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Distributed Kriged Kalman filter
for spatial estimation

Jorge Cots

Abstract—This paper considers robotic sensor networks per-  In cooperative control, [6] proposes a decentralized in-
forming spatially-distributed estimation tasks. A robotic sen- formation filter for parameter estimation based on allito-a
sor network is deployed in an environment of interest, and communication, and applies it to tracking, localizationda

takes successive point measurements of a dynamic physical - . S .
process modeled as a spatio-temporal random field. Taking a map building. [7] designs network coordination strategies

Bayesian perspective on the Kriging interpolation technique from S€€k out local optima of a deterministic, static field using
geostatistics, we design the BTRIBUTED KRIGED KALMAN noisy measurements and all-to-all network communication.
FiLTer for predictive inference of the random field and of The field is represented by an affine function. Instead, [8]
its gradient. The proposed algorithm makes use of a novel qngigers a dynamic field represented by an unknown linear

distributed strategy to compute weighted least squares estimage binati f K functi h ficient |
when measurements are spatially correlated. This strategy resudt combination of known Tunctions whose coenicients evolve

from the combination of the Jacobi overrelaxation method with ~ Stochastically driven by white noise. [8] develops disttézl
dynamic average consensus algorithms. As an application of the optimal estimation techniques for networks with connected

proposed algorithm, we design a gradient ascent cooperative communication topology and sensor measurements corrupted
strategy and analyze its convergence properties in the absencey, \yhite noise. The measurements taken by individual nétwor
of measurement errors via stochastic Lyapunov functions. We S . .
illustrate our results in simulation agents are uncorrelated. Objective analysis techniques ar
employed in [9] to find, in restricted parameterized fansilie
of curves, network trajectories that optimize the off-line
. INTRODUCTION centralized estimation of an environmental field whose mean

. . . . is a priori known and whose covariance is separable. Durin
Consider a robotic sensor network taking successive m(? P P 9

. . 1e evolution, individual agents do not communicate field
surements of a dynamic physical process modeled as a spatio- ; .
. S . .. ‘measurements to other neighbors or possess a representatio
temporal random field. Our objective is to design a distedut

estimation algorithm that enables the network to obtairn co(r)1f the spatial field. Instead, the fusion of the data is pentet

. . . . at the end of the experiment. The works [10], [11] introduce
sistent and statistically sound representations of theisdpa . . . . . .

. S . distributed data fusion algorithms based on averagingerons
field. Arguably, the availability of such representatiorss t

the network agents is necessary to tackle other sensing tazk that work under the assumption that sensor measurements

. . . .~ “are uncorrelated. Dynamic consensus algorithms that @tbow
related with the physical process, such as optimal estimati . ; . . .
o . . . e . track the average of a given time-varying signal are studied
localization of critical points, or identification of areasrapid

variability. These tasks are relevant in multiple scergrin- in [12], [13], [14]. Other related works include [15], [16],

. . o . where decentralized Kalman filtering procedures are deeelo
cluding environmental monitoring, oceanographic exglora . .
. ; : hat work under the assumption of all-to-all communication
and atmospheric research, when one might be interested_in _ . .
L . . : arallel and distributed algorithms for static networke ar
finding higher pollutant concentrations, areas of maximu o . . .
- ) oroughly studied in [17]. Finally, stability analysisols for
salinity, or locations where algae are abundant.

. . L . tochastic systems include the supermartingale conveegen
Literature review: In geostatistics, spatial processes mo y b g

eled as random fields are estimated via Kriging interpmatioheorem [18] and stochastic Lyapunov functions [19].

. ; - Statement of contributionsThe contributions of this paper
techniques [1], [2]. Simple Kriging assumes that the mean 8|]Fe the following: (i) the formulation of the spatio-tempbr

:?r? irr?ndiﬁglegzldcfn;zgsr;a{:easnedtuknxvggr:tﬁ;'?;'éaﬂng;gﬁeld estimation via Bayesian universal Kriging, and the in-
ging, ' P corporation of statistically sound gradient informatiohtloe

is an unknown combination of known basis functions. For_ . A . L :
N Spatial field; (ii) the synthesis of a distributed algorithm
processes that evolve in time, [3], see also [4], develops . .
to’ compute weighted least squares estimates when sensor

universal Kriging approach termed Kriged Kalman filter that easurements are correlated. This algorithm combines the

combines the time and_ spatlall components of the. f|e|(_j. T5”<'(?1cobi overrelaxation method with dynamic average consens
work [5] presents an inferential framework for directiona

. N . algorithms; (iii) the design of the BTRIBUTED KRIGED
gradients of spatial fields based on point-referenced data. KALMAN FILTER for predictive inference of the spatial field
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on Decision and Control , strategy that makes individual robotic agents convergd wit
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Organization: The paper is organized as follows. Section IGP(u(-), K(-)) be a stationary Gaussian process. Given mea-
presents basic notions on random spatial fields. Section slirementsZ(p,),..., Z(p,) of the spatial fieldZ at locations
introduces the models for the physical process and theimbaqi;, ...,p,, and s € R? define the following shorthand
sensor network. Section IV describes the sequential estima notation for convenience,
of the spatial field and of its gradient via Bayesian universa

Kriging. Section V presents a distributed algorithm to corep Z =(Z(p1),---,Z(pn)) € R,

weighted least squares estimates when sensor measurements w=(ulp1),-..,ulpn)) € R™,

are correlated. This algorithm is then used in Section VI ¥ = (K(p; — pj)) € RV,

to design a distributed implementation of the sequential es "
J g a ()T = (K(s = p1),. .., K (s — pa)) € R™.

timation discussed in Section IV. Section VII proposes a
cooperative strategy to localize critical points of sddields Then(Z, Z(s)) is distributed as the + 1 dimensional normal
and analyzes its convergence properties. Section VIllgmtss distribution
our conclusions and ideas for future work.

Notation: Let Z, Zo, Z>0, R, Rso and R>, denote, Npi1 (( ” ),( ET 7(8)))
respectively, the set of integer, positive integer, nogatige w(s) v(s)" K(0)
integer, real, positive real, and non-negative real nusmbdegt Consequently, the conditional predictive distribution tbg
6 : R — {0,1} denote the Dirac delta function defined bypatial field ats given observations at,, . . ., p,, is the normal
5(t) = 0 for t # 0, and §(0) = 1. Vectors in Euclidean distribution
space are understood as column vectorselgt. . , e; denote
the canonica(! basis dR?. Givenda matrixA € R"*% let  Z(s) | Z ~ N(u(s) +v(s)"E="HZ — p),
rowi(A) € R* and coj(A) € R™ denote thect.h row and K(0) = ()72 '(s)). (1)
the jth column of A, respectively. For an undirected graph
G = (V,E) consisting of a set of vertice¥ and a set The conditional mean in (1) is known in the geostatistics
of edgest C V x V, the neighbors ofv € V in G are literature as the simple Kriging predictor, and the codil
denoted byNg(v) = {w € V | (v,w) € E}. Usually, variance in (1) is the corresponding mean-squared predicti
we takeV = {1,...,n}. The adjacency matrix ofy is error. In general, perfect observations of the spatial falel
the matrix A(G) = (a;;) € R**™ defined bya;; = 1 if not available, and the mean and the covariance structure are
(¢,j) € E, anda,; = 0 otherwise. We will often simply denote only known up to a certain number of parameters. We will
it by A. Throughout the paper, we use the math boldface fodiscuss the estimation problem in these more general terms i
to emphasize the dependence of the corresponding quantitySection V.
the specific network configuration where it is evaluatedsThi When considering dynamic processes, we restrict our at-
allows us to write more concise expressions. tention to spatio-temporal random fields &f x R, with

separable covariance functions, i.e., of the form

[I. RANDOM SPATIAL FIELDS Cov(Z(s,1), Z(s' ) = Cr(5.5) Ca(t, 1),

In this section we review important notions on random
spatial fields. The interested reader is referred to [1],f§2] whereCy : R? x RY — R>o andCy : Rxg x R>g — Rxo. A
more details. Let us start with some basic definitions. Zé&e stationary spatio-temporal random field of this form vesifie
a random spatial field oR?, d € Z-,, with positive definite that Ci(s,s’) = Ki(s — s') and Ca(t, ') = Ka(t —t'), for

covariance functiorC' : R? x R% — R+, K; : RY - Ry and K; : R — Rsq. Note that the above
, ; ) discussion is also valid for predictive inference of a gpati
Cov(Z(s),Z(s")) = C(s,s"). temporal field at a fixed instant of time.

The field Z is stationaryon R? if C(s,s’) = K(s — s'), for
K : RY — R, andisotropiconR? if C(s,s’) = K(||s—s[|), A. Gradient random spatial fields
for K : R>g — R>o. Throughout the paper, we deal with

: \ . _ The discussion here follows [5] and can be easily extended
stationary random fields. When modeling physical PrOCESSES, spatio-temporal fields. For concreteness, we restriciat-
it is common for a random field to be stationary over ’

fbntion to stationary random fields. Given a stationary camd
strict subset ofR? instead of the whole Euclidean spac y y

For inst h tion of stationafity i ol Cield Z on R¢ and a vectoru € R, a directional gradient
or instance, the assumption of stationarity is reasonfable o\ o1 R is defined, fors ¢ RY.

a temperature field considered over a small enough region

of the ocean. However, over larger spatial domains, other DuZ(s) = lim Z(s + hu) — Z(s)
physical phenomena might cause smaller correlation ranges “ h—0 h

in particular areas that invalidate the stationarity ag#ion. i the limit understood in theL, sense exists. The random

The ensuing discussion is also valid for random fields th@t &4 7 is mean square differentiable ag € RY if there exists

stationary on an open subset®f. o _ a vectorVZ(sg) € R¢ such that, for all, € R,
Predictive inference of a spatial field at arbitrary

points given measurements at arbitrary locations can be lim E(Z(So + hu) — Z(s0) _ VZ(SO)TU)2 —0
done via the joint distribution. For concreteness, 2dt) ~ h—0 h

Y
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It follows that, if Z is mean square differentiable &, then where (s,k) € R? x Zvg and u : R? x Zvy — R is
D.Z(s0) = VZ(s9)"u, for all u € R? (where the equality continuously differentiable with respect to its first argemh
should be understood in thig,-sense). In particular, Here,v captures small-scale variability of the physical process,
and the evolution of the mean is determined by the interactio
VZ(s0) = (Dey Z(s0); - - De, Z(50))- function w, : R? — R and the stochastic component Both
Throughout the paper, we will deal with random fields that and n are stationary spatial fields that exhibit temporal
are mean square differentiable everywhere. variability but have no temporal dynamics associated with
If Z is a stationary Gaussian random field, the resultifgem. Formally, both are zero-mean Gaussian random fields
joint (d + 1-dimensional multivariate) Gaussian figld, VZ) Wwith separable covariance structure
d . ) . ;
on R has a valid cross-covariance function Cov(v(s, k), v(s' k') = K, (s — s') 6(k — k),

Cov((Z(s),VZ(s)),(4(s),VZ(s"))) = Cov(n(s, k), n(s', k) = Ky(s — s") 6(k — k'),
( K(s—s) —(VK(s— S’))T> (2) Whered denotes the Dirac delta function. Note that both
VK(s—s') —HEK)(s—s) )’ andr are uncorrelated in time. We assume that the functions
where VK : R? — R¢ and H(K) : RY — Rdxd K, K, : R — R>o have finite range. Without loss of

denote, respectively, the gradient and the Hessian of generality, both ranges are considered equal, that ise ther

function K. This joint distribution allows predictive inference®XIStS” € R>o such that

for the gradient at arbitrary points given measurements of K, (s —s') =0 = K,(s—s§) for |s—s[>r. (5
the random field at arbitrary locations. For concretenests, |
Z(s) ~ GP(u(s),K(})), with  : RY — R continuously
differentiable. Given measurementp,), ..., Z(p,) of the
spatial fieldZ at locationspy, . .., p,, ands € R?, according
to (2), (Z,VZ(s)) is distributed as the: + d dimensional
normal distribution

The approach taken in [3], [4] to deal with the time
evolution (4b) of the spatial field mean is to consider a
truncated expansion. Specifically, {fp;, : R? — R}22,

is a complete and orthonormal sequence of continuously
differentiable functions, the mean admits a represemtatio
the form

Npia ((v L‘(SQ 7 (VWZ(S)T _ E&S}O))) ’ p(s, k) = iﬂj(k)@(s),

where Vy(s)T = (VK(s — p1),...,VK(s — p,)) € R¥X",
Consequently, the conditional predictive distributiom the where, for eacly € Z-, {3;(k)}2, is a random time series.

gradient is thed-dimensional normal distribution Likewise, w; admits a decomposition
VZ(s) | Z ~ Na(Vi(s) + V()" E7HZ — p), we(uw) =3 bi(s)du(u).
—H(K)(0) — V~(s)T=7'VA(s)). (3) =1

Section IV studies the conditional predictive distributiof 1n€ standard procedure is then to truncate the represemtat

the gradient when the mean of the spatial field is unknowf{ # andws to, say, the firstn € Z., basis elements, and
and perfect observations are not available. use the orthonormality of the basis to rewrite (4b) as

A critical point of the spatial fieldZ ig_a Ioca_tions*_ € o(s)TB(k) = b(s)T Bk — 1) + (s, k), (6)
R? such thatVZ(s.) = 0. Note that a critical point satisfies o )
D.Z(s.) = 0 for all w € R?, and hence corresponds to d'here, for simplicity, we use the notation
maximum, a minimum, or a saddle point &t B(k) = (Br(k), ..., Bm(k)T € R™,

_ T m
[Il. PROBLEM SEFUP b(s) = (ba(s), -, bm(s))" €R™,

T m
The objective of this paper is to design distributed estima- 9(s) = (91(s),- - Pm(s))" € R
tion algorithms that enable a robotic sensor network toinbtaAlternatively, one can set up the problem by directly assigmi
consistent and statistically sound representations ofyaighl that the mean of Z in (4a) is a linear combination of known
process of interest. In the following, we detail the specifiitinctions whose coefficients evolve in time according ta (6)
models for the process and the robotic network.
B. Network model

A. Physical process model Consider a network of, agents evolving irfR¢ according
We consider a dynamic physical process, i.e., a procdssthe first-order dynamics
that evolves in time, modeled as a spatio-temporal Gaussian

random fieldZ of the form
The control action is boundefu;|| < umax € R, S0 that
Z(s,k) = p(s, k) +v(s, k), (42) 4 agent can move at mosfay in one second. Agents are

(s, k) = /ws(U)u(u ke — 1)du+ (s, k) (4b) equipped with identical sensors, and can take point measure
’ ’ ’ ments at their location of the spatial field of inter&sat times

Di = Uy, iE{l,...,’l’L}.
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k € Z~o. The measurement taken by agernbcated atp; at Notice that the matrice&l andJ driving the evolution of the

time k is corrupted by white noise according to parameters change from one time instant to another only if
agent positions change.
Yi(k) = Z(pi, k) + €, ) The natural Bayesian solution for making predictions about

wheree; ~ N(0,0). Measurement errors are assumed to L€ Spatial field at time: € Z., is to use the conditional
independent. For simplicity, the varianeeis assumed to be d|str|bugon ofZ _glvle_n_ the datahup to t|m_é ag_d ths paran;-
the same for all agents, although the forthcoming discussiS_terﬁ’ ut marginalizing over the posterior distribution 8

can be generalized to the case of different noise variarares given the.data up tp timé. Th'sf V|ewpo!nt also allows us to
each agent. integrate into the picture prior information on the distition

Each agent can communicate with other agents Iocat%ﬁ - Therefore, we follow the next scheme: (i) Section IV-A

within a distanceR € R-, from its current position. As compuj[_es the _posterior distribution of the p_qramete_r g_then
we will show later, each agent can construct a distribut ta, (if) Section IV-B computes the conditional distribot

representation of the spatial field and of its gradient in la b& the spatial cfjielq agd it_s grli‘/digm given the dzta.gn(i_;he
of radiusR — r. Therefore, we will make the assumption thaparameter,_ and (iii) Section IV- merges (i) an ) (ii). The
decomposition into the three steps will be convenientlyduse

Umax < R — 7. in Section VI to design a distributed implementation.

The communication capabilities of the agents induce the n@l. Sequential parameter estimation via Kalman filtering
work topology corresponding to the-disk graphGr.disk. Al With the model (8), the paramete? can be optimally

. . nn :
eachhnetwork conﬂgurat!o(pl, o '(’j?’") Gd(R ) ’hthe,]f]'d'Sk predicted via a Kalman filter. Here, instead of considermng t
9raph Gr-gisk(p1, - - - ;) 1S an undirected graph with vertex o aiman filter recursion equations, we use the equivale
set{p17 o ’p”,} and edge set(pi, p;) | lIpi —p; |,| < R}. The _information filter formulation, see for instance [21]. Wes@l
R-disk graph is a particular example of the notion of ProXymit, e that alternative forms of the information filter, likeet

graph, see €.9. [20]._\/\/_e assume that either the numberJB eph form [22], can be computed in a distributed fashion
network agents is a priori known to everybody, or that agents, g the same lines described later in Sections V and VI.

run a consensus algorithm to determine it. _ Assumef is initially distributed according to a multivariate
Remark 3.1 (Distributed computationne can provide a ormal distribution3(0) ~ N,(¢,E). Givent,s € R, let

formal notion of the concept of distributed computation Oﬁ(t\s) denote the estimator of at time with data collected
functions and vector fields, see e.g., [20]. For simpliditgre

up to time s, and let P(t|s) denote the associated mean-

we only use an informgl versior] O,f this notion, wherg WEquared error. The usual Kalman filter equations are written
characterize a computation as distributed over an uneidect, variables(@(k|k: ~ 1), P(k|k — 1)) and (B(klk’) P(k|k))
graph if each node can perform the computation using onlyciead we define ’ ’ '

information provided by its neighbors in the graph.

a(tls) = P(tls) "' Btls), (©)
IV. SEQUENTIAL ESTIMATION OF THE SPATIAL FIELD AND and write the information filter equations in the variables
OF ITS GRADIENT (a(k|k—1), P(k|k—1)"1) and(a(k|k), P(k|k)~'). Note that,
In this section, we take a Bayesian perspective to incorp'g-'tla"y’
rate previous knowledge into the estimation of the spatd fi a(0j0) =271, P00yt =271

and .Of. Its g.raclmenlt. The schemt_a fo.IIowed here recovers theThe information filter equations have two steps. The first
predictive distribution of the spatial field presented ih e step corresponds to a prediction of the parameter at time

a!so_[4],. and yields novgl information re.gar(.:iing the prédé; k € Z-, given data up to time: — 1, and the second step
distribution of the gradient of the spatial field. We Cons'dqncorporates the measurements taken at firireo the picture.
the spatial field estimation when measurements are taken b, iction: Using (8c), the one-step-ahead prediction at

multlple_ time m_stants, osequentlally_The physical Process e 1 ¢ Z-o with data collected up to timé — 1 is
model in Section IlI-A together with the data model in

Section 11I-B give rise to the evolution, for € Z a(klk —1) (10a)
= P(klk — 1) *H(k)P(k — 1|k — D)a(k — 1]k — 1),

Yilk) = Z(pi(k), k) + i a) oI
Z(s,k) = ¢(s)TB(k) + v(s, k), (8b) with information matrix
B(k) = H(k)B(k — 1) + J (k)n(k), @c) Pklk—1)7" (10b)

= (Hk)P(k -1k — 1)HK)T + J(k)Q(k)J (k)T)~*
where, for convenience, we have introduced the notation (H (k) P( | VH ()™ + J(K)Q(K)J (k)7) ™,
H(k) = J(k)B(k), J(k) = (®(k)T®(k))'®(k)T, and whereQ(k) = Var(n(k)) = [Ky(pi(k) — p;(k))] € R™*".
Correction: Using (8a), the optimal prediction at time
B(k) = [b(p1(K)), ..., b(pn(k))]" € R**™, k € Z~( with data collected up to timé can be recursively

)
®(k) = [¢(p1(k)), ... d(pn(K))]" € R, expressed as
(k) = (1(p1 (), 1), ., n(pn (k). 1)) € R a(k|k) = a(klk — 1)+ 2(k)" (S(k) + 0 L,) Y (k). (11a)
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diag(X(0),...,2(k)), &%, =

with information matrix where X< =
T
P(k|kj)71 (11b) (@(0),‘..,¢(k)) y and PySk(S)T - (0,...,0,’7(5, k)T).
o - . Then, fact (i) follows by noting that
=Pklk—1)"" +®k) (Z(k) +ol,)” ®(k),

where Y (k) = (Yi(k),...,Y,(k)) € R" denotes the mea- (E<i + o l,pxi1)) "
surements taken by the network agents at time = diag((2(0) + o1,) ", ..., (2(k) + oI,) ™).
(k) = [K,(pi(k) — pi(k))] € R™*" . ) )
(k) = (Ko (pik) = s (k)] Fact (ii) can be established analogously using (2). [ ]
is the variance corresponding to the spatial fieJdand o7, In the absence of measurement errors, Lemma 4.1(i) cor-

is the variance corresponding to the sensor er¢ors..,e,.  responds to the simple Kriging predictor and variance of the
The information filter equations provide an iterative fashi spatio-temporal field in Section II.

of computinga(t[t) and P(t[t)~! that is appropriate for a dis-
tributed implementation by the robotic network. We deserib

this in Section VI-A. C. Sequential Bayesian universal Kriging

Finally, we construct the Bayesian universal Kriging peedi
tor of the spatial field and of its gradient by putting togethe
Fork € Zo, letY <, = (Y/(0),..., Y (k)) denote the data gection IV-A and Section IV-B. Specifically, at tinkee Z-,
available up to timet. For s € RY, let for eachs € R? the posterior predictive distributions of
(5, k)T = (Ko (5 — p1(K)), - .. Ko (5 — pu(k))) € R™, Z (s, l_c) a_n_d VZ(s, k) giyen thg d_ata}_’gk are obtained by

T Jxn Marginalizing the conditional distributions in Lemma 4o
V(s k)" = (VEu(s = pi(k), ..., VEu (s = pa(k))) € R e posterior distributions(k) | Y < ~ N(B(k|k), P(k|k))
The covariance structure of the spatial field (cf. Sectivi)l  obtained with the combination of the information filter equa
has some important consequences. On the one handththetions in Section IV-A and equation (9). Accordingly, we dbta
components of(s, k) andV~(s, k) can only be nonvanishing the following result.
if ||s — pi(k)|| < r. More importantly, the decorrelation in Lemma 4.2 (Sequential Bayesian universal Krigingjr
time of the spatial field and the sensor errors imply that onBll ¥ € Z, and alls € R?, one has, conditionally on the
the observations collected at exactly timeplay a role in data collected up to timé,
the construction of the conditional predictive distrilowtiof () the normal distributionZ(s, k) | Y <), with mean
7 and VZ with observations collected up to tinke This is B
formalized in the following result. T) T -1 _ 2

Lemma 4.1 (Sequential simple Krigingyor all & € Z- ?s)” AkIE) + (s, K)" B(k), (¥ (k) = (k)B(HIR))
and all s € R?, one has, conditionally on the data collected  gnd variance
up to timek and the paramete?(k),

B. Sequential simple Kriging

(i) the normal distributiorZ (s, k) | (Y <, 8(k)) with mean K(0) — (s, k)T S(k) (s, k)
$(s)"Bk) +(s, k) (k) (Y (k) — @(k)B(K)), + (6(s) — ®(K) (k) (s, k)" P(k[k)
and variance (¢(s) — @(k)T2(k), (s, k).
K(0) —~(s,k)TS(k); 1y(s, k), (i) the normal distributionVZ(s, k) | Y <; with mean
(i) trrrwlzarrwlormal distributionVZ (s, k) | (Y <k, 5(k)) with Vqs(s)Tﬁ(kUc)
Vo(s) BR)+V (s, kTSR, (Y (F) — B(R)B(E)), + Vs BTEE); V() — RFHD,
and variance and variance
—H(K)(0) = V(s, k)" E(k),;  Vy(s, k), — H(K)(0) — V~(s, k)" S(k); 'V (s, k)
where, for brevity, we le&(k), = (k) + o1,,. + (Vo(s) — q,(k)TE(k)glvfy(&k))Tp(k|k)

Proof: Given the evolution equations (8) and the covari-
ance structure for and ¢ detailed in Section lll, we have

4 e o
t;?t Lo)r kiveenZ(>}3 an%ike))ﬂi, the conditional distribution of The normal distribution in Lemma 4.2(i) corresponds to
%) 9 sk the spatial estimation obtained from the Kriged Kalman ffilte
Z(s,k) | (Y <k, B(k)) ~ N (¢(s)" B(k) proposed in [3]. The normal distribution in Lemma 4.2(ii)

T(% I VY — B Bk gives us information about the gradient of the spatial fi€ldt

Fr<als) (B ;— ngiern) Sk;l <kA(k)), next objective is to design a distributed coordination ethm

K(0) = v<k(8)" (B + 0 Lnws1) " vY<k(5)), that allows network agents to compute these quantities.

(Vo(s) — @(k)"2(k), V(5. k).
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V. DISTRIBUTED AVERAGE WEIGHTED LEAST SQUARES B. Dynamic average consensus algorithms

This section presents distributed algorithms to computeDynamic average consensus filters [12], [13], [14] are
average weighted least squares estimates. The capabilitydistributed algorithms that allow the network to track the
compute such estimates will be instrumental in Section \Average of a given time-varying signal. Under suitable con-
to synthesize a distributed implementation of the estiomati ditions on the evolution of the signal, one can guarantee
procedure described in Section IV. asymptotic convergence. Here, we use a particular instaihce

Given a network ofn agents with interaction topology the proportional-integral dynamic consensus estimatociex
described by an undirected grajgh, matrices € R7xn in [14] but formulated for higher-dimensional signals.

invertible andM € R™*™, and a vector: € R”, we introduce ~ Let7 € R>o — u(7) € (R™)" be a time-varying function,
here an algorithm to compute the quantity that we refer to asignal Note thatu(r) is a n-dimensional

vector with each component(7), i € {1,...,n}, being itself
EMTF*C, (16) @am-dimensional vector. Consider the dynamical system
n
that is distributed overs. The idea is to combine a Jacobi Cfi:)f = y(ui (1) —vi(1)) — Zaij(vi(T) —v;(7))
iteration and a dynamic consensus algorithm into a single J#
procedure that we term the BMGHTED LEAST SQUARES + Zaij(wi(T) — w; (7)), (17a)
ALGORITHM. The reason behind this terminology is the i
following: consider a linear observation model (deterrdibg
M) of an unknown parameter, and letrepresent measured = > aij(vi(r) = v;(7)), (17b)
data with associated covarianée Then, (16) corresponds to JF#i
the average weighted least squares estimate of the paramege ; ¢ {1,... n}, wherey > 0 andv,w € (R™)". Here,
Let us start by presenting the individual ingredients of thg _— (a;;) € R™" is the adjacency matrix of. If agenti
WEIGHTED LEAST SQUARESALGORITHM. has access to thih-componentu; of the signalu, then this
algorithm is distributed ovelz, i.e., agenti can compute
A. Jacobi overrelaxation algorithm the_ evolu_tion ofv; aqd w; with information provided by its
neighboring agents in the grapghi. As we see nextp; can

Given an invertible matrix” ¢ R™*" and a vector € R",  pe interpreted as the estimate that ageriossess of the
consider the linear systeifiy = c¢. The Jacobi overrelaxation average of the time-varying signal It can be proved [14]

(JOR) algorithm [17] is an iterative procedure to comput thnat if v is connected, for any, > 0, any constant signal
unique solutiony = F~'c¢c € R”. It is formulated as the 7 € Rog — u(t) = u € (R™)”, and any initial states

dwi

discrete-time dynamical system v(0),w(0) € (R™)™, the algorithm (17) satisfies
1 n
yi(l+1) = (1 = h)yi(€) — h— § fijyi(€) —ei ), 1
i - — i — — 1
fii (#i ) v;(T) - ;_1 uwi(t) — 0 ast — +oo (18)

for £ € Z>o andi € {1,...,n}, with y(0) € R" and exponentially fast for ali € {1,...,n}. For slowly-varying
h € (0,1). The convergence properties of the JOR algorithglgnals, the estimator guarantees small steady-stateserro
can be fully characterized in terms of the eigenvalues of Remark 5.3: (Robustness to agents’ arrivals and depar-
the matrix describing the linear iteration, see [17]. Her%ures) When the signak and the interaction topologg are
instead, we will use the following sufficient convergencg fynction of agents’ positions, one can show [14] that the

criteria from [23, Theorem 2]. _ - ~ estimator (17) guarantees zero steady-state error undeite fi

and anyc € R", if h < 2/n, the JOR algorithm linearly

converges to the solution @fy = ¢ from any initial condition.
As long as (i) agent has access to;, and (ii) if f;; # 0, C. TheWEIGHTED LEAST SQUARESALGORITHM

theni, j are neighbors irG, the JOR algorithm is amenable Here, we combine the JOR algorithm and the dynamic

to distributed implementation in the following sense: agen average consensus algorithm to synthesize thelGNTED

can compute théth componenty; of the solutiony = F~1¢ LEAST SQUARESALGORITHM described in Table I.

with information provided by its neighbors if. Proposition 5.4:Consider the  WIGHTED LEAST
Remark 5.2: (Robustness to agents’ arrivals and depaPQUARES ALGORITHM described in Table 1. For

tures) In the scenario where the matrix, the vectorc, and £ € R"*" invertible, c € R", and M € R"*™, define

the interaction topology are a function of agents’ positions,the output functions\ALS(F, ¢, M) : R>o — (R™)" and

the fact that the JOR algorithm converges from any initidOR(F' ¢) : R>g — R™ by, respectively,

condition implies that it is robust to a finite number of agént _ _

arrivals and departures. In other words, if the number ohtsye VES(Fye, M)(r) = v(r) - and JOR(F,e)(r) = u([7]),

after addition and deletion i, with corresponding?” andé, wherev andy are defined in Table I. Then,

then as long as < 2/n, the convergence of the JOR algorithm (i) the WEIGHTED LEAST SQUARES ALGORITHM is dis-

to F~'¢ is guaranteed. . tributed overG, in the sense that agentc {1,...,n}
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Name: WEIGHTED LEAST SQUARESALGORITHM
Goal: Compute average weighted least squares
Requires: F € R"™™ ce R", andM € R"*™
Assumes: (i) Network topology modeled by
(i) F invertible, with non-vanishing diag-
onal entries, and such th#t; # 0 implies
agenti andj are neighbors iz
(i) Agent ¢ € {l1,...,n} knows
row;(F) € R", ¢; € R, row; (M) € R™
Initialization:

1: y(0) =ce R

2: v(0) =w(0) = (row; (M)z1, . .
with z € R™ arbitrary

3 v €Rsp andh € (0,2/n)

. TOW, (M)z,) € (R™)",

Agenti € {1,...,n} executes concurrently
1: Jacobi overrelaxation algorithm, fdre Zx
1
il 1) = (1= Wyil) — hep (3 fiws(0) = i)
g
2: Dynamic average consensus algorithm, for Rx

L o) = () = 3 s i) — (7))
J#i
+ D a(wi(r) —w;(7),
J#i
T — =3 () — w3,
J#i

where A = (a;;) is the adjacency matrix of7, and
T+ u(r) € (R™)™ is given by

u(r) = (rowy (M)y([7]), ..., 10wy, (M)yn([7]))-

TABLE |
WEIGHTED LEAST SQUARESALGORITHM.

can computeALS;(F, ¢, M) and JOR;(F, ¢) with infor-
mation provided by its neighboring agentsah
(i) the functionJOR(F, ¢) is such that
JOR(F,¢)(1) — F~'c¢ ast — +oo,

exponentially fast;
(iii) if G is connected, the functioW.S(F, ¢, M) satisfies

1
W.S;(F,c, M)(1) - —~MTF~'¢ ast — +oo,
n

exponentially fast, for alf € {1,...,n}.

Proof: The WEIGHTED LEAST SQUARES ALGORITHM

note that, with the notation of Table |,
D ui(r) = row (M)y;(|r]) —
i=1 i=1
Z row;(M)y; = MTF~ !¢,
=1

where we have used that the JOR algorithm converges to the
solutiony = (y1,...,yn) Of Fy = c. The result now follows
from the convergence properties (18) of the dynamic average
consensus algorithm. [ ]
Remark 5.5: (Execution of JOR, dynamic average consen-
sus, andWEIGHTED LEAST SQUARES algorithms) In the
forthcoming discussion, we will make use of the fast conver-
gence properties of the JOR, dynamic average consensus, and
WEIGHTED LEAST SQUARES algorithms and use the exact
asymptotic limit of these algorithms in our derivations. In
practice, after a few iterations, the values obtained by the
execution of these algorithms are very close to the exact
asymptotic limit because the convergence rate of the JOR
algorithm is linear and the convergence rates of the dynamic
average consensus algorithms and the&I®HTED LEAST
SQUARESALGORITHM are exponential. Using this fact, it is
not difficult to characterize the precise number of itenatio
needed to achieve a desired level of convergence. o

VI. DISTRIBUTED IMPLEMENTATION OF SEQUENTIAL
FIELD ESTIMATION

In this section we introduce the IBTRIBUTED KRIGED
KALMAN FILTER. This algorithm allows each network agent
to compute, at any time, the posterior predictive distidmut
of the spatial field and its gradient on a neighborhood of its
current location obtained in Section IV, and only requires
communication with neighboring agents dix_gisk-

The algorithm is described in Table Il. The underlying idea
is that, instead of working directly with the posterior pictive
distributions obtained in Section IV-C, each agent perform
in a distributed way (i) the sequential parameter estimatio
described in Section IV-A and (ii) the sequential simpledKri
ing described in Section IV-B. From these two constructions
each agent can then compute the desired posterior predictiv
distributions. The implementation of both (i) and (ii) e
on the algorithms presented in Section V, and in particular
on the WEIGHTED LEAST SQUARESALGORITHM. It should
be noted that every time the algorithms in Section V are
invoked in Table I, we use their exact asymptotic limit, cf.
Remarks 5.5 and 6.2.

In the following, we explain in detail the algorithm steps
outlined in Table II.

A. Distributed sequential parameter estimation
Here, we describe the strategy that network agents imple-

is distributed overG’ by design. The statement on the limithent in order to compute the sequential parameter estimatio
of JOR(F, ¢)(r) follows from Lemma 5.1 (the linear rate ofdescribed in Section IV-A.

convergence of the discrete-time algorithm translates ant

Distributed prediction: At time k € Z~(, assumeu(k —

exponential rate of convergence for the continuous-tinmefu 1|k —1) and P(k—1|k—1)~! are known to all network agents

tion). Regarding the limit oMLS;(F,c, M), i € {1,...,n},

from the previous iteration (initially, we set(0/0) = =1¢,
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P(0]0)~! = =71). According to (10), agentcan compute the can compute the predictioa(k|k) with information matrix
one-step-ahead predictiaitk|k — 1) with information matrix P(k|k)~! (step10: of Table Il) if it has access to
P(klk — 1)~ (step9: of Table Il) if it has access to the

matrices ®(k)TE(k);'Y (k) € R™, (21a)
H(k) = (@(k) 2(k)) "~ @(k) B(k) (k) B(k); B(k) € R (210)
T
J(k)Q(k)J (k) Let us describe how the network performs a distributed com-

= (®k)"®(k) " ®*)TQKk)®(k)(®(k)'®(k)"*.  putation of (21).

We break down this task into the computation of the 1) Distributed computation of the weighted least squares

matrices estimate: This discussion refers to step: of Table II.
The network computes the vector (21a) by invoking the

(k)" ®(k), ®(k)"B(k), ®(k)"Q(k)®(k) € RP*™. (19) WEIGHTED LEAST SQUARES ALGORITHM once. Specifi-
ﬁally, agent: has access to rQ\(\E( )o), Y(k); = Yi(k)
and to row(®(k)) = ¢(p;(k))T. Therefore, assuming that
Gredisk(p1(k),...,pn(k)) is connected, the execution of the
WEIGHTED LEAST SQUARESALGORITHM with F' = 3(k),,
¢=Y(k), and M = ®(k) guarantees, according to Proposi—
tion 5.4,

Let us show how the network performs a distributed comp
tation of the matrices in (19). This corresponds to step
of Table II. Specmcally, if agent has access to the matrix
C; € R™*™ for ¢ € {1,...,n}, defineDAC(C},...,Cy) :
Rzo — RmX'Hl by

DAC(Cy,...,Cn) (1) = v(71), (20) )

T —1

whereu is determined by the execution of the dynamic average \L-Si(Z(k)o, ¥ (k), ®(k))(7) — — @ (k)" 3(k), Y (),
consensus algorithm (17) ov8k_qisk With constant signat —

u(t) € (R™*™)" given by ast — +oo, forall ¢ € {1,...,n}.
2) Distributed computation of the covariance matrix of
ui(1) = Ci. the weighted least squares estimafEhis discussion refers
According to Section V-B, ifGx.gisk is connected, then to stepss5: -8: of Table Il. The network computes the ma-
trix (21b) by invokingp instances of the \MIGHTED LEAST
DAC(C, ZC“ SQUARES ALGORITHM (one instance per matrix column).

Specifically, for eachj € {1,...,p}, agenti has access to
the ith component of the vector cg®(k)) € R™, and to
row; (®(k)) = ¢(p;(k))T. Moreover, the assumption (5) on
the finite correlation range of the spatial fieldjuarantees that
d(pi(E) T o(ps(k)) and é(p; (k)T b(pi(k)). agenti can compute roWX(k),) by knowing the position of
its neighbors inGr.gisk at time k. Therefore, assuming that
Moreover, the assumption (5) on the finite correlation range.  aisk(D1 (k) ... pn(k)) is connected, the execution of the
of n guarantees that agent € {l,....,n} can COMPUIe \ye GTep | EAST SQUARESALGORITHM With F = (k).

row;(Q(k)) = (Ky(pi(k) —p1(k)), . K, n(pi(k)=pn(K)) € . — col(@(k)), and M = ®(k) guarantees, accordlng to
R™ by knowing the position of its neighbors iGr-disk at Proposition 54

time k. Hence, agent has access to

ast — oo exponentially fast.
At time k € Z-o, agenti € {1,...,n} has access to

o(pi(k)) " row; (Q(k)®(k)), WLS; (3 (K)o, col;(@(k)), ®(k)) (1) —

by communicating with itsR-disk neighbors. Therefore, in l@(k)Tz(k);lcob(q)(k)),
order to compute the matrices in (19), the network executes n
threg dynamic average consensus algorithms Oelisk 10 a5+ —. 40, for all i € {1,...,n}. Hence, the execution
obtain of p instances of the WIGHTED LEAST SQUARES ALGO-
DAG; (6(py (k)T o dn ()T bl (K RITHM allows agenti to compute the time-dependent matrix

(1 (p1(k))" d(p1(K)), - .-, D(pn (k)" d(pn(K)))(T) — VLS, (S (k). B(k). @ (k) defined by

(k)" B (k).

DAC (6(p1 (k) "b(p1 (), - - &(pn (k)" blpn (k) (1) — WS (2 k), 2(k), B(k))(7) =

W.S;(X(k),, col e
1 B(6) Bk, (WLS; (2 (K)o, coli (®(K)), ®(k))

VLS (S(R), 0o, (B(K), B(K) (7).
DAG; (6(p1 (k) Trowy (Q(k)®(k)), . . .,
Hlpn ()" row, (QU)B()))(r) — (k)" Q(E)B(R).
1

Distributed correction: At time k € Z-, assuméi(k|k — WS, (3(k)o, (k), ®(k))(T) — n‘I’(k)TE(k) ' (k)
1) and P(k|k—1)~! are known to all network agents from the
distributed prediction computation. According to (11)eaty ast — +oo, foralli € {1,...,n}.

with the property that
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Name: DISTRIBUTED KRIGED KALMAN FILTER
Goal: Compute Bayesian universal kriging predictors of the gpdigeld and of its gradient
Assumes: (i) Gg-disk IS connected along evolution

(i) Initially all agents knows ~ N (£, =)

Initialization:
1: a(0]0) = =71, P(0j0)t ==
2: Fort € [0,1) ands € R?, each agent evaluates

E(Z(s,t) |Y <0) = ¢(s)"¢ and E(VZ(s,t) | Y <0) = Vo(s)"¢.

At time k € Z~, agenti € {1,...,n}
1: takes measuremeit; (k) = Y;(k), computes row®(k)) = ¢(p; (k)T and row(B(k)) = b(p; (k)T
2: acquires location o .gisk(p1 (k), - . ., pn(k))-neighbors and computes ref (&), ) and row(Q(k))
3: executes three dynamic consensus algoritth€ over Gr.gisk(p1(k), - . ., pn(k)) and sets
@ (k)" ®(k) = n DACi(¢(p1 (k)" d(p1(K)), - .., d(pn (k)" d(pn(k)))(20),
® (k)" B(k) = nDAC;(¢(p1 (k)" b(p1(K)), .. ., $(pn (k) b(pn (k)))(00),
@ (k)" Q(k)®(k) = nDAC;(¢(p1 (k) row, (Q (k)@ ( ) -+ @ (pa (k) rOW, (Q(K) @ (K)))(c0),
H(k) = (®(k)" ®(k)) " ® (k)" B(k),
J(K)QK)I (k)" = (®(k)"@(k)) ™ ®(k)"Q(k)®(k)(® (k)" @ (k)™
4: executes WEIGHTED LEAST SQUARESALGORITHM over Gp.gisk(p1(k), . .., pn(k)) for (2(k),, Y (k), ®(k)) and sets
®(k)TE(k); 'Y (k) = nWSi(S(k)o, Y (k), (k))(c0)

5. for j =1top do

6: executes VEIGHTED LEAST SQUARESALGORITHM over Gg.qisk(p1(k), - - -, pn(k)) for (3(k),,col;(®(k)), ®(k))
7: end for

8: sets® (k)X (k);1®(k) = nW.S;(Z(k),, ®(k), ®(k))(00)

Parameter estimation: prediction

9: computes estimate and information matrix at tilmavith data up to timek — 1

P(klk — 1)~ = (H(k)P(k — 1|k = ))H (k)" + J(F)Q(k)J (k)")~",
a(klk — 1) = P(klk — 1) " H(k)P(k — 1|k — 1)a(k — 1]k — 1).

Parameter estimation: correction
10: computes estimate and information matrix at tilmgvith data up to timek

P(klk)™ = P(klk —1)7! — @(k)" (Z(k),) @ (k),
a(klk) = a(klk — 1) + (k)T (2(k)o) 'Y (k).

Simple kriging
11: sets

(B(k); 'Y (k)i == IOR(E(k)s, Y (k))(c0),
row; (S(k) " @ (k)) == row; (JOR(E(k)o, B (k))(00)).
12: computes predictors ate B(p;(k), R —r)
E(Z(s,k) [ (Y <k, B(K)) = ¢()TB(k) + Y ;s k) ((B(k); Y (k) — row;(S(k); ' @ ())5(k)),
lls—p; (R)[I<r

E(VZ(s,k) | (Y <k, B(K))) = V()" B(k) +)_ V(5. k) ((B(k); Y (), — row;(S(k); ' 8 (k))B(K)).

lls—p;(R)lI<r

Bayesian universal kriging
13: fort € [k, k+1) ands € B(p;(k), R—r), combines parameter estimation and simple kriging to caenfn. Section IV-C

E(Z(S,t) ‘ng) and E(VZ(S,t) |Y§k).

TABLE Il
THE DISTRIBUTED KRIGED KALMAN FILTER
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B. Distributed sequential simple Kriging Remark 6.2: (Execution of DISTRIBUTED KRIGED

Here, we describe the strategy that network agents iMALMAN F|LTER): It is reasonable to assume that the order
plement in order to compute the sequential simple Krigingf magnitude of the time required by individual agents to
described in Section IV-B. This strategy makes use of tfg@mmunicate and compute is smaller than the one required to
special covariance structure of the spatial field. The disian Move. Additionally, according to the robotic sensor networ
refers to stepa1: -12: of Table II. According to Lemma 4.1, model in Section 11I-B, measurements are only taken at

to compute the means of the conditional distributions of tHastants of time inZ.,. These considerations, together with
spatial field and its gradient ate RY andk € Z-,, we look the observations made in Remark 5.5, lead us to assume

for the distributed calculation of that the distributed computations described in Sections IV
and IV-B run on a time scale which is much faster than
v(s, k) € R", V(s k) € R"™*?, (222) the time scalet. These observations provide justification
(k) 1Y (k) € R™, (22b) for the asymptotic limits taken in steps -8: and 11: of
(k) (k) € R™™. (22¢) Table II. We are currently addressing the characterizatibn

the communication requirements for the algorithm executio
Regarding (22a), note that theh components ofy(s,k) and However, it should be noted that, with regards to other
V~(s,k) can only be nonvanishing if ageptis within 7- message-passing algorithms, the present approach needs
distance ofs, that is, ||s — p; (k)| < r. Therefore, any agefit minimal memory requirements at each agent, provides all
can compute all the nonvanishing componentsy{s, k) and agents with the same global information, and handles withou
V(s, k) if the ball centered at of radiusr is contained in any modification evolving network interaction topologies
the area within communication range of agentsince in this  Remark 6.3: (Robustness to agents’ arrivals and depar-
case the agent will have access to the location of all othgifesy The requirement in BTRIBUTED KRIGED KALMAN
agents contained i3 (s, ). Noting that FILTER that Gx.qisk IS connected along the evolution can be
. ) : ) _ relaxed as follows. From Remarks 5.2 and 5.3, it is clear
Bls,r) € Blpi(k), B) 1t s € B(pik), R —1), that both the dynamic average consensus algorithms and
we deduce that agenttan compute (22a) in a distributed waythe WEIGHTED LEAST SQUARES ALGORITHM are robust to
for any s € B(pi(k), R — 7). changing numbers of network agents. As long as each agent
Regarding (22b) and (22c), note that, as a by-product of tkeows the exact number of agents in its connected component
executions of the WIGHTED LEAST SQUARESALGORITHM  of Gp_gis, it can perform the distributed data fusion steps
performed in the distributed sequential parameter estbimat described in Table Il. Regarding the parameter estimatiidn,

of S_ection VI-A, at timek € Zq, agenti € {1,...,n} has ferent connected components will use different measure&nen
available theith component of the functions and hence will have different mean and covariance estimates
IORE(k)y, Y (F)) : Rag — R, about the parameter. As currently stated, the algorithrhda t

robust to agent deletion, while it is not robust to the additi

JOR(Z (K)o, coli(®(k))) : R0 — R",  j€{l,....,p}-  of new agents that can join the connected component with

Let us definel OR(Z(k),, ®(k)) : R>o — R"*™ by possibly different parameter mean and covariance estinate
Regarding simple Kriging, since the spatial correlationge
JOR(Z(k)o, ®(k))(1) = (JOR(E(K),, cOl (®(k))), of the random field is smaller than the communication radius,
. LIOR(B(R) g, colp(<I>(k)))) (7). each agent computes the same estimate of the spatial field and

of its gradient on a neighborhood around its current locatio

Note that agenti has access to theith row of pence, at this stage, the algorithm is robust to agentsiaisti
JOR(X(k),, ®(k)). By Proposition 5.4, we have and departures.

JOR(Z(k)y, Y (k) (1) — B(k); 1Y (k) € R",
JR(Z(k)y, ®(k))(T) — (k) '®(k) € R™™,

VIl. DISTRIBUTED GRADIENT ASCENT OF SPATIAL FIELDS

The distributed estimation algorithm developed in the pre-
Finally, note that agent € {1,...,n} has access to bothyjous section can be used in conjunction with the motion
JOR;(2(k)s, Y (k)) € R and row(JOR(X(k),, ®(k))) € capabilities of the robotic agents to perform a number of
R™ for all j such thap; (k) andp; (k) are neighbors iGr.gis.-  coordination tasks. In this section, we illustrate thesespo
Therefore, we deduce the following result. bilities by designing a distributed gradient ascent cawation
Proposition 6.1:For all k € Z~, and alls € B(p;(k), R— algorithm to find the maxima of a spatial field.
r), BE(Z(s, k) |(Y<k,B)) and E(VZ(s,k) | (Y <k, 8)) can At any instant of timet € R, the DSTRIBUTED KRIGED
be casted as in2: of Table II, and therefore, are computableK aALman FILTER described in Table Il allows agent
by agenti over Gr-gisk. {1,...,n} to compute the expected value of both the spatial
Proof: If s € B(p;(k), R —r), then ageni can compute field and its gradient in the neighborhodg(p;(|t|), R — r)
all the non-vanishing components §f(s, k) and Vy(s, k), of its location. With the information provided by the filter,

since they correspond to the identifiers of other agents thajch agent can then implement a gradient ascent strategy of
must be its neighbors i@ r-qisk- Since agent has also accesSthe form

to the corresponding componentsJ@R; (% (k),, Y (k)) € R )
and row (JOR(Z(k),, ®(k))) € R™, the result follows. m pi(t) = E(VZ(pi(t),t) [ Y <¢). (23)
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Note that, because new measurements are taken at teme, in general, ill-posed on configurations ) where two
instants inZ-., the resulting trajectory of agehts continuous or more points coincide. Our simulation did not exhibit this
and piecewise differentiable. The next result charaaterihe problem because we did not run it for a time long enough.
asymptotic convergence properties of the distributedigrad One way to resolve this is by specifying a threshold in how
ascent strategy when no measurement errors are present. close the individual agents need to get to the set of critical
Proposition 7.1:Let Z be a spatial Gaussian random fielghoints. Once agents that are converging to the same critical
with continuously differentiable mean function and withmeo point satisfy the threshold, they can decide, for instanae,
pact superlevel sets. Consider a robotic sensor netwotk tfem a circle and uniformly deploy around it.
measuresZ with no error, that is¢; = 0 fori € {1,...,n} in
equation (7). Then, any network trajectory evolving un@) (
that starts fromS = (RY)" \ {(p1,...,pn) € (R)" | p; =
p; With i # j} satisfies

E(VZ(pi(t)) | Z<t) — 0, i€{l,....n},

ast — oo, with probability one.

Proof: Let (p1(0),...,pn(0)) € S. Note thatS is
invariant. This is a consequence of the fact that, for angmyiv
set of measurements of the spatial fi#ld; = Z;, the vector
field in (23) is continuously differentiable, and hence n®twrig. 1. Distributed gradient ascent cooperative strateB) {(mplemented

trajectories intersect. Leb; = {p € R4 | Z(p) > Z(pi(0))}, by a robotic sensor network consisting bf agents. We depict the contour
and define plot of the posterior mean of the spatial field. The black didepict the

! (randomly generated) initial network configuration, whhe gray disks depict
the network configuration afte36 seconds.

D=D; x - xD,.

By hypothesis,D is compact. For eack € Zx, agenti €

{1,...,n} is guaranteed to increase the expected value of the VIIl. CONCLUSIONS

spatial field along the time intervat, & + 1] by following the e have considered a scenario where a robotic sensor

gradient flow (23). Equivalently, network takes successive measurements of a dynamic physica
E(Z(pi(k+1)) | Z<i) > E(Z(pi(k)) | Z<k). process of interest model as a spatio-temporal ran_dom field.

We have introduced a statistical framework to estimate the
Because by hypothesis there are no measurement errors,dyé&ibution of the random field and of its gradient. Undes th
haveE(Z(pi(k)) | Z<xk) = Z(pi(k)). Therefore, the sequenceassumptions of uncorrelation in time and limited-rangeeor

Wi = V(pa(k),....pa(k))}iZo, Where V(pi,....pa) = lation in space, we have developed thesERIBUTEDKRIGED
> iz1 Z(p:) is a submartingale [18], that is, KALMAN FILTER that enables the network to compute the pre-
E(V, Z_) >V, dictive mean functions of the random field and of its gradient
(Ves1 [ Z<k) 2 Vi

We have illustrated the usefulness of the proposed algorith

Using now [24, Corollary 2], we conclude the result. ® py synthesizing a motion coordination strategy that makes

We have implemented the gradient ascent (23) Hetwork agents find critical points of the field with probitiil
Mat hematica® to illustrate its performance. The I® one in case of no measurement noise. Numerous avenues of
TRIBUTED KRIGED KALMAN FILTER is implemented as a research appear worth pursuing. Among them, we highlight
single centralized program. Agents evolve according to tfige consideration of more general statistical assumptams
robotic network model described in Section Ill-B, with comthe spatio-temporal field, (e.g., measurements correlated
munication radiusiz = 2.5, agent control authority boundedtime, unknown parameters in the covariance structure that
by umax = .25, and noise sensor error varianee= .25. must also be estimated from the data), the quantification of
During the execution, each agent makes use of the expeGigsl communication requirements of the proposed algorithm,
value of the gradient of the spatial field computed in stape extension of the convergence results of the gradieenasc
13: of DISTRIBUTED KRIGED KALMAN FILTER to follow  a|gorithm to the case of measurement errors, or the design of

the gradient ascent direction as specified in (23). We i#itist distributed algorithms that maximize the information entt
the performance of the closed-loop system in Figure 1 Wit retrieved data.

a static (i.e., not evolving in time) spatial field with mean
u(s) = 3+ 1.2e Is=(3DIF 4 e-lls+(1-5.151%  zero-mean

small-scale variability,, and covariance structure determined ]
by K, (s) = e—5llsI® i Is|| < r = 1.5 and K, (s) = 0 other- This research was supported in part by NSF CAREER

wise. In the simulation, agents initially kno@~ Nz (0, I3). Award ECS-0546871. The author wishes to thank Prof.

According to Proposition 7.1, individual agents convergBthanasios Kottas for enlightening conversations.
asymptotically to the set of expected critical points of the
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