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Abstract— This paper considers formation initialization for  be found in [3]. These include Terrestrial Planet Finder [4]
a class of autonomous spacecraft operating in deep space with EQ-1 [5], TechSat-21 [6] and Orion-Emerald [7]. A driving
arbitrary initial positions and velocities. Formation initializa- motivation behind formation flying research is that of large

tion is the task of getting a group of autonomous agents to . L . ;
obtain the relative and/or global dynamic state information 2aPerture adaptive optics in space, e.g. [4]. Optical device

necessary to begin formation control. We associate a “worst- Such as the ones described in [8] could combine the
case total angle traversed” optimality notion to the execution advantages of multi-mirror adaptive optics with those of
of any formation initialization algorithm, and present per-  gpace telescopes. A good overview on current research on
fﬁrmgr;ce bounds valid for any correct algorithm. We des%n formation flying for optical missions is contained in [2].
D A A AT gond_The majority of the work on conirol algorithm design has
properties and characterize their performance in terms of focused on formation acquisition and tracking. A survey
worst-case optimality and execution time. of algorithms is given in [9]. Leader-following approaches
e.g. [10], [11], and virtual structures approaches, e.g],[1
have been used to prescribe overall group behavior by
Motivation and problem statementDeploying large specifying the behavior of a single leading agent, eithal re
structures in space requires multiple spacecraft to ceordyr virtual. Motion planning and optimal control problems
nate their activities, due, in part, to the limited payloadare analyzed in [13]. The only work known to us that has
capabilities of launch vehicles. One application that iexpu  dealt in detail with formation initialization is [1].
such coordination is the deployment of large-baseline in- Statement of contributionsThe contributions of this
terferometers for science imaging missions. Key aspect@per are twofold. On the one hand, we provide optimality
of spacecraft coordination which are likely to be used imounds on the performance of any correct formation ini-
a broad variety of contexts include: (i) formation initial-tialization algorithm. Our analysis consists of a systemat
ization, i.e., the establishment and maintenance of welati study of optimality of algorithms, both in two and three
dynamic state information (e.qg. relative positions an@eel dimensions, with regard to worst-case total angle rotated
ities) and/or on-board inter-spacecraft communicatidi; ( by any member of the group of spacecraft. As a byproduct
formation acquisition, i.e., making the group of spacdcrabf our analysis, we provide justification for tf@pposing
attain a desired geometry; and (iii) formation regulatiorS8ensor Constraintin [1] by showing that optimal algo-
and tracking, i.e., maintaining fixed inter-spacecraftgen rithms exist which invoke it. Our optimality bounds give
bearing, and inertial attitudes with high accuracy alorg thrise to necessary conditions, which we use to show that
execution of a desired trajectory. the rotation phases of the algorithm presented in [1] fail to
In this paper, we focus our attention on the formatiorachieve formation initialization.
initialization problem. This problem is especially impemt On the other hand, we present two original formation
for spacecraft operating in deep space, where conventioniaitialization algorithms. The BATIAL SPACECRAFT LO-
Earth-based GPS does not provide sufficiently accurateaLIZATION ALGORITHM achieves formation initialization
position information. Here, we consider a spacecraft modéhrough a simple sequence of rotational maneuvers, each of
motivated, in part, by the design possibilities of NASAswhich sweeps a region of a particular partition of space.
“Terrestrial Planet Finder” mission. Our spacecraft masel The WAIT AND CHECK ALGORITHM performs a sequence
similar to the one proposed in [1]. The spacecraft havelasesf rotational maneuvers interspersed with carefully chose
based directional relative position sensors, like the kingauses in order to achieve a nearly-optimal formation ini-
described in [2], which require two sensors to lock on taialization solution. For both algorithms, we assess their
each other before getting a position measurement. Each adrrectness, and formally characterize their performance
the spacecraft has a sun-shield which must be oriented @&dth regards to the optimality measures mentioned above. It
as to protect sensitive astronomical instruments fromrsolghould be noted that, from a practical viewpoint, the pauses
radiation. The spacecraft are assumed to be in deep spaemployed by the WIT AND CHECK ALGORITHM make the
far from the effects of gravitational curvature. SPATIAL SPACECRAFT LOCALIZATION ALGORITHM more
Literature review: A fairly extensive bibliography of amenable to actual implementations.
missions which plan to use spacecraft formation flying can Organization: Section Il presents a set of definitions
which will be used throughout the remainder of the paper. In
A Ml-ie dsw;{ﬁ:ﬁ]oaﬂcasﬂdanj- Stca?:tic :‘reBa‘éVIi(tig Sﬂéﬁoo?egfafgg% of Section Il we give necessary conditions for the correcines
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{mds, j cort es}@oe. ucsc. edu derive lower bounds for the optimality of any working
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solution. These conditions will be used to analyze an algaksensodS) and Ys = Zs x Xs. In this frame,{0,0,0} is at
rithm from the literature. Section IV presents three prdeab the center of mas€M(S), of the spacecraft (see Fig. 1).
formation initialization algorithms, including an algtin Now that we have these reference frames, we can define
for formation initialization in 2 dimensions in Section A-  the sensor con€s: R3 x SQ(3) — 2% of spacecraftS as

a simple algorithm for 3 dimensions in Section IV-B and 0.0. 11T M<(x

an algorithm that gets close to our optimality bounds at th@s(Ps, Ms) = {X € RS - [0.0,1] Ms(X—Py)
expense of long wait times in Section IV-C. [[X— Py|

< cogOrov) }-
1)

1. PRELIMINARIES L i )
When it is clear from the context, we will use the simpler

Each spacecraft consists .Of a rigid body containing N5 ation Cs. In order to get a relative position reading
struments on one side, which nged to be shleldgd fro tween two spacecraf§; and S, Si's metrology sensor
the sun (see Fig. 1). To serve this purposesua shield must point atS,. This condition is calledsensor lock
Formally, two spacecrafts and S, achievesensor lock
if and only if Ps; € Cs, andPs, € Cg,.

The algorithms we present all require thespacecraft
performing the algorithm to be split into two groupS;
andG such thatGi UG, = S, ..., S, andG1 NGy = 0. This
can either be done a priori before launch or (preferably)
with a distributed algorithm prior to running formation
initialization (see [14]).

The state of each spacecrete {S,---,S,} can be
described by(Ps,Ms) € R3 x SQ(3). The dimensionality of
the network of spacecraft{$,---,S}) is therefore 6.
Ms transformsBF(S) onto CMF(S) and Ps defines the
fanslation betweel€MF(S) and GF. The spacecraft are
ully actuated.

Two spacecraft,S and S, are said to be maintain-
d’gg the Opposing Sensor Constraintif VsensoRS1) =
—VsensoR S)-While this constraint is not strictly neces-

ry for a correct solution to the Formation Initialization
goblem, we will show, in Section lll, that it is a conve-
nient and desirable constraint to work with. Note that this
does not fully constrain the relative orientation ®f with

Fig. 1. Configuration of spacecraft geometry, and body franfmitien.

is mounted to the spacecraft body on the side opposit
the instruments. Theun shield normal vectormsyn(S),
indicates the direction of the sun shield of spacecgafive
make the approximation that the sun is an infinite distan
away, and therefore the vector to the sugyy, is the same
for each spacecraft. In order to operate without damagi
the instrumentation, each spacecraft must maintain t
constrainfisun(S) - Vsun > €og Osyn) for some pre-specified
angle Ogyn at all times. Relative position and velocit o ; -
megasurements between two spacec?aft are made throug)rll ifapect 10S,. When speC|fy_|ng an a!gonthm requinng the
metrology sensorsf the two craft. The metrology sensor ©PPOsINg 'S(.ansor Cons_tralnx we will often specify the
of spacecraftS senses within a conical regiolCd) with ~More restrictive constraint
a half angle of@r, (assumed here to be greater thgn MgllMsz = Mopp = diag(1,—1,-1).
unless otherwise stated). Tlsensor cone centerlinef S
is an infinite ray down the axis of rotational symmetryWe call this constraint th®pposing Frame Constraint
of the sensor cone defined by the unit Vea@ENSOF(S)- Lemma 2.3:In addition to maintaining theOpposing
Accurate orientation information is available for all spac Sensor Constraint the Opposing Frame Constraintalso
craft through measurements of what are known as referenggarantees that if spacecrdt verifies the sun-angle con-
stars. Thus we only have to worry about obtaining relativétraint, thenS; also verifies it.
position and velocity information for each spacecratft. Th% Aloorithm definiti
spacecraft are placed such that the curvature of earth’s gorithm definition
gravitational field has a negligible effect (for instance a In this section we formally define what we mean by an
Lagrange point). We therefore assume that if no spacecralgorithm.” In the next definitions, leDmsg be the set of
undergo translational acceleration then the spacecrafemoP0ssible messages a spacecraft can communicate at any
with constant (initially unknown) velocity in straight ks instant, and letDsensor= (Z2 x R3 x R3)" be the set of
relative to each other. possible sensor cone readings for a spacecraft.

Definition 2.1: The global frame of referencés an ar-  Definition 2.4 (Algorithm notion):An algorithm is a tu-
bitrary orthonormal frameGF = {Xg,Yg,Zg}, whereXg = Ple As = (STATEso,Fs,Gs, dtstep), Where STATE €
Vsun. For a spacecrafb, let P be the position of the center Dstate, the initial internal state of spacecraf contains
of mass ofSin the frameGF. Thecenter of mass framef N0 information about the location of the other spacecraft
S (denotedCMF(S)) corresponds to translating the globalandFs is a map of the form
frame GF to Ps. . 3

Definition 2.2: Let S be a spacecraft. The body frame, Fs: R x SQ3) x Dstare — R
BF(S) = {)25,?3, Zs} is defined by)?s = ﬁSUN(S)! ZS = (tvMS’ STATES) — s



andGs is a map of the form the sweep started) can be found by tracing a band about
- the unit sphere and calculating its area. See Figure 2 for
Gs: R x SQ3) x Dstare x Dnmsé X Dsensor— DsTaTe X Dmsg  ¢|arification.

(t,Ms, STATEs, MSGsjn, SENSOR)) — (STATEs, MSGgout)-

Definition 2.5 (Execution of an algorithm)An
execution by a spacecraf6 of an algorithm As = . S
(STATEs, Fs, Gs, Ststep) during the time intervalto, t1] is the s (®)
pair of trajectorieg € [to,tf] — (Ps(t), Ms(t)) € R® x SQ(3) ,
and STATEs: [to,tf] — Dstate defined as follows: |
« Ps(t) = Vs, for some constaris € RS; [

« Ms(t) = Fs(t, STATEs(t))Ms(t), t € [to,t;], whered is \ Vsensor(S)
the matrix operator for the cross product withe R?; N /’
o STATEs is the piecewise constant function defined by N P
N s
STATEs(ti1) = -7
Gs((ti, Ms(ti), STATEs(ti), MSGgin(ti), SENSOR)(ti)) Fig. 2. Method to compute rate of change of solid angle swept.

for i=0,...,m—1, with to,t,...,tm € [to,t;] a finite
increasing sequence, where- k dtstep for somek € N
or tj corresponds to the time instant when a chang
occurs in the value of the sensor cone readings. T
initial value of STATEs(tp) is STATEsp.
The lack of concrete specification @finsg and Dstate
reflects our intent to provide lower bounds on algorithmi%O
performance for spacecraft with a wide range of compu-

Recall that the solid angle of a cap of half angle
ig Jo' 2msin(t)dt. The area of this band can be found by
élbtracting caps of half angl&— Oy, and T— © — Ofgy
rom the unit sphere and dividing by 2. Dividing bygives
a rate of change of coverage of solid angle for this operation
Definition 2.6: Define the function  fsgjig(w)
be fsoid(w) = 2w x VsensorS)SiN(Oroy)|l

. S e . W-VsENsORS) ) _
tational and communication capabilities. In practice, th&/nén —arcco I\E\_Z)H ) > Oy and fsoig(w) =
working algorithms we present in Section IV require basid@ X Vsenso”S)sIN(Grov)|| + [[w] — |w - Vsenso”S)|

computational capabilities on the part of each spacecraftfor all otherw.
The total solid angle covered by a spacecigfperform-

B. Total angle traversed and solid angle covered ing an algorithm A, between times, andt is
In this section we present definitions related to our t

notion of an optimal solution to the formation initializaui Fsolia(t) 5:/ fsolia(w)dt.

problem. =

1) Definition of total angle traversed during an algo- We will consider the total solid angle covered $yluring
rithm: In 3 dimensions, recall thaMs = [rnx’rn),7 mz] is the course of the algorithm to bBsjq(ts) + oo where
an orthonormal basis matrix representing the orientatioi is the earliest time at which formation initialization is
of spacecraftS. From Equation 8.6.5 of [15] we have the guaranteed to be complete and = 27(1— cogOroy) is

formula for @& = MSMgl. the solid angle contained iBs(to) at timeto.
The total angle traversed during the execution of an Remark 2.7:Note that 0< fsglig(w) < 2||w|| Sin(Grov).
algorithm in 3 dimensions is therefore Analogously, the total angle covered by a spacecgaft

performing an algorithnA in 2d between timet andt is

s
@R+ QR+ @2t t
/t:to L2 LT %23 Fanglelt) == / loldt.
0

One can think of the 2-D problem as the 3-D problem S
with rotations confined to theY,Z} plane. Under this C. Formation initialization problem
constraint, the previous expression reduces to Formation initialization solutions entail establishingnt-
t munication and/or relative position information. Freqien
/ |y 3|dt. they also involve moving the spacecraft to an initial forma-
=t tion from which another formation control algorithm can
2) Definition of solid angle traversed during an algo-take over. Here we restrict ourselves to the establishnfent o
rithm: Sometimes it is useful to discuss the total solid angleelative position and velocity information between each pa
covered by the sensor cor@s] of a spacecrafs performing of spacecraft. We assume that this information can come
a formation initialization algorithm in 3 dimensions. from any combination of direct sensor readings, odometry
If a spacecraftS with sensor cone field of view®s,, and communication with other spacecraft.
rotates by an angle aff about an axis initially at an angle  Definition 2.8: Let [ts,t¢] be the duration of time during
of © > Oy, with respect to/sensor S), the new solid angle which a formation initialization algorithm runs. Leb(t)

covered in this sweep (i.e. the solid angle covered duringe therelative position connectivity network at timet,
some portion of the sweep that was notGg at the time defined byG(T) = (V,E) wherev(S) € V correspond to




the spacecraffy, and the edg¢v(S),v(Sj)) isin E if and  peloses{St, S) of arctam%tﬂo) for somety. S's
only if spacecraft§ andSj are in a state of sensor lock. A initial conditions can be chosen to match any arbithay
solution to the formation initialization problem is one tha pgosesf S1,S) andty. Because of this, given anand times,
guarantees that the graph .+, G(t) is connected, so long t; andty, vergPs,) can be made to stay within an angle of
as no two spacecraft collide ly. € of —vergVs,) until time t;, and move to within an angle
The multi-spacecraft algorithm proposed in [1] to solveof € of verqVs,) by t,. Lett; be the first time at which the

formation initialization is briefly described in Table I. We minimum angle between any ray @, (t1) and ver$—Vs,)

discuss its correctness in Section IlI-A. is less then or equal te andt, be the first time at which
Cs, (t2) includes vers-Vs, ). In order to ensuré&, finds S,
Name: Formation Initialization Algorithm 'L Cs, (t*) must include verd/s,) at some time* > t;1. Sincee
Goal: Solve the formation initialization problem assuming \as picked arbitrarily and the sensor cone is always closed,
using translation and rotation . . . «
Assumes: Assumptions in Section II. Cs, (t*) must include verd/s,) at some time* > to. ]
_ Using this result, we analyze the correctness of the forma-
1 if § € Gy then _ tion initialization algorithm proposed in [1] and summaiz
2:  Rotate to aligrMg with I3 . . . 3
3 else in Table I. Let{ej,ey,e3} be the canonical basis fdg°.
4:  Rotate to aligrMg with Mgpp GivenSe Gy, let
5: end if
6: Wait for common start timés Vg T
7: Rotate by 3 aboutXs. Ryown(S) = {veE CMF(S) : —— > cog = — Ofey) }N
8. Rotate—Oy; (in this case 25 degrees) abof. ||V|| 2
9: Rotate By aboutYs. V- (e1Sin(Oy ) +- e3cog Oy
10: Rotate byrr aboutXs . {VECMF(S) : (e1Sin(Gir) + €308 i) < coYOfoy)}.
11: Rotate By aboutYs. HVH
{This is the end of the rotational component of the algorithm
12: ROtatf—G)ri|[ aboutYs .. In other words, with regards to TableRyown is the set of
ﬁ: %’Vg'te‘gls%'gﬁ UM@near fieid> O points in the sensor cone at the end of Step 8 that were not
15:  Begin translating alon@s with speedvinax, Wherevinax is the|  IN the sensor cone at any point during Step 7, nor at the
maximum relative velocity between any two craft. end of Step 11.
16: end if Lemma 3.2:With the conventions of Table Rjown(S)
TABLE | is non-empty so long a8yt + Osov < T— Ofgy.-
FORMATION INITIALIZATION ALGORITHM PROPOSED IN[1]. WHILE Proof: Let € > 0 such thatrr— Oy — € > Oxjit + Osoy.
tyear FieLp IN STEP131S CAREFULLY SPECIFIED IN[1], THE ACTUAL Let 6 = Oy + &, and definev = —e3 005(9) + elsin(e)_
VALUE OF tygar rieLp IS NOT RELEVANT TO OUR ANALYSIS. We show next that € Ryown(S). This is because
V-e T T
—— =C09 - — Oy — &) >cC0§ - — O
I1l. CORRECTNESS AND OPTIMALITY OF FORMATION [IV]| & 2 fo — ) & 2 fov).
INITIALIZATION ALGORITHMS V- (€1 Sin(Gyjiy) +e3cog Oyt )) cos6+ Ou)
. . " =- tilt
In Section Ill-A, we provide a necessary condition for the V]
correctness of any formation initialization algorithm.efh = cogm— 0 — Oyt) < coY(Gxiit + Orov) — Bttt ) < O Oy ).
in Section 1lI-B, we proceed to use this condition as the
basis for a series of optimality bounds. We also present |

optimality results which justify th€©pposing Sensor Con- Theorem 3.3:The algorithm stages described in Steps 1-
straint and allow us to more easily reason about the 12 of Table | are not, by themselves, sufficient to solve the

spacecraft case (where> 2). formation initialization problem.
» Proof: Let Se Gy perform this algorithm. By The-
A. Necessary conditions for correctness orem 3.1, for any vectow, Cs(t) must contain—v at

Theorem 3.1 presents a necessary condition for the cdeast once before the last tin@;(t) containsv. But each
rectness of a formation initialization algorithm. Theor8 Vv € Ryown iS last inCg(t) during Step 9, and nw € {u e
demonstrates the utility of this result by using it to analyzCMF(S) : —u € Ryown} Is in Cs(t) before Step 10. Thus
an existing algorithm from the literature. Ryown(S) does not satisfy this condition. [ |

Theorem 3.1:Let S be executing a correct formation Obviously, the correctness of the algorithm in Table |
initialization algorithm ind dimensions, withd € {2,3}. For  hinges onvmax In fact, if vmax is known, Steps 13-16

everyv e RY, lett, be the first time such thate Cs(ty) = by themselves provide a correct formation initialization
Cs(Ps(ty),Ms(ty)). Then, there must exist > t, such that algorithm. It should be noted, however, that these steps wer
—v e Cg(t"). designed to handle an effect we do not consider in this paper

Proof: For simplicity, let versu) = u/||u||, forue RY.  (cf. Definition 2.2 and equation (1)), namely, the blind spot
Consider two spacecraf§ andS,. S travels in the plane caused by the offset of the apex of the sensor cone from
defined by it's velocity ¥s,), and peioses{S1,S2), where the center of rotation of the spacecraft. The correctness of
Pelosest S1, ) is the point of closest approach betwe®n Steps 1-12 alone in the absence of this artifact was left
and & in CMF(S). At time t S makes an angle with unanswered in [1].



T'worst

B. Optimality bounds Viorstt || )A > sinie)” SinceSy, -+, S,-1 hever get more then

For our purposes, we will consider the algorithm whicHworst @Part, these spacecraft are contained within a ball of
minimizes the maximum worst-case total angle traversed §fdiUSTworst centered af. By construction ofd, these craft
any spacecraf§ to be the optimal algorithm. Other reason-St&y Within an angular ball of from S's point of view,
able options would include the algorithm which minimizes2Nd thus none of these craft achieve sensor lock &th

the worst-case sum over all spaceci&fof the total angle
traversed.
In this section, Theorem 3.4 will prove th&pposing

Sensor Constraint is optimal. Theorem 3.5 shows an
equivalence between worst-case bounds for 2 spacecr?ﬁt

before timetyorst. [ |
Theorem 3.5 allows the result from Theorem 3.4 to be
generalized to any number of spacecraft. In addition, we
will use Theorem 3.5 throughout the remainder of the paper
allow us to analyze worst-case total angle bounds by

and worst-case bounds for any numies 2 of spacecraft. considering the 2 spacecrait case.

Theorem 3.6 gives a lower bound for the 2-D problem an
Theorem 3.7 gives a lower bound on solid angle covered Hy
any algorithm solving the 3-D problem. This bound induce
a lower bound on angle traversed in 3 dimensions (sé¥!

Remark 2.7).

Theorem 3.4:(Justification of the Opposing Sensor
Constraint): Let S and S, be two spacecraft. The mos
optimal algorithm to guarantee th&t andS; attain sensor
lock is one which uses th®pposing Sensor Constraint

Proof: Imagine there is some algorithrA which
achieves sensor lock betwee® and S in time tjgck.
Create a new algorithmA* in which S implementsA,
but S maintains theOpposing Sensor Constraintwith
S;. If & had been followingA, the apex ofCs, (tiock)
would be inCs (tiock) at timetock. Since S is following
A in algorithm A*, the apex ofCs, (tiock) is in Cs (tiock)

when both craft followA*. By symmetry properties of the

Opposing Sensor Constraint the apex ofCs, (tioek) IS in

Cs, (tiock), thus guaranteeing sensor lock at or before tim

tiock- This means that for any algorithm, which guarantees
sensor lock, a modified algorithm\() which maintains the

Opposing Sensor Constraintcan be constructed such that
A* guarantees sensor lock in at most as much worst-ca;

rotation asA. u

Theorem 3.5 (Extending worst-cases to n Spacecraft):

Given a spacecrafs, with sensor cone half-angt@r,,, and
any € > 0, the worst-case total angle traversed3ywhile
performing a correct algorithm with— 1 other spacecraft

g Theorem 3.6 (2-D lower bounds on angle traversed):
r any algorithmA which solves the 2-D formation
ihitialization problem, anddy,, < g the worst-case total
gle covered by, performingA is 37t
Proof: For Oy < ’—27 by Theorem 3.1, every vector,
v, on the 2-sphere must be scanned at least once before

tthe final scan of-v. This meansS; must scan at least half

the directions on the unit 2-sphere twice for a total angle
covered of 3. |

From Theorem 3.6 we can deduce that the worst-case
minimum total angle traversed by any correct formation ini-
tialization algorithm in 2-D ismin(3rm— 2Oey, 47T— 4%y ).

Theorem 3.7 (3-D lower bounds on solid angle covered):
For any algorithmA which solves the 3-D formation
initialization problem, andds, < g the worst-case total
solid angle covered b$; performingA is 67.

Proof: The total solid angle of a sphere ist4For

Ofov < 5, by Theorem 3.1, every vectar, on the 3-sphere

ust be scanned at least once before the final scanvof

his meansS; must scan at least half the directions on the
unit 3-sphere twice for a total solid angle covered of

Corollary 3.8 (3-D lower bounds on total angle):
ggr any algorithmA which solves the 3-D formation
initialization problem, anddy,, < g the worst-case total
angle traversed bys; performing A is at Ieast?;gf%z
where ap = 271(1 — cogOxqy ) ).

Proof: Recall from Remark 2.7 thangond(t) =

fsolid(w) < 2||wsin(@xoy)||. Since 61— apg < [ fsoiigdt <

is identical to the worst-case total angle traversed by A2||wsin(Oxey)|dt = 2sin(Ory) [ ||w|/dt and the total an-

spacecraft with sensor cone half-an@g, + € performing
a correct algorithm with one other spacecraft.

Proof: Lettyorstbe the worst-case time for 2 spacecraft
to find each other given a maximum angular velocity of

Wmax Clearly the worst-case time far craft is no worse
then this. Pick the initial conditions of the first- 1 space-

craft arbitrarily. LetC be the set of communications the first

gle rotated is defined af||w||dt, we can say that the total

angle rotated by any spacecr&ftperformingAis 5 Sei’rf(’gf’gv) .
[ ]

IV. PROVABLY CORRECT FORMATION INITIALIZATION
ALGORITHMS

Having given lower bounds on what is necessary for

n—1 craft would send if they start from these conditions and correct formation initialization solution, in this sewti

fail to achieve sensor lock with, by timetyost Let T be
the trajectorys, would take given communicatios Let A
be the algorithm for two spacecra8 andS,, under which
eachS; blindly follows T and S, maintains the opposing
sensor constraint with respect$p. Let Ryorst and Viyorst be
the initial position and velocity o8, with respect tds, that
achieves the worst-case total angle traversedSfounder
A:. In then spacecraft case, pick some spacecgafbet the
initial position and velocity ofS, with respect toS to be
APuworst and Avyorst for A such that mi&[o,tworsd(||Pworst+

we set out to answer whether the problem as we pose it
has a solution. Section IV-A describes an algorithm from
the literature for a 2 dimensional variant of this problem.
Section IV-B presents a purely rotational algorithm for
formation initialization in 3 dimensions and Theorem 4.6
gives a proof of its correctness. Components of the full 3-
D problem will be reduced to the 2-D problem, and the
correctness of the 2-D problem will be used in the proof
of correctness of the 3-D problem. Section IV-C provides
an algorithm which comes closer to the optimality bounds



presented in Section Il at the expense of other practical Name: 3-D REGION SWEEP ALGORITHM

. . . . . Goal: Scan a region for use as a subroutine byASAL
considerations. This algorithm is presented largely as |a . SPACECRAET LOCALIZATION ALGORITHM
demonstration of the tightness of our optimality bounds. | Inputs: () A spacecrafts o _

(i) An integer, n € {1,2}, indicating the region to be
A. Formation initialization in two dimensions Assumes.— () Assumplions T Saction T
. . H m m
In order to prove the correctness of the algorithm in (i) Grov > 7 andGfoy +Osun=> 3.

deep space, we will need a simpler algorithm for the 2

imensional which w rm “in-plan rch”. Thi equire: At the start of this subroutine, there exist matridés M,
dimensional case, which we te plane searc S0 stch that for alf < . M = My, for all S, € Gy, Mg, = My,

algorithm solves the forrr_latign initialization problem far M[1.0,0]T = Ma[1,0,0] andMs[0,0,1]T — —M2[0,0,1]T .
group of spacecraft residing in a plane. Readers should nOt&quire: At the start of this subrouting0, 0, 1]M;[0,1,0]” = 0.
that the in-plane search algorithm presented here is by [1]1: Set®ror = [0,0,1]Ms[0,0,1]" (—1") - Ot

. - - 2: Rotate byOrot aboutYs
It is described in Table II. 3: Begin rotating aboukg by a constant angular velocity. Continue

this rotation for 3t radians and then stop.
Name: PLANAR SPACECRAFT LOCALIZATION ALGORITHM 4: Rotate byOrot aboutYs
Goal: Solve the Formation Initialization problem in 2 dimen-

TABLE Il

sions . .
Assumes: Assumptions in Section Il
3-D REGION SWEEP ALGORITHM

1: if § € Gy then
2 Turn to common reference orientati@yart
3: else We are now ready to defineP&TIAL SPACECRAFT LO-
‘5‘5 g“_;” 10 Ostart + 1T CALIZATION ALGORITHM (cf. Table 1V).
cendi
6: At synchronized start tim&, begin rotating with constant angular
velocity w > 0. Continue this rotation for 13 radians. Name: SPATIAL SPACECRAFT LOCALIZATION ALGORITHM
Goal: Solve the Formation Initialization problem in 3 dimen-
sions
TABLE I Assumes: (i) Assumptions in Section Il.
PLANAR SPACECRAFT LOCALIZATION ALGORITHM. (i) Groy > andGroy + Osun> 3.
The next result is proved in [1]. ; if iet(?l :henl, e with |
Proposition 4.1:Under Assumptions in Section I, | 5 gea o - oronvs WS
the RLANAR SPACECRAFT LOCALIZATION ALGORITHM 4. Rotate to aligriMls with Mgpp
achieves formation initialization. 21 \e/\f;d,t'ff fart time,
. : Wait for common start tim
Remark 4.2:PLANAR SPACECRAFT LOCALIZATION AL- 7: Call 3-D REGION SWEEP ALGORITHM on § andRy(S)
GORITHM achieves the lower bound from Theorem 3. | 8: Call 3-D REGION SWEEP ALGORITHM on § andRy(S)
9: Call 3-D REGION SWEEP ALGORITHM on § andRy(S)

B. SPATIAL SPACECRAFT LOCALIZATION ALGORITHM

Both the description of the full 3-D algorithm and its
proof of correctness require some additional specific defi-

TABLE IV
SPATIAL SPACECRAFT LOCALIZATION ALGORITHM.

nitions, that we briefly exposed next. o 1) Analysis of SPATIAL SPACECRAFT LOCALIZATION
For the purpose of this aIgonthr)r;, we will defi@it = A goriTHM : Let us discuss the correctness of this al-
Min{Osun, Oy} and assumyoy > 7. _ gorithm. As in Section IV-A, we reduce the problem to that
Definition 4.3: Let S be a spacecraft. Define of two spacecraft finding each other. Call these spacecraft
« Ry(S)= {T€CMF(S) : U-Xs< 0} S € G andS € Go.
o Ry(S) =CMF(9 \ Ri(S). Recall thatS;’s motion in CMF(S;) is along a straight

Remark 4.4:Let O be an angle such thdj—Ofov < line with constant velocity.
Oyt < Orov. R1(S) is chosen so as to be included within the Consider the two half-spaces defined by {ieZ} plane
region swept out by spacecrafs sensor cone while it is in CMF(S;). BecauseS, moves with constant velocity with
tilted by an angledy; towards the sun axis and performingrespect taS, it can cross from one half-space to the other
a 3T rotation about the sun axi®(S) is chosen so as to at most once.
be included within the region swept out by spacec&sdt The paths it can take are as follows: can begin in
sensor cone while it is tilted — Oy < Oyt < Oroy away  Ry(S;) and cross tdRx(S;) at most once. Likewis&, can
from the sun axis and performing ar3otation about the begin inRx(S;) and cross intd(S;) at most once.

sun axis. Also, note that in the fran@MF(S), Ri(S)U Because we make no assumptions about the speed at

Rx(S) = R3. e which these spacecraft take these paths, or at which part of
The full 3-D algorithm will invoke the subroutine de- the path they start, handling these cases will automaticall

scribed in Table III. handle the cases for paths that fail to cross{tfieZ} plane.

At the end of the execution of 3-[REGION SWEEP Lemma 4.5 (Partial reduction to in-plane search):
ALGORITHM, if § is in Gy, thenR,(S) has been swept, Doing a 31 sweep (turning about the sun line) through
otherwiseS has maintained an orientation such that for alR,(S), n € {1,2}, Se Gy, finds all spacecraft irG, that
S in G1 Mg[0,0,1]" = —Mg[0,0,1]". stay inRy(S) during the entire duration of therBrotation.



Proof: Projecting the centerline of the cone and the Name: WAIT AND CHECK ALGORITHM )
spacecraft path onto thgY,Z} plane inCMF(S) reduces | %% fgt'ivn?a?‘:olfgrg“na;:g”nggg{'gg“"” problem using nea-
this to the 2-D algorithm. In the cases wh&gS) contains Assumes: (i) Assumptions in Section II.
points which project directly ontd0,0) there can be a (i) Orov > 7.
collision in the 2-D projection which does not correspond
to a collision of the craft in 3-D. In these cases, the sensoi: _'?Efi”eeeiefov*%
cone ofS; always contains all such points, and any colliding 2 | ﬁ(ia(f‘é :Oe:“gnws with I
craft are found. ]

Finally, we are in a position to establish the correctnes
of the full 3-D algorithm.

Theorem 4.6:Under Assumptions in Section Il, thees
TIAL SPACECRAFT LOCALIZATION ALGORITHM solves the
formation initializ_ation problem. - Wait Ozeg)(tZ*tl){Ca“ this timets}

. Proof: Consider tWO spacecraffy andS,. Let S, start 11: Rotate abouts by {Call this timets}

n Rbegin(sl) and end iNRend(Sy). If Rbegin(sl) = Rend(S1) 12: Rotate abouKg by 3 with angular velocityw{Call this timets}
we are done. Otherwis® must scarReng(S1) at least once |13 Rotate abourg by 1 {Call this timets}

after the first scan oRyegin(S1). If the scan ofRpegin(S1)
did not find S, thenS, must be iNRgny(S1)

If S never crosses théY,Z} plane, either the scan of
R1(S1) or the scan ofRy(S;) must find it. OtherwiseS
starts in one region and ends in the other. The sequence
of region sweeps performed 4 guarantee tha$ will
scan the regiors starts in at least once before scanning
the regionS; ends in. If S is not found whenS; first Proof:  Since Oscar(Ps,(t2)) — Oscar(Ps, (t1)) > 2¢,
performs a sweep of the region in whi& begins (call Vs, is at least 2 © {P (tan(gfe) (tr —
this Roegin(S1)), thenS; must be in the remaining region [[Pioses{S1.S) -t —scans €

(Rend(S1)) by the end of the sweep. Since this was the firgy))) > arctantan(© + €) + tzz%tltan%*g) (to—t1)) > m—e¢.

3:
4: else
<. Rotate to aligrMg with Mopp

6: end if

7: Wait for common start timéy

8: Rotate by] aboutYs {Call this timet; }

9: Rotate abouKg by 2rr with angular velocityw{Call this timet,}
10 tan( J

1

tan(§

14: Wait G)7sfeg>(t4ft5){(:all this timet; }
15: Rotate abouKg by 27 with angular velocityw{Call this timet;}

TABLE V
WAIT AND CHECK ALGORITHM.

sweep 0fRyegin(S1), St Must scan aRend(Sy) at least once ]
after this point and find. [ ] Next, we characterize the correctness of thel"WAND
Remark 4.7:SPATIAL SPACECRAFT LOCALIZATION AL-  CHECK ALGORITHM.

GORITHM sweeps a total solid angle of 9+ ;’fTﬁf';v Theorem 4.9:The WAIT AND CHECK ALGORITHM cor-

and performs rotations totalingr9+- 50, where @y, :=  rectly solves the formation initialization problem.

min (3 — Ofov, Osun).- ° Proof: Consider a spacecraff;. Any other spacecraft
whose X position is less than zero at tintg must either

C. WAIT AND CHECK ALGORITHM be found, cross th¢Y,Z} plane, or cross th¢X,Z} plane

beforet,. If S crossed thgX,Z} plane betweety andt;

As pointed out in Remark 4.7, the provably correcand was not found, then it must have been moving with
SPATIAL SPACECRAFT LOCALIZATION ALGORITHM is far  sufficient velocity to have moved to withi®; of its final
from optimal both in terms of total angle traversed and solidngle by timets. By this logic, byts, any craft with a final
angle covered. In what follows, we introduce theaMV angle corresponding to a positide component of position
AND CHECK ALGORITHM (Cf Table V) This algorithm must have been found by tinte, or be on the+X side
has a much better performance with regards to solid angig the {Y,Z} plane by timets. Betweents andts all such
covered, at the expense of a longer execution time. Aftefaft are found, along with any craft that started on the
we prove its correctness (cf. Theorem 4.9), we show howX side of the{Y,Z} plane and have not left it big (by
to modify it to achieve an optimal total rotation given itS| emma 4.8). Any craft which have left theX side of the

solid angle covered (cf. Remark 4.10). {Y,Z} plane byts but were not found during the sweep of
The next lemma will be used in establishing the correcthe —X half of the {Y,Z} plane must have been moving
ness of VAIT AND CHECK ALGORITHM. with sufficient angular velocity as to be withi®, of their

Lemma 4.8:Consider a spacecraf§; traveling in a final angles (on the-X half of the {Y,Z} plane) byts (cf.
path with respect toS; with velocity Vs, and point of Lemma 4.8). For this reason, the final sweep of t#
closest approachpeiosestS1,S). Let M1 be the plane side of the{Y,Z} plane need only be ar2sweep. ]
in CMF(S;) spanned by the vectorgeiosestS1,S2) and Remark 4.10 (Angle-optimal region sweep$he WAIT
Vs,. Define a parameterization of vectors lily, by the AND CHECK ALGORITHM covers a solid angle of 77+
function Oscar(P) := arctan peioses{ St, %) - P, Vs, - P). For %. Clearly, the ratio of total angle traversed to solid
any angles® € [0,7 and € € [0,0], if S first verifies angle covered in WT AND CHECK ALGORITHM iS not

that Oscar(Ps,) < © — ¢ at time ty and then verifies that at the optimalwlem). The algorithm can be modified to
Oscar(Ps,) > ©+ ¢ at timety, then by timet> + w(tz— traverse a total angle offisin(Oy ) + 5Oy;, WhereOy; :=
t1), S will be within ¢ of its final angle. min (77/2 — Gxov, Osun, Orov), at the expense of not respect-



ing the sun-angle constraint. We describe how next. The Areas of future work include: (i) the determination of
optimal ratio of total angle traversed to solid angle coderethe optimality of Opposing Sensor Constraintwhen the

is achievable for any rotational trajectory @§ensor'S)
over time. While a rotational velocityew, specifies the
instantaneous rotation of the entire body frameSpfthe
instantaneous motion akensor S) only fixes two degrees
of freedom of this rotation. By choosing to lie along

spacecraft start in random orientations (this is easilynsee
for the case of two spacecraft). If this is true in generanth

it will be of interest to determine the optimal way to move
the spacecraft to satisfy th@pposing Sensor Constrain

(i) the investigation of other notions of optimality, such

VsensoRS) X %VSENSOF(S), we can always achieve the as minimum time to complete formation initialization on a

maximum instantaneoukgd(w) /|| w||.

Let us suppose thaisensorS) is within an angle of
Z —a of the sun line, and we wish foVsensor(S) to
sweep out the arc defined b9y := {Ve R® : ||| =
1narccogV-Vsyn) = T — a}. At any instant during which
Vsensor S) € Cq, the optimal axis of rotatione, is both
perpendicular tovsensoS) and guaranteeSsensor S)
remains in C,. One suchw always lies on a cone
which we will define asCympie:= {VE R® : |V] = 1A

fixed fuel budget; (iii) the determination of whether the 6
solid angle bound in three dimensions is a hard bound. For
Ofoy = g , this bound gives a total angle rotated bound of

3m,
special subproblem to two dimensions.

which matches the intuitive result from reducing this
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Fig. 3. Performing a sweep ofrf2with less then 2 rotation [5]

frame, BF(S) does not move with respect ©®MF(S) at
any point along the axiso. When the sweeps about the [6]
sun line of WAIT AND CHECK ALGORITHM are executed

as we just described, the algorithm requires a total angula[r

rotation of % + 56t . !

V. CONCLUSIONS AND FUTURE WORK

We have considered the formation initialization problem (8]
for a group of spacecraft endowed with limited field-of-
view relative position sensors and omnidirectional com-
munication. We have obtained optimality bounds for thel
performance of any correct algorithm in terms of worst-
case solid angle covered and total angle traversed. In tviif]
dimensions, the angle traversed bound is hard and in three
dimensions, the angle traversed bound is no worse than;
the solid angle bound. Our analysis of optimality justifies
several decisions made in both our own algorithm designs
and those of previous works, including theARAR SPACE-  [12]
CRAFT LOCALIZATION ALGORITHM and the Opposing
Sensor Constraint We have also synthesized two provably[13]
correct formation initialization algorithms. In partieu)
the SPATIAL SPACECRAFT LOCALIZATION ALGORITHM is  [14]
simple and easily provable, while the AW AND CHECK [15]
ALGORITHM is nearly optimal according to the optimality
bounds obtained.
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