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Abstract—This paper deals with multi-agent networks per-
forming estimation tasks. Consider a network of mobile agents
with sensors that can take measurements of a spatial stochastic
process. Using a statistical technique known as kriging, a field
estimate may be calculated over the environment, with an asso-
ciated error variance at each point. We study a single-snapshot
scenario, in which the spatial process mean is known and each
agent can only take one measurement. We consider two optimiza-
tion problems with respect to the measurement locations, using as
objective functions the maximum error variance and the extended
prediction variance. We show that, as the correlation between
distinct locations vanishes, circumcenter and incenter Voronoi
configurations become network configurations that optimize the
maximum error variance and the extended prediction variance,
respectively. We also present distributed coordination algorithms
that steer the network towards these configurations. The tech-
nical approach draws on tools from geostatistics, computational
geometry, linear algebra, and dynamical systems.

I. I NTRODUCTION

Mobile sensor networks are envisioned to perform dis-
tributed sensing and data fusion tasks in a wide range of
scenarios, including environmental monitoring, oceanographic
research, and distributed surveillance. This paper considers
sensor networks taking measurements of physical processes
modeled as spatial random fields. Standard interpolation tech-
niques produce estimates of the field at each point of the
environment of interest, along with a measure of the accuracy
of the estimate. In this paper, we consider the problem of
where to place the agents when a single measurement is to
be taken by each. Addressing this problem is an initial step
towards the more ambitious goal of characterizing optimal
coordinated agent trajectories when multiple measurements are
possible. We assume that the mean of the process is known,
and we study the limiting case of near independence between
distinct locations. The assumption of near independence has
been suggested as a first step in gathering data in a relatively
large space [1]. Our results show that the solution of the
single-snapshot scenario is both elegant and technically chal-
lenging. We make no assertion that a correlated spatial field
is accurately modeled by near-independence. This asymptotic
assumption merely provides an analytical framework that
justifies the intuitive notion of space filling design, whichis
surprisingly difficult to prove optimal in general.
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Literature review: Kriging [2], [3] is a standard geostatis-
tical technique that produces estimates of spatial processes
based on data collected at a finite number of locations. An
advantage of kriging over other spatial interpolation methods
is that it provides a measure of the uncertainty associated
to the estimator. The optimal design literature [4], [5] deals
with the problem of designing experiments to optimize the
resulting statistical estimation. Of particular interestare the
notions of G-optimality, minimizing the maximum error vari-
ance, and D-optimality, minimizing the generalized variance
of the estimator. The work [6] introduces performance met-
rics for optimal estimation in oceanographic research. The
works [7], [8] propose distributed optimal estimation strategies
for deterministic fields, when the sensor measurements taken
by individual agents are uncorrelated. The only source of
uncertainty is the stochastic measurement errors. In [9], the
emphasis is on finding optimal agent trajectories over a given
interval of time among a parameterized set of trajectories.
Here, instead, we focus on optimal network configurations for
the estimation of the random field at a single snapshot. In
our technical approach, we have been inspired by [1], which
considers the problem of minimizing the maximum uncertainty
over a discrete space and shows that minimax configurations
are asymptotically optimal as the correlation between any
two distinct points vanishes. Minimax configurations minimize
the maximum distance to the nearest agent from any point
in space. We make the connection to Voronoi partitions of
continuous spaces, which are a classical notion in compu-
tational geometry [10]. The work [11] defines circumcenter
and incenter Voronoi configurations and proposes coordination
algorithms which steer the network to these configurations.

Statement of contributions:In this paper, we consider two
performance metrics for optimal placement of sensor networks
based on kriging. Kriging produces a Linear Unbiased Mini-
mum Variance Estimator (LUMVE) of the random field at any
location. We first characterize the continuity properties of the
error variance of the estimator as a function of the network
configuration. In the case of zero measurement error, this is
not trivial. Previous results in the optimal design literature
have avoided this problem by optimizing over a discrete set
of possible configurations, while we consider the continuous
space of all agent locations within the region. Next, we define
our first optimality criterion, the maximum error variance of
the estimator as a function of network configuration. This
gives a measure of the worst-case estimate over the region.
We study its critical points asymptotically, as the correlation
between any two distinct points vanishes. We define a second
optimality criterion, the extended prediction variance ofthe



estimator as a novel form of D-optimality. This criterion
gives a measure of the overall information provided by the
estimator. We introduce a method for applying this criterion
to a bounded region. We study the critical points of this
function within the same asymptotic framework as the first.
Our main results show that circumcenter, respectively incenter,
Voronoi configurations are asymptotically optimal for the
maximum error variance over the environment, respectively
the extended prediction variance. In general, these objective
functions pose nonconvex and high-dimensional optimization
problems. In addition, the first criterion is nonsmooth. For
these reasons, it is difficult to obtain exactly the configurations
that optimize them. Our results are relevant to the extent
that they guarantee that, for scenarios with small enough
correlation between distinct points, circumcenter and incenter
Voronoi configurations are optimal for appropriate measures
of uncertainty. The network can achieve these configurations
by executing simple distributed dynamical systems.

Organization: Section II introduces basic computational
geometric notions and presents an overview of kriging. Sec-
tion III states the problem of interest. We present our main
results in Section IV on the optimality of circumcenter and
incenter Voronoi configurations. Section V presents simula-
tions to illustrate our results. Finally, Section VI gathers our
conclusions and ideas for future work. Some proofs have been
omitted for brevity, and can be found in [12].

II. PRELIMINARIES

We start with some notation for standard geometric objects.
Let R, R>0 andR≥0 denote the set of reals, positive reals and
nonnegative reals, respectively. We are concerned with oper-
ations on a compact and connected setD of Euclidean space
R

d, d ∈ N. We denote byDn the Cartesian product ofn copies
of D. Forp, q ∈ R

d, we let]p, q[= {λp + (1 − λ)q | λ ∈]0, 1[}
denote theopen segmentwith extreme pointsp and q. For
p ∈ R

d and r ∈ R>0, we let B(p, r) denote theclosed
ball of radius r centered atp. We denote by|S| and ∂S
the cardinality and the boundary of a setS, respectively. A
convex polytopeis the convex hull of a finite point set. For a
bounded setS ⊂ R

d, we let CC(S) and CR(S) denote the
circumcenterandcircumradiusof S, respectively, that is, the
center and radius of the smallest-radiusd-sphere enclosingS.
The incenter set ofS, denotedIC(S), is the set of the centers
of maximum-radiusd-spheres contained inS. The inradius of
S, denoted byIR(S), is the common radius of these spheres.

We consider tuples or ordered sets of possibly coincident
points,P = (p1, . . . , pn) ∈ (Rd)n. We refer to such an ele-
ment as aconfiguration. Let P(S) (respectivelyF(S)) denote
the collection of subsets (respectively, finite subsets) ofS. We
denote an element ofF(Rd) by P = {p1, . . . , pn} ⊂ R

d,
wherep1, . . . , pn are distinct points inRd. Let iF : (Rd)n →
F(Rd) be the natural immersion, i.e.,iF(P ) contains only the
distinct points inP = (p1, . . . , pn). Let Scoinc be the set of all
tuples in(Rd)n which contain at least one coincident pair of
points,

Scoinc = {(p1, . . . , pn) ∈ (Rd)n |

pi = pj for somei, j ∈ {1, . . . , n}, i 6= j}.

Let ‖ ·‖ denote the Euclidean distance function onR
d. Define

the distanced : R
d × P(D) → R from a point in R

d to a
set of points inD by d(s,P) = infp∈P{‖s − p‖}, and let
mds : R

d × P(D) → P(D) be theminimum distance set
map,mds(s,P) = {p ∈ P | ‖s − p‖ = d(s, P )}.

A. Voronoi partitions and multicenter problems

Here we present some relevant concepts on Voronoi dia-
grams [10], [13]. Apartition of D is a collection ofn polygons
W = {W1, . . . ,Wn} with disjoint interiors whose union is
D. The Voronoi partitionV(P ) = (V1(P ), . . . , Vn(P )) of D
generated byP = (p1, . . . , pn) is defined by

Vi(P ) = {q ∈ D | ‖q − pi‖ ≤ ‖q − pj‖, ∀j 6= i} .

We say thatP is a circumcenter Voronoi configurationif
pi = CC(Vi(P )), for all i ∈ {1, . . . , n}, and thatP is an
incenter Voronoi configurationif pi ∈ IC(Vi(P )), for all
i ∈ {1, . . . , n}. An incenter Voronoi configuration isisolated
if it has a neighborhood inDn which does not contain any
other incenter Voronoi configuration. Figure 1 shows examples
of these configurations.

Consider thedisk-coveringand sphere-packing multicenter
functions defined by

HDC(P ) = max
s∈D

{d(s, iF(P ))} ,

HSP(P ) = min
i6=j∈{1,...,n}

{1

2
‖pi − pj‖,d(pi, ∂D)

}

.

We are interested in the configurations that optimize these
multicenter functions. The minimization ofHDC corresponds
to minimizing the largest possible distance of any point inD
to one of the agents’ locations given byp1, . . . , pn. We refer to
it as the as themulti-circumcenter problem. The maximization
of HSP corresponds to the situation where we are interested
in maximizing the coverage of the areaD in such a way that
the radius of the generators do not overlap (in order not to
interfere with each other) or leave the environment. We refer
to it as themulti-incenter problem. It is useful to define the
index functionN : Dn → N as

N(P ) =
∣

∣

∣
argmin
pi 6=pj

{1

2
‖pi − pj‖,d(pi, ∂D)

}∣

∣

∣
.

B. Spatial prediction via simple kriging

This section reviews the geostatistical kriging procedure
for the estimation of spatial processes, see e.g., [2], [14]. A
random processZ is second-order stationaryand isotropic
if it has constant mean,E(Z(s)) = µ, and its covariance is
of the form Cov(Z(p1), Z(p2)) = g(‖p1 − p2‖), for some
decreasing functiong : R≥0 → R≥0. The covariance matrix
of the set of pointsp1, . . . , pn ∈ D is Σ = Σ(P ) =
[g(‖p1 − p2‖)]ni,j=1 ∈ R

n×n. When it is clear from the
context, we use bold face to denote explicit dependence on
P . We define c : D × Dn → R

n to be the vector of
covariances between a points ∈ D and the locations in
P , i.e., c = c(s, P ) = (g(‖s − p1‖), . . . , g(‖s − pn‖))

T .
The associated correlation functionρ : R

d × R
d → [0, 1] is

ρ(p1, p2) = g(‖p1−p2‖)
g(0) . Throughout the paper, we make the



following assumptions on the model for the spatial random
processZ of interest. We assume thatZ is of the form

Z(s) = µ(s) + δ(s), s ∈ D, (1)

and that the mean functionµ is known. Also,δ is a zero-
mean second-order stationary random process with a known
decreasing isotropic covariance function,g. We further as-
sume thatg is everywhere differentiable. Some examples of
such functions are the exponential, cubic, spherical, modified
Bessel, and rational quadratic covariance functions.

Assume measurement datay = (Y (p1), . . . , Y (pn))T are
corrupted with error such that

Y (pi) = Z(pi) + ǫi, ǫi
iid
∼ Normal

(

0, τ2
)

, (2)

whereτ2 ≥ 0, and “iid” denotes independent and identically
distributed. The assumption that the errorsǫi, i ∈ {1, . . . , n}
are independent and identically distributed corresponds to the
fact that the robotic network is equipped with distinct identical
sensors. In the error case, the covariance betweenY (pi) and
Y (pj) is given by

Cov(Y (pi), Y (pj)) =

{

g(‖pi − pj‖) + τ2, if i = j,

g(‖pi − pj‖), if i 6= j.

Note that the covariance matrix ofP with respect to the noisy
processY may be writtenΣτ = Στ (P ) = Σ + τ2In, where
In denotes then × n identity matrix.

The simple kriging predictor at s ∈ D mini-
mizes the error varianceσ2(s; p1, . . . , pn) = Var(Z(s) −
p(s;Y (p1), . . . , Y (pn))) among all unbiased predictors of the
form p(s;Y (p1), . . . , Y (pn)) =

∑n
i=1 liY (pi)+k. The simple

kriging predictor ats ∈ D corresponds then to the LUMVE,

p̂SK(s;Y (p1), . . . , Y (pn)) = µ(s) + c
T
Σ

−1
τ (y − µ), (3)

whereµ = (µ(p1), . . . , µ(pn))T . The error variance of̂pSK at
s ∈ D is

σ2(s; p1, . . . , pn) = g(0) − c
T
Σ

−1
τ c. (4)

Note thatσ2 is invariant under permutations ofp1, . . . , pn.

III. O BJECTIVE FUNCTIONS

Consider a network ofn agents in a convex polytope
D ⊂ R

d. Assume each agent has a sensor and can take a
noisy measurementY (pi) as in (2) of the spatial processZ at
its positionpi. A natural objective is to select locations to take
measurements in such a way as to minimize the uncertainty
in the estimate of the spatial process. Here, we consider two
objective functions inspired by the notions of G- and D-
optimality from optimal design [2], [4].

The maximum error varianceis
M(p1, . . . , pn) = max

s∈D
σ2(s; p1, . . . , pn)

= g(0) − min
s∈D

{cT
Σ

−1
τ c}. (5a)

Note thatM corresponds to a “worst-case scenario,” where we
consider locations in the domain at which the error varianceof
the LUMVE is maximal. Let us make an important observation
about the well-posedness ofM. Under noisy measurements,
i.e., τ2 > 0, the functionσ2 is well-defined for anys ∈ D

and (p1, . . . , pn) ∈ Dn. Indeed, the dependence ofσ2 on the
network configuration is continuous, and hence,M is also
well-defined. However, when no measurement noise is present,
i.e.,τ2 = 0, then the matrixΣτ = Σ in (4) is not invertible for
configurations that belong toScoinc, and therefore, it is not clear
what the value ofσ2 is. Proposition IV.2 below states that, in
the no measurement noise case,σ2 is a continuous function
of the configuration under suitable technical conditions onthe
covariance structure of the spatial field.

Our second objective function requires some background.
The generalized variance [15] of the LUMVE is defined as
|Σ−1

τ |, where| · | denotes the determinant. Minimizing|Σ−1
τ |

is equivalent to minimizing−|Στ |. For discrete state spaces,
it can be shown [1] that configurations which maximize the
minimum distance between agents asymptotically minimize
−|Στ | in the limit of near independence. This tends to place
agents on the boundary ofD. Since we are only interested in
predictions overD, we would like a notion of optimality which
penalizes agents too close to the boundary as it does agents too
close to each other. To this end, letγ : D → R

d map a point
in D to its mirror image reflected across the nearest boundary
of D. Formally,γ(s) ∈ s + 2

(

argmin
s∗∈∂D

{‖s∗ − s‖} − s
)

. Note

thatγ(s) is in general not unique, and is not a smooth function
of s. However,‖s − γ(s)‖ is smooth, and is the same for all
values ofγ(s). Now consider minimizing the determinant of
the estimator which would result if we had data from all agents
as well as their reflections. Theextended prediction variance
is then

E(p1, . . . , pn) = − |Στ (p1, . . . , pn, γ(p1), . . . , γ(pn))| . (5b)

SinceE does not require inversion of the covariance matrix,
it is always well-posed.

Our goal is to find the network configurations
(p1, . . . , pn) ∈ Dn that minimize the objective functions
M : Dn → R andE : Dn → R.

IV. OPTIMAL CONFIGURATIONS FOR SPATIAL PREDICTION

In this section, we provide several results that characterize
the optimal network configurations for the objective functions
M andE . In Section IV-A, we show that minima ofM cannot
be in Scoinc. This fact is useful in Section IV-B where we
show that circumcenter and incenter Voronoi configurations
are asymptotically optimal forM andE , respectively.

A. Coincident configurations are not minima of the maximum
error variance

In this section, we examine the effect of the location of a
subset of agents on the error variance terms. In particular we
are interested in comparingσ2(s;P ) againstσ2(s; iF(P )) for
configurationsP ∈ Scoinc. The following lemma provides a
useful decomposition ofσ2.

Lemma IV.1 The estimation error variance function may be
written in the form

σ2(s;P ) = σ2(s;P ) −

(

N (s, p1;P )
)2

σ2(p1;P ) + τ2
, (6)



with N (s, p1;P ) = g(‖s − p1‖) − cT (s, P )Στ (P )−1c(p1, P )
and P = (p2, . . . , pn) ∈ Dn−1.

This fact may be proved using [16, Proposition 8.2.4] for the
inverse of a partitioned symmetric matrix. Equation (6) may
be applied repeatedly to isolate the effects of any subset of
locations inP . In the following proposition we consider the
behavior ofM as agents move aroundD. It can be proved by
showing that, under the given assumptions, forP ∈ D \Scoinc

andP ′ ∈ D
⋂

Scoinc, limP→P ′ σ2(s;P ) = σ2(s; iF(P ′)).

Proposition IV.2 (Continuity of estimation error variance)
Let Z be second-order stationary with isotropic covariance
function,Cov[Z(p1), Z(p2)] = g(‖p1 − p2‖), with g : R≥0 →
R≥0 differentiable. Assumeg′(0) 6= 0 and τ2 = 0. Then, for
s ∈ D, the error variance,(p1, . . . , pn) 7→ σ2(s; p1, . . . , pn) is
continuous. Moreover,σ2(s;P ) = σ2(s; iF(P )) for P ∈ Scoinc.

Under the assumptions of Proposition IV.2, we can extend
the mean-squared error function by continuity to include
configurations inScoinc. With a slight abuse of notation, in
the case of no measurement error, we useσ2(s;P ) to denote
σ2(s; iF(P )) for P ∈ Scoinc.

Proposition IV.3 (Minima of M are not in Scoinc) Let P † ∈
Dn be a strict local minimum of the mapP 7→ M(P ). Under
the assumptions of Proposition IV.2,P † 6∈ Scoinc.

Proof: We proceed by contradiction. AssumeP † ∈ Scoinc.
Consider a configurationP ∈ Dn \ Scoinc in a neighbor-
hood of P † such that iF(P †) ⊂ iF(P ). Let s, s† ∈ D
such thatM(P ) = σ2(s;P ) and M(P †) = σ2(s†;P †).
Using Lemma IV.1 and Proposition IV.2, one can deduce that
σ2(s;P †) ≥ σ2(s;P ). By the definition ofM, σ2(s†;P †) ≥
σ2(s;P †). ThereforeM(P †) = σ2(s†;P †) ≥ σ2(s;P †) ≥
σ2(s;P ) = M(P ), which is a contradiction.

B. Multicenter Voronoi configurations are asymptotically op-
timal

Let us consider the objective functionsM andE introduced
in Section III but with covariance functionCk, k ∈ N. This is
equivalent to considering the correlation,ρk. As k grows, the
correlation between distinct points inD vanishes. Note thatρk

retains much of the shape of the original correlation function
(e.g. smoothness, range, etc), so this analysis is helpful in
determining the properties of the original problem as well.
To ease the exposition, we denote byc

(k), respectivelyΣ(k)
τ ,

the vectorc, respectively the matrixΣτ , with each element
raised to thekth power. Similarly, letM(k), E(k) : Dn → R

be defined as
M(k)(p1, . . . , pn) = gk(0) − min

s∈D
{(c(k))T (Σ(k)

τ )−1
c
(k)},

E(k)(p1, . . . , pn) = −
∣

∣

∣
Σ(k)

τ (p1, . . . , pn, γ(p1), . . . , γ(pn))
∣

∣

∣
.

First we establish a result on the cardinality of the minimum
distance set. LetCmds : R

d×Dn → R such thatCmds(s, P ) =
g(‖s − p‖), for anyp ∈ mds(s, P ). Note thatCmds is well-
defined.

Proposition IV.4 (Cardinality of minimum distance set)
Let the covariance function C be contin-
uous. For P ∈ Dn \ Scoinc, one has
min
s∈D

{Cmds(s, P ) |mds(s, P )|} = min
s∈D

{Cmds(s, P )}.

We are now ready to prove one of the main results of the
paper. The proof follows a similar line of reasoning to [1].

Theorem IV.5 (Minima of M under near independence)
Let Pmcc ∈ Dn be a global minimizer of the multi-
circumcenter problem. Then, ask → ∞, Pmcc asymptotically
globally optimizesM(k), that is,M(k)(Pmcc) approaches a
global minimum.

Proof: Note that minimizing M(k) is equiv-
alent to finding the tuples P which maximize
the function L(k) : Dn → R defined as
L(k)(P ) = min

s∈D

{

(c(k)(s, P ))T (Σ(k)
τ (P ))−1(c(k)(s, P ))

}

.

Let λmin and λmax : Dn × R → R be such thatλmin(P, k),
λmax(P, k) denote, respectively, the minimum and the
maximum eigenvalue ofΣ(k)

τ (P ). We can see thatL(k)(P ) is
bounded above byλmax(P, k)

∑

p∈P g(‖s− p‖)2k and below
by λmin(P, k)

∑

p∈P g(‖s− p‖)2k. For a givens, in terms of
the minimum distance set we can write

∑

p∈P

g(‖s−p‖)2k =
∑

p∈mds(s,P )

g(‖s−p‖)2k+
∑

p∈P\mds(s,P )

g(‖s−p‖)2k

= |mds(s, P )|Cmds(s, P )2k +
∑

p∈P\mds(s,P )

g(‖s − p‖)2k.

As k → ∞ the elements in the minimum distance set
dominate, so we are left with

∑

p∈P

g(‖s − p‖)2k = |mds(s, P )|Cmds(s, P )2k+

+ o(Cmds(s, P )2k).

From Proposition IV.4,

min
s∈D

{|mds(s, P )|Cmds(s, P )} = min
s∈D

{Cmds(s, P )},

so we can write

min
s∈D

{

∑

p∈P

g(‖s − p‖)2k
}

= min
s∈D

{

Cmds(s, P )2k (1 + o(1))
}

.

Consider, then, comparing an arbitrary configurationP ∗

against a global minimizer ofHDC, say Pmcc. In the zero
measurement error case, by Proposition IV.3, we can assume
without loss of generality thatP ∗ 6∈ Scoinc. Therefore, no
matter what the value ofτ is, we can safely use the eigenvalues
of (Σ(k)

τ )−1 to provide bounds. Specifically,
L(k)(P ∗)

L(k)(Pmcc)
≤ (7)

λmax(P
∗, k)min

s∈D

{

Cmds(s, P
∗)2k (1 + o(1))

}

λmin(Pmcc, k)min
s∈D

{

Cmds(s, Pmcc)
2k (1 + o(1))

} .

Next we take a closer look at the eigenvalues. Note that if
we divideΣ

(k)
τ (P ) by the common factor of(g(0)+ τ2)k, the

resulting correlation matrix becomes diagonal for largek. This
gives uslimk→∞ 1/(g(0) + τ2)kΣ

(k)
τ (P ) = In, and it can be



seen thatλmin(P, k)/(g(0) + τ2)k and λmax(P, k)/(g(0) +
τ2)k both tend to1 for any configurationP . Finally, since
Pmcc minimizes the maximum distance to any points ∈ D,
it maximizes the minimum covariance, so for anyP ∈ Dn,
mins∈D Cmds(s, P ) ≤ mins∈D Cmds(s, Pmcc). Thus the ra-
tio (7) is bounded by1 + o(1). Therefore, in the limit as
k → ∞, minimizing M(k) is equivalent to solving the multi-
circumcenter problem.

The proof of the theorem can be reproduced for local
minimizers of the multi-circumcenter problem to arrive at the
following result.

Corollary IV.6 Let Pmcc ∈ Dn be a local minimizer of the
multi-circumcenter problem. Then, ask → ∞, Pmcc asymp-
totically optimizesM(k), that is,M(k)(Pmcc) approaches a
minimum.

According to [11], under certain technical conditions, so-
lutions to the multi-circumcenter problem are circumcenter
Voronoi configurations. Next, let us present a similar asymp-
totic result for the extended prediction variance.

Theorem IV.7 (Minima of E under near independence)
Let Pmic ∈ Dn be a global maximizer of the multi-incenter
problem with lowest index. Then, ask → ∞, Pmic asymptot-
ically globally optimizesE(k), that is,E(k)(Pmic) approaches
a global minimum.

Proof: Expanding the objective function for asymptoti-
cally dominant terms, we may write

E(k)(P ) = −(g(0)k + τ2)2n +
(

g(0)k + τ2
)2n−2

J (k)(P )+

+ o
(

(

g(0)k + τ2
)2n−2

J (k)(P )
)

,

where

J (k)(P ) =
∑

i6=j

g(‖pi − pj‖)
2k +

n
∑

i,j=1

g(‖pi − γ(pj)‖)
2k+

+
∑

i6=j

g(‖γ(pi) − γ(pj)‖)
2k.

Asymptotically all but the largest terms inJ (k)(P ) will drop
out, and minimizingE(k)(P ) becomes equivalent to mini-
mizing those terms. The largest terms inJ (k)(P ) correspond
to the shortest distance between the locations of either the
agents or their reflected images. For any two agent locations,
pi, pj ∈ D, and any of their reflectionsγ(pi), γ(pj) the
minimum distance between any two of the four points can be
reduced tomin {‖pi − pj‖, ‖pi − γ(pi)‖, ‖pj − γ(pj)‖} (note
that this is not in general true for non-convex domains).
Thus the shortest distance between agents inP and their
reflections may be expressed as2HSP(P ), though the index
of P might be larger than1. Therefore we haveJ (k)(P ) =
N(P )

(

g(2HSP(P ))2k
)

(1 + o(1)). Consider comparing an ar-
bitrary configuration,P ∗ ∈ Dn againstPmic. We have

J (k)(Pmic)

J (k)(P ∗)
=

N(Pmic)
(

g(2HSP(Pmic))
2k

)

(1 + o(1))

N(P ∗) (g(2HSP(P ∗))2k) (1 + o(1))
.

If P ∗ is not a global solution of the multi-incenter problem,
we haveHSP(Pmic) > HSP(P

∗), and sinceg(·) is decreasing
this gives us

lim
k→∞

J (k)(Pmic)

J (k)(P ∗)
= 0.

If, on the other hand,P ∗ is a global solution of the multi-
incenter problem, then, using the fact thatPmic has the lowest
index among all of them, we deduceJ

(k)(Pmic)
J(k)(P∗)

≤ 1+o(1).
The proof of the theorem can be reproduced for isolated

local maximizers of the multi-incenter problem to arrive at
the following result.

Corollary IV.8 Let Pmic ∈ Dn be an isolated local maxi-
mizer of the multi-incenter problem. Then, ask → ∞, Pmic

asymptotically optimizesE(k), that is,E(k)(Pmic) approaches
a minimum.

According to [11], under certain technical conditions, so-
lutions to the multi-incenter problem are incenter Voronoi
configurations.

C. Distributed coordination algorithms

Given the results in Theorems IV.5 and IV.7, it is of
interest to design coordination algorithms that steer a network
of mobile agents towards circumcenter and incenter Voronoi
configurations. We do this following the exposition in [11].In
light of the results in Section IV-B, this enables the network to
perform a spatial prediction which is asymptotically optimal as
k → ∞. Note that these algorithms are not intended to provide
optimal trajectories for multiple sequential measurements.
That problem is left for future work.

Let us assume each agent can move according to a first-
order dynamical model̇pi = ui, i ∈ {1, . . . , n}. Consider the
following coordination algorithms

ṗi = CC(Vi(P )) − pi, (8a)

ṗi ∈ IC(Vi(P )) − pi, (8b)

for eachi ∈ {1, . . . , n}. Note that (8b) is a differential inclu-
sion. We understand its solutions in the Filippov sense [17].
Both coordination algorithms are Voronoi distributed, meaning
that each agent only requires information from its Voronoi
neighbors in order to execute its control law. The equilibrium
points of the flow (8a) are the circumcenter Voronoi configu-
rations, whereas the equilibrium points of the flow (8b) are
incenter Voronoi configurations. Furthermore, the evolution
of HDC along (8a) is monotonically decreasing, while the
evolution ofHSP along (8b) is monotonically increasing. The
convergence properties of these coordination algorithms,as
well as alternative flows with similar distributed properties
that can also be used to steer the network to center Voronoi
configurations, are studied in [11].

V. SIMULATIONS

With the aim of illustrating the results presented
in Section IV, we performed simulations for both
objective functions M and E with n = 5 agents.
In our simulations, we used as domainD the



convex polygon with vertices {(0, 0.1), (2.5, 0.1),
(3.45, 1.6), (3.5, 1.7), (3.45, 1.8), (2.7, 2.2),
(1.0, 2.4), (0.2, 1.3)} and as isotropic covariance the
one defined viag : R → R, g(‖s1 − s2‖) = e−

1
5‖s1−s2‖. Note

that the mean function,µ, does not play a role in determining
the optimal network configurations. Figure 1 shows the
multicenter configurations obtained with the flows (8).

(a) (b)

Fig. 1. Multicenter configurations found from different random starting
positions using (a) the flow (8a) and (b) the flow (8b).

A. Analysis of simulations forM(k)

Using M(1) we ran over1000 random trials, each time
running a gradient descent algorithm, and chose the local
minimum configuration with the smallest value ofM(1) to
be our approximation of a global minimum. From this config-
uration P∗, we generated a multi-circumcenter configuration
using (8a), depicted in Figure 1(a). For increasing values
of k, we ran a gradient descent ofM(k) to find the best
local configuration nearP∗. We plottedM(k) as calculated
with this new configuration againstM(k) as calculated with
the multi-circumcenter configuration. For comparison, we also
plotted the performance of a random (static) configuration
which was not a local minimum. Figure 2 illustrates the
result in Theorem IV.5. We halt the experiment at around
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Fig. 2. Value ofM(k) for multi-circumcenter (solid), approximated global
minimum (dashed) arrived at by gradient descent for each valueof k, and
random (dotted) configurations of 5 agents for increasingk. The covariance
function is exponential.

k = 15 because the performance of the circumcenter Voronoi
configuration becomes impossible to distinguish from the one
of the minimizer ofM(k) at this resolution.

B. Analysis of simulations forE(k)

Using E(1) we ran over1000 random trials, each time
running a gradient descent algorithm, and chose the local

minimum configuration with the smallest value ofE(1) to
be our approximation of a global minimum. From this con-
figuration P∗ we generated the multi-incenter configuration
using (8b), depicted in Figure 1(b). For increasing values of
k, we ran a gradient descent ofE(k) to find the best local
configuration nearP∗. We plottedE(k) as calculated with this
new configuration againstE(k) as calculated with the multi-
incenter configuration. For comparison, we also plotted the
performance of a random (static) configuration which was
not a local minimum. Figure 3 illustrates the result stated in
Theorem IV.7.
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Fig. 3. Value of E(k) for multi-incenter (solid), approximated global
minimum (dashed) arrived at by gradient descent for each valueof k, and
random (dotted) configurations of 5 agents for increasingk. The covariance
function is exponential. The performance of the global and multi-incenter
configurations looks identical even though configurations are different at
eachk.

Remarkably, the performance of the incenter Voronoi con-
figuration and the minimizer ofE(k) are almost identical, even
for low values ofk. The numerical simulations suggest that
multi-incenter Voronoi configurations are near-optimal for the
extended prediction criterion.

VI. CONCLUSIONS

We have used the maximum error variance and the extended
variance of the LUMVE as metrics for optimal placement
of mobile sensor networks estimating random fields. We
have shown that under the assumption of near independence,
circumcenter configurations minimize the maximum error vari-
ance and incenter configurations minimize the extended vari-
ance of the estimator. Under limited time or energy resources,
or as a starting point for further exploration, a group of robotic
sensors can begin by moving toward these configurations to
start the estimation procedure.

Future work will explore: (i) regarding the asymptotic
analysis, the determination of lower and upper bounds on the
parameterk that guarantee that multicenter Voronoi config-
urations achieve a given a desired level of performance. In
particular, we would like to determine the near-optimalityin
general of incenter Voronoi configurations for the extended
variance criterion; (ii) the extension of the results to similar
error metrics for the universal kriging predictor, where the
mean function is unknown; and (iii) the characterization ofthe
trajectories (rather than configurations) that provide optimal
estimates of the random field as agents reconfigure and take



successive measurements over time. Consideration will also
be given to fields which change over time, and to distributed
methods for estimation and data fusion.
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