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Distributed Kriged Kalman filter
for spatial estimation

Jorge Cort́es

Abstract—This paper considers robotic sensor networks per-
forming spatially-distributed estimation tasks. A robotic sen-
sor network is deployed in an environment of interest, and
takes successive point measurements of a dynamic physical
process modeled as a spatio-temporal random field. Taking a
Bayesian perspective on the Kriging interpolation technique from
geostatistics, we design the DISTRIBUTED K RIGED K ALMAN
FILTER for predictive inference of the random field and of
its gradient. The proposed algorithm makes use of a novel
distributed strategy to compute weighted least squares estimates
when measurements are spatially correlated. This strategy results
from the combination of the Jacobi overrelaxation method with
dynamic average consensus algorithms. As an application of the
proposed algorithm, we design a gradient ascent cooperative
strategy and analyze its convergence properties in the absence
of measurement errors via stochastic Lyapunov functions. We
illustrate our results in simulation.

I. I NTRODUCTION

Consider a robotic sensor network taking successive mea-
surements of a dynamic physical process modeled as a spatio-
temporal random field. Our objective is to design a distributed
estimation algorithm that enables the network to obtain con-
sistent and statistically sound representations of the spatial
field. Arguably, the availability of such representations to
the network agents is necessary to tackle other sensing tasks
related with the physical process, such as optimal estimation,
localization of critical points, or identification of areasof rapid
variability. These tasks are relevant in multiple scenarios, in-
cluding environmental monitoring, oceanographic exploration,
and atmospheric research, when one might be interested in
finding higher pollutant concentrations, areas of maximum
salinity, or locations where algae are abundant.

Literature review: In geostatistics, spatial processes mod-
eled as random fields are estimated via Kriging interpolation
techniques [1], [2]. Simple Kriging assumes that the mean of
the random field is constant and known a priori. Universal
Kriging, instead, considers the setup where the mean function
is an unknown combination of known basis functions. For
processes that evolve in time, [3], see also [4], develops a
universal Kriging approach termed Kriged Kalman filter that
combines the time and spatial components of the field. The
work [5] presents an inferential framework for directional
gradients of spatial fields based on point-referenced data.
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In cooperative control, [6] proposes a decentralized in-
formation filter for parameter estimation based on all-to-all
communication, and applies it to tracking, localization, and
map building. [7] designs network coordination strategiesto
seek out local optima of a deterministic, static field using
noisy measurements and all-to-all network communication.
The field is represented by an affine function. Instead, [8]
considers a dynamic field represented by an unknown linear
combination of known functions whose coefficients evolve
stochastically driven by white noise. [8] develops distributed
optimal estimation techniques for networks with connected
communication topology and sensor measurements corrupted
by white noise. The measurements taken by individual network
agents are uncorrelated. Objective analysis techniques are
employed in [9] to find, in restricted parameterized families
of curves, network trajectories that optimize the off-line,
centralized estimation of an environmental field whose mean
is a priori known and whose covariance is separable. During
the evolution, individual agents do not communicate field
measurements to other neighbors or possess a representation
of the spatial field. Instead, the fusion of the data is performed
at the end of the experiment. The works [10], [11] introduce
distributed data fusion algorithms based on averaging consen-
sus that work under the assumption that sensor measurements
are uncorrelated. Dynamic consensus algorithms that allowto
track the average of a given time-varying signal are studied
in [12], [13], [14]. Other related works include [15], [16],
where decentralized Kalman filtering procedures are developed
that work under the assumption of all-to-all communication.
Parallel and distributed algorithms for static networks are
thoroughly studied in [17]. Finally, stability analysis tools for
stochastic systems include the supermartingale convergence
theorem [18] and stochastic Lyapunov functions [19].

Statement of contributions:The contributions of this paper
are the following: (i) the formulation of the spatio-temporal
field estimation via Bayesian universal Kriging, and the in-
corporation of statistically sound gradient information of the
spatial field; (ii) the synthesis of a distributed algorithm
to compute weighted least squares estimates when sensor
measurements are correlated. This algorithm combines the
Jacobi overrelaxation method with dynamic average consensus
algorithms; (iii) the design of the DISTRIBUTED KRIGED

KALMAN FILTER for predictive inference of the spatial field
and of its gradient; and (iv) building on the previous con-
tributions, the synthesis of a distributed motion coordination
strategy that makes individual robotic agents converge with
probability one to the set of critical points of the random
spatial field.
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Organization: The paper is organized as follows. Section II
presents basic notions on random spatial fields. Section III
introduces the models for the physical process and the robotic
sensor network. Section IV describes the sequential estimation
of the spatial field and of its gradient via Bayesian universal
Kriging. Section V presents a distributed algorithm to compute
weighted least squares estimates when sensor measurements
are correlated. This algorithm is then used in Section VI
to design a distributed implementation of the sequential es-
timation discussed in Section IV. Section VII proposes a
cooperative strategy to localize critical points of spatial fields
and analyzes its convergence properties. Section VIII presents
our conclusions and ideas for future work.

Notation: Let Z, Z>0, Z≥0, R, R>0 and R≥0 denote,
respectively, the set of integer, positive integer, non-negative
integer, real, positive real, and non-negative real numbers. Let
δ : R → {0, 1} denote the Dirac delta function defined by
δ(t) = 0 for t 6= 0, and δ(0) = 1. Vectors in Euclidean
space are understood as column vectors. Lete1, . . . , ed denote
the canonical basis ofRd. Given a matrixA ∈ R

d1×d2 , let
rowi(A) ∈ R

d2 and colj(A) ∈ R
d1 denote theith row and

the jth column of A, respectively. For an undirected graph
G = (V,E) consisting of a set of verticesV and a set
of edgesE ⊂ V × V , the neighbors ofv ∈ V in G are
denoted byNG(v) = {w ∈ V | (v, w) ∈ E}. Usually,
we take V = {1, . . . , n}. The adjacency matrix ofG is
the matrix A(G) = (aij) ∈ R

n×n defined byaij = 1 if
(i, j) ∈ E, andaij = 0 otherwise. We will often simply denote
it by A. Throughout the paper, we use the math boldface font
to emphasize the dependence of the corresponding quantity on
the specific network configuration where it is evaluated. This
allows us to write more concise expressions.

II. RANDOM SPATIAL FIELDS

In this section we review important notions on random
spatial fields. The interested reader is referred to [1], [2]for
more details. Let us start with some basic definitions. LetZ be
a random spatial field onRd, d ∈ Z>0, with positive definite
covariance functionC : R

d × R
d → R≥0,

Cov(Z(s), Z(s′)) = C(s, s′).

The fieldZ is stationaryon R
d if C(s, s′) = K(s − s′), for

K : R
d → R≥0, andisotropiconR

d if C(s, s′) = K̃(‖s−s′‖),
for K̃ : R≥0 → R≥0. Throughout the paper, we deal with
stationary random fields. When modeling physical processes,
it is common for a random field to be stationary over a
strict subset ofRd instead of the whole Euclidean space.
For instance, the assumption of stationarity is reasonablefor
a temperature field considered over a small enough region
of the ocean. However, over larger spatial domains, other
physical phenomena might cause smaller correlation ranges
in particular areas that invalidate the stationarity assumption.
The ensuing discussion is also valid for random fields that are
stationary on an open subset ofR

d.
Predictive inference of a spatial fieldZ at arbitrary

points given measurements at arbitrary locations can be
done via the joint distribution. For concreteness, letZ(·) ∼

GP (µ(·),K(·)) be a stationary Gaussian process. Given mea-
surementsZ(p1), . . . , Z(pn) of the spatial fieldZ at locations
p1, . . . , pn, and s ∈ R

d, define the following shorthand
notation for convenience,

Z = (Z(p1), . . . , Z(pn)) ∈ R
n,

µ = (µ(p1), . . . , µ(pn)) ∈ R
n,

Σ = (K(pi − pj)) ∈ R
n×n,

γ(s)T = (K(s − p1), . . . ,K(s − pn)) ∈ R
n.

Then(Z, Z(s)) is distributed as then+1 dimensional normal
distribution

Nn+1

((
µ

µ(s)

)
,

(
Σ γ(s)

γ(s)T K(0)

))
.

Consequently, the conditional predictive distribution ofthe
spatial field ats given observations atp1, . . . , pn is the normal
distribution

Z(s) |Z ∼ N
(
µ(s) + γ(s)T

Σ
−1(Z − µ),

K(0) − γ(s)T
Σ

−1γ(s)
)
. (1)

The conditional mean in (1) is known in the geostatistics
literature as the simple Kriging predictor, and the conditional
variance in (1) is the corresponding mean-squared prediction
error. In general, perfect observations of the spatial fieldare
not available, and the mean and the covariance structure are
only known up to a certain number of parameters. We will
discuss the estimation problem in these more general terms in
Section IV.

When considering dynamic processes, we restrict our at-
tention to spatio-temporal random fields onR

d × R≥0 with
separable covariance functions, i.e., of the form

Cov(Z(s, t), Z(s′, t′)) = C1(s, s
′)C2(t, t

′),

whereC1 : R
d ×R

d → R≥0 andC2 : R≥0 ×R≥0 → R≥0. A
stationary spatio-temporal random field of this form verifies
that C1(s, s

′) = K1(s − s′) and C2(t, t
′) = K2(t − t′), for

K1 : R
d → R≥0 and K2 : R → R≥0. Note that the above

discussion is also valid for predictive inference of a spatio-
temporal field at a fixed instant of time.

A. Gradient random spatial fields

The discussion here follows [5] and can be easily extended
for spatio-temporal fields. For concreteness, we restrict our at-
tention to stationary random fields. Given a stationary random
field Z on R

d and a vectoru ∈ R
d, a directional gradient

field on R
d is defined, fors ∈ R

d,

DuZ(s) = lim
h→0

Z(s + hu) − Z(s)

h
,

if the limit understood in theL2 sense exists. The random
field Z is mean square differentiable ats0 ∈ R

d if there exists
a vector∇Z(s0) ∈ R

d such that, for allu ∈ R
d,

lim
h→0

E
(Z(s0 + hu) − Z(s0)

h
−∇Z(s0)

T u
)2

= 0.
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It follows that, if Z is mean square differentiable ats0, then
DuZ(s0) = ∇Z(s0)

T u, for all u ∈ R
d (where the equality

should be understood in theL2-sense). In particular,

∇Z(s0) = (De1
Z(s0), . . . ,Den

Z(s0)).

Throughout the paper, we will deal with random fields that
are mean square differentiable everywhere.

If Z is a stationary Gaussian random field, the resulting
joint (d + 1-dimensional multivariate) Gaussian field(Z,∇Z)
on R

d has a valid cross-covariance function

Cov((Z(s),∇Z(s)), (Z(s′),∇Z(s′))) =(
K(s − s′) −(∇K(s − s′))T

∇K(s − s′) −H(K)(s − s′)

)
, (2)

where ∇K : R
d → R

d and H(K) : R
d → R

d×d

denote, respectively, the gradient and the Hessian of the
functionK. This joint distribution allows predictive inference
for the gradient at arbitrary points given measurements of
the random field at arbitrary locations. For concreteness, let
Z(s) ∼ GP (µ(s),K(·)), with µ : R

d → R continuously
differentiable. Given measurementsZ(p1), . . . , Z(pn) of the
spatial fieldZ at locationsp1, . . . , pn, ands ∈ R

d, according
to (2), (Z,∇Z(s)) is distributed as then + d dimensional
normal distribution

Nn+d

((
µ

∇µ(s)

)
,

(
Σ ∇γ(s)

∇γ(s)T −H(K)(0)

))
,

where∇γ(s)T = (∇K(s − p1), . . . ,∇K(s − pn)) ∈ R
d×n.

Consequently, the conditional predictive distribution for the
gradient is thed-dimensional normal distribution

∇Z(s) |Z ∼ Nd

(
∇µ(s) + ∇γ(s)T

Σ
−1(Z − µ),

− H(K)(0) − ∇γ(s)T
Σ

−1
∇γ(s)

)
. (3)

Section IV studies the conditional predictive distribution of
the gradient when the mean of the spatial field is unknown,
and perfect observations are not available.

A critical point of the spatial fieldZ is a locations∗ ∈
R

d such that∇Z(s∗) = 0. Note that a critical point satisfies
DuZ(s∗) = 0 for all u ∈ R

d, and hence corresponds to a
maximum, a minimum, or a saddle point ofZ.

III. PROBLEM SET-UP

The objective of this paper is to design distributed estima-
tion algorithms that enable a robotic sensor network to obtain
consistent and statistically sound representations of a physical
process of interest. In the following, we detail the specific
models for the process and the robotic network.

A. Physical process model

We consider a dynamic physical process, i.e., a process
that evolves in time, modeled as a spatio-temporal Gaussian
random fieldZ of the form

Z(s, k) = µ(s, k) + ν(s, k), (4a)

µ(s, k) =

∫
ωs(u)µ(u, k − 1)du + η(s, k), (4b)

where (s, k) ∈ R
d × Z>0 and µ : R

d × Z>0 → R is
continuously differentiable with respect to its first argument.
Here,ν captures small-scale variability of the physical process,
and the evolution of the mean is determined by the interaction
function ωs : R

d → R and the stochastic componentη. Both
ν and η are stationary spatial fields that exhibit temporal
variability but have no temporal dynamics associated with
them. Formally, both are zero-mean Gaussian random fields
with separable covariance structure

Cov(ν(s, k), ν(s′, k′)) = Kν(s − s′) δ(k − k′),

Cov(η(s, k), η(s′, k′)) = Kη(s − s′) δ(k − k′),

where δ denotes the Dirac delta function. Note that bothν
andη are uncorrelated in time. We assume that the functions
Kν ,Kη : R

d → R≥0 have finite range. Without loss of
generality, both ranges are considered equal, that is, there
existsr ∈ R>0 such that

Kν(s − s′) = 0 = Kη(s − s′) for ‖s − s′‖ > r. (5)

The approach taken in [3], [4] to deal with the time
evolution (4b) of the spatial field meanµ is to consider a
truncated expansion. Specifically, if{φj : R

d → R}∞j=1

is a complete and orthonormal sequence of continuously
differentiable functions, the mean admits a representation of
the form

µ(s, k) =

∞∑

j=1

βj(k)φj(s),

where, for eachj ∈ Z>0, {βj(k)}∞k=1 is a random time series.
Likewise, ωs admits a decomposition

ωs(u) =

∞∑

l=1

bl(s)φl(u).

The standard procedure is then to truncate the representation
of µ and ωs to, say, the firstm ∈ Z>0 basis elements, and
use the orthonormality of the basis to rewrite (4b) as

φ(s)T β(k) = b(s)T β(k − 1) + η(s, k), (6)

where, for simplicity, we use the notation

β(k) = (β1(k), . . . , βm(k))T ∈ R
m,

b(s) = (b1(s), . . . , bm(s))T ∈ R
m,

φ(s) = (φ1(s), . . . , φm(s))T ∈ R
m.

Alternatively, one can set up the problem by directly assuming
that the meanµ of Z in (4a) is a linear combination of known
functions whose coefficients evolve in time according to (6).

B. Network model

Consider a network ofn agents evolving inRd according
to the first-order dynamics

ṗi = ui, i ∈ {1, . . . , n}.

The control action is bounded‖ui‖ ≤ umax ∈ R>0, so that
an agent can move at mostumax in one second. Agents are
equipped with identical sensors, and can take point measure-
ments at their location of the spatial field of interestZ at times
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k ∈ Z>0. The measurement taken by agenti located atpi at
time k is corrupted by white noise according to

Yi(k) = Z(pi, k) + ǫi, (7)

where ǫi ∼ N(0, σ). Measurement errors are assumed to be
independent. For simplicity, the varianceσ is assumed to be
the same for all agents, although the forthcoming discussion
can be generalized to the case of different noise variances for
each agent.

Each agent can communicate with other agents located
within a distanceR ∈ R>0 from its current position. As
we will show later, each agent can construct a distributed
representation of the spatial field and of its gradient in a ball
of radiusR− r. Therefore, we will make the assumption that

umax ≤ R − r.

The communication capabilities of the agents induce the net-
work topology corresponding to theR-disk graphGR-disk. At
each network configuration(p1, . . . , pn) ∈ (Rd)n, the R-disk
graphGR-disk(p1, . . . , pn) is an undirected graph with vertex
set{p1, . . . , pn} and edge set{(pi, pj) | ‖pi −pj‖ ≤ R}. The
R-disk graph is a particular example of the notion of proximity
graph, see e.g., [20]. We assume that either the number of
network agentsn is a priori known to everybody, or that agents
run a consensus algorithm to determine it.

Remark 3.1 (Distributed computation):One can provide a
formal notion of the concept of distributed computation of
functions and vector fields, see e.g., [20]. For simplicity,here
we only use an informal version of this notion, where we
characterize a computation as distributed over an undirected
graph if each node can perform the computation using only
information provided by its neighbors in the graph. •

IV. SEQUENTIAL ESTIMATION OF THE SPATIAL FIELD AND

OF ITS GRADIENT

In this section, we take a Bayesian perspective to incorpo-
rate previous knowledge into the estimation of the spatial field
and of its gradient. The scheme followed here recovers the
predictive distribution of the spatial field presented in [3], see
also [4], and yields novel information regarding the predictive
distribution of the gradient of the spatial field. We consider
the spatial field estimation when measurements are taken at
multiple time instants, orsequentially. The physical process
model in Section III-A together with the data model in
Section III-B give rise to the evolution, fork ∈ Z>0

Yi(k) = Z(pi(k), k) + ǫi, (8a)

Z(s, k) = φ(s)T β(k) + ν(s, k), (8b)

β(k) = H(k)β(k − 1) + J(k)η(k), (8c)

where, for convenience, we have introduced the notation
H(k) = J(k)B(k), J(k) = (Φ(k)T

Φ(k))−1
Φ(k)T , and

B(k) = [b(p1(k)), . . . , b(pn(k))]T ∈ R
n×m,

Φ(k) = [φ(p1(k)), . . . , φ(pn(k))]T ∈ R
n×m,

η(k) = (η(p1(k), k), . . . , η(pn(k), k))T ∈ R
n.

Notice that the matricesH andJ driving the evolution of the
parameterβ change from one time instant to another only if
agent positions change.

The natural Bayesian solution for making predictions about
the spatial field at timek ∈ Z>0 is to use the conditional
distribution ofZ given the data up to timek and the param-
eter β, but marginalizing over the posterior distribution ofβ
given the data up to timek. This viewpoint also allows us to
integrate into the picture prior information on the distribution
of β. Therefore, we follow the next scheme: (i) Section IV-A
computes the posterior distribution of the parameter giventhe
data, (ii) Section IV-B computes the conditional distribution
of the spatial field and its gradient given the data and the
parameter, and (iii) Section IV-C merges (i) and (ii). The
decomposition into the three steps will be conveniently used
in Section VI to design a distributed implementation.

A. Sequential parameter estimation via Kalman filtering

With the model (8), the parameterβ can be optimally
predicted via a Kalman filter. Here, instead of considering the
usual Kalman filter recursion equations, we use the equivalent
information filter formulation, see for instance [21]. We also
note that alternative forms of the information filter, like the
Joseph form [22], can be computed in a distributed fashion
along the same lines described later in Sections V and VI.

Assumeβ is initially distributed according to a multivariate
normal distributionβ(0) ∼ Np(ξ,Ξ). Given t, s ∈ R≥0, let
β̂(t|s) denote the estimator ofβ at time t with data collected
up to time s, and let P (t|s) denote the associated mean-
squared error. The usual Kalman filter equations are writtenin
the variables(β̂(k|k − 1), P (k|k − 1)) and (β̂(k|k), P (k|k)).
Instead, we define

â(t|s) = P (t|s)−1β̂(t|s), (9)

and write the information filter equations in the variables
(â(k|k−1), P (k|k−1)−1) and(â(k|k), P (k|k)−1). Note that,
initially,

â(0|0) = Ξ−1ξ, P (0|0)−1 = Ξ−1.

The information filter equations have two steps. The first
step corresponds to a prediction of the parameter at time
k ∈ Z>0 given data up to timek − 1, and the second step
incorporates the measurements taken at timek into the picture.

Prediction: Using (8c), the one-step-ahead prediction at
time k ∈ Z>0 with data collected up to timek − 1 is

â(k|k − 1) (10a)

= P (k|k − 1)−1H(k)P (k − 1|k − 1)â(k − 1|k − 1),

with information matrix

P (k|k − 1)−1 (10b)

= (H(k)P (k − 1|k − 1)H(k)T + J(k)Q(k)J(k)T )−1,

whereQ(k) = Var(η(k)) = [Kη(pi(k) − pj(k))] ∈ R
n×n.

Correction: Using (8a), the optimal prediction at time
k ∈ Z>0 with data collected up to timek can be recursively
expressed as

â(k|k) = â(k|k − 1) + Φ(k)T (Σ(k) + σIn)−1Y (k), (11a)
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with information matrix

P (k|k)−1 (11b)

= P (k|k − 1)−1 + Φ(k)T (Σ(k) + σIn)−1
Φ(k),

where Y (k) = (Y1(k), . . . , Yn(k)) ∈ R
n denotes the mea-

surements taken by the network agents at timek,

Σ(k) = [Kν(pi(k) − pj(k))] ∈ R
n×n

is the variance corresponding to the spatial fieldν, andσIn

is the variance corresponding to the sensor errorsǫ1, . . . , ǫn.
The information filter equations provide an iterative fashion

of computingâ(t|t) andP (t|t)−1 that is appropriate for a dis-
tributed implementation by the robotic network. We describe
this in Section VI-A.

B. Sequential simple Kriging

For k ∈ Z>0, let Y ≤k = (Y (0), . . . ,Y (k)) denote the data
available up to timek. For s ∈ R

d, let

γ(s, k)T = (Kν(s − p1(k)), . . . ,Kν(s − pn(k))) ∈ R
n,

∇γ(s, k)T = (∇Kν(s − p1(k)), . . . ,∇Kν(s − pn(k))) ∈ R
d×n.

The covariance structure of the spatial field (cf. Section III-A)
has some important consequences. On the one hand, theith
components ofγ(s, k) and∇γ(s, k) can only be nonvanishing
if ‖s − pi(k)‖ ≤ r. More importantly, the decorrelation in
time of the spatial field and the sensor errors imply that only
the observations collected at exactly timek play a role in
the construction of the conditional predictive distribution of
Z and∇Z with observations collected up to timek. This is
formalized in the following result.

Lemma 4.1 (Sequential simple Kriging):For all k ∈ Z>0

and all s ∈ R
d, one has, conditionally on the data collected

up to timek and the parameterβ(k),

(i) the normal distributionZ(s, k) | (Y ≤k, β(k)) with mean

φ(s)T β(k) + γ(s, k)T
Σ(k)−1

σ (Y (k) − Φ(k)β(k)),

and variance

K(0) − γ(s, k)T
Σ(k)−1

σ γ(s, k),

(ii) the normal distribution∇Z(s, k) | (Y ≤k, β(k)) with
mean

∇φ(s)T β(k)+∇γ(s, k)T
Σ(k)−1

σ (Y (k) − Φ(k)β(k)),

and variance

−H(K)(0) − ∇γ(s, k)T
Σ(k)−1

σ ∇γ(s, k),

where, for brevity, we letΣ(k)σ = Σ(k) + σIn.
Proof: Given the evolution equations (8) and the covari-

ance structure forν and ǫ detailed in Section III, we have
that for k ∈ Z>0 and s ∈ R

d, the conditional distribution of
Z(s, k) given (Y ≤k, β(k)) is

Z(s, k) | (Y ≤k, β(k)) ∼ N
(
φ(s)T β(k)

+ γ≤k(s)T (Σ≤k + σIn(k+1))
−1(Y ≤k − Φ≤kβ(k)),

K(0) − γ≤k(s)T (Σ≤k + σIn(k+1))
−1γ≤k(s)

)
,

where Σ≤k = diag(Σ(0), . . . ,Σ(k)), Φ
T
≤k =(

Φ(0), . . . ,Φ(k)
)T

, and γ≤k(s)T =
(
0, . . . , 0,γ(s, k)T

)
.

Then, fact (i) follows by noting that

(Σ≤k + σIn(k+1))
−1

= diag((Σ(0) + σIn)−1, . . . , (Σ(k) + σIn)−1).

Fact (ii) can be established analogously using (2).
In the absence of measurement errors, Lemma 4.1(i) cor-

responds to the simple Kriging predictor and variance of the
spatio-temporal field in Section II.

C. Sequential Bayesian universal Kriging

Finally, we construct the Bayesian universal Kriging predic-
tor of the spatial field and of its gradient by putting together
Section IV-A and Section IV-B. Specifically, at timek ∈ Z>0,
for each s ∈ R

d, the posterior predictive distributions of
Z(s, k) and ∇Z(s, k) given the dataY ≤k are obtained by
marginalizing the conditional distributions in Lemma 4.1 over
the posterior distributionβ(k) |Y ≤k ∼ N(β̂(k|k), P (k|k))
obtained with the combination of the information filter equa-
tions in Section IV-A and equation (9). Accordingly, we obtain
the following result.

Lemma 4.2 (Sequential Bayesian universal Kriging):For
all k ∈ Z>0 and all s ∈ R

d, one has, conditionally on the
data collected up to timek,

(i) the normal distributionZ(s, k) |Y ≤k with mean

φ(s)T β̂(k|k) + γ(s, k)T
Σ(k)−1

σ (Y (k) − Φ(k)β̂(k|k))

and variance

K(0) − γ(s, k)T
Σ(k)−1

σ γ(s, k)

+
(
φ(s) − Φ(k)T

Σ(k)−1
σ γ(s, k)

)T
P (k|k)

(
φ(s) − Φ(k)T

Σ(k)−1
σ γ(s, k)

)
.

(ii) the normal distribution∇Z(s, k) |Y ≤k with mean

∇φ(s)T β̂(k|k)

+ ∇γ(s, k)T
Σ(k)−1

σ (Y (k) − Φ(k)β̂(k|k),

and variance

− H(K)(0) − ∇γ(s, k)T
Σ(k)−1

σ ∇γ(s, k)

+
(
∇φ(s) − Φ(k)T

Σ(k)−1
σ ∇γ(s, k)

)T
P (k|k)

(
∇φ(s) − Φ(k)T

Σ(k)−1
σ ∇γ(s, k)

)
.

The normal distribution in Lemma 4.2(i) corresponds to
the spatial estimation obtained from the Kriged Kalman filter
proposed in [3]. The normal distribution in Lemma 4.2(ii)
gives us information about the gradient of the spatial field.Our
next objective is to design a distributed coordination algorithm
that allows network agents to compute these quantities.
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V. D ISTRIBUTED AVERAGE WEIGHTED LEAST SQUARES

This section presents distributed algorithms to compute
average weighted least squares estimates. The capability to
compute such estimates will be instrumental in Section VI
to synthesize a distributed implementation of the estimation
procedure described in Section IV.

Given a network ofn agents with interaction topology
described by an undirected graphG, matricesF ∈ R

n×n

invertible andM ∈ R
n×m, and a vectorc ∈ R

n, we introduce
here an algorithm to compute the quantity

1

n
MT F−1c, (16)

that is distributed overG. The idea is to combine a Jacobi
iteration and a dynamic consensus algorithm into a single
procedure that we term the WEIGHTED LEAST SQUARES

ALGORITHM. The reason behind this terminology is the
following: consider a linear observation model (determined by
M ) of an unknown parameter, and letc represent measured
data with associated covarianceF . Then, (16) corresponds to
the average weighted least squares estimate of the parameter.
Let us start by presenting the individual ingredients of the
WEIGHTED LEAST SQUARESALGORITHM.

A. Jacobi overrelaxation algorithm

Given an invertible matrixF ∈ R
n×n and a vectorc ∈ R

n,
consider the linear systemFy = c. The Jacobi overrelaxation
(JOR) algorithm [17] is an iterative procedure to compute the
unique solutiony = F−1c ∈ R

n. It is formulated as the
discrete-time dynamical system

yi(ℓ + 1) = (1 − h)yi(ℓ) − h
1

fii

( ∑

j 6=i

fijyj(ℓ) − ci

)
,

for ℓ ∈ Z≥0 and i ∈ {1, . . . , n}, with y(0) ∈ R
n and

h ∈ (0, 1). The convergence properties of the JOR algorithm
can be fully characterized in terms of the eigenvalues of
the matrix describing the linear iteration, see [17]. Here,
instead, we will use the following sufficient convergence
criteria from [23, Theorem 2].

Lemma 5.1:For F ∈ R
n×n symmetric, positive definite

and anyc ∈ R
n, if h < 2/n, the JOR algorithm linearly

converges to the solution ofFy = c from any initial condition.
As long as (i) agenti has access toci, and (ii) if fij 6= 0,

then i, j are neighbors inG, the JOR algorithm is amenable
to distributed implementation in the following sense: agent i
can compute theith componentyi of the solutiony = F−1c
with information provided by its neighbors inG.

Remark 5.2: (Robustness to agents’ arrivals and depar-
tures): In the scenario where the matrixF , the vectorc, and
the interaction topologyG are a function of agents’ positions,
the fact that the JOR algorithm converges from any initial
condition implies that it is robust to a finite number of agents’
arrivals and departures. In other words, if the number of agents
after addition and deletion is̃n, with correspondingF̃ and c̃,
then as long ash < 2/ñ, the convergence of the JOR algorithm
to F̃−1c̃ is guaranteed. •

B. Dynamic average consensus algorithms

Dynamic average consensus filters [12], [13], [14] are
distributed algorithms that allow the network to track the
average of a given time-varying signal. Under suitable con-
ditions on the evolution of the signal, one can guarantee
asymptotic convergence. Here, we use a particular instanceof
the proportional-integral dynamic consensus estimators studied
in [14] but formulated for higher-dimensional signals.

Let τ ∈ R≥0 7→ u(τ) ∈ (Rm)n be a time-varying function,
that we refer to assignal. Note thatu(τ) is a n-dimensional
vector with each componentui(τ), i ∈ {1, . . . , n}, being itself
a m-dimensional vector. Consider the dynamical system

dvi

dτ
= γ(ui(τ) − vi(τ)) −

∑

j 6=i

aij(vi(τ) − vj(τ))

+
∑

j 6=i

aij(wi(τ) − wj(τ)), (17a)

dwi

dτ
= −

∑

j 6=i

aij(vi(τ) − vj(τ)), (17b)

for i ∈ {1, . . . , n}, whereγ > 0 and v, w ∈ (Rm)n. Here,
A = (aij) ∈ R

n×n is the adjacency matrix ofG. If agent i
has access to theith-componentui of the signalu, then this
algorithm is distributed overG, i.e., agenti can compute
the evolution ofvi and wi with information provided by its
neighboring agents in the graphG. As we see next,vi can
be interpreted as the estimate that agenti possess of the
average of the time-varying signalu. It can be proved [14]
that if G is connected, for anyγ > 0, any constant signal
τ ∈ R≥0 7→ u(τ) = u ∈ (Rm)n, and any initial states
v(0), w(0) ∈ (Rm)n, the algorithm (17) satisfies

vi(τ) −
1

n

n∑

i=1

ui(τ) → 0 asτ → +∞ (18)

exponentially fast for alli ∈ {1, . . . , n}. For slowly-varying
signals, the estimator guarantees small steady-state errors.

Remark 5.3: (Robustness to agents’ arrivals and depar-
tures): When the signalu and the interaction topologyG are
a function of agents’ positions, one can show [14] that the
estimator (17) guarantees zero steady-state error under a finite
number of agents’ arrivals and departures. •

C. TheWEIGHTED LEAST SQUARESALGORITHM

Here, we combine the JOR algorithm and the dynamic
average consensus algorithm to synthesize the WEIGHTED

LEAST SQUARESALGORITHM described in Table I.
Proposition 5.4:Consider the WEIGHTED LEAST

SQUARES ALGORITHM described in Table I. For
F ∈ R

n×n invertible, c ∈ R
n, and M ∈ R

n×m, define
the output functionsWLS(F, c,M) : R≥0 → (Rm)n and
JOR(F, c) : R≥0 → R

n by, respectively,

WLS(F, c,M)(τ) = v(τ) and JOR(F, c)(τ) = y(⌊τ⌋),

wherev andy are defined in Table I. Then,

(i) the WEIGHTED LEAST SQUARES ALGORITHM is dis-
tributed overG, in the sense that agenti ∈ {1, . . . , n}
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Name: WEIGHTED LEAST SQUARESALGORITHM

Goal: Compute average weighted least squares
Requires: F ∈ R

n×n, c ∈ R
n, andM ∈ R

n×m

Assumes: (i) Network topology modeled byG
(ii) F invertible, with non-vanishing diag-
onal entries, and such thatfij 6= 0 implies
agenti and j are neighbors inG
(iii) Agent i ∈ {1, . . . , n} knows
rowi(F ) ∈ R

n, ci ∈ R, rowi(M) ∈ R
m

Initialization:

1: y(0) = c ∈ R
n

2: v(0)=w(0)=(row1(M)z1, . . . , rown(M)zn) ∈ (Rm)n,
with z ∈ R

n arbitrary

3: γ ∈ R>0 andh ∈ (0, 2/n)

Agent i ∈ {1, . . . , n} executes concurrently

1: Jacobi overrelaxation algorithm, forℓ ∈ Z≥0

yi(ℓ + 1) = (1 − h)yi(ℓ) − h
1

fii

( ∑

j 6=i

fijyj(ℓ) − ci

)

2: Dynamic average consensus algorithm, forτ ∈ R≥0

dvi

dτ
= γ(ui(τ) − vi(τ)) −

∑

j 6=i

aij(vi(τ) − vj(τ))

+
∑

j 6=i

aij(wi(τ) − wj(τ)),

dwi

dτ
= −

∑

j 6=i

aij(vi(τ) − vj(τ)),

where A = (aij) is the adjacency matrix ofG, and
τ 7→ u(τ) ∈ (Rm)n is given by

u(τ) = (row1(M)y1(⌊τ⌋), . . . , rown(M)yn(⌊τ⌋)).

TABLE I
WEIGHTED LEAST SQUARESALGORITHM.

can computeWLSi(F, c,M) andJORi(F, c) with infor-
mation provided by its neighboring agents inG;

(ii) the functionJOR(F, c) is such that

JOR(F, c)(τ) → F−1c asτ → +∞,

exponentially fast;
(iii) if G is connected, the functionWLS(F, c,M) satisfies

WLSi(F, c,M)(τ) →
1

n
MT F−1c asτ → +∞,

exponentially fast, for alli ∈ {1, . . . , n}.

Proof: The WEIGHTED LEAST SQUARES ALGORITHM

is distributed overG by design. The statement on the limit
of JOR(F, c)(τ) follows from Lemma 5.1 (the linear rate of
convergence of the discrete-time algorithm translates into an
exponential rate of convergence for the continuous-time func-
tion). Regarding the limit ofWLSi(F, c,M), i ∈ {1, . . . , n},

note that, with the notation of Table I,

n∑

i=1

ui(τ) =

n∑

i=1

rowi(M)yi(⌊τ⌋) →

n∑

i=1

rowi(M)yi = MT F−1c,

where we have used that the JOR algorithm converges to the
solutiony = (y1, . . . , yn) of Fy = c. The result now follows
from the convergence properties (18) of the dynamic average
consensus algorithm.

Remark 5.5: (Execution of JOR, dynamic average consen-
sus, andWEIGHTED LEAST SQUARES algorithms): In the
forthcoming discussion, we will make use of the fast conver-
gence properties of the JOR, dynamic average consensus, and
WEIGHTED LEAST SQUARES algorithms and use the exact
asymptotic limit of these algorithms in our derivations. In
practice, after a few iterations, the values obtained by the
execution of these algorithms are very close to the exact
asymptotic limit because the convergence rate of the JOR
algorithm is linear and the convergence rates of the dynamic
average consensus algorithms and the WEIGHTED LEAST

SQUARES ALGORITHM are exponential. Using this fact, it is
not difficult to characterize the precise number of iterations
needed to achieve a desired level of convergence. •

VI. D ISTRIBUTED IMPLEMENTATION OF SEQUENTIAL

FIELD ESTIMATION

In this section we introduce the DISTRIBUTED KRIGED

KALMAN FILTER. This algorithm allows each network agent
to compute, at any time, the posterior predictive distribution
of the spatial field and its gradient on a neighborhood of its
current location obtained in Section IV, and only requires
communication with neighboring agents inGR-disk.

The algorithm is described in Table II. The underlying idea
is that, instead of working directly with the posterior predictive
distributions obtained in Section IV-C, each agent performs
in a distributed way (i) the sequential parameter estimation
described in Section IV-A and (ii) the sequential simple Krig-
ing described in Section IV-B. From these two constructions,
each agent can then compute the desired posterior predictive
distributions. The implementation of both (i) and (ii) relies
on the algorithms presented in Section V, and in particular
on the WEIGHTED LEAST SQUARES ALGORITHM. It should
be noted that every time the algorithms in Section V are
invoked in Table II, we use their exact asymptotic limit, cf.
Remarks 5.5 and 6.2.

In the following, we explain in detail the algorithm steps
outlined in Table II.

A. Distributed sequential parameter estimation

Here, we describe the strategy that network agents imple-
ment in order to compute the sequential parameter estimation
described in Section IV-A.

Distributed prediction: At time k ∈ Z>0, assumêa(k −
1|k−1) andP (k−1|k−1)−1 are known to all network agents
from the previous iteration (initially, we set̂a(0|0) = Ξ−1ξ,
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P (0|0)−1 = Ξ−1). According to (10), agenti can compute the
one-step-ahead prediction̂a(k|k − 1) with information matrix
P (k|k − 1)−1 (step 9: of Table II) if it has access to the
matrices

H(k) = (Φ(k)T
Φ(k))−1

Φ(k)T B(k),

J(k)Q(k)J(k)T

= (Φ(k)T
Φ(k))−1

Φ(k)T Q(k)Φ(k)(Φ(k)T
Φ(k))−1.

We break down this task into the computation of the
matrices

Φ(k)T
Φ(k), Φ(k)T B(k), Φ(k)T Q(k)Φ(k) ∈ R

p×m. (19)

Let us show how the network performs a distributed compu-
tation of the matrices in (19). This corresponds to step3:

of Table II. Specifically, if agenti has access to the matrix
Ci ∈ R

m×m for i ∈ {1, . . . , n}, defineDAC(C1, . . . , Cn) :
R≥0 → R

m×m by

DAC(C1, . . . , Cn)(τ) = v(τ), (20)

wherev is determined by the execution of the dynamic average
consensus algorithm (17) overGR-disk with constant signalτ 7→
u(τ) ∈ (Rm×m)n given by

ui(τ) = Ci.

According to Section V-B, ifGR-disk is connected, then

DAC(C1, . . . , Cn)(τ) →
1

n

n∑

i=1

Ci,

asτ → ∞ exponentially fast.
At time k ∈ Z>0, agenti ∈ {1, . . . , n} has access to

φ(pi(k))T φ(pi(k)) and φ(pi(k))T b(pi(k)).

Moreover, the assumption (5) on the finite correlation range
of η guarantees that agenti ∈ {1, . . . , n} can compute
rowi(Q(k)) = (Kη(pi(k)−p1(k)), . . . ,Kη(pi(k)−pn(k))) ∈
R

n by knowing the position of its neighbors inGR-disk at
time k. Hence, agenti has access to

φ(pi(k))T rowi(Q(k)Φ(k)),

by communicating with itsR-disk neighbors. Therefore, in
order to compute the matrices in (19), the network executes
three dynamic average consensus algorithms overGR-disk to
obtain

DACi(φ(p1(k))T φ(p1(k)), . . . , φ(pn(k))T φ(pn(k)))(τ) →

1

n
Φ(k)T

Φ(k),

DACi(φ(p1(k))T b(p1(k)), . . . , φ(pn(k))T b(pn(k)))(τ) →

1

n
Φ(k)T B(k),

DACi(φ(p1(k))T row1(Q(k)Φ(k)), . . . ,

φ(pn(k))T rown(Q(k)Φ(k)))(τ) →
1

n
Φ(k)T Q(k)Φ(k).

Distributed correction: At time k ∈ Z>0, assumêa(k|k−
1) andP (k|k−1)−1 are known to all network agents from the
distributed prediction computation. According to (11), agent i

can compute the prediction̂a(k|k) with information matrix
P (k|k)−1 (step10: of Table II) if it has access to

Φ(k)T
Σ(k)−1

σ Y (k) ∈ R
m, (21a)

Φ(k)T
Σ(k)−1

σ Φ(k) ∈ R
m×m. (21b)

Let us describe how the network performs a distributed com-
putation of (21).

1) Distributed computation of the weighted least squares
estimate: This discussion refers to step4: of Table II.
The network computes the vector (21a) by invoking the
WEIGHTED LEAST SQUARES ALGORITHM once. Specifi-
cally, agenti has access to rowi(Σ(k)σ), Y (k)i = Yi(k)
and to rowi(Φ(k)) = φ(pi(k))T . Therefore, assuming that
GR-disk(p1(k), . . . , pn(k)) is connected, the execution of the
WEIGHTED LEAST SQUARESALGORITHM with F = Σ(k)σ,
c = Y (k), andM = Φ(k) guarantees, according to Proposi-
tion 5.4,

WLSi(Σ(k)σ,Y (k),Φ(k))(τ) →
1

n
Φ(k)T

Σ(k)−1
σ Y (k),

asτ → +∞, for all i ∈ {1, . . . , n}.
2) Distributed computation of the covariance matrix of

the weighted least squares estimate:This discussion refers
to steps5:-8: of Table II. The network computes the ma-
trix (21b) by invokingp instances of the WEIGHTED LEAST

SQUARES ALGORITHM (one instance per matrix column).
Specifically, for eachj ∈ {1, . . . , p}, agenti has access to
the ith component of the vector colj(Φ(k)) ∈ R

n, and to
rowi(Φ(k)) = φ(pi(k))T . Moreover, the assumption (5) on
the finite correlation range of the spatial fieldν guarantees that
agenti can compute rowi(Σ(k)σ) by knowing the position of
its neighbors inGR-disk at time k. Therefore, assuming that
GR-disk(p1(k), . . . , pn(k)) is connected, the execution of the
WEIGHTED LEAST SQUARESALGORITHM with F = Σ(k)σ,
c = colj(Φ(k)), and M = Φ(k) guarantees, according to
Proposition 5.4,

WLSi(Σ(k)σ, colj(Φ(k)),Φ(k))(τ) −→

1

n
Φ(k)T

Σ(k)−1
σ colj(Φ(k)),

as τ → +∞, for all i ∈ {1, . . . , n}. Hence, the execution
of p instances of the WEIGHTED LEAST SQUARES ALGO-
RITHM allows agenti to compute the time-dependent matrix
WLSi(Σ(k)σ,Φ(k),Φ(k)) defined by

WLSi(Σ(k)σ,Φ(k),Φ(k))(τ) =(
WLSi(Σ(k)σ, col1(Φ(k)),Φ(k)), . . . ,

. . . ,WLSi(Σ(k)σ, colp(Φ(k)),Φ(k))
)
(τ),

with the property that

WLSi(Σ(k)σ,Φ(k),Φ(k))(τ) →
1

n
Φ(k)T

Σ(k)−1
σ Φ(k)

asτ → +∞, for all i ∈ {1, . . . , n}.



CORTÉS: DISTRIBUTED KRIGED KALMAN FILTER FOR SPATIAL ESTIMATION 9

Name: DISTRIBUTED KRIGED KALMAN FILTER

Goal: Compute Bayesian universal kriging predictors of the spatial field and of its gradient
Assumes: (i) GR-disk is connected along evolution

(ii) Initially all agents knowβ ∼ N(ξ,Ξ)

Initialization:

1: â(0|0) = Ξ−1ξ, P (0|0)−1 = Ξ−1

2: For t ∈ [0, 1) ands ∈ R
d, each agent evaluates

E(Z(s, t) |Y ≤0) = φ(s)T ξ and E(∇Z(s, t) |Y ≤0) = ∇φ(s)T ξ.

At time k ∈ Z>0, agenti ∈ {1, . . . , n}

1: takes measurementY i(k) = Yi(k), computes rowi(Φ(k)) = φ(pi(k))T and rowi(B(k)) = b(pi(k))T

2: acquires location ofGR-disk(p1(k), . . . , pn(k))-neighbors and computes rowi(Σ(k)σ) and rowi(Q(k))
3: executes three dynamic consensus algorithmsDAC over GR-disk(p1(k), . . . , pn(k)) and sets

Φ(k)T
Φ(k) = nDACi(φ(p1(k))T φ(p1(k)), . . . , φ(pn(k))T φ(pn(k)))(∞),

Φ(k)T B(k) = nDACi(φ(p1(k))T b(p1(k)), . . . , φ(pn(k))T b(pn(k)))(∞),

Φ(k)T Q(k)Φ(k) = nDACi(φ(p1(k))T row1(Q(k)Φ(k)), . . . , φ(pn(k))T rown(Q(k)Φ(k)))(∞),

H(k) = (Φ(k)T
Φ(k))−1

Φ(k)T B(k),

J(k)Q(k)J(k)T = (Φ(k)T
Φ(k))−1

Φ(k)T Q(k)Φ(k)(Φ(k)T
Φ(k))−1.

4: executes WEIGHTED LEAST SQUARESALGORITHM over GR-disk(p1(k), . . . , pn(k)) for (Σ(k)σ,Y (k),Φ(k)) and sets

Φ(k)T
Σ(k)−1

σ Y (k) = nWLSi(Σ(k)σ,Y (k),Φ(k))(∞)

5: for j = 1 to p do
6: executes WEIGHTED LEAST SQUARESALGORITHM over GR-disk(p1(k), . . . , pn(k)) for (Σ(k)σ, colj(Φ(k)),Φ(k))
7: end for
8: setsΦ(k)T

Σ(k)−1
σ Φ(k) = nWLSi(Σ(k)σ,Φ(k),Φ(k))(∞)

Parameter estimation: prediction
9: computes estimate and information matrix at timek with data up to timek − 1

P (k|k − 1)−1 = (H(k)P (k − 1|k − 1)H(k)T + J(k)Q(k)J(k)T )−1,

â(k|k − 1) = P (k|k − 1)−1H(k)P (k − 1|k − 1)â(k − 1|k − 1).

Parameter estimation: correction
10: computes estimate and information matrix at timek with data up to timek

P (k|k)−1 = P (k|k − 1)−1 − Φ(k)T (Σ(k)σ)−1
Φ(k),

â(k|k) = â(k|k − 1) + Φ(k)T (Σ(k)σ)−1Y (k).

Simple kriging
11: sets

(Σ(k)−1
σ Y (k))i := JORi(Σ(k)σ,Y (k))(∞),

rowi(Σ(k)−1
σ Φ(k)) := rowi(JOR(Σ(k)σ,Φ(k))(∞)).

12: computes predictors ats ∈ B(pi(k), R − r)

E(Z(s, k) | (Y ≤k, β(k))) = φ(s)T β(k) +
∑

‖s−pj(k)‖≤r

γj(s, k)
((

Σ(k)−1
σ Y (k)

)
j
− rowj(Σ(k)−1

σ Φ(k))β(k)
)
,

E(∇Z(s, k) | (Y ≤k, β(k))) = ∇φ(s)T β(k) +
∑

‖s−pj(k)‖≤r

∇γj(s, k)
((

Σ(k)−1
σ Y (k)

)
j
− rowj(Σ(k)−1

σ Φ(k))β(k)
)
.

Bayesian universal kriging
13: for t ∈ [k, k+1) ands ∈ B(pi(k), R−r), combines parameter estimation and simple kriging to compute (cf. Section IV-C)

E(Z(s, t) |Y ≤k) and E(∇Z(s, t) |Y ≤k).

TABLE II
THE DISTRIBUTED KRIGED KALMAN FILTER
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B. Distributed sequential simple Kriging

Here, we describe the strategy that network agents im-
plement in order to compute the sequential simple Kriging
described in Section IV-B. This strategy makes use of the
special covariance structure of the spatial field. The discussion
refers to steps11:-12: of Table II. According to Lemma 4.1,
to compute the means of the conditional distributions of the
spatial field and its gradient ats ∈ R

d andk ∈ Z>0, we look
for the distributed calculation of

γ(s, k) ∈ R
n, ∇γ(s, k) ∈ R

n×d, (22a)

Σ(k)−1
σ Y (k) ∈ R

n, (22b)

Σ(k)−1
σ Φ(k) ∈ R

n×m. (22c)

Regarding (22a), note that thejth components ofγ(s, k) and
∇γ(s, k) can only be nonvanishing if agentj is within r-
distance ofs, that is,‖s− pj(k)‖ ≤ r. Therefore, any agenti
can compute all the nonvanishing components inγ(s, k) and
∇γ(s, k) if the ball centered ats of radiusr is contained in
the area within communication range of agenti – since in this
case the agent will have access to the location of all other
agents contained inB(s, r). Noting that

B(s, r) ⊂ B(pi(k), R) iff s ∈ B(pi(k), R − r),

we deduce that agenti can compute (22a) in a distributed way
for any s ∈ B(pi(k), R − r).

Regarding (22b) and (22c), note that, as a by-product of the
executions of the WEIGHTED LEAST SQUARESALGORITHM

performed in the distributed sequential parameter estimation
of Section VI-A, at timek ∈ Z>0, agenti ∈ {1, . . . , n} has
available theith component of the functions

JOR(Σ(k)σ,Y (k)) : R≥0 → R
n,

JOR(Σ(k)σ, colj(Φ(k))) : R≥0 → R
n, j ∈ {1, . . . , p}.

Let us defineJOR(Σ(k)σ,Φ(k)) : R≥0 → R
n×m by

JOR(Σ(k)σ,Φ(k))(τ) =
(
JOR(Σ(k)σ, col1(Φ(k))),

. . . ,JOR(Σ(k)σ, colp(Φ(k)))
)
(τ).

Note that agent i has access to theith row of
JOR(Σ(k)σ,Φ(k)). By Proposition 5.4, we have

JOR(Σ(k)σ,Y (k))(τ) −→ Σ(k)−1
σ Y (k) ∈ R

n,

JOR(Σ(k)σ,Φ(k))(τ) −→ Σ(k)−1
σ Φ(k) ∈ R

n×m.

Finally, note that agenti ∈ {1, . . . , n} has access to both
JORj(Σ(k)σ,Y (k)) ∈ R and rowj(JOR(Σ(k)σ,Φ(k))) ∈
R

m for all j such thatpi(k) andpj(k) are neighbors inGR-disk.
Therefore, we deduce the following result.

Proposition 6.1:For all k ∈ Z>0 and alls ∈ B(pi(k), R−
r), E(Z(s, k) | (Y ≤k, β)) and E(∇Z(s, k) | (Y ≤k, β)) can
be casted as in12: of Table II, and therefore, are computable
by agenti over GR-disk.

Proof: If s ∈ B(pi(k), R− r), then agenti can compute
all the non-vanishing components ofγ(s, k) and ∇γ(s, k),
since they correspond to the identifiers of other agents that
must be its neighbors inGR-disk. Since agenti has also access
to the corresponding components ofJORj(Σ(k)σ,Y (k)) ∈ R

and rowj(JOR(Σ(k)σ,Φ(k))) ∈ R
m, the result follows.

Remark 6.2: (Execution of DISTRIBUTED KRIGED

KALMAN FILTER): It is reasonable to assume that the order
of magnitude of the time required by individual agents to
communicate and compute is smaller than the one required to
move. Additionally, according to the robotic sensor network
model in Section III-B, measurements are only taken at
instants of time inZ>0. These considerations, together with
the observations made in Remark 5.5, lead us to assume
that the distributed computations described in Sections IV-A
and IV-B run on a time scaleτ which is much faster than
the time scalet. These observations provide justification
for the asymptotic limits taken in steps3:-8: and 11: of
Table II. We are currently addressing the characterizationof
the communication requirements for the algorithm execution.
However, it should be noted that, with regards to other
message-passing algorithms, the present approach needs
minimal memory requirements at each agent, provides all
agents with the same global information, and handles without
any modification evolving network interaction topologies.•

Remark 6.3: (Robustness to agents’ arrivals and depar-
tures): The requirement in DISTRIBUTED KRIGED KALMAN

FILTER that GR-disk is connected along the evolution can be
relaxed as follows. From Remarks 5.2 and 5.3, it is clear
that both the dynamic average consensus algorithms and
the WEIGHTED LEAST SQUARES ALGORITHM are robust to
changing numbers of network agents. As long as each agent
knows the exact number of agents in its connected component
of GR-disk, it can perform the distributed data fusion steps
described in Table II. Regarding the parameter estimation,dif-
ferent connected components will use different measurements,
and hence will have different mean and covariance estimates
about the parameter. As currently stated, the algorithm is then
robust to agent deletion, while it is not robust to the addition
of new agents that can join the connected component with
possibly different parameter mean and covariance estimates.
Regarding simple Kriging, since the spatial correlation range
of the random field is smaller than the communication radius,
each agent computes the same estimate of the spatial field and
of its gradient on a neighborhood around its current location.
Hence, at this stage, the algorithm is robust to agents’ arrivals
and departures. •

VII. D ISTRIBUTED GRADIENT ASCENT OF SPATIAL FIELDS

The distributed estimation algorithm developed in the pre-
vious section can be used in conjunction with the motion
capabilities of the robotic agents to perform a number of
coordination tasks. In this section, we illustrate these possi-
bilities by designing a distributed gradient ascent coordination
algorithm to find the maxima of a spatial field.

At any instant of timet ∈ R≥0, the DISTRIBUTED KRIGED

KALMAN FILTER described in Table II allows agenti ∈
{1, . . . , n} to compute the expected value of both the spatial
field and its gradient in the neighborhoodB(pi(⌊t⌋), R − r)
of its location. With the information provided by the filter,
each agent can then implement a gradient ascent strategy of
the form

ṗi(t) = E(∇Z(pi(t), t) |Y ≤t). (23)
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Note that, because new measurements are taken at time
instants inZ>0, the resulting trajectory of agenti is continuous
and piecewise differentiable. The next result characterizes the
asymptotic convergence properties of the distributed gradient
ascent strategy when no measurement errors are present.

Proposition 7.1:Let Z be a spatial Gaussian random field
with continuously differentiable mean function and with com-
pact superlevel sets. Consider a robotic sensor network that
measuresZ with no error, that is,ǫi = 0 for i ∈ {1, . . . , n} in
equation (7). Then, any network trajectory evolving under (23)
that starts fromS = (Rd)n \ {(p1, . . . , pn) ∈ (Rd)n | pi =
pj with i 6= j} satisfies

E(∇Z(pi(t)) |Z≤t) → 0, i ∈ {1, . . . , n},

as t → ∞, with probability one.
Proof: Let (p1(0), . . . , pn(0)) ∈ S. Note that S is

invariant. This is a consequence of the fact that, for any given
set of measurements of the spatial fieldY ≤t = Z≤t, the vector
field in (23) is continuously differentiable, and hence no two
trajectories intersect. LetDi = {p ∈ R

d | Z(p) ≥ Z(pi(0))},
and define

D = D1 × · · · × Dn.

By hypothesis,D is compact. For eachk ∈ Z≥0, agenti ∈
{1, . . . , n} is guaranteed to increase the expected value of the
spatial field along the time interval[k, k +1] by following the
gradient flow (23). Equivalently,

E(Z(pi(k + 1)) |Z≤k) ≥ E(Z(pi(k)) |Z≤k).

Because by hypothesis there are no measurement errors, we
haveE(Z(pi(k)) |Z≤k) = Z(pi(k)). Therefore, the sequence
{Vk = V (p1(k), . . . , pn(k))}∞k=0, where V (p1, . . . , pn) =∑n

i=1 Z(pi) is a submartingale [18], that is,

E(Vk+1 |Z≤k) ≥ Vk.

Using now [24, Corollary 2], we conclude the result.
We have implemented the gradient ascent (23) in

Mathematica R© to illustrate its performance. The DIS-
TRIBUTED KRIGED KALMAN FILTER is implemented as a
single centralized program. Agents evolve according to the
robotic network model described in Section III-B, with com-
munication radiusR = 2.5, agent control authority bounded
by umax = .25, and noise sensor error varianceσ = .25.
During the execution, each agent makes use of the expected
value of the gradient of the spatial field computed in step
13: of DISTRIBUTED KRIGED KALMAN FILTER to follow
the gradient ascent direction as specified in (23). We illustrate
the performance of the closed-loop system in Figure 1 with
a static (i.e., not evolving in time) spatial field with mean
µ(s) = .3 + 1.2 e−‖s−(.5,1)‖2

+ e−‖s+(1.5,1.5)‖2

, zero-mean
small-scale variabilityν, and covariance structure determined
by Kν(s) = e−5‖s‖2

if ‖s‖ ≤ r = 1.5 andKν(s) = 0 other-
wise. In the simulation, agents initially knowβ ∼ N3(0, I3).

According to Proposition 7.1, individual agents converge
asymptotically to the set of expected critical points of the
spatial field. However, if two or more agents tend to the same
point inR

d, then the numerical implementation becomes prob-
lematic because the Bayesian universal Kriging computations

are, in general, ill-posed on configurations inS, where two
or more points coincide. Our simulation did not exhibit this
problem because we did not run it for a time long enough.
One way to resolve this is by specifying a threshold in how
close the individual agents need to get to the set of critical
points. Once agents that are converging to the same critical
point satisfy the threshold, they can decide, for instance,to
form a circle and uniformly deploy around it.
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Fig. 1. Distributed gradient ascent cooperative strategy (23) implemented
by a robotic sensor network consisting of14 agents. We depict the contour
plot of the posterior mean of the spatial field. The black disksdepict the
(randomly generated) initial network configuration, while the gray disks depict
the network configuration after36 seconds.

VIII. C ONCLUSIONS

We have considered a scenario where a robotic sensor
network takes successive measurements of a dynamic physical
process of interest model as a spatio-temporal random field.
We have introduced a statistical framework to estimate the
distribution of the random field and of its gradient. Under the
assumptions of uncorrelation in time and limited-range corre-
lation in space, we have developed the DISTRIBUTED KRIGED

KALMAN FILTER that enables the network to compute the pre-
dictive mean functions of the random field and of its gradient.
We have illustrated the usefulness of the proposed algorithm
by synthesizing a motion coordination strategy that makes
network agents find critical points of the field with probability
one in case of no measurement noise. Numerous avenues of
research appear worth pursuing. Among them, we highlight
the consideration of more general statistical assumptionson
the spatio-temporal field, (e.g., measurements correlatedin
time, unknown parameters in the covariance structure that
must also be estimated from the data), the quantification of
the communication requirements of the proposed algorithm,
the extension of the convergence results of the gradient ascent
algorithm to the case of measurement errors, or the design of
distributed algorithms that maximize the information content
of retrieved data.
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