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Abstract— This paper considers a robotic sensor network,
deployed in an environment of interest, that takes successive
measurements of a spatial random field. Taking a Bayesian
perspective on the kriging interpolation technique from geo-
statistics, we design the DISTRIBUTED K RIGING ALGORITHM
to estimate the distribution of the random field and of its gra-
dient. The proposed algorithm makes use of a novel distributed
strategy to compute weighted least squares estimates when
measurements are spatially correlated. This strategy results
from the combination of the Jacobi overrelaxation method
with dynamic consensus algorithms. The network agents use
the information gained on the spatial field to implement a
gradient ascent coordination algorithm, whose convergence is
analyzed via stochastic Lyapunov functions in the absence of
measurement errors. We illustrate our results in simulation.

I. I NTRODUCTION

Problem statement:Consider a robotic sensor network
taking successive measurements of a physical process mod-
eled as a spatial random field. Our objective is to design a
distributed estimation and motion coordination algorithmthat
enables the network to find maxima of the spatial field. This
type of tasks are relevant in multiple scenarios, includingen-
vironmental monitoring, oceanographic exploration, and at-
mospheric research, when one might be interested in finding
high pollutant concentrations, areas of maximum salinity,or
locations where algae are abundant. Similar ideas can be used
to localize areas of rapid variability of physical processes.

Literature review: In cooperative control, [1] designs
network coordination strategies to seek out local optima of
a deterministic, static field using uncorrelated noisy mea-
surements and all-to-all communication. The works [2], [3]
develop distributed optimal estimation strategies for networks
with connected communication topology. Objective analysis
is employed in [4] to find optimal network trajectories in
restricted parameterized families of curves. Parallel algo-
rithms for static networks are thoroughly studied in [5]. The
works [6], [7] introduce distributed fusion algorithms based
on averaging. Dynamic consensus algorithms that track the
average of a given time-varying signal are studied in [8], [9].
In geostatistics, kriging [10], [11] is a standard technique
to produce estimates of spatial processes based on data
collected at finitely many locations. An advantage of kriging
over other interpolation methods is that it provides a measure
of the uncertainty of the predictor. A source of inspirationfor
our technical approach is [12], which develops an inferential
framework for directional gradients of spatial fields based
on point-referenced data. The convergence properties of our
gradient ascent strategy are analyzed via stochastic stabil-
ity analysis, in particular, the supermartingale convergence
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theorem [13] and stochastic Lyapunov functions [14].
Statement of contributions:The contributions of this paper

are: (i) the formulation of the spatial field estimation problem
via Bayesian universal kriging, and the incorporation of
statistically sound gradient derivatives of the spatial field; (ii)
the synthesis of a distributed algorithm to compute weighted
least squares estimates when sensor measurements are cor-
related. This algorithm combines the Jacobi overrelaxation
method with dynamic average consensus algorithms; (iii) the
design of a distributed algorithm to estimate the distribution
of the spatial field and of its gradient; and (iv) building on the
previous contributions, the synthesis of a distributed motion
coordination strategy that makes individual robotic agents
converge with probability one to the set of critical points
of the random spatial field. For reasons of space, proofs are
omitted. The interested reader may find them in [15].

Organization: Section II presents reviews kriging inter-
polation. Section III introduces the models for the physical
process and the robotic sensor network. Section IV describes
the sequential estimation of the spatial field and of its gra-
dient. Section V presents a distributed algorithm to compute
weighted least squares estimates when sensor measurements
are correlated. This algorithm is used in Section VI to design
a distributed implementation of the estimation discussed in
Section IV. Section VII analyzes the coordination algorithm
executed by the network to localize critical points of the
spatial field. Section VIII presents our conclusions.

Notation: Vectors in Euclidean space are understood as
column vectors. Lete1, . . . , ed denote the canonical basis
of R

d. Given a matrixA ∈ R
n×m, rowi(A) ∈ R

m and
colj(A) ∈ R

n denote theith row and thejth column ofA,
respectively. For an undirected graphG = (V,E) consisting
of a set of verticesV and a set of edgesE ⊂ V × V , the
neighbors ofv ∈ V in G are denoted byNG(v) = {w ∈
V | (v, w) ∈ E}. Usually, V = {1, . . . , n}. The adjacency
matrix of G is A(G) = (aij) ∈ R

n×n defined byaij = 1 if
(i, j) ∈ E, andaij = 0 otherwise. We often denote it byA.

II. RANDOM SPATIAL FIELDS

We review important notions on random spatial fields and
kriging. The reader is referred to [10], [11] for more details.
Let Z be a scalar random spatial field onRd, d ∈ Z>0,
with positive definite covarianceC : R

d × R
d → R≥0,

Cov(Z(s), Z(s′)) = C(s, s′), s, s′ ∈ R
d. The field Z is

stationary if C(s, s′) = K(s − s′), for K : R
d → R≥0, and

isotropic if C(s, s′) = K̃(‖s − s′‖), for K̃ : R≥0 → R≥0.

A. Universal kriging

Let us briefly review the spatial estimation procedure
called universal kriging. Consider a stationary spatial field
Z with mean function of the formµ(s) = x(s)T β =



∑p

i=1 βixi(s). Here, the components ofx : R
d → R

p

are known, andβ = (β1, . . . , βp) ∈ R
p is an unknown

parameter. Givenn ∈ Z>0, let X : (Rd)n → R
n×p map

(p1, . . . , pn) to the matrixX(p1, . . . , pn) whoseith row is
x(pi)

T . Given measurementsZ = (Z(p1), . . . , Z(pn)) of
Z at locationsp1, . . . , pn, the universal kriging predictor
at s ∈ R

d minimizes the mean-squared prediction error
σ(s;Z) = E(Z(s) − p(s;Z))2 among all linear unbiased
predictorsp(s;Z) =

∑n

i=1 liZ(pi), l = (l1, . . . , ln) ∈ R
n.

The explicit expression of the universal kriging predictoris

p̂UK(s;Z) = (1a)

(γ(s) + X(XT
Σ

−1X)−1(x(s) − XT
Σ

−1γ(s)))T
Σ

−1Z,

where we have used the shorthand notation

X = X(p1, . . . , pn) ∈ R
n×p,

Σ =
(
K(pi − pj)

)n

i,j=1
∈ R

n×n,

γ(s)T = (K(s − p1), . . . ,K(s − pn)) ∈ R
n.

The mean-squared prediction error ofp̂UK(s;Z) at s ∈ R
d is

σUK(s;Z) = K(0) − γ(s)T
Σ

−1γ(s) + (x(s) (1b)

− XT
Σ

−1γ(s))T (XT
Σ

−1X)−1(x(s) − XT
Σ

−1γ(s)).

1) Universal kriging as a two-step procedure:Universal
kriging can alternatively be described as a two-step proce-
dure, whereby one (i) estimates the unknownβ from the
data, and then (ii) performssimple kriging. In (i), the best
linear unbiased estimator ofβ is the weighted least-squares

β̂LS = (XT
Σ

−1X)−1XT
Σ

−1Z, (2)

with covariance matrixcov(β̂LS) = (XT
Σ

−1X)−1. In (ii),
simple kriging assumesµ (i.e., β) known, and performs
spatial interpolation to yield, see e.g., [10], [11],

p̂SK(s;Z) = x(s)T β + γ(s)T
Σ

−1(Z − Xβ), (3a)

σSK(s;Z) = K(0) − γ(s)T
Σ

−1γ(s). (3b)

The predictor (3a) withβ = β̂LS results in the universal
kriging predictor (1a). The universal kriging variance (1b)
is then the sum of the simple kriging variance (3b) and the
spatial error induced by parameter estimation uncertainty.

B. Gradient random spatial fields

The discussion here follows [12]. Given a stationary
random fieldZ on R

d and a vectoru ∈ R
d, a directional

gradient field on R
d is defined as

DuZ(s) = lim
h→0

Z(s + hu) − Z(s)

h
, s ∈ R

d,

where the limit is understood in theL2 sense (i.e.,
limh→0 E(Z(s+hu)−Z(s)

h
−DuZ(s))2 = 0). The random field

Z is mean square differentiable ats0 ∈ R
d if there exists a

vector∇Z(s0) ∈ R
d such that, for allu ∈ R

d,

lim
h→0

E
(Z(s0 + hu) − Z(s0)

h
−∇Z(s0)

T u
)2

= 0.

It follows thatDuZ(s0) = ∇Z(s0)
T u, for all u ∈ R

d (where
the equality is understood in theL2-sense). In particular,

∇Z(s0) = (De1
Z(s0), . . . ,Den

Z(s0)).

Throughout the paper, we deal with random fields that are
mean square differentiable everywhere.

If Z is a stationary Gaussian random field, the resulting
joint (d+1-dimensional multivariate) Gaussian field(Z,∇Z)
on R

d has a valid cross-covariance function

Cov((Z(s),∇Z(s)), (Z(s′),∇Z(s′))) =(
K(s − s′) −(∇K(s − s′))T

∇K(s − s′) −H(K)(s − s′)

)
, (4)

where H(K)(s) denotes the Hessian matrix ofK at s.
This joint distribution allows predictive inference for the
gradient at arbitrary points given measurements ofZ at
arbitrary locations. Given measurementsZ(p1), . . . , Z(pn)
ands ∈ R

d, define the following shorthand notation,

µ = (µ(p1), . . . , µ(pn)) ∈ R
n,

∇γ(s)T = (∇K(s − p1), . . . ,∇K(s − pn)) ∈ R
d×n.

According to (4),(Z,∇Z(s)) is distributed as the(d + n)-
dimensional normal distribution

Nd+n

((
µ

∇µ(s)

)
,

(
Σ ∇γ(s)

∇γ(s)T −H(K)(0)

))
.

From here, the predictive distribution of∇Z conditional on
the dataZ is thed-dimensional normal distribution

∇Z(s) |Z ∼ Nd

(
∇µ(s) + ∇γ(s)T

Σ
−1(Z − µ),

−H(K)(0) − ∇γ(s)T
Σ

−1
∇γ(s)

)
, (5)

where∼ means “distributed according to.” Acritical point of
Z is a points∗ ∈ R

d such that∇Z(s∗) = 0. A critical point
satisfiesDuZ(s∗) = 0 for all u ∈ R

d, and hence corresponds
to a maximum, a minimum, or a saddle point ofZ.

III. PROBLEM STATEMENT

Our objective is to design a distributed estimation and
motion coordination algorithm that enables a robotic sensor
network to find the maxima of a physical process of interest.

A. Physical process model

We restrict our attention to processes that do not evolve
in time. However, agents can take measurements at different
times, and therefore we need to provide a model for the
temporal correlation between them. We do this as follows:
Z is a spatio-temporal Gaussian random field onR

d × R≥0

Z(s, t) = µ(s) + δ(s, t), (6)

whereµ(s) = x(s)T β is continuously differentiable. Here,
δ is a zero-mean Gaussian random field with the same
(separable) covariance asZ, which is given by

Cov(Z(s, t), Z(s′, t′)) =

{
K(s − s′) if |t − t′| < 1,

0 otherwise,
(7)

whereK : R
d → R≥0. We assume that the field has a finite

spatial correlation, i.e., there existsr ∈ R>0 such that

K(s − s′) = 0 for ‖s − s′‖ > r. (8)



B. Network model

Consider a network ofn agents evolving inRd according
to ṗi = ui, i ∈ {1, . . . , n}. The control is bounded
‖ui‖ ≤ umax ∈ R>0. Agents are equipped with identical
sensors, and take point measurements at timesk ∈ Z≥0.
The measurement taken by agenti located atpi at timek is
corrupted by white noise

Yi(k) = Z(pi, k) + ǫi, (9)

where ǫi ∼ N(0, σ). Measurement errors are assumed
independent. Each agent can communicate with other agents
located within a distanceR ∈ R>0. As we show later, each
agent can construct a distributed representation of the spatial
field and of its gradient in a ball centered at its location with
radiusR − r (note that, if‖pi − s‖ > R − r, thenZ at s
is correlated with points that fall outside the communication
ball of agenti). Therefore, we make the assumption

umax ≤ R − r.

The communication capabilities of the agents induce the net-
work topology corresponding to theR-disk graphGR-disk. At
each configuration(p1, . . . , pn) ∈ (Rd)n, GR-disk(p1, . . . , pn)
is an undirected graph with vertex set{p1, . . . , pn} and edge
set {(pi, pj) | ‖pi − pj‖ ≤ R}. This graph is a particular
example of a proximity graph, see e.g., [16]. We assume that
either the number of agentsn is a priori known to everybody,
or that agents run a consensus algorithm to determine it.

Remark 3.1 (Distributed computation):One can find for-
mal definitions of the notion of distributed computation of
functions, see e.g., [16]. Here, we refer to a computation as
distributed over a graph if each node can perform the
computation using information provided by its neighbors.•

IV. SEQUENTIAL SPATIAL ESTIMATION

In this section, we take a Bayesian perspective to incor-
porate previous knowledge into the estimation of the spatial
field and its gradient. Our setup is different from Section II-
A in that errors are present in the measurements according
to (9), and in that prior information on the unknown param-
eter is incorporated. We consider the spatial field estimation
when measurements are taken at multiple time instants, or
sequentially. We follow the next scheme: (i) Section IV-A
computes the posterior distribution of the parameter giventhe
data, (ii) Section IV-B computes the conditional distribution
of the spatial field and its gradient given the data and the
parameter, and (iii), Section IV-C merges (i) and (ii).

Before proceeding, let us introduce some useful notation.
Let Y (t) = (Y1(t), . . . , Yn(t)) ∈ R

n denote the measure-
ments taken by the network agents at timet ∈ Z≥0. Given
k ∈ Z≥0, let Y≤k = (Y (0), . . . ,Y (k)) denote the data
available up to timek. Since measurements are taken by the
network only at time instants inZ≥0, for t ∈ R≥0, one has
Y≤t = Y≤⌊t⌋. For k ∈ {0, . . . , ⌊t⌋}, let

Σ(k) =
(
K(pi(k) − pj(k))

)
∈ R

n×n,

X(k) = X(p1(k), . . . , pn(k)) ∈ R
n×p,

γ(s, k)T = (K(s − p1(k)), . . . ,K(s − pn(k))) ∈ R
n,

∇γ(s, k)T = (∇K(s − p1(k)), . . . ,∇K(s − pn(k))) ∈ R
d×n.

The stucture of the spatial field covariance (7) has some
important consequences. First, theith components ofγ(s, k)
and∇γ(s, k) can only be nonvanishing if‖s− pi(k)‖ ≤ r.
Second, the covariance matrix of the dataY≤t is the block-
diagonal matrixΣ≤t + σIn(⌊t⌋+1), where

Σ≤t =




Σ(0) 0n×n . . . 0n×n

0n×n Σ(1)
...

...
. . . 0n×n

0n×n . . . 0n×n Σ(⌊t⌋)




. (10a)

Let us also define the shorthand notation

XT
≤t =

(
X(0), . . . ,X(⌊t⌋)

)T
, (10b)

γ≤t(s)
T =

(
0, . . . , 0,γ(s, ⌊t⌋)T

)
, (10c)

∇γ≤t(s)
T =

(
0, . . . , 0,∇γ(s, ⌊t⌋)T

)
. (10d)

A. Sequential parameter estimation

Assume thatβ is distributed according to a multivariate
normal distribution β ∼ Np(ν, V ). From equations (6)
and (9), the posterior distribution ofβ at time t ∈ R≥0 is

β |Y≤t ∼ Np(ω≤t,W≤t),

ω≤t = W≤t

(
XT

≤t(Σ≤t + σIn(⌊t⌋+1))
−1Y≤t + V −1ν

)
,

W≤t = (XT
≤t(Σ≤t + σIn(⌊t⌋+1))

−1X≤t + V −1)−1.

Alternatively, the meanω≤t and covarianceW≤t can be
expressed as follows.

Lemma 4.1 (Sequential parameter estimation):Assume
that initially β ∼ Np(ν, V ). For all t ∈ R≥0, the mean and
the covariance matrix of the posterior distribution ofβ with
data collected up to timet can be written as

ω≤t = W≤t

(
X(⌊t⌋)T

Σ(⌊t⌋)−1
σ Y (⌊t⌋) + W−1

≤t−1ω≤t−1

)
,

W≤t =
(
X(⌊t⌋)T

Σ(⌊t⌋)−1
σ X(⌊t⌋) + W−1

≤t−1

)−1
,

whereω≤−1 = ν, W≤−1 = V , andΣ(k)σ = Σ(k) + σIn.

Lemma 4.1 provides an iterative fashion of computingω≤t

andW≤t that is appropriate for a distributed implementation
by the robotic network. We describe this in Section VI-A.

B. Sequential simple kriging

The conditional distributionZ(s, t) | (Y≤t, β) is

N
(
x(s)T β + γ≤t(s)

T (Σ≤t + σIn(⌊t⌋+1))
−1(Y≤t − X≤tβ),

K(0) − γ≤t(s)
T (Σ≤t + σIn(⌊t⌋+1))

−1γ≤t(s)
)
.

In the absence of measurement errors, this corresponds to
the simple kriging predictor and variance. According to (5),
the conditional distribution∇Z(s, t) | (Y≤t, β) is

Nd

(
∇x(s)T β+∇γ≤t(s)

T (Σ≤t+σIn(⌊t⌋+1))
−1(Y≤t−X≤tβ),

− H(K)(0)−∇γ≤t(s)
T (Σ≤t + σIn(⌊t⌋+1))

−1
∇γ≤t(s)

)
.

Using (10) above, one can readily see that only the infor-
mation collected at time⌊t⌋ is used to construct the simple
kriging estimator up to timet, as the following result states.



Lemma 4.2 (Sequential simple kriging):For all t ∈ R≥0

and all s ∈ R
d, one has, the normal distribution

Z(s, t) | (Y≤t, β) with mean

x(s)T β + γ(s, ⌊t⌋)T
Σ(⌊t⌋)−1

σ (Y (⌊t⌋) − X(⌊t⌋)β),

and varianceK(0) − γ(s, ⌊t⌋)T
Σ(⌊t⌋)−1

σ γ(s, ⌊t⌋); and the
normal distribution∇Z(s, t) | (Y≤t, β) with mean

∇x(s)T β+∇γ(s, ⌊t⌋)T
Σ(⌊t⌋)−1

σ (Y (⌊t⌋) − X(⌊t⌋)β),

and variance−H(K)(0) −∇γ(s,⌊t⌋)T
Σ(⌊t⌋)−1

σ ∇γ(s,⌊t⌋),
where, for brevity, we letΣ(k)σ = Σ(k) + σIn.

C. Sequential Bayesian universal kriging

We construct the Bayesian universal kriging predictor of
the spatial field and its gradient by merging Sections IV-A
and IV-B. Specifically, fors ∈ R

d, the posterior predictive
distribution ofZ(s, t) and∇Z(s, t) givenY≤t is obtained by
marginalizing the estimates in Lemma 4.2 over the posterior
distributionβ |Y≤t in Lemma 4.1. Accordingly, we obtain
the normal distributionZ(s, t) |Y≤t with mean

x(s)T ω≤t + γ(s, ⌊t⌋)T
Σ(⌊t⌋)−1

σ (Y (⌊t⌋)−X(⌊t⌋)ω≤t)

and variance

K(0) − γ(s, ⌊t⌋)T
Σ(⌊t⌋)−1

σ γ(s, ⌊t⌋)

+
(
x(s) − X(⌊t⌋)T

Σ(⌊t⌋)−1
σ γ(s, ⌊t⌋)

)T
W≤t(

x(s) − X(⌊t⌋)T
Σ(⌊t⌋)−1

σ γ(s, ⌊t⌋)
)
;

and the normal distribution∇Z(s, t) |Y≤t with mean

∇x(s)T ω≤t+∇γ(s,⌊t⌋)T
Σ(⌊t⌋)−1

σ (Y (⌊t⌋) − X(⌊t⌋)ω≤t),

and variance

− H(K)(0) − ∇γ(s, ⌊t⌋)T
Σ(⌊t⌋)−1

σ ∇γ(s, ⌊t⌋)
(
∇x(s) − X(⌊t⌋)T

Σ(⌊t⌋)−1
σ ∇γ(s, ⌊t⌋)

)T
W≤⌊t⌋(

∇x(s) − X(⌊t⌋)T
Σ(⌊t⌋)−1

σ ∇γ(s, ⌊t⌋)
)
.

Our next objective is to design a distributed coordination al-
gorithm so that network agents can compute these quantities.

V. D ISTRIBUTED AVERAGE WEIGHTED LEAST SQUARES

Given a network ofn agents with interaction topology
described by an undirected graphG, B ∈ R

n×n invertible,
c ∈ R

n, and M ∈ R
n×p, we introduce here an algorithm

distributed overG to compute

1

n
MT B−1c. (15)

As will be clear in Section VI, this quantity can be given the
interpretation of an average weighted least squares estimate.
This is why we refer to our procedure as theWEIGHTED

LEAST SQUARESALGORITHM. The capability to compute such
estimates is instrumental later to synthesize a distributed
implementation of the estimation procedure of Section IV.
To compute (15) in a distributed way, the idea is to combine
a Jacobi iteration and a dynamic consensus algorithm into a
single procedure. Let us first explain these ingredients.

A. Jacobi overrelaxation algorithm

Given an invertible matrixB ∈ R
n×n and a vectorc ∈ R

n,
consider the linear systemBy = c. The Jacobi overrelaxation
(JOR) algorithm [5] is an iterative procedure to compute the
unique solutiony = B−1c ∈ R

n. It is formulated as the
discrete-time dynamical system

yi(ℓ + 1) = (1 − h)yi(ℓ) − h
1

bii

(∑

j 6=i

bijyj(ℓ) − ci

)
,

for ℓ ∈ Z≥0 and i ∈ {1, . . . , n}, with y(0) ∈ R
n and h ∈

(0, 1). The convergence properties of the JOR algorithm can
be fully characterized [5] in terms of the eigenvalues of the
matrix describing the iteration. Here we use the following
sufficient convergence criteria from [17, Theorem 2].

Lemma 5.1:For B ∈ R
n×n symmetric, positive definite

and anyc ∈ R
n, if h < 2/n, the JOR algorithm converges

to the solution ofBy = c starting from any initial condition.

As long as (i) agenti has access toci, and (ii) if bij 6= 0,
theni, j are neighbors inG, the JOR algorithm is amenable
to distributed implementation in the following sense: agent i
can compute theith componentyi of the solutiony = B−1c
with the information provided by its neighbors inG.

B. Dynamic average consensus algorithms

Dynamic average consensus filters [8], [9] are distributed
algorithms that allow the network to track the average of a
given time-varying signal. Here, we use a particular instance
of the proportional-integral dynamic consensus estimators
studied in [9] but formulated for higher-dimensional signals.
The algorithm works for time-dependent graphs, but here we
restrict our attention to a fixed graph.

Let τ 7→ u(τ) ∈ (Rm)n be a time-varying function, that
we refer to assignal. Note thatu(τ) is an-dimensional vec-
tor with each componentui(τ), i ∈ {1, . . . , n}, being itself
a m-dimensional vector. Consider the dynamical system

dvi

dτ
= γ(ui(τ) − vi(τ)) −

∑

j 6=i

aij(vi(τ) − vj(τ))

+
∑

j 6=i

aij(wi(τ) − wj(τ)), (16a)

dwi

dτ
= −

∑

j 6=i

aij(vi(τ) − vj(τ)), (16b)

for i ∈ {1, . . . , n}, whereγ > 0 and v, w ∈ (Rm)n. Here,
A = (aij) ∈ R

n×n is the adjacency matrix ofG. If agent i
has access to theith-componentui of the signalu, then this
algorithm is distributed overG, i.e., agenti can compute
the evolution ofvi andwi with information provided by its
G-neighbors. It can be proved [9] that forG connected, for
any γ > 0, any constant inputτ 7→ u(τ) = u ∈ (Rm)n, and
any initial v(0), w(0) ∈ (Rm)n, the algorithm (16) satisfies

vi(τ) −
1

n

n∑

i=1

ui(τ) → 0 asτ → +∞ (17)

exponentially fast for alli ∈ {1, . . . , n}. For slowly-varying
signals, the estimator guarantees small steady-state errors.



C. TheWEIGHTED LEAST SQUARESALGORITHM

Here, we combine the JOR algorithm and the dynamic
consensus algorithm to synthesize the algorithm in Table I.

Name: WEIGHTED LEAST SQUARESALGORITHM
Goal: Compute average weighted least squares
Requires: B ∈ R

n×n, c ∈ R
n, andM ∈ R

n×p

Assumes: (i) Network topology modeled byG
(ii) B invertible, with non-vanishing diagonal
entries, and such thatbij 6= 0 implies agenti
andj are neighbors inG
(iii) Agent i ∈ {1, . . . , n} knows rowi(B) ∈
R

n, ci ∈ R, rowi(M) ∈ R
p

Initialization:
1: y(0) = c ∈ R

n, γ ∈ R>0, andh ∈ (0, 2/n)

2: v(0)=w(0)=(row1(M)z1, . . . , rown(M)zn) ∈ (Rp)n

Agent i ∈ {1, . . . , n} executes concurrently

1: Jacobi overrelaxation algorithm, forℓ ∈ Z≥0

yi(ℓ + 1) = (1 − h)yi(ℓ) − h
1

bii

“ X

j 6=i

bijyj(ℓ) − ci

”

2: Dynamic average consensus algorithm, forτ ∈ R≥0

dvi

dτ
= γ(ui(τ) − vi(τ)) −

X

j 6=i

aij(vi(τ) − vj(τ))

+
X

j 6=i

aij(wi(τ) − wj(τ)),

dwi

dτ
= −

X

j 6=i

aij(vi(τ) − vj(τ)),

whereA(G) = (aij) and τ 7→ u(τ) ∈ (Rp)n is given by
u(τ) = (row1(M)y1(⌊τ⌋), . . . , rown(M)yn(⌊τ⌋)).

TABLE I

WEIGHTED LEAST SQUARESALGORITHM.

Proposition 5.2:Consider theWEIGHTED LEAST SQUARES

ALGORITHM described in Table I. ForB ∈ R
n×n invertible,

c ∈ R
n, and M ∈ R

n×p, defineWLS(B, c,M) : R≥0 →
(Rp)n andJOR(B, c) : R≥0 → R

n by, respectively,

WLS(B, c,M)(τ) = v(τ) and JOR(B, c)(τ) = y(⌊τ⌋),

wherev andy are defined in Table I. Then,
(i) the WEIGHTED LEAST SQUARES ALGORITHM is dis-

tributed overG, in the sense that agenti ∈ {1, . . . , n}
can computeWLSi(B, c,M) and JORi(B, c) with in-
formation provided by its neighboring agents inG;

(ii) the functionJOR(B, c) verifies

JOR(B, c)(τ) → B−1c asτ → +∞.

(iii) if G is connected, the functionWLS(B, c,M) verifies

WLSi(B, c,M)(τ) →
1

n
MT B−1c asτ → +∞,

for all i ∈ {1, . . . , n}.

VI. D ISTRIBUTED SEQUENTIAL ESTIMATION

In this section we introduce theDISTRIBUTED KRIGING

ALGORITHM. The underlying idea is that, instead of working
directly with the posterior predictive distributions obtained

in Section IV-C, each agent performs in a distributed way (i)
the sequential parameter estimation described in Section IV-
A and (ii) the sequential simple kriging described in Sec-
tion IV-B. From these two constructions, each agent can then
compute the desired posterior predictive distributions. The
implementation of both (i) and (ii) relies on theWEIGHTED

LEAST SQUARESALGORITHM introduced in Section V.

Name: DISTRIBUTED KRIGING ALGORITHM
Goal: Compute Bayesian universal kriging predic-

tors for the spatial field and its gradient
Assumes: (i) GR-disk is connected along evolution

(ii) Initially all agents knowβ ∼ N(ν, V )

Initialization: ω≤−1 = ν andW≤−1 = V

At time k ∈ Z≥0, agenti ∈ {1, . . . , n}

1: measuresY i(k) = Yi(k), sets rowi(X(k)) = x(pi(k))T

2: acquires location of neighbors inGR-disk(p1(k), . . . , pn(k))
and computes rowi(Σ(k)σ)

3: for j = 1 to p do
4: executes the WEIGHTED LEAST SQUARES

ALGORITHM over GR-disk(p1(k), . . . , pn(k)) for
(Σ(k)σ, colj(X(k)), X(k))

5: executes the WEIGHTED LEAST SQUARESALGORITHM over
GR-disk(p1(k), . . . , pn(k)) for (Σ(k)σ, Y (k), X(k))

6: computes weighted least squares estimate

cov(bβLS(k)) :=
1

n

`
WLSi(Σ(k)σ, X(k), X(k))(∞)

´−1

bβLS(k) :=
`
WLSi(Σ(k)σ, X(k), X(k))(∞)

´−1

WLSi(Σ(k)σ, Y (k), X(k))(∞)

7: fuses with previous information

W≤k =
`
cov(bβLS(k))−1 + W−1

≤k−1

´−1

ω≤k =W≤k

`
cov(bβLS(k))−1 bβLS(k)+W−1

≤k−1ω≤k−1

´
,

8: sets variables

(Σ(k)−1
σ Y (k))i := JORi(Σ(k)σ, Y (k))(∞),

rowi(Σ(k)−1
σ X(k)) := rowi(JOR(Σ(k)σ, X(k))(∞))

9: computes predictors ats ∈ B(pi(k), R − r)

E(Z(s, k) | (Y≤k, β)) = x(s)T β +
X

‖s−pj(k)‖≤r

γj(s, k)

“`
Σ(k)−1

σ Y (k)
´

j
− rowj(Σ(k)−1

σ X(k))β
”
,

E(∇Z(s, k) | (Y≤k, β)) = ∇x(s)T β +
X

‖s−pj(k)‖≤r

∇γj(s, k)

``
Σ(k)−1

σ Y (k)
´

j
− rowj(Σ(k)−1

σ X(k))β
´
,

10: computes Bayesian universal kriging predictors ats ∈
B(pi(k), R − r) and t ∈ [k, k + 1)

E(Z(s, t) |Y≤k) and E(∇Z(s, t) |Y≤k).

TABLE II

THE DISTRIBUTED KRIGING ALGORITHM.

Lemma 6.1:The DISTRIBUTED KRIGING ALGORITHM out-
lined in Table II allows each network agent to compute, at
any time, the Bayesian universal kriging predictors of the
spatial field and its gradient on a ball centered at its current
location of radiusR − r, and only requires communication
with neighboring agents inGR-disk.



Next, we detail the steps of the algorithm.

A. Distributed sequential parameter estimation

Here, we describe the strategy that network agents im-
plement to compute the sequential parameter estimation of
Section IV-A. Recall thatY (k) denotes the measurements
taken by the network at timek, with associated covariance
matrix Σ(k)σ = Σ(k) + σIn. Assume the meanω≤k−1 and
the covariance matrixW≤k−1 of the posterior distribution of
β with data collected up to timek − 1 are known to each
agent. This is certainly the case fork = 0, where,

ω≤−1 = ν, W≤−1 = V.

According to Lemma 4.1, agenti ∈ {1, . . . , n} can compute
ω≤k andW≤k if it has access to

X(k)T
Σ(k)−1

σ Y (k) ∈ R
p, (18a)

X(k)T
Σ(k)−1

σ X(k) ∈ R
p×p. (18b)

This is equivalent to the computation of the weighted least
squares estimate ofβ and its variance with dataY (k),

cov(β̂LS(k)) = (X(k)T
Σ(k)−1

σ X(k))−1,

β̂LS(k) = (X(k)T
Σ(k)−1

σ X(k))−1X(k)T
Σ(k)−1

σ Y (k).

Next, we describe how the network computes (18).
1) Distributed computation of the covariance matrix of

the weighted least squares estimate:The network com-
putes (18b) as follows. Forj ∈ {1, . . . , p}, agent i has
access to theith component of colj(X(k)) ∈ R

n, and to
rowi(X(k)) = x(pi(k))T . Now, (8) guarantees that agenti
can compute rowi(Σ(k)σ) by knowing the location of its
GR-disk-neighbors. Hence, forGR-disk(p1(k), . . . , pn(k)) con-
nected, the execution ofWEIGHTED LEAST SQUARES ALGO-
RITHM with B = Σ(k)σ, c = colj(X(k)), andM = X(k)
guarantees, cf. Proposition 5.2,

WLSi(Σ(k)σ, colj(X(k)),X(k))(τ) −→

1

n
X(k)T

Σ(k)−1
σ colj(X(k)),

as τ → +∞, for all i ∈ {1, . . . , n}. Hence, the execution
of p instances of theWEIGHTED LEAST SQUARES ALGO-
RITHM allows agenti to compute the time-dependent matrix
WLSi(Σ(k)σ,X(k),X(k))(τ) given by

(
WLSi(Σ(k)σ, col1(X(k)),X(k)), . . . ,

. . . , WLSi(Σ(k)σ, colp(X(k)),X(k))
)
(τ),

and with the property that

WLSi(Σ(k)σ,X(k),X(k))(τ) →
1

n
X(k)T

Σ(k)−1
σ X(k)

as τ → +∞, for all i ∈ {1, . . . , n}. With this information,
agenti can compute the covariance matrix

1

n

(
WLSi(Σ(k)σ,X(k),X(k))(τ)

)−1
→ cov(β̂LS(k)),

asτ → +∞, for all i ∈ {1, . . . , n}.

2) Distributed computation of the weighted least
squares estimate: The network computes (18a)
as follows. Agent i has access to rowi(Σ(k)σ),
Y (k)i = Yi(k) and rowi(X(k)) = x(pi(k))T . Therefore,
for GR-disk(p1(k), . . . , pn(k)) connected, the execution of the
WEIGHTED LEAST SQUARES ALGORITHM with B = Σ(k)σ,
c = Y (k), andM = X(k) guarantees, cf. Proposition 5.2,

WLSi(Σ(k)σ,Y (k),X(k))(τ) →
1

n
X(k)T

Σ(k)−1
σ Y (k),

as τ → +∞, for all i ∈ {1, . . . , n}. With this information,
agenti can compute the weighted least squares estimate

(
WLSi(Σ(k)σ,X(k),X(k))(τ)

)−1

WLSi(Σ(k)σ,Y (k),X(k))(τ) −→ β̂LS(k),

as τ → +∞, for all i ∈ {1, . . . , n}. Each agent fuses its
knowledgeβ ∼ Np(ω≤t−1,W≤t−1) with the information
obtained as described in Sections VI-A.1 and VI-A.2 to com-
pute the posterior predictive distributionβ ∼ Np(ω≤t,W≤t).

B. Distributed sequential simple kriging

Here, we describe the strategy that network agents imple-
ment to compute the sequential simple kriging of Section IV-
B. According to Lemma 4.2, to compute the means of the
conditional distributions of the spatial field and its gradient
at s, we are interested in the distributed calculation of

γ(s, k) ∈ R
n, ∇γ(s, k) ∈ R

n×d, (19a)

Σ(k)−1
σ Y (k) ∈ R

n, Σ(k)−1
σ X(k) ∈ R

n×p. (19b)

Regarding (19a), thejth components ofγ(s, k) and
∇γ(s, k) can only be nonvanishing if agentj is within
r-distance ofs, that is, ‖s − pj(k)‖ ≤ r. Therefore, any
agent i can compute all the nonvanishing components in
γ(s, k) and ∇γ(s, k) if B(s, r) ⊂ B(pi(k), R). Noting
that this is equivalent tos ∈ B(pi(k), R − r), we deduce
that agenti can compute (19a) in a distributed way for any
s ∈ B(pi(k), R − r).

Regarding (19b), as a by-product of the executions of
the WEIGHTED LEAST SQUARES ALGORITHM performed in
Section VI-A, at timek ∈ Z≥0, agenti ∈ {1, . . . , n} has
available theith component of the functions

JOR(Σ(k)σ,Y (k)) : R≥0 → R
n,

JOR(Σ(k)σ, colj(X(k))) : R≥0 → R
n, j ∈ {1, . . . , p}.

Let us defineJOR(Σ(k)σ,X(k)) : R≥0 → R
n×p by

JOR(Σ(k)σ,X(k))(τ) =
(
JOR(Σ(k)σ, col1(X(k))),

. . . , JOR(Σ(k)σ, colp(X(k)))
)
(τ).

Note that agent i has access to theith row of
JOR(Σ(k)σ,X(k)). By Proposition 5.2, we have

JOR(Σ(k)σ,Y (k))(τ) −→ Σ(k)−1
σ Y (k) ∈ R

n,

JOR(Σ(k)σ,X(k))(τ) −→ Σ(k)−1
σ X(k) ∈ R

n×p.

Finally, note that agenti ∈ {1, . . . , n} has access to both
JORj(Σ(k)σ,Y (k)) ∈ R and rowj(JOR(Σ(k)σ,X(k))) ∈
R

p for all j such thatpi(k) and pj(k) are neighbors in
GR-disk. Therefore, we deduce the following result.



Proposition 6.2:For all k ∈ Z≥0 and all
s ∈ B(pi(k), R − r), E(Z(s, k) | (Y≤k, β)) and
E(∇Z(s, k) | (Y≤k, β)) can be casted as in11: of Table II,
and therefore, are computable by agenti over GR-disk.

Remark 6.3: (Execution ofDISTRIBUTED KRIGING ALGO-
RITHM) It is reasonable to assume that the order of magnitude
of the time required by individual agents to communicate
and compute is smaller than the one required to move.
Additionally, according to Section III, measurements are
taken at instants of time inZ>0. Hence we assume that the
computations described in Sections IV-A and IV-B run on a
time scaleτ much faster than the time scalet. •

VII. D ISTRIBUTED SPATIAL GRADIENT ASCENT

This section presents a motion coordination algorithm that
the network can implement to find local maxima of the
spatial field. As exemplified in the introduction, this task
has practical applications in a variety of scenarios. At any
t ∈ R≥0, the DISTRIBUTED KRIGING ALGORITHM in Table II
allows agenti ∈ {1, . . . , n} to compute the expected value
of the spatial field and its gradient inB(pi(⌊t⌋), R−r). Each
agent can then implement a gradient ascent strategy

ṗi(t) = E(∇Z(pi(t), t) |Y≤t). (20)

Feedback is present through the dependence of the measure-
mentsY≤t on the network configuration. Because new mea-
surements are taken at times inZ≥0, the resulting trajectory
of agenti is continuous and piecewise differentiable.

Remark 7.1:The convergence of theWEIGHTED LEAST

SQUARES ALGORITHM is asymptotic, and hence the values
of the estimation of the parameter, the spatial field, and its
gradient are exact up to some numerical tolerance. Therefore,
the network implements an approximation of (20). •

Next, we characterize the asymptotic convergence of the
gradient ascent when no measurement errors are present.

Proposition 7.2:Assume the superlevel sets ofZ are
compact, and that there are no measurement errors. Then,
any network trajectory under (20) starting fromS = (Rd)n \
{(p1, . . . , pn) ∈ (Rd)n | pi = pj with i 6= j} and such that
agents remain connected satisfiesE(∇Z(pi(t)) |Z≤t) → 0,
i ∈ {1, . . . , n}, ast → ∞, with probability one.

Figure 1 shows an execution of the gradient ascent (20).
Note that the network topology changes along the evolution.

VIII. C ONCLUSIONS

We have considered a robotic sensor network taking suc-
cessive measurements of a process of interest and trying to
find its maxima. We have introduced a statistical framework
to estimate the distribution of the spatial field and of its
gradient. We have developed a distributed spatial estimation
algorithm, and synthesized a motion coordination strategy
that makes network agents find critical points of the field
with probability one in case of no measurement noise.
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