can be made to stay within an angle of
ε of −vers(VS2) until time t1, and move to within an angle
of ε of vers(VS2) by t2. Let t1 be the first time at which the
minimum angle between any ray inCS1(t1) and vers(−VS2)
is less then or equal toε and t2 be the first time at which
CS1(t2) includes vers(−VS2). In order to ensureS1 finds S2,
CS1(t

∗) must include vers(VS2) at some timet∗ > t1. Sinceε
was picked arbitrarily and the sensor cone is always closed,
CS1(t

∗) must include vers(VS2) at some timet∗ > t2.
Using this result, we analyze the correctness of the forma-

tion initialization algorithm proposed in [1] and summarized
in Table I. Let {e1,e2,e3} be the canonical basis forR3.
Given S∈ G1, let

Rdown(S) = {v∈CMF(S) :
v·e1

‖v‖ > cos(
π
2
−Θfov)}∩

{v∈CMF(S) :
v· (e1sin(Θtilt)+e3cos(Θtilt))

‖v‖ < cos(Θfov)}.

In other words, with regards to Table I,Rdown is the set of
points in the sensor cone at the end of Step 8 that were not
in the sensor cone at any point during Step 7, nor at the
end of Step 11.

Lemma 3.2:With the conventions of Table I,Rdown(S)
is non-empty so long asΘtilt +Θfov < π −Θfov.

Proof: Let ε > 0 such thatπ −Θfov−ε > Θtilt +Θfov.
Let θ = Θfov + ε, and definev := −e3cos(θ) + e1sin(θ).
We show next thatv∈ Rdown(S). This is because

v·e1

‖v‖ = cos(
π
2
−Θfov − ε) > cos(

π
2
−Θfov),

v· (e1sin(Θtilt)+e3cos(Θtilt))

‖v‖ = −cos(θ +Θtilt)

= cos(π −θ −Θtilt) < cos((Θtilt +Θfov)−Θtilt) ≤ cos(Θfov).

Theorem 3.3:The algorithm stages described in Steps 1-
12 of Table I are not, by themselves, sufficient to solve the
formation initialization problem.

Proof: Let S∈ G1 perform this algorithm. By The-
orem 3.1, for any vectorv, CS(t) must contain−v at
least once before the last timeCS(t) containsv. But each
v ∈ Rdown is last in CS(t) during Step 9, and nov ∈ {u ∈
CMF(S) : −u ∈ Rdown} is in CS(t) before Step 10. Thus
Rdown(S) does not satisfy this condition.

Obviously, the correctness of the algorithm in Table I
hinges onvmax. In fact, if vmax is known, Steps 13-16
by themselves provide a correct formation initialization
algorithm. It should be noted, however, that these steps were
designed to handle an effect we do not consider in this paper
(cf. Definition 2.2 and equation (1)), namely, the blind spots
caused by the offset of the apex of the sensor cone from
the center of rotation of the spacecraft. The correctness of
Steps 1-12 alone in the absence of this artifact was left
unanswered in [1].

B. Optimality bounds

For our purposes, we will consider the algorithm which
minimizes the maximum worst-case total angle traversed of
any spacecraftSi to be the optimal algorithm. Other reason-
able options would include the algorithm which minimizes
the worst-case sum over all spacecraftSi of the total angle
traversed.

In this section, Theorem 3.4 will prove thatOpposing
Sensor Constraint is optimal. Theorem 3.5 shows an
equivalence between worst-case bounds for 2 spacecraft
and worst-case bounds for any numbern> 2 of spacecraft.
Theorem 3.6 gives a lower bound for the 2-D problem and
Theorem 3.7 gives a lower bound on solid angle covered by
any algorithm solving the 3-D problem. This bound induces
a lower bound on angle traversed in 3 dimensions (see
Remark 2.7).

Theorem 3.4:(Justification of the Opposing Sensor
Constraint): Let S1 and S2 be two spacecraft. The most
optimal algorithm to guarantee thatS1 andS2 attain sensor
lock is one which uses theOpposing Sensor Constraint.

Proof: Imagine there is some algorithmA which
achieves sensor lock betweenS1 and S2 in time tlock.
Create a new algorithmA∗ in which S1 implementsA,
but S2 maintains theOpposing Sensor Constraintwith
S1. If S2 had been followingA, the apex ofCS2(tlock)
would be inCS1(tlock) at time tlock. SinceS1 is following
A in algorithm A∗, the apex ofCS2(tlock) is in CS1(tlock)
when both craft followA∗. By symmetry properties of the
Opposing Sensor Constraint, the apex ofCS1(tlock) is in
CS2(tlock), thus guaranteeing sensor lock at or before time
tlock. This means that for any algorithm,A, which guarantees
sensor lock, a modified algorithm (A∗) which maintains the
Opposing Sensor Constraintcan be constructed such that
A∗ guarantees sensor lock in at most as much worst-case
rotation asA.

Theorem 3.5 (Extending worst-cases to n Spacecraft):
Given a spacecraftSn with sensor cone half-angleΘfov, and
any ε > 0, the worst-case total angle traversed bySn while
performing a correct algorithm withn−1 other spacecraft
is identical to the worst-case total angle traversed by a
spacecraft with sensor cone half-angleΘfov +ε performing
a correct algorithm with one other spacecraft.

Proof: Let tworst be the worst-case time for 2 spacecraft
to find each other given a maximum angular velocity of
ωmax. Clearly the worst-case time forn craft is no worse
then this. Pick the initial conditions of the firstn−1 space-
craft arbitrarily. LetC be the set of communications the first
n−1 craft would send if they start from these conditions and
fail to achieve sensor lock withSn by time tworst. Let T be
the trajectorySn would take given communicationsC. Let At
be the algorithm for two spacecraft,S1 andS2, under which
eachS1 blindly follows T and S2 maintains the opposing
sensor constraint with respect toS1. Let Pworst andvworst be
the initial position and velocity ofS1 with respect toS2 that
achieves the worst-case total angle traversed forS1 under
At . In then spacecraft case, pick some spacecraftSi . Set the
initial position and velocity ofSn with respect toSi to be
λPworst and λvworst for λ such that mint∈[0,tworst](‖Pworst+

vworstt‖)λ > rworst
sin(ε) . SinceS1, · · · ,Sn−1 never get more then

rworst apart, these spacecraft are contained within a ball of
radiusrworst centered atSi . By construction ofλ , these craft
stay within an angular ball ofε from Sn’s point of view,
and thus none of these craft achieve sensor lock withSn
before timetworst.

Theorem 3.5 allows the result from Theorem 3.4 to be
generalized to any number of spacecraft. In addition, we
will use Theorem 3.5 throughout the remainder of the paper
to allow us to analyze worst-case total angle bounds by
considering the 2 spacecraft case.

Theorem 3.6 (2-D lower bounds on angle traversed):
For any algorithm A which solves the 2-D formation
initialization problem, andΘfov < π

2 , the worst-case total
angle covered byS1 performingA is 3π.

Proof: For Θfov < π
2 , by Theorem 3.1, every vector,

v, on the 2-sphere must be scanned at least once before
the final scan of−v. This meansS1 must scan at least half
the directions on the unit 2-sphere twice for a total angle
covered of 3π.

From Theorem 3.6 we can deduce that the worst-case
minimum total angle traversed by any correct formation ini-
tialization algorithm in 2-D ismin(3π −2Θfov,4π −4Θfov).

Theorem 3.7 (3-D lower bounds on solid angle covered):
For any algorithm A which solves the 3-D formation
initialization problem, andΘfov < π

2 , the worst-case total
solid angle covered byS1 performingA is 6π.

Proof: The total solid angle of a sphere is 4π. For
Θfov < π

2 , by Theorem 3.1, every vector,v, on the 3-sphere
must be scanned at least once before the final scan of−v.
This meansS1 must scan at least half the directions on the
unit 3-sphere twice for a total solid angle covered of 6π.

Corollary 3.8 (3-D lower bounds on total angle):
For any algorithm A which solves the 3-D formation
initialization problem, andΘfov < π

2 , the worst-case total
angle traversed byS1 performing A is at least 3π−α0/2

sinΘfov
whereα0 = 2π(1−cos(Θfov)).

Proof: Recall from Remark 2.7 thatddt Fsolid(t) =
fsolid(ω) ≤ 2‖ω sin(Θfov)‖. Since 6π − α0 ≤ ∫

fsoliddt ≤
∫

2‖ω sin(Θfov)‖dt = 2sin(Θfov)
∫ ‖ω‖dt and the total an-

gle rotated is defined as
∫ ‖ω‖dt, we can say that the total

angle rotated by any spacecraftS1 performingA is 6π−α0
2sin(Θfov)

.

IV. PROVABLY CORRECT FORMATION INITIALIZATION

ALGORITHMS

Having given lower bounds on what is necessary for
a correct formation initialization solution, in this section
we set out to answer whether the problem as we pose it
has a solution. Section IV-A describes an algorithm from
the literature for a 2 dimensional variant of this problem.
Section IV-B presents a purely rotational algorithm for
formation initialization in 3 dimensions and Theorem 4.6
gives a proof of its correctness. Components of the full 3-
D problem will be reduced to the 2-D problem, and the
correctness of the 2-D problem will be used in the proof
of correctness of the 3-D problem. Section IV-C provides
an algorithm which comes closer to the optimality bounds

presented in Section III at the expense of other practical
considerations. This algorithm is presented largely as a
demonstration of the tightness of our optimality bounds.

A. Formation initialization in two dimensions

In order to prove the correctness of the algorithm in
deep space, we will need a simpler algorithm for the 2
dimensional case, which we term “in-plane search”. This
algorithm solves the formation initialization problem fora
group of spacecraft residing in a plane. Readers should note
that the in-plane search algorithm presented here is by [1].
It is described in Table II.

Name: PLANAR SPACECRAFT LOCALIZATION ALGORITHM
Goal: Solve the Formation Initialization problem in 2 dimen-

sions
Assumes: Assumptions in Section II

1: if Si ∈ G1 then
2: Turn to common reference orientationΘstart

3: else
4: Turn toΘstart+π
5: end if
6: At synchronized start timets, begin rotating with constant angular

velocity ω > 0. Continue this rotation for 3π radians.

TABLE II

PLANAR SPACECRAFT LOCALIZATION ALGORITHM.

The next result is proved in [1].
Proposition 4.1:Under Assumptions in Section II,

the PLANAR SPACECRAFT LOCALIZATION ALGORITHM

achieves formation initialization.
Remark 4.2:PLANAR SPACECRAFT LOCALIZATION AL-

GORITHM achieves the lower bound from Theorem 3.6.•

B. SPATIAL SPACECRAFT LOCALIZATION ALGORITHM

Both the description of the full 3-D algorithm and its
proof of correctness require some additional specific defi-
nitions, that we briefly exposed next.

For the purpose of this algorithm, we will defineΘtilt =
min{Θsun,Θfov} and assumeΘfov ≥ π

4 .
Definition 4.3: Let S be a spacecraft. Define
• R1(S) = {~u∈CMF(S) : ~u·XS≤ 0};
• R2(S) = CMF(S)\R1(S).
Remark 4.4:Let Θtilt be an angle such thatπ2 −Θfov <

Θtilt < Θfov. R1(S) is chosen so as to be included within the
region swept out by spacecraftS’s sensor cone while it is
tilted by an angleΘtilt towards the sun axis and performing
a 3π rotation about the sun axis.R2(S) is chosen so as to
be included within the region swept out by spacecraftS’s
sensor cone while it is tiltedπ2 −Θfov < Θtilt < Θfov away
from the sun axis and performing a 3π rotation about the
sun axis. Also, note that in the frameCMF(S), R1(S)∪
R2(S) = R3. •

The full 3-D algorithm will invoke the subroutine de-
scribed in Table III.

At the end of the execution of 3-DREGION SWEEP

ALGORITHM, if Si is in G1, then Rn(Si) has been swept,
otherwiseSi has maintained an orientation such that for all
Sj in G1 MSi [0,0,1]T = −MSj [0,0,1]T .

Name: 3-D REGION SWEEP ALGORITHM
Goal: Scan a region for use as a subroutine by SPATIAL

SPACECRAFT LOCALIZATION ALGORITHM
Inputs: (i) A spacecraft,Si

(ii) An integer, n ∈ {1,2}, indicating the region to be
swept

Assumes: (i) Assumptions in Section II.
(ii) Θfov ≥ π

4 andΘfov +Θsun≥ π
2 .

Require: At the start of this subroutine, there exist matricesM1,M2 ∈
SO(3) such that for allSi ∈G1, MSi = M1, for all Sj ∈G2, MSj = M2,
M1[1,0,0]T = M2[1,0,0]T andM1[0,0,1]T = −M2[0,0,1]T .

Require: At the start of this subroutine,[0,0,1]M1[0,1,0]T = 0.
1: SetΘROT = [0,0,1]MS[0,0,1]T(−1n) ·Θtilt
2: Rotate byΘROT aboutYSi
3: Begin rotating aboutXSi by a constant angular velocityω. Continue

this rotation for 3π radians and then stop.
4: Rotate byΘROT aboutYSi

TABLE III

3-D REGION SWEEP ALGORITHM.

We are now ready to define SPATIAL SPACECRAFT LO-
CALIZATION ALGORITHM (cf. Table IV).

Name: SPATIAL SPACECRAFT LOCALIZATION ALGORITHM
Goal: Solve the Formation Initialization problem in 3 dimen-

sions
Assumes: (i) Assumptions in Section II.

(ii) Θfov ≥ π
4 andΘfov +Θsun≥ π

2 .

1: if Si ∈ G1 then
2: Rotate to alignMSi with I3
3: else
4: Rotate to alignMSi with Mopp
5: end if
6: Wait for common start timets
7: Call 3-D REGION SWEEP ALGORITHM on Si andR1(Si)
8: Call 3-D REGION SWEEP ALGORITHM on Si andR2(Si)
9: Call 3-D REGION SWEEP ALGORITHM on Si andR1(Si)

TABLE IV

SPATIAL SPACECRAFT LOCALIZATION ALGORITHM.

1) Analysis of SPATIAL SPACECRAFT LOCALIZATION

ALGORITHM : Let us discuss the correctness of this al-
gorithm. As in Section IV-A, we reduce the problem to that
of two spacecraft finding each other. Call these spacecraft
S1 ∈ G1 andS2 ∈ G2.

Recall thatS2’s motion in CMF(S1) is along a straight
line with constant velocity.

Consider the two half-spaces defined by the{Y,Z} plane
in CMF(S1). BecauseS2 moves with constant velocity with
respect toS1, it can cross from one half-space to the other
at most once.

The paths it can take are as follows.S2 can begin in
R1(S1) and cross toR2(S1) at most once. LikewiseS2 can
begin inR2(S1) and cross intoR1(S1) at most once.

Because we make no assumptions about the speed at
which these spacecraft take these paths, or at which part of
the path they start, handling these cases will automatically
handle the cases for paths that fail to cross the{Y,Z} plane.

Lemma 4.5 (Partial reduction to in-plane search):
Doing a 3π sweep (turning about the sun line) through
Rn(S), n ∈ {1,2}, S∈ G1, finds all spacecraft inG2 that
stay inRn(S) during the entire duration of the 3π rotation.

Proof: Projecting the centerline of the cone and the
spacecraft path onto the{Y,Z} plane inCMF(S) reduces
this to the 2-D algorithm. In the cases whereRn(S) contains
points which project directly onto(0,0) there can be a
collision in the 2-D projection which does not correspond
to a collision of the craft in 3-D. In these cases, the sensor
cone ofS1 always contains all such points, and any colliding
craft are found.

Finally, we are in a position to establish the correctness
of the full 3-D algorithm.

Theorem 4.6:Under Assumptions in Section II, the SPA-
TIAL SPACECRAFT LOCALIZATION ALGORITHM solves the
formation initialization problem.

Proof: Consider two spacecraft,S1 andS2. Let S2 start
in Rbegin(S1) and end inRend(S1). If Rbegin(S1) = Rend(S1)
we are done. OtherwiseS1 must scanRend(S1) at least once
after the first scan ofRbegin(S1). If the scan ofRbegin(S1)
did not findS2, thenS2 must be inRend(S1)

If S2 never crosses the{Y,Z} plane, either the scan of
R1(S1) or the scan ofR2(S1) must find it. Otherwise,S2
starts in one region and ends in the other. The sequence
of region sweeps performed byS1 guarantee thatS1 will
scan the regionS2 starts in at least once before scanning
the regionS2 ends in. If S2 is not found whenS1 first
performs a sweep of the region in whichS2 begins (call
this Rbegin(S1)), then S2 must be in the remaining region
(Rend(S1)) by the end of the sweep. Since this was the first
sweep ofRbegin(S1), S1 must scan atRend(S1) at least once
after this point and findS2.

Remark 4.7:SPATIAL SPACECRAFT LOCALIZATION AL-
GORITHM sweeps a total solid angle of 9π + 5Θtilt

sinΘfov
and performs rotations totaling 9π + 5Θtilt , whereΘtilt :=
min(π

2 −Θfov,Θsun). •

C. WAIT AND CHECK ALGORITHM

As pointed out in Remark 4.7, the provably correct
SPATIAL SPACECRAFT LOCALIZATION ALGORITHM is far
from optimal both in terms of total angle traversed and solid
angle covered. In what follows, we introduce the WAIT

AND CHECK ALGORITHM (cf. Table V). This algorithm
has a much better performance with regards to solid angle
covered, at the expense of a longer execution time. After
we prove its correctness (cf. Theorem 4.9), we show how
to modify it to achieve an optimal total rotation given its
solid angle covered (cf. Remark 4.10).

The next lemma will be used in establishing the correct-
ness of WAIT AND CHECK ALGORITHM .

Lemma 4.8:Consider a spacecraftS2 traveling in a
path with respect toS1 with velocity VS2 and point of
closest approachpclosest(S1,S2). Let Π1,2 be the plane
in CMF(S1) spanned by the vectorspclosest(S1,S2) and
VS2. Define a parameterization of vectors inΠ1,2 by the
functionΘscan(P) := arctan(pclosest(S1,S2) ·P,−VS2 ·P). For
any anglesΘ ∈ [0,π] and ε ∈ [0,Θ], if S1 first verifies
that Θscan(PS2) < Θ − ε at time t1 and then verifies that

Θscan(PS2) > Θ+ε at timet2, then by timet2+
tan(π

2−ε)
ε (t2−

t1), S2 will be within ε of its final angle.

Name: WAIT AND CHECK ALGORITHM
Goal: Solve the formation initialization problem using near-

optimal solid angle coverage.
Assumes: (i) Assumptions in Section II.

(ii) Θfov > π
4 .

1: DefineΘε = Θfov − π
4

2: if Si ∈ G1 then
3: Rotate to alignMSi with I3
4: else
5: Rotate to alignMSi with Mopp
6: end if
7: Wait for common start timets
8: Rotate byπ

4 aboutYSi{Call this timet1}
9: Rotate aboutXSi by 2π with angular velocityω{Call this timet2}

10: Wait
tan(π

2 −Θε)
Θε

(t2− t1){Call this timet3}

11: Rotate aboutYSi by −π
2 {Call this timet4}

12: Rotate aboutXSi by 3π with angular velocityω{Call this timet5}
13: Rotate aboutYSi by −π

2 {Call this timet6}

14: Wait
tan(π

2 −Θε)
Θε

(t4− t5){Call this timet1}

15: Rotate aboutXSi by 2π with angular velocityω{Call this timet7}

TABLE V

WAIT AND CHECK ALGORITHM .

Proof: Since Θscan(PS2(t2)) − Θscan(PS2(t1)) > 2ε,
‖VS2

‖
‖pclosest(S1,S2)‖ is at least 2ε

t2−t1
. Θscan(PS2(

tan(π
2−ε)
ε (t2 −

t1))) ≥ arctan(tan(Θ+ ε)+ 2ε
t2−t1

tan(π
2−ε)
ε (t2− t1)) ≥ π − ε.

Next, we characterize the correctness of the WAIT AND

CHECK ALGORITHM.
Theorem 4.9:The WAIT AND CHECK ALGORITHM cor-

rectly solves the formation initialization problem.
Proof: Consider a spacecraft,S1. Any other spacecraft

whoseX position is less than zero at timet1 must either
be found, cross the{Y,Z} plane, or cross the{X,Z} plane
beforet2. If S2 crossed the{X,Z} plane betweent1 and t2
and was not found, then it must have been moving with
sufficient velocity to have moved to withinΘε of its final
angle by timet3. By this logic, byt3, any craft with a final
angle corresponding to a positiveX component of position
must have been found by timet2, or be on the+X side
of the {Y,Z} plane by timet3. Betweent4 and t5 all such
craft are found, along with any craft that started on the
+X side of the{Y,Z} plane and have not left it byt5 (by
Lemma 4.8). Any craft which have left the+X side of the
{Y,Z} plane byt5 but were not found during the sweep of
the −X half of the {Y,Z} plane must have been moving
with sufficient angular velocity as to be withinΘε of their
final angles (on the−X half of the{Y,Z} plane) byt6 (cf.
Lemma 4.8). For this reason, the final sweep of the−X
side of the{Y,Z} plane need only be a 2π sweep.

Remark 4.10 (Angle-optimal region sweeps):The WAIT

AND CHECK ALGORITHM covers a solid angle of 7π +
5Θtilt

sin(Θtilt)
. Clearly, the ratio of total angle traversed to solid

angle covered in WAIT AND CHECK ALGORITHM is not
at the optimal 1

2sin(Θfov)
. The algorithm can be modified to

traverse a total angle of 7π sin(Θtilt)+5Θtilt , whereΘtilt :=
min(π/2−Θfov,Θsun,Θfov), at the expense of not respect-

ing the sun-angle constraint. We describe how next. The
optimal ratio of total angle traversed to solid angle covered
is achievable for any rotational trajectory of~vSENSOR(S)
over time. While a rotational velocity,ω, specifies the
instantaneous rotation of the entire body frame ofS, the
instantaneous motion of~vSENSOR(S) only fixes two degrees
of freedom of this rotation. By choosingω to lie along
~vSENSOR(S) × d

dt~vSENSOR(S), we can always achieve the
maximum instantaneousfsolid(ω)/‖ω‖.

Let us suppose that~vSENSOR(S) is within an angle of
π
2 − α of the sun line, and we wish for~vSENSOR(S) to
sweep out the arc defined byCα := {~v ∈ R3 : ‖~v‖ =
1∧arccos(~v·~vSUN) = π

2 −α}. At any instant during which
~vSENSOR(S) ∈ Cα , the optimal axis of rotation,ω, is both
perpendicular to~vSENSOR(S) and guarantees~vSENSOR(S)
remains in Cα . One such ω always lies on a cone
which we will define asCtumble := {~v ∈ R3 : ‖~v‖ = 1∧
arccos(~v·~vSUN) = α}, see Figure 3. Note that the body

ω

~vSENSOR(S)

ωCMF(S)

ωBF(S)

Ctumble

Fig. 3. Performing a sweep of 2π with less then 2π rotation

frame, BF(S) does not move with respect toCMF(S) at
any point along the axisω. When the sweeps about the
sun line of WAIT AND CHECK ALGORITHM are executed
as we just described, the algorithm requires a total angular
rotation of 7π√

2
+5Θtilt . •

V. CONCLUSIONS AND FUTURE WORK

We have considered the formation initialization problem
for a group of spacecraft endowed with limited field-of-
view relative position sensors and omnidirectional com-
munication. We have obtained optimality bounds for the
performance of any correct algorithm in terms of worst-
case solid angle covered and total angle traversed. In two
dimensions, the angle traversed bound is hard and in three
dimensions, the angle traversed bound is no worse than
the solid angle bound. Our analysis of optimality justifies
several decisions made in both our own algorithm designs
and those of previous works, including the PLANAR SPACE-
CRAFT LOCALIZATION ALGORITHM and the Opposing
Sensor Constraint. We have also synthesized two provably
correct formation initialization algorithms. In particular,
the SPATIAL SPACECRAFT LOCALIZATION ALGORITHM is
simple and easily provable, while the WAIT AND CHECK

ALGORITHM is nearly optimal according to the optimality
bounds obtained.

Areas of future work include: (i) the determination of
the optimality ofOpposing Sensor Constraintwhen the
spacecraft start in random orientations (this is easily seen
for the case of two spacecraft). If this is true in general, then
it will be of interest to determine the optimal way to move
the spacecraft to satisfy theOpposing Sensor Constraint;
(ii) the investigation of other notions of optimality, such
as minimum time to complete formation initialization on a
fixed fuel budget; (iii) the determination of whether the 6π
solid angle bound in three dimensions is a hard bound. For
Θfov = π

2 , this bound gives a total angle rotated bound of
3π, which matches the intuitive result from reducing this
special subproblem to two dimensions.

ACKNOWLEDGMENTS

The authors wish to thank Prof. Roy Smith for pointing
our attention to the algorithms described in [1]. This re-
search was supported in part by NASA University Aligned
Research Program Award TO.030.MM.D.

REFERENCES

[1] S. R. Ploen, D. P. Scharf, F. Y. Hadaegh, and M. Bikdash, “Initial-
ization of distributed spacecraft formations,”Journal of the Astro-
nautical Sciences, vol. 52, no. 4, 2004.

[2] H. Hemmati, W. Farr, B. Liu, J. Kovalik, M. Wright, and
J. Neal, “Formation metrology,” Nov. 2003, high-level description of
sensors developed at JPL for precision gormation control. [Online].
Available: http://dst.jpl.nasa.gov/metrology/index.htm

[3] M. Tillerson, G. Inalhan, and J. How, “Coordination and control of
distributed spacecraft systems using convex optimization techniques,”
International Journal on Robust and Nonlinear Control, vol. 12, pp.
207–242, 2002.

[4] P. R. Lawson, S. C. Unwin, and C. A. Beichman, “Precursor
science for the terrestrial planet finder,” Jet Propulsion
Laboratory Publication 04-14, Oct. 2004. [Online]. Available:
http://planetquest.jpl.nasa.gov/documents/RdMp273.pdf

[5] F. Bauer, J. Bristow, D. Folta, K. Hartman, D. Quinn, and J.How,
“Satellite formation flying using an innovative autonomous control
system (autocon) environment,” inAIAA Conf. on Guidance, Navi-
gation and Control, Reston, VA, 1997, pp. 657–666.

[6] A. Das and R. Cobb, “Techsat 21 - space missions using collaborating
constellations of satellites,” inAIAA Conf. on Small Satellites, Logan,
UT, 1998.

[7] J. How, R. Twiggs, D. Weidow, K. Hartman, and F. Bauer, “Orion -
a low cost demonstration of formation flying in space using GPS,” in
AIAA/AAS Astrodynamics Specialist Conf. and Exhibit, Reston, VA,
1998, pp. 276–286.

[8] J. A. Dooley and P. R. Lawson, “Technology plan for
the terrestrial planet finder coronagraph,” Jet Propulsion
Laboratory Publication 05-8, Mar. 2005. [Online]. Available:
http://planetquest.jpl.nasa.gov/TPF/TPF-CTechPlan.pdf

[9] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft
formation flying guidance and control (part ii): control,” inAmerican
Control Conference, Boston, MA, June 2004, pp. 2976–2985.

[10] V. Kapila, A. G. Sparks, J. M. Buffington, and Q. Yan, “Spacecraft
formation flying: dynamics and control,”AIAA Journal of Guidance,
Control, and Dynamics, vol. 23, pp. 561–564, 2000.

[11] M. Mesbahi and F. Y. Hadaegh, “Formation flying control ofmultiple
spacecraft via graphs, matrix inequalities, and switching,” AIAA
Journal of Guidance, Control, and Dynamics, vol. 24, no. 2, pp.
369–377, 2001.

[12] R. W. Beard, J. Lawton, and F. Y. Hadaegh, “A coordination
architecture for spacecraft formation control,”IEEE Transactions on
Control Systems Technology, vol. 9, no. 6, pp. 777–790, 2001.

[13] I. I. Hussein, “Motion planning for multi-spacecraft interferometric
imaging systems,” Ph.D. dissertation, University of Michigan, 2005.

[14] N. A. Lynch, Distributed Algorithms. San Mateo, CA: Morgan
Kaufmann Publishers, 1997.

[15] J. E. Marsden and T. S. Ratiu,Introduction to Mechanics and
Symmetry, 2nd ed. New York: Springer Verlag, 1999.

