Distributed gradient ascent of random fields by robotic sensor nevorks
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Abstract—This paper considers a robotic sensor network, theorem [13] and stochastic Lyapunov functions [14].
deployed in an environment of interest, that takes successive  Statement of contributionsEhe contributions of this paper
measurements of a spatial random field. Taking a Bayesian gq: (j) the formulation of the spatial field estimation desb

perspective on the kriging interpolation technique from geo- . . : . - .
statistics, we design the DSTRIBUTED KRIGING ALGoriTHM  Vid Bayesian universal kriging, and the incorporation of

to estimate the distribution of the random field and of its gra- ~ Statistically sound gradient derivatives of the spatiddifiéi)

dient. The proposed algorithm makes use of a novel distributed the synthesis of a distributed algorithm to compute weighte
strategy to compute weighted least squares estimates when |east squares estimates when sensor measurements are cor-
measurements are spatially correlated. This strategy results yg|ated. This algorithm combines the Jacobi overrelaratio
from the combination of the Jacobi overrelaxation method . . . e

with dynamic consensus algorithms. The network agents use memOd with C_jyn_am'c averag_e Consens_us algorlthms,__(m) th
the information gained on the spatial field to implement a design of a distributed algorithm to estimate the distidut
gradient ascent coordination algorithm, whose convergence is of the spatial field and of its gradient; and (iv) building twe t
analyzed via stochastic Lyapunov functions in the absence of previous contributions, the synthesis of a distributediomot
measurement errors. We illustrate our results in simulation. coordination strategy that makes individual robotic agent
converge with probability one to the set of critical points

_ i _ of the random spatial field. For reasons of space, proofs are
Problem statement:Consider a robotic sensor network gmitted. The interested reader may find them in [15].

taking successive measurements of a physical process modpganization: Section Il presents reviews kriging inter-

eled as a spatial random field. Our objective is to design gyjation. Section IIl introduces the models for the physica

distributed estimation and motion coordination algorittiat  ,rocess and the robotic sensor network. Section IV describe

enables the network to find maxima of the spatial field. Thig,e sequential estimation of the spatial field and of its gra-

type of tasks are relevant in multiple scenarios, inclu®ng  gient, Section V presents a distributed algorithm to comput

vironmental monitoring, oceanographic exploration, afid ayeighted least squares estimates when sensor measurements

mospheric research, when one might be interested in findigge correlated. This algorithm is used in Section VI to desig

high pollutant concentrations, areas of maximum salitity, 5 gistributed implementation of the estimation discussed |

locations where algae are abundant. Similar ideas can lole Usgaction 1V. Section VII analyzes the coordination algarith

to localize areas of rapid variability of physical processe gyecyted by the network to localize critical points of the
Literature review: In cooperative control, [1] designs sfpatial field. Section VIII presents our conclusions.

network coordination strategies to seek out local optima of notation: Vectors in Euclidean space are understood as

a deterministic, static field using uncorrelated noisy measgjumn vectors. Leky,...,eq denote the canonical basis

surements and all-to-all communication. The works [2], [3hf re. Given a matrix4A € Rr*™ row;(4) € R™ and

develop distributed optimal estimation strategies foreks col;(A) € R™ denote theith row and thejth column of A

yvith connectgd commupicatior! topology. Objeqtive a_”8|¥3irespectively. For an undirected gragh= (V, E) consisting

is employed in [4] to find optimal network trajectories ingf 5 set of verticed” and a set of edgeE C V x V, the

restricted parameterized families of curves. Paralleb-alg neighbors ofv € V in G are denoted by (v) = {w €
rithms for static networks are thoroughly studied in [S]€Th v/ |"(, ) € E}. Usually,V = {1,...,n}. The adjacency

works [6], [7] introduce distributed fusion algorithms bas matrix of G is A(G) = (a;;) € R™" defined bya,; = 1 if
on averaging. Dynamic consensus algorithms that track ﬂﬂﬁj) € E, anda;; = 0 otherwise. We often denote it by.
average of a given time-varying signal are studied in [8], [9

In geostatistics, kriging [10], [11] is a standard techmiqu [I. RANDOM SPATIAL FIELDS

to produce estimates of spatial processes based on datgye review important notions on random spatial fields and

collected at finitely many locations. An advantage of kiigin kriging. The reader is referred to [10], [11] for more detail
over other interpolation methods is that it provides a measuU| et 7 pe a scalar random spatial field ®f, d € Z-o,

of the uncertainty of the predictor. A source of inspiratfon  \ith positive definite covarianc€ : R? x R? — R,
our technical approach is [12], which develops an infenti coy(z(s), Z(s')) = C(s,s), s,s' € R% The field Z is
framework for directional gradients of spatial fields basedtationaryif C(s,s') = K(s — ¢/), for K : R? — Rx, and
on point-referenced data. The convergence properties rof Q4otropic if C(s,s') = f((”S —§'|)), for K- Rsg HiR>0.
gradient ascent strategy are analyzed via stochasticl-stabi - -

ity analysis, in particular, the supermartingale conveoge A. Universal kriging

i Let us briefly review the spatial estimation procedure
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>P_, Bizi(s). Here, the components of : R? — RP ItfollowsthatD,Z(sq) = VZ(so)Tu, forallu € R? (where
are known, ands = (0i,...,6,) € RP is an unknown the equality is understood in thg,-sense). In particular,
parameter. Givem € Z-, let X : (RY)" — R™¥? map _

(p1,...,pn) to the matrix X (pi, ..., p,) Whoseith row is VZ(s0) = (Dey Z(50), - Den Z(50))-
z(p;)”. Given measurement& = (Z(p1),...,Z(p,)) of Throughout the paper, we deal with random fields that are
Z at locationspy, ..., pn, the universal kriging predictor mean square differentiable everywhere.

at s € R minimizes the mean-squared prediction error If Z is a stationary Gaussian random field, the resulting
o(s;Z) = E(Z(s) — p(s; Z))? among all linear unbiased joint (d+1-dimensional multivariate) Gaussian figld, V2)
predictorsp(s; Z) = >0 i Z(pi), | = (lh,...,l,) € R*. 0N R? has a valid cross-covariance function

The explicit expression of the universal kriging predidwr Cov((Z(s), VZ(s)), (Z(s), VZ(s'))) =

buk(s; Z) = (1a) ( K(s—s) —(VK(s— s’))T> 4
(v(s) + X(XT2IX) M (a(s) - XTEy(s))Tm"1 Z, VK(s—s') —H(K)(s-s))’
where H(K)(s) denotes the Hessian matrix df at s.

where we have used the shorthand notation This joint distribution allows predictive inference foreth

X = X(pm pn) € R™XP gradient at arbitrary points given measurementsZofat
Y xn arbitrary locations. Given measuremetff$p;), ..., Z(pn)
B = (K(pi = pi)); joy RV, ands € R, define the following shorthand notation,
Y = K s =), Ks —pn)) € R w=(u(p1), .. plpn)) € R,
The mean-squared prediction errorzif (s; Z) ats € R? is VA ()T = (VK (s —p1),...,VK(s —pp)) € R>*™,
7)) = K(0) — T-1 1p)y According to (4),(Z,VZ(s)) is distributed as théd + n)-
UUK(ST’ )1 © ’;(s) L () +(x(s)T L (1b) dimensional normal distribution
— XTET () (XTETIX) T (a(s) - XTET ().
s (ef) (0 T0)
1) Universal kriging as a two-step procedurélniversal Vu(s)) "\ Vv(s)"  —H(K)(0)

kriging can alternatively be described as a two-step proc&rom here, the predictive distribution & Z conditional on
dure, whereby one (i) estimates the unkno@rfrom the the dataZ is the d-dimensional normal distribution

data, and then (ii) performsimple kriging In (i), the best S

linear unbiased estimator f is the weighted least-squares VZ(s) | Z ~ Na (Viu(s) + Vy(s)'E7H(Z — p),
~H(K)(0) = V()" =71 V(s)), (5)

where~ means “distributed according to.” éitical point of
with covariance matrixov(3s) = (X7X 7' X)~1. In (i), Z is a points, € R? such thatVZ(s.) = 0. A critical point
simple kriging assumes (i.e., 3) known, and performs satisfiesD, Z(s.) = 0forall u € R<, and hence corresponds
spatial interpolation to yield, see e.g., [10], [11], to a maximum, a minimum, or a saddle point of

~ _ I1l. PROBLEM STATEMENT
Psk(s; Z) = 2(s)"B+(s)"="(Z - XB), (39 o : o o

. Z) = K(0) — (s)TS " (s) (3b) Our objective is to design a distributed estimation and
osk(s; Z) = v RASA motion coordination algorithm that enables a robotic senso
The predictor (3a) with3 — BLS results in the universal network to find the maxima of a physical process of interest.
kriging predictor (1a). The universal kriging variance 1b A. Physical process model

is then the sum of the simple kriging variance (3b) and the \we restrict our attention to processes that do not evolve

spatial error induced by parameter estimation uncertainty in time. However, agents can take measurements at different

times, and therefore we need to provide a model for the

temporal correlation between them. We do this as follows:
The discussion here follows [12]. Given a stationany is a spatio-temporal Gaussian random fieldRshx R

random fieldZ on R¢ and a vectoru, € R?, a directional _

gradientfield onR¢ is defined as Z(s,) = pls) +9(s,1), ©)

Ais=(XT2'X)'XTn 1z, @)

B. Gradient random spatial fields

where 1u(s) = z(s)T 3 is continuously differentiable. Here,
— Z(s + hu) — Z(s) d 0 is a zero-mean Gaussian random field with the same
D,Z(s) = lim , s€eRY ] ralidon
h—0 h (separable) covariance & which is given by

where the limit is understood in thd., sense (i.e., K(s—s) iflt—# <1
limy, o BE(ZEH=26) _p 7(5))? = 0). The random field ~ Cov(Z(s,t), Z(s',t)) = {0 ( ! otr|1erwis| |
Z is mean square differentiable at € R if there exists a ¢
vector V.Z(so) € R? such that, for allu € R¢, where K : R? — Rso. We assume that the field has a finite
Z(s0 + hu) — Z(s0) spatial correlation, i.e., there exists= R+, such that

2
T
7 ~V2(s0)"u) =0. K(s—s)=0 for |ls—s||>r 8)

(@)

lim E(
h—0



B. Network model The stucture of the spatial field covariance (7) has some

Consider a network of. agents evolving ifR? according Important consequences. First, tile components of (s, )
to p; = w, i € {1,...,n}. The control is bounded andV~(s,k) can only be nonvanishing ifs — p; (k)| <.
lus]| < umax € Rso. Agents are equipped with identical S'econd, the covariance matrix of the dafa, is the block-
sensors, and take point measurements at times Zs,. diagonal matrixXic; + o l,(sj+1), where
The measurement taken by agendcated atp; at timek is

corrupted by white noise 2(0) Onxn - O".X”

Yik) = Z(pisk) + e, (©) e = | e ) (10a)
where ¢; ~ N(0,0). Measurement errors are assumed 0 : 0 - Eonxtn
independent. Each agent can communicate with other agents nXn nxn (Lt])
located within a distanc& < R.,. As we show later, each | et us also define the shorthand notation
agent can construct a distributed representation of thigaspa -
field and of its gradient in a ball centered at its locationhwit th = (X(0),..., X([t]) ", (10b)
radius R — r (note that, if||p; — s|| > R—r thenZ ats 'Ygt(S)T = (0,...,0,7(s, [t))7), (10c)
is correlated with points that fall outside the communimati T T 10d
ball of agenti). Therefore, we make the assumption Vac(s)' = (0,...,0, V(s [t)"). (10d)

Umax < R — 7. A. Sequential parameter estimation

The communication capabilities of the agents induce the net ASSume that3 is distributed according to a multivariate
work topology corresponding to the-disk graphGr.qis. At~ normal distribution 5~ N, (v, V). From equations (6)
each configuratiofip: , .. . , pn) € (R))™, Gr-gisk(P1, - - - » Pn) and (9), the posterior distribution ¢f at timet € R> is
is an undirected graph with vertex__d@tl, e ,pn} and gdge B Y<r ~ Ny(wer, We),
set{(p:,p;) | llpi — pjll < R}. This graph is a particular - . .
example of a proximity graph, see e.g., [16]. We assume that  w<t = Wee (X< (B<i + 0oy 41) " Yo + V7)),
either the number of agentsis a priori known to everybody, Wey = (X<Tt(2gt + UIn(LtJ+1))71X§t +Vv-hH~L
or that agents run a consensus algorithm to determine it. B

Remark 3.1 (Distributed computationone can find for- Alternatively, the mearnw<; and covariancell<; can be
mal definitions of the notion of distributed computation ofexpressed as follows.
functions, see e.g., [16]. Here, we refer to a computation asLemma 4.1 (Sequential parameter estimatioAisume
distributed over a graph if each node can perform ththat initially 3 ~ N,(v, V). For allt € R>(, the mean and
computation using information provided by its neighbors. the covariance matrix of the posterior distribution®fvith

data collected up to time can be written as
V. SEQUENTIAL SPATIAL ESTIMATION

In this section, we take a Bayesian perspective to incor- w<t = Wey (X ([t))TS([t)), 'Y ([t]) + WL jwer 1),
porate previous knowledge into the estimation of the spatia _ T -1 -1 -1
field and its gradient. Our setup is different from Section Il Wae = (X)) 3 (18)5" X (L) + W)

A in that errors are present in the measurements accordiaherew<_; = v, We_; =V, andX(k), = (k) + o l,.
to (9), and in that prior information on the unknown param-
eter is incorporated. We consider the spatial field estonati
when measurements are taken at multiple time instants,
sequentially We follow the next scheme: (i) Section IV-A
computes the posterior distribution of the parameter gilen g Sequential simple kriging

data, (i) Section IV-B computes the conditional distribuat o T ]
of the spatial field and its gradient given the data and the 1he conditional distributiorZ(s, ¢) | (Y<;, 3) is

)

Lemma 4.1 provides an iterative fashion of computirg
and W, that is appropriate for a distributed implementation
8{/ the robotic network. We describe this in Section VI-A.

parameter, and (iii), Section IV-C merges (i) and (ii). CUNT T 1 B
Before proceeding, let us introduce some useful notatior]1\_f(“L(s) B+ ’Ygt(S)T (<t + UIn(LtHl))il (Yeir — X<if3),
Let Y(t) = (Yi(t),...,Yu(t)) € R* denote the measure- K (0) = < (8)" (Bt + 0 Lnqir) 1)) v<i(5))-

ments taken by the network agents at titne Z>,. Given

k € Zso, let Y<, = (Y(0),...,Y (k)) denote the data

available up to timé:. Since measurements are taken by th

network only at time instants >, for ¢ € R>(, one has

Yer=Ycpy. Forkc{0,..., [t]}, let Nd(vx(S)T6+V7§t(S)T(Z§t+Uln(Lt]+1))71(Y§t_Xﬁtﬁ)a
X (k) = (K(pi(k) —p;(k))) € R™", ~ H(K)(0) = Ve ()" (S<t + 0 Ln(e)+1) ™ Vr<(s)).

_ nxp
X(kT) = X(P1(k), -, pu(k)) € R™TP, Using (10) above, one can readily see that only the infor-
(s, k)" = (K(s —p1(k)), ..., K(s — pu(k))) € R, mation collected at timet| is used to construct the simple

VA(s, k)T = (VK(s — pi(k)),..., VK (s — pn(k))) € R¥*™, kriging estimator up to time, as the following result states.

In the absence of measurement errors, this corresponds to
the simple kriging predictor and variance. According to, (5)
e conditional distributiotVZ (s, t) | (Y<¢, §) is



Lemma 4.2 (Sequential simple krigingjor all t € R>,  A. Jacobi overrelaxation algorithm

and all s € Rfl, one has, the normal distribution  iven an invertible matriB € R™*" and a vector € R™,
Z(s:1) | (Y<, B) with mean consider the linear systefy = c. The Jacobi overrelaxation
T T - JOR) algorithm [5] is an iterative procedure to compute the
(s, [ENT(]t ¢ , (JC : :

2(8)" 8+ (s, )2 (1) (Y (1)) - X(121)8) unique solutiony = B~'c € R". It is formulated as the
and variancek (0) — (s, [t)T=([t]); v (s, [t]); and the discrete-time dynamical system
normal distributionVZ (s, t) | (Y<;, 8) with mean
) ) =
)

1
zé = —h 1[—]1* bijjf—CZ‘,
V()T B+ V(s [ TS (Y (1t]) - X((£))8), sl = 0=l b(g i) e

and variance-H(K)(0) —V~(s,[t])"2([t]),'V(s,[t]), for ¢ € Z=o andi € {1,...,n}, with y(0) € R andh €
where, for brevity, we le®(k), = (k) + o1,. (0,1). The convergence properties of the JOR algorithm can
be fully characterized [5] in terms of the eigenvalues of the
matrix describing the iteration. Here we use the following
We construct the Bayesian universal kriging predictor o§ufficient convergence criteria from [17, Theorem 2].
the spatial field and its gradient by merging Sections IV-A Lemma 5.1:For B € R**™ symmetric, positive definite
and IV-B. Specifically, fors € R?, the posterior predictive and anyc € R", if h < 2/n, the JOR algorithm converges
distribution of Z(s, ) andV Z(s, t) givenY <, is obtained by  to the solution ofBy = ¢ starting from any initial condition.
marginalizing the estimates in Lemma 4.2 over the posteriorA lon i nt h to. and (i) if b
distribution 3 _| Y_St i_n Lemma 4.1. A_ccordingly, we obtain thensz',(;' grgsn((ai)gﬁ%gr; im%? %ZcﬁgsR%ig%rgh%) is [;#n?n%ble
the normal distributiorZ(s, t) | Y'<¢ with mean to distributed implementation in the following sense: dgen

2(8) Twer + (s, ENTS(EN 1Y ([1H]) = X (|t])w can compute théth componeny; of the solutiony = B~!
() e+ (s, ()7 20D, ( (L) (1)) with the information provided by its neighbors .

C. Sequential Bayesian universal kriging

and variance

K(0) = (s, [t) " S(t)5 v (s, [t])

B. Dynamic average consensus algorithms
Dynamic average consensus filters [8], [9] are distributed

+ (z(s) — (L NIt (s, |t j))TWSt algorithms that allow the network to track the average of a
(x(s) — X ()Tt (s, [t n); given time-varying signal. Here, we use a particular instan
of the proportional-integral dynamic consensus estinsator
and the normal distributio’vZ (s, t) | Y<; with mean studied in [9] but formulated for higher-dimensional sitga

The algorithm works for time-dependent graphs, but here we
Va(s) wer+ Vo (s,[t)"S([£); (Y ([£) = X([£])wst),  yestrict our attention to a fixed graph.

and variance Let 7 — u(7) € (R™)" be a time-varying function, that
we refer to asignal Note thatu(7) is an-dimensional vec-
—H(K)(0) — V~(s, LtJ)TE(LtJ)“V'y(s, [t]) tor with each component;(7), i € {1,...,n}, being itself
T a m-dimensional vector. Consider the dynamical system
(Va(s) = X (1) "S(1t), Vs, [1]) Weyyy " Y Y
(Va(s) = X([t)TS((t)),  V(s, [1]). fTT = (ui(7) = vi(r) = D ai;(vi(r) = v;())
Our next objective is to design a distributed coordinatibn a 7
gorithm so that network agents can compute these quantities + Z a;j(w; (1) —w;(7)), (16a)
V. DISTRIBUTED AVERAGE WEIGHTED LEAST SQUARES dw 77
Given a network ofn agents with interaction topology dar Zaw = v;(7)), (16D)
described by an undirected gragh B ¢ R™*" invertible, g7
c € R", and M € R"*?, we introduce here an algorithm for i € {1,...,n}, wherey > 0 andv,w € (R™)". Here,
distributed overG to compute A = (ai;) € R™*" is the adjacency matrix of/. If agent:
has access to th#gh-component:; of the signaku, then this
*MTB*lC- (15) algorithm is distributed overs, i.e., agenti can compute

the evolution ofv; andw; with information provided by its

As will be clear in Section VI, this quantity can be given theg. -neighbors. It can be proved [9] that f6f connected, for
interpretation of an average weighted least squares ete‘umaany,y > 0, any constant input — u(7) = u € (R™)", and

This is why we refer to our procedure as theeIGHTED  any initial v(0), w(0) € (R™)", the algorithm (16) satisfies
LEAST SQUARESALGORITHM. The capability to compute such

estimates is instrumental later to synthesize a distribute 1 &
implementation of the estimation procedure of Section IV. \T) = Z“Z
To compute (15) in a distributed way, the idea is to combine

a Jacobi iteration and a dynamic consensus algorithm intoexponentially fast for ali € {1,...,n}. For slowly-varying
single procedure. Let us first explain these ingredients.  signals, the estimator guarantees small steady-stateserro

7)—0 ast — 4oo a7



C. TheWEIGHTED LEAST SQUARESALGORITHM

in Section IV-C, each agent performs in a distributed way (i)

Here, we combine the JOR algorithm and the dynamite sequential parameter estimation described in Secdon |

consensus algorithm to synthesize the algorithm in Table * @nd (i) the sequential simple kriging described in Sec-
tion IV-B. From these two constructions, each agent can then

Name: WEIGHTED LEAST SQUARESALGORITHM
Goal: Compute average weighted least squares
Requires: B € R"", ce R”, andM € R"*P
Assumes: (i) Network topology modeled byr
(ii) B invertible, with non-vanishing diagonal
entries, and such that; # 0 implies agent
andj are neighbors irG
(i) Agent ¢ € {1,...,n} knows row(B) €
R"™, ¢; € R, row; (M) € RP
Initialization:

1: y(0) =c € R", v € Rso, andh € (0,2/n)

2: v(0)=w(0)=(row; (M)z1, ..., row, (M)z,) € (RP)"™
Agenti € {1,...,n} executes concurrently

1: Jacobi overrelaxation algorithm, fdére Z>q

yi(0+1) = (1 —h)yi(0) — hb%(zb”ij) - Ci)

J#i
2: Dynamic average consensus algorithm, fog R>g
dUz‘
gy = i(m) —vi(7)) — > ai(vi(r) = v;(7))
J#i
+ ) ai(wilr) — wy(7)),

J#i
dwi
= > ai;(vi(r) = v;(1),

J#i

where A(G) = (ai;) and T — u(r) € (RP)" is given by
u(r) = (rows (M)ya ([7]), - .., 1oWn (M)yn ([7])).

TABLE |
WEIGHTED LEAST SQUARESALGORITHM.

Proposition 5.2: Consider theNEIGHTED LEAST SQUARES
ALGORITHM described in Table I. FoB € R™*"™ invertible,
c € R*, and M € R"*P, defineWw.sS(B,c, M) : R>g —
(RP)™ andJOR(B, ¢) : R>g — R™ by, respectively,

W.S(B, ¢, M)(t) =v(r) and JOR(B,c)(r) =y(|7]),

wherev andy are defined in Table I. Then,

(i) the WEIGHTED LEAST SQUARES ALGORITHM is dis-
tributed overG, in the sense that ageht {1,...,n}
can computens;(B, ¢, M) and JOR;(B, ¢) with in-
formation provided by its neighboring agentsa@h

(i) the functionJOR(B, ¢) verifies

JOR(B,c)(r) — B¢ ast — +oo.
(iii) if G is connected, the function.S(B, ¢, M) verifies
WS;(B,c, M)(T) — %MTBflc asT — 400,
foralli e {1,...,n}.

VI. DISTRIBUTED SEQUENTIAL ESTIMATION
In this section we introduce th®ISTRIBUTED KRIGING

directly with the posterior predictive distributions oiotad

compute the desired posterior predictive distributionse T
implementation of both (i) and (ii) relies on th@EIGHTED
LEAST SQUARESALGORITHM introduced in Section V.

Name: DISTRIBUTED KRIGING ALGORITHM

Goal: Compute Bayesian universal kriging predic-
tors for the spatial field and its gradient

Assumes: (i) Gr-disk IS connected along evolution

(ii) Initially all agents knowg3 ~ N (v, V)

Initialization: w<_; = v andW<_; =V
Attime k € Z>o, agenti € {1,...,n}

1: measured; (k) = Yi(k), sets row(X (k)) = z(p:(k))”
2: acquires location of neighbors i@g.-disk(p1(k), - . -

and computes roWX (k). )
3. for j=1topdo
4: executes the \WIGHTED LEAST SQUARES
ALGORITHM  over  Gruisk(p1(k),...,pn(k))  for

(2(k)o, col; (X (k)), X (k)
5: executes the WIGHTED LEAST SQUARESALGORITHM over
Gredisk(p1(k), - .., pn(k)) for (B(k)s, Y (k), X (k))
6: computes weighted least squares estimate
cov(Bis(k)) == %(V\LSi(E(k)a,X(k),X(k))(oo))_l
Bus(k) == (WSi(E(k)a, X (k), X (k))(00)) "
WS;(2(k)o, Y (k), X (k))(o0)
7: fuses with previous information
W< = (COV(BLS(MYl + Wg7k171)_1
wer=Wer (cov(Bis(k)) " Bis(k)+ Wy wer1),
8: sets variables
(B(k)7 'Y (k)i := JORi(S(k)s, Y (K))(o0),
row; (2(k), " X (k)) := row; (JOR(Z(k), X (k))(c0))
9: computes predictors ate B(pi(k), R — )
E(Z(s,k) | (Y<r, B) = x(s)" B+ D 7,(s,k)
lls—p; (K)lI<r
()Y (1), = row; (2(k)5 " X (k))8)),
E(VZ(s,k) | (Y<k, 8) = Va(s) B+ V,(s,k)

ls—p; (Rl <r
(BR)F'Y (k) —row; (S(k);" X (k))B),

10: computes Bayesian universal kriging predictors st €
B(pi(k), R—r) andt € [k, k + 1)

E(Z(s,t) ‘YS]C) and E(VZ(s,t) |Y§k)

TABLE I
THE DISTRIBUTED KRIGING ALGORITHM.

Lemma 6.1:The DISTRIBUTED KRIGING ALGORITHM OUt-

lined in Table Il allows each network agent to compute, at
any time, the Bayesian universal kriging predictors of the
spatial field and its gradient on a ball centered at its ctirren
ALGORITHM. The underlying idea is that, instead of workinglocation of radiusk — r, and only requires communication

with neighboring agents i@ -gisk.



Next, we detail the steps of the algorithm. 2) Distributed computation of the weighted least
squares estimate: The network computes (18a)
A. Distributed sequential parameter estimation as follows. Agent i has access to roE(k),),
Here, we describe the strategy that network agents in¥ (k)i = Yi(k) and row(X (k)) = =(p;(k))". Therefore,
plement to compute the sequential parameter estimation ©F Gr-dgisk(p1(k), - .., pn(k)) connected, the execution of the
Section IV-A. Recall thafY (k) denotes the measurementsWEIGHTED LEAST SQUARES ALGORITHM With B = X(k)o,
taken by the network at timg, with associated covariance ¢ = Y (k), and M = X (k) guarantees, cf. Proposition 5.2,
matrix 3(k), = X(k) + oI,,. Assume the mean<;_; and 1 T .
the covariance matri¥;_; of the posterior distribution of ~W.Si(E(k)o, ¥ (k), X (k))(7) — —X (k)" XE(k), Y (k),
6 with data collected up to timé — 1 are known to each

g . - asT — +oo, for all ¢ € {1,...,n}. With this information,
agent. This is certainly the case for= 0, where, agenti can compute the weighted least squares estimate
wer=v, Wea=V (WS (2 (K)o, X (k), X (k) (r))
According to Lemma 4.1, agente {1,...,n} can compute WS (2(k)o, Y (k), X (k))(1) — Brs(k),
w<y, and Wy, if it has access to ) .
- - asT — +oo, for all i € {1,...,n}. Each agent fuses its
X(E)T'S(k);'Y (k) € RP, (18a) knowledge 3 ~ N,(w<;—1, W<;_1) with the information
X(k)Tz(k);lX(k) € RPXP. (18b) obtained as described in Sections VI-A.1 and VI-A.2 to com-

pute the posterior predictive distributigh~ N, (w<;, W<y).
This is equivalent to the computation of the weighted lea

$. Distributed sequential simple krigin
squares estimate ¢f and its variance with datk” (k), - DIt quential simp '9ing

Here, we describe the strategy that network agents imple-

cov(Bus(k)) = (X (k)TS(k); X (k) ment to compute the sequential simple kriging of Section V-
~ T 1 1 T 1 B. According to Lemma 4.2, to compute the means of the
Prs(k) = (X (k)" 3(k); " X (k)™ X (k)" 5 (k)Y (k). 0nditional gistributions of the spatiaFI)fieId and its geti
Next, we describe how the network computes (18). at s, we are interested in the distributed calculation of

1) Distributed computation of the covariance matrix of ~(s,k) € R, V(s k) € R4, (19a)
the weighted least squares estimat&€he network com- 2 n 1 nxp
putes (18b) as follows. Foj € {1,...,p}, agenti has B(k); Y (k) € R", Z(k); X (k) € R (19b)
access to theéth component of cgl X (k)) € R”, and to Regarding (19a), thejth components of~(s,k) and
row; (X (k)) = z(pi(k))". Now, (8) guarantees that agent W~(s,k) can only be nonvanishing if agent is within
can compute rowX(k),) by knowing the location of its ,-distance ofs, that is, ||s — p;(k)|| < r. Therefore, any
Gr-disk-neighbors. Hence, fo§r-qisk(p1(k), - -, pn(k)) CON-  agenti can compute all the nonvanishing components in
nected, the execution ONEIGHTED LEAST SQUARESALGO-  ~(s,k) and V(s, k) if B(s,r) C B(pi(k), R). Noting
RITHM With B = 3(k),, ¢ = col;(X (k)), andM = X (k)  that this is equivalent t& € B(p;(k), R — ), we deduce

guarantees, cf. Proposition 5.2, that agenti can compute (19a) in a distributed way for any
s € B(pi(k),R —).
WLS;(2(k),, col; (X (k)), X (k) (T) — Regarding (19b), as a by-product of the executions of

the WEIGHTED LEAST SQUARES ALGORITHM performed in
Section VI-A, at timek € Zxq, agenti € {1,...,n} has
available theith component of the functions

%X(k)Tz(k);lcolj(X(k)),

asT — +oo, for all i € {1,...,n}. Hence, the execution
of p instances of theWEIGHTED LEAST SQUARES ALGO- JOR(E (K)o, Y (k) : Rsg — R™,

RITHM allows agent to compute the time-dependent matrix jonsy(k)  col. (X (k \ ‘Reg — R™.  ie {1l

V\LSZ(E(I{;)0-’X(]€)7X(]C))(T) glven by ( ( )07 ]( ( )))' >0 9 J { 7"'7p}'

Let us define)OR(X(k),, X (k)) : R>g — R™*P by

(WS;(=(k)o, coh (X (K)), X (K)), .. .,

WS (S o (X (), X () (o), SRR X)) = GORE (R, coh (X (),

L ARS(K),, coly (X (k) (7).

Note that agenti has access to theith row of
JOR(X%(k)», X (k)). By Proposition 5.2, we have

IR(E(k)o, Y (k))(1) — B(k); 'Y (k) € R",

and with the property that

WS;(3(k)o, X (k), X (K))(T) — %X(k‘)TE(k);lX(k)

astT — 400, for all i € {1,...,_n}. With this information, IRER) g, X (k) (1) — S(k); X (k) € R™P.
agenti can compute the covariance matrix
1 » R Finally, note that agent € {1,...,n} has access to both
= (WS,(Z(k)o, X (k), X (k)(7) ™ = cov(Bis(k)),  IOR;(Z(K),. Y (K)) € R and row(ICR(E(k),, X (K))) €

RP for all j such thatp;(k) and p,(k) are neighbors in
asT — +oo, foralli € {1,...,n}. Gr.disk- Therefore, we deduce the following result.



Proposition 6.2:For all k& € Zy, and all
s € Bpi(k),R — r), E(Z(s;k) |[(Y<k,p)) and
E(VZ(s,k) | (Y<k, 8)) can be casted as irL: of Table I,
and therefore, are computable by agever Gg.gisk.

Remark 6.3: (Execution oDISTRIBUTED KRIGING ALGO-
RITHM) It is reasonable to assume that the order of magnitude
of the time required by individual agents to communicate
and compute is smaller than the one required to move.
Additionally, according to Section lll, measurements are
taken at instants of time i~ . Hence we assume that the
computations described in Sections IV-A and IV-B run on a
time scaler much faster than the time scale .

VII.
This section presents a motion coordination algorithm that

D ISTRIBUTED SPATIAL GRADIENT ASCENT

-3 -2 -1 0 1 2 3

the network can implement to find local maxima of therig. 1. Distributed gradient ascent cooperative strat@gy {mplemented
spatial field. As exemplified in the introduction, this taskoy a robotic sensor network witfh4 agents. The spatial field has mean

has practical applications in a variety of scenarios. At any(s)
t € R>p, the DISTRIBUTED KRIGING ALGORITHM in Table I
allows agenti € {1,...,n} to compute the expected value
of the spatial field and its gradient B(p;(|t]), R—r). Each
agent can then implement a gradient ascent strategy

pi(t) = E(VZ(pi(t),t) | Y<i). (20) 2

Feedback is present through the dependence of the measure-
mentsY <, on the network configuration. Because new mea-g;
surements are taken at times7zn., the resulting trajectory
of agent: is continuous and piecewise differentiable.
Remark 7.1:The convergence of th&EIGHTED LEAST
SQUARES ALGORITHM iS asymptotic, and hence the values
of the estimation of the parameter, the spatial field, and it%]
gradient are exact up to some numerical tolerance. Therefor
the network implements an approximation of (20). e 6]
Next, we characterize the asymptotic convergence of the
gradient ascent when no measurement errors are present.
Proposition 7.2: Assume the superlevel sets d&f are [7]
compact, and that there are no measurement errors. Then,

(4]

any network trajectory under (20) starting frasn= (R%)"\ 18]
{(p1,---,pn) € RYH™ | p; = p; with i # 5} and such that
agents remain connected satisfié6vV Z(p;(t)) | Z<;) — 0, [9]

i€ {l1,...,n}, ast — oo, with probability one.

Figure 1 shows an execution of the gradient ascent (20)

Note that the network topology changes along the evolution.
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VIIl. CONCLUSIONS (]

We have considered a robotic sensor network taking sukl-z]

cessive measurements of a process of interest and trying to

find its maxima. We have introduced a statistical framework3]
to estimate the distribution of the spatial field and of its

gradient. We have developed a distributed spatial estimati[14]

algorithm, and synthesized a motion coordination strate

. o - .15
that makes network agents find critical points of the fiel ]
with probability one in case of no measurement noise.
[16]
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