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Abstract—This paper considers the deployment of a net- to distributed computation, we provide a constant-factor
work of robotic agents with limited-range communication  gpproximation via another aggregate objective functioe. W
and anisotropic sensing capabilities. The natural locational ~n5racterize the smoothness properties of the latteriimct

optimization function to measure the network coverage of the . . ; ) .
environment has a gradient which is not amenable to distributed and show that its gradient is spatially distributed overithe

computation. We provide a constant-factor approximation of limited Delaunay graph. Third, we propose a gradient ascent
this measure via another objective function, whose gradient is algorithm to optimize the network coverage of the envi-

spatially distributed over the limited-range Delaunay proximity  ronment and provide simulations to illustrate the algonith
graph. We characterize the smoothness properties of the latter execution
function, and propose a distributed deployment algorithm to Th L fi f thi . foll Secti I
optimize it. Simulations illustrate the results. € organizaton of this paper IS "’_‘S 0 _QWS' ec 'O_n,
presents useful concepts on Voronoi partitions, proximity
. INTRODUCTION graphs, and spatially distributed maps. Section Il intro-

Currently there is a large interest in the design of stablduces the locational optimization functions mentionedvabo
and decentralized control laws for distributed motion dpor discusses a constant-factor approximation between them,
nation. In this paper, we focus on the deployment of a robotfe"d analyzes their distributed character. Based on these
network where each agent is equipped with limited-rangSults, Section IV designs a deployment algorithm spgtial
omnidirectional communication and anisotropic sensing ca&listributed over the(r, )-limited wedge graph. Section V
pabilities (e.g., cameras). We model the restricted Sgnsoq)resents simulations of our algorlth_m. Con_clu5|ons andyla
range by defining a wedge-shaped region centered abcgaf future research are d|_§cussed in Section VI. The appen-
each agent's orientation with an angular width less than &ices gather several auxiliary results. For reasons ofespac
equal tor radians. Our objective is to design a distributedh® Proofs of some results is omitted, and will be presented
coordination algorithm that optimizes sensory coverage kgiSewhere.
the robotic network of a convex closed environment. I

The literature on coordination tasks for robotic systems is ) ) ) ) )
becoming quite extensive. A sample of the research cuyrentl N this section we present various notational conventions,
ongoing is presented in the recent special section [1] of tmipd.dlscuss usefgl notions from computgtlonal geometry. We
IEEE Control Systems Magazine. The deployment problefi®9in by presenting some general notation. ReR..o, and
considered here falls within the field of facility locatio]] X>o be the set czlf real, positive real, and no_n-negatlvde real
[3], [4], where one seeks to optimize the position of a numbdfUmpers. (Ii_eﬁF(RT) be the set of all finite pointsets iR".
of resources in order to provide better quality-of-service Of # GdR , letz= denote the transpose of Given a set
In particular, this paper builds on [5], which provides an® N R let co(S) andint(5) be the convex hull and the
overview of coverage control for mobile networks, and [6]INterior of S, respectively. Fop : R™ — R, integrable and
which models systems with limited-range interactions.edth 4 C R", let areag(A) = [, ¢(z)dz. Let B(z,r) denote
works on coverage problems include [7], [8], [9], [10]. ourthe closed ball centered at with radiusr, and arc(x,r)
technical approach builds on concepts and notions froﬁ’\e2 an arc segment @tB(z,r). Throughout the papef) C
computational geometry and geometric optimization, such & denotes a simple convex polygon tiameterof @ is
Voronoi partitions [2], proximity graphs [11], and spaljal 9€fined asliam(Q) = max, peq [l4 —gll- Lastly, define the
distributed maps [6]. Lastly, we refer to [12], [13], [14]rfo unit direction vectory = [cosf,sin§]' and the matrices
an exposition of the nonsmooth stability analysis toolsduse cos —sind -1 0
in our discussion. oty = [ } » Refy = { 0 1 } :

The contributions of the paper are threefold. First, we ] N o
define a novel proximity graph, termed tife, o)-limited A Voronoi partitions and boundary parameterizations
wedge graph, which is relevant in our deployment problem. We begin by defining the notion of Voronoi partition
Second, we introduce a locational optimization function tgenerated by a set of distinct points, and then extend this
measure the network coverage of the environment. Motivatetbtion to consider tuples of possibly coincident points.
by the fact that the gradient of this function is not amenable 1) Voronoi partitions for configurations with distinct

catio L 1 is with the A © and A - points: Let P = {pi,...,p,} C R? be a finite set. The
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. PRELIMINARY DEVELOPMENTS
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We will often useV; instead ofV;(P) to denote the Voronoi criteria established in [15, Theorems 7 & 8]. Specifically,
cell of agenti. Two agents andj are Voronoi neighbors if for n odd, ® corresponds to a Voronoi partition of the unit

V,nV; #0. circle if and only if

The section of the boundary &f(P) that corresponds to _
the intersection with/; (P) is (counterclockwise) parameter- Y .
, J > (=1 ¢iy; >0, forallie{l,...,n}. (3a)
ized as ,

. + p ]:0
Pi
i (8) = Tj +tRotz(p; —pi), t€le,dil, (1) If niseven® corresponds to a Voronoi partition of the unit

for somec;, d; € R. The corresponding outward unit normalCIrCIe if and only if

vector isn;; = 2=, see Figure 1. s {: 0, if r=1ands=n, (3b)

pill! Z(_l)i—r@

i=r

>0, if s—revenl<r<s<n.

peeneTT [ p6
| ; We then assigrV,, (P) = R;(®) for eachj € {1,...,k}.

The resulting partftion of) is referred to a®’(P, ®). Since
the partitioning ofV,. (P) varies with the choice o, we

define the set\ = {® = {¢1,...,0,} | @ satisfies (3).

We may now define thecollection of Voronoi partitions
generated byP as

V(P) = {V(P,®)} 4 -
Note that if P ¢ S, thenV(P) = {V(P)}.

B. Limited-range anisotropic sensory

Let P = (p1,...,pn) € Q" be a tuple of points
in @, where p; denotes the position of robot, and

Fig. 1. Voronoi partition and sensing regions correspogdina random |et ©@ = (917___’9n) e (Sl)" be a tuple of angles,

deployment of a robotic network. Each agent has a wedge-drsgresing T : ; ; _
region withae = & andr = 0.5. The various parameterizations of the where 0; mdlcate; nthe orientation of robat Folr nP B
Voronoi cell bounéary and wedge sensing region are spedifiedgentl. (pl’ s 7pn) € (R ) and© = (917 s ,Hn) S (S ) , we

_ - . ' _ o denote((p1,01),- .., (pn,0n)) € (R%2 x SH™ by (P, ©) with
2) Voronoi partitions for configurations with coincident 5 slight abuse of notation. We define the sensory region of

points: We have introduced Voronoi partitions defined bythe jth agent as the sector of a circle of radiyscentered
sets of distinct points. We will also find it necessary to conat p,, with orientation; and amplitude2a, a € (0, z.
sider tuples of elements i* of the form P = (p1,...,p.),  We call this region the wedge viewing region and denote it
i.e., ordered sets of possibly coincident points. For thigy wr.o(pi, 0;). For brevity, we occasionally refer to agent

reason, we introduce the natural immersign: (R*)" — s wedge byw,. The angular range indicatorfunction is
F(R?) that mapsP to the pointsefP containing all distinct defined as

points in P. The cardinality ofP is determined by whether

: z—p;)-(cos 0;,sin 6;
P is an element of the set la(z) = {L if arccos (‘( £ )”(Z_piH )l) <a,
N “ 0, otherwise

S = {(p1,...,pn) € RY) )

| p; = p; for somei,j € {1,...,n}, i # j}. We also define théimited-range indicatorfunction as
For P € S, the cardinality ofP is smaller tham, otherwise 1, if ||z —psl| <7
it is eXaCtIyn. ) ) ) 1§(Pi77') (Z) - 07 otherwise

We are now ready to consider the notion of Voronoi

partition generated by’ = (p1,...,p,). Let P = ip(P) = Then thewedge indicatorfunction is defined as
{r1,...,rm}, m < n. For eachj € {1,...,m}, if there is 1 11
only onei € {1,...,n} such thatp; = r;, setV;(P) = Wra(pi,0i) = o FB(py,r)
V;(P). Consider the case when there exjst, ..., ix} C It is convenient to decompose the boundary of the wedge
{1,...,n} such thatp;, = --- = p;, = r;. LetT' be a into the union of two line segments and an arc. We denote the
circle centered at; contained withinV,.,. Let Ly,...,Lr  wedge boundary line segments by, and dw; . We then

be a collection of rays emanating from and letz; be the jntroduce the following (counterclockwise) parametetizza
point I' N L; for eachi € {1,...,k}. Define the anglep;  of g, , (p;, 0;) = Ow; Uare(p;,r) Udw; as
as the length of the arfe;, z;41], so thath:1 ¢; = 2. ’ ' '

Then the set of angle® = {¢1,..., ¢} define a partition Vow- () = Pi + tup—a, tel0,r], (4a)
of V., into k s_ub-reglons{Rl(ch oo, R (@)} We wish to Nare(pew) (1) = Pi + Ttg 11, tel-a,a], (4b)
put a constraint ord to ensure that these regions represent A o . ‘e 4

a Voronoi partition. This is done so by administering the Yout (1) =i+ (r = Dugsa, tE[0,7]. (4c)



The corresponding (outward) normal vectors are

Noyw+ (@) = Refy ugyq, q € 3w;", (5a) &

q—Di
narc(piﬂ’)(Q) = la—pill’ q € arc(p;,r), (5b)
n@w; (q) = Refy UG+as qc 8wz_ (5C)

These parameterizations are illustrated in Figure 1. g 7/

-,

C. Proximity graphs and spatially distributed maps

A proximity graph functions assigns to a pointset a graph
whose vertex set is the pointset, and whose edge Setds , rom jeft to right, top to bottom: The Delaunay gragte 4-disk
determined by the relative location of its vertices. Theyraph, ther-limited Delaunay graph, and the:, a)-limited wedge graph
notion of proximity graph is useful to model the changingvhich correspond to the configuration in Figure 1.
interaction between the agents of a mobile network. The
reader is referred to [6], [11] for a detailed treatment.
Let X be ad-dimensional space composed of eitfit,
S or the Cartesian produ@®® x S92, whered; + dy = d.
Let G(X) be the set of directed graphs whose vertex set is

graph G and a vertexv, one can associate the set iof
neighborsand out-neighborsmaps N, Ng% : F(X) —
AJ%(X), defined as

Ek(a;)ent oﬂF(_Xt'). /-:aeroxilr;(i}/)graph fL:1nCti-f[)th : IE(X) T/ (V) ={q€ V| (qv) €& (Y U{v})},
associates € a graph with vertex se out (q)) — [g € v c (VU .
and edge sefg (), where&; : F(X) — F(X x X) has the NG (V) =1 [ (v.4) € & b}
property thatég (1) C ¥ x ¥\ diag(? x v). For the (r, «)-limited wedge graph, we define the neighbor

The following proximity graph functions are relevant tomaps
our discussion: in PO

(i) the Delaunay graph? — Gp(P) = (P,Eg, (P)) G ) (P ©)

— =
with Y orap P oot = {(p;.0)) € (P.O) | Vi(P) NV (P) Nwr (9. 0;) # 0

Ego(P) = {pi,p; € P, xP | ViNV; # 0} G0 (P ©)
oA T AR E B AR R 7 = {(p-0,) € (P.©) | Vi(P) N V;(P) Nwz (b 0:) # 0}.
(i) the r-disk graphP — Ggisk(P, 1) = (P, Eguu(P, 7)),

with In other words, agent is an in-neighbor of agentif it is a

nearby neighbor who “sees” agehtind is an out-neighbor
Eguu(P,T) of agent; if it is “seen” by agent;.
_ . . o ) A proximity graph G, is spatially distributedover an
= {pipj) € P x P\ diag(P x P) [ [lp: = psll < 7} undirected proximity grapld, if, for all v € 7,

(iii) the r-limited Delaunay (or limited-range De_launay) é‘?’v(q/) _ é?,'l;(Ngz,aj(V))a
graph P gLD(P’T) = (P’ggLD (P7T)) consists of AN (q)) = Nout N, %
the edges(pi,p;) € P x P\ diag(P x P) with the Giw (V) = NG Naa o (V))-

property that Lemma Il.1 The (r, «)-limited wedge graphG,w is spa-

(‘/i(P) N B(p;, %)) n (Vj(P) N Blp;, %)) £0; tially distributed over the--limited Delaunay graphg, p.

(v) the (r,a)-limited wedge graph (P,®) s Functions which are spatially distributed over proximity
Gw(P,0) = (P&, (P,0©)) consists of the graphs do not necessarlly_ have to be deflned_as graph
edges((p;, 0:), (p;,0;)) € (P,O) x (P,O) with the funcpons. More generally, given a skt and an undlr_ected
property that p_rox_|m|ty graph g,_ the mapf : X" — Y™ is spatially

distributed over G if there exists mapy; : X x F(X) —

(Vi(P)nV;(P)) N (wr (i, 0;) Uwr (p;,0;)) #0. Y™, for i € {1,....n} with the property that for all
2 z (v1,...,0,) € X",

Note that the orientation of the agents does not affect x

the computation of the-limited Delaunay graph. The- filvr - svn) = filvi Ng.i(vr, - vn)),

limited Delaunay graph is undirected, whereas {hgx)- where f; denoted theéth component off. Thus to compute

limited wedge graph is directed. Clearly it is possible fothe ith component of a spatially distributed function, one

VinV; Nwpa(pi,bi) # 0 andV; NV, Nw,o(p;,0;) =0 needs only to know the location of the vertexand the lo-

simultaneously (see Figure 2). cation (and possibly orientation) of its neighbors on thegpdr

For a directed proximity graph with vertex a vertexg  G(7). This generalization allows for objects like vector fields
is anin-neighbor of v if the ordered pair(q,v) € £5(%). and set-valued maps to seen as spatially distributed over

Likewise, vertexv is anout-neighborof ¢. To a proximity proximity graphs when defined in the appropriate context.



I11. L OCATIONAL OPTIMIZATION: NETWORK Proposition 1ll.1 Let f be a strictly positive performance
PERFORMANCE AND SMOOTHNESS ANALYSIS function. Consider the objective functions defined (&)

We begin by introducing measures of the sensory covera@8d (7)- Then, for all(P, ©) € X,
of the environment by our robotic network. Hu(P,0) < H(P,©) < Hy(P,0) + C
A. Locational optimization functions Hy(P,©) < H(P,0) < KHy(P,0),

Let ¢ : @ — R>o be an integrable function that we o . [ #]loc areas (Q)
term density function It can be thought of as a measureWherec = [[flloc area(Q) and K =1+ ef(diam(Q))

of the probability of some event taking place ovgr Due i i )
to noise and interference, the sensory performance of ea@gmark Ill.2- For any configuration” ¢ S with the prop-
agentp; degrades at poing in proportion to the distance &Y that [lp; — p,l| is strictly greater thargr for each

¢ — ps|l. Thus, we introduce a continuously differentiable’»J € {1,-.-,n}, it is not hard to show that the values of
strictly positive, non-increasing functiofi : Ry — Rso /1 and17-£;,/ coincide, i.e.H(P,©) = Hy(P,0), for any
to measure this degradation. In other words)q — p;) © € (85" °

provides a quantitative assessment of sensory qualityeof t

ith robot at pointg € Q. We refer tof as aperformance .
function We next explore the smoothness properties of the loca-

Consider the locational optimization functiod : (Q X tional Optimization fUnCtiOfV‘[q/ and compute its gradient.
SH™ — R, defined by

%. Smoothness properties &f;,

Theorem IIl.3 Given a density functiony and a perfor-

H(P,0) :/ - max  f(llg — pil)luw, . pi.0)(@)@(q)dg.  mance functionf, the locational optimization functiofi,,
Q 1€{l,-n} ’ ©) is globally Lipschitz on(@Q x S')".
This function provides an expected value of the sensory . PT0of LetP = (pi,....p,) € Q" and for eacty € Q
performance by the robotic network weighted by the densit§€fin€min(¢) € P so that|g—pmin(q)|| = minseqr,. ny [lg—
function ¢. Hence, it is of interest to find maximizers #f. pil|. For the sake of simplicity, denoignin(¢) 8spmin. Then
However, its gradient is in general not distributed overithe W€ ¢an Write}y as
limited Delaunay of(r, «)-limited wedge proximity graphs.
Figure 1 iIIustratesr(this )assertion. The sensing regiop-of Ho(P,0) = /Qf(llq = Pminl|) L (prin, 6min) (4) £() g,
is the only one that contains the grey region depicted in the . N
plot. Therefore, changes i will affect the gradient ofy ~We now introduce a useful partition @. For W C @,
with respect tap,. However,p, andps are not neighbors in recallive = Q\W. Given(P,0) = ((p1,91) cees (pn,9n)>,
the r-limited Delaunay or(r, «)-limited wedge graphs. (P, )
Our approach is to provide an alternative locational op~ ’

timization function that approximate®(. Specifically, we W,
define

= ((p'l, 07)..., (o, 9;)), define the following sets

n = ( mie{l ..... n} wr,oc(piy 91)0) N ( Uie{l ..... n} Wr,a (pi’ y ei’)c) )
Ho(ro) =3 [ o 08Py @@y,
i=1 i

(7) = ( Uie{l,...,n} wr,a(pia 01)) N (Uie{l,...,n} wr,a(pi’a 91’)) )

Note that?, sums the individual sensory performance of ¥,

the robots within the intersection of their respective sans .
wedge and Voronoi cell. Next, we establish two important:(UiG{1 ’’’’’ n} wm(piﬁi)) n (miE{l ----- n} wrva@i”ei’)) ’
properties of this function. On one hand, we show that it 13/,

provides a good approximation df. On the other hand,

we characterize its smoothness properties, and compute ﬁ( Uie{1,...n} wm(pi”ai’)> n (miE{L-u,n} wr-,oé(pi’ai)c)-

(generalized) gradient. Note thatW, ..., W, form a pairwise disjoint partition of

B. Additive and constant-factor approximations Q. We then write,

We next provide an additive and constant factor approx- Hy(P,0) — Hy(P',0)
imation of the locational optimization functiokl by H,.

4
Givene > 0, let = Z/ (f(Hq — Pminl[) L, (prin,min) (4)
n k=1"Wk
. 1\n g .
L ={(P,O) e (Q@xS)"| ;areaqa(vz Nw;) > €}. ~ £(lq _p;nin”)lwu(p/m,nﬂfmn)(q)(Q))(b((Z)dQ'

The constant-factor approximations are restricted to genfi Now we shall find an upper bound of this sum. Fo&e
urations inX.. W1, both 1y, (prin6me) (@) @NA 1oy (6.9 (q) are zero, so



the integral oveld; vanishes. Foy € W, we have, Theorem IIl.4 Given a density functiony and a perfor-

mance functionf, the locational optimization functioft,,
‘ / Flg = pminll) L (pmin,0min) (@) is continuously differentiable ofint(Q) x S*)\ S and for
) ’ eachi € {1,...,n} the gradient ofH, is given as,
Fllla = Phinl) Lw. 07 1(0) ) ¢(q)dg OH 9
| 2 f(la ~ pil)ola)da (82)
= / |£(llg = prminll) = £(lla = Phrinl) | & () da Pi  TVinura(pi0) OPi
Wa
" / s fla= mlotang, o da
< [ NZ] ol = = sl 01t @ 0w
Wa Tl 0o i
q + / £l = pi1) (@10 axc(prry
< ] o LS RO ; s () e
| _ q—pill)é(a)(q — 2p;)dq
’ | area@1P Pl Z QHPJ o ( o Slla=pilDo(@ g = 2p))
Here, we have made use of the fact that forsat Q, the ”él
maps |lg — pminll — f(ll¢ — pminl]) @nd P — |lg — pminl| —/ f(lg —pilo(a) (g — 2pj)dq)7
are both continuous on a compact domain and therefore VinViNw;

Lipschitz continuous with a Lipschitz constant equal tarthe gng
respective derivatives. Fare W5 we have,

OH
= [ la=wilf G- miotada (80
‘/ Hq menH) wa(pmin,gmin)(q) v 8wi nv;
- llg = pill f(lg — pill)¢(a)dg
— fllg = pminl) Yo (o1, 9'm,n)(CI))¢(Q)d(J’ /8wmw
< o d wheren .y : (Vi Nwy o (pr, O1)) — R2? is the normal vector
a / J(llg = pminl}é(g)da parameterization of the specified boundaries as described i
Section II-A andhre;(p;,r), L € {1,...,m;} are the arcs in
< flseliéllo Z / d4 the boundan¥; 1 arc(p.. ).
W, a plaa )016{1 ..... ,n} Wr, a(pll 0, /)
Proof: Let P € int(Q) \ S. Then we can write
< flleli¢lo Z / dg equation (7) as
wra plae )mwha(pi/vei/)c n
where ¢ = max,cd(q). We then observe Hy = Z/ flg = pilD)Yuw, o0, (@) 0(a)dg

/ s
Wr o (Pi,0i) Nwr o (p;r,0;7)¢

—Z/MWM (llg - pill)é(a)da

Note thatf(]l¢ — p:||) is continuously differentiable and for
fixed (P, ©) € int(Q)", the mapsg — f(|l¢ — p:||) and

1
< 2(1+ a)rllpi — il + 57216 — 6]

by Lemma C.1. Hence,

q — aPf(Hq p;||) are both measurable and integrable
’/ Flg = pminll) Lww (pmin,0min) (@) on Vi N wya(p;,0;). Also note since both the Voronoi
partition and the wedge are convex sets, their intersection
— fllq —pﬁqin\|)1wa(p;m,o,'nm)(Q)> ¢(q)dq‘ is also convex [6]. By Proposition B.%,, is continuously
n 1 differentiable and for eache {1,...,n},
ol 4 209 — ) n
< Ifllselldllo Y- 200+ @yrllps = pill+ 5710 = 61 p
=1 , op, PO =5-> | flla-pl)élods (@)
v v rNwp
= [ flldlle2(1 + a)r|| P — P'|| + 5120 — ©')). =
’ [ seilla- s
The integral ovelV, can be bounded in a similar fashion. B Vmwl Op; 4= Pk 144
We have now shown o Oy
+ / Y — Dk (V) 5—dv
[Ho(P,©)—Hy(P,0")| < L|P - P'| + M|© — O Z (Vi) 1 R )31%'

< max{M, L}(||P — P'|| + |6 — &)

To simplify the second term in this equation, note that
= max{M,L}H(P, @) - (P/, 9/)”

the boundaryd(Vi, N wy o (pk,0k)) is composed of a finite
i number of line segments and arcs, all of which have been
where L = HTEH areg (Q) + 4r(1 + a)||fll<ll¢lle and  parameterized previously in Section II-A. We first integrat

Hf||oo||<z>HQr Thus, H, is globally Lipschitz. ~ m  over the wedge boundaiy.NO(w,. o (pk, ) = ViN(Ow; U



Ow,, )U[L, arci(py, ) (see (4) ). This integral is nonzero only Remark 111.5 Using extension by continuity, we shall rede-
when k = i. Note that when there is a displacement in thdine the domain wheré{,, is continuously differentiable to
position of p;, the motion ofw, ,(p;,6;) (When projected include the boundary of). .

along the appropriate normal vector) is exactly the same as ) ) ) )
: T 9y _ The function’H, fails to be differentiable on the set
pi l.e., niy 5~ = n(. Hence, . . L N
() Opi defined in (2), so it will be necessary to characterize its
T 90 generalized gradient (see Appendix A). Recall that Foe
/ Fllg = pilDe(a)ngy ap; dg g V(P) is defined as an infinite family of Voronoi partitions
Vin(wg B O arelpem) ' (see Section II-A).

= [ gl da )
Vin(dw; Low;") ! Proposition 111.6 Let (P,0) € (Q x S')™. Then the gener-

alized gradient ofH is given by
+Z/ F(la = piléla)nz, . da.
arcy (ps,r) OHy(P,0O)
The remaining boundary segments that must be considered (P, Ty, if PgS,
define the reg'loniifkﬂvjmwm(p,?,ek) fOI']. e{l,...,n}. . = CO{(8£V7 agf_{)\vzw W eV(P)}, ifPeS.
To parameterize these boundaries, consider the map given
in (1). The derivative of this map with respect {9 is Proof: By (37?7 agg”)\v w, we mean the gradient
non-zero only within the regions; N V; N wy. o (pi, 0:) and direction resulting from takingl” as the Voronoi partition in
Vi NV Nwy o(pj, 0;), i.€., whenp; € N . (pi.00 (> ©) OF the evaluation of the expression (8). The result followsrfro
Whenpj € NQOSV 0, )(P 0). We separate these boundarleshe definition of the generalized gradient (cf. (11)). Ndtatt
accordingly. Next observe, the configurations it$ represent the set of points over which
0V 1 g ¢ ‘H., fails to be differentiable. [ |
ij = 5ni; + —— Rotz (p; — pi)
Op; 2 lp; — pill IV. A DISTRIBUTED ALGORITHM FOR LOCATIONAL
R 1 (s — Di +pj) OPTIMIZATION
2 py —pill ¥ 2 Here we present a distributed algorithm which maximizes
_ 27ij — Pj the locational optimization functioft,,. We implement our
lp; — il control law in continuous time and analyze its convergence
in ~ properties. Assume the evolution of the robotic agents ®bey
Forp; € Ngi, (p:.0,) (P> ©), the outward normal Vectoti; —  fro orqer dynamical system described by
is used and fom] e NQLW (pi.00) (1> ©), the inward normal _
vector nj; = —n,; is used to preserve counter-clockwise { Ds } _ [ U } ie{1,...,n}.
orientation with respect tp;. We place these formulations 0; i | ’

back into (9) to obtain the complete form of (8a). We implement a (generalized) gradient ascent of the loca-

To compute the partial derivative &, with respect tdi,  (ional optimization functiorf{, using the result in Proposi-
assume the same general form of (9) and same parametegs, 11.6. In other words, we set

zation given in (4). Since the boundatw, «(p;,6;)) N'V;

contains the only parameterization with a dependencyg;pn { Ui } = Ln(0Hy)(P,©). (10)
we have i
OHy We assume that the partition(P) is updated continuously.

T
00; (P,©) = /(9(““(% 0,)NVi Flly = pilho()n (v )ao dy. Note that this vector field is discontinuous and therefoee th
solutions of this system must be understood in the Filippov
sense. The following result can be stated.
to . Hence, the only regions WhICh need to be
considered are the line segmedts;” N V; andow; NV;. Theorem IV.1 Given a density functionp and a perfor-
For ¢ € dw;" we compute, mance functionf, the control law on(Q x S*)" defined
by (10) has the following properties:

Notice however, that the normal vectog;,, ., is orthogonal
6’Yarn:(p7 )
0

ny . 8’;?# =m" —t=|lvy,+ —pill- (i) the law is spatially distributed over the-limited
: i ‘ Delaunay graphG,p(P,r), and;
Hence, (i) the agents’ location with initial configuration
67 (Py,09) € (Q x S')™ converges asymptotically to the
/a . FUlour = pil) (w9, +) ™ %, o d’Yaw set of critical points ofH.
w. NV; :

Proof: Statement (i) follows from the fact that, ac-
:/a o, la = pil f(llg = pilDé(a)da-  cording to (8), the gradient of, depends only on the
wi Vs position and orientation gf; as well as those of its in and

A similar calculation is made for the integral owew, NV;.  out neighbors in ther, a)-limited wedge graptG,w, and,
This completes the proof. m according to Lemma 1.1, this graph is spatially distrilwlite
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We have introduced two aggregate objective functions
to measure the coverage of the environment provided by APPENDIXA
a group of robotic agents with limited-range anisotropic NONSMOOTH ANALYSIS
sensory. Based on considerations about the distributed com yere we review some basic concepts from nonsmooth
putation of the gradient information, we have selected th&nalysis. The reader is referred to [12], [13], [14] for a mor
objective function whose definition is based on a partitigni yetailed treatment.
of the environment. We have characterized the smoothnessg;om Rademacher’'s Theorem [12], locally Lipschitz func-

properties of this objective function, computed its gratie tjons are differentiable a.e. Iy denotes the set of points
and characterized its spatially-distributed charactemBin- i, RN where f fails to be differentiable and is any set of

ing these_ results with. tools from nonsmooth a_nalysis, Wkeasure zero, thgeneralized gradienof f is

have designed a gradient ascent strategy that is guaranteed

to achieve optimal network deployment. Further researdh wi 0f(z) = co{ lim df(x;) |z; — 2, ; € SUQs}. (11)
include the design and analysis of coordination algorithms e

implemented in discrete time, the synthesis of cooperativé point z € RY with 0 € 9f(z) is acritical point of f.
strategies to attain global optima of the aggregate objecti Let F : RN — 28" be a set-valued map. A solution to the
function, and the study of similar deployment problems inifferential inclusioni € F(z) on an intervalto, 1] C R is
nonconvex environments. defined as an absolutely continuous function [ty,t1] —



RY such thati(t) € F(z(t)) for aimost allt € [to,¢;]. Now,
consider the equation

a(t) = X(x(t)), (12)

APPENDIXC
AN UPPER BOUND ON THE AREA OF INTERSECTION
BETWEEN TWO CIRCULAR SECTORS

Lemma C.1 Denote a circular sector centered at point

where X : RY — RY is measurable and essentially locallyR? with orientationé € S*, radiusr € R, and angular width

bounded. Let
K[X](z) = m ﬂ co{ X (Bn(z,0)\ S)}, zecRY.

530 1u(S)=0

A Filippov solution of (12) on an intervaltg,t;] € R
is defined as a solution of the differential inclusian e
K[X](x). A setM is strongly invariantfor (12) if for each
xo € M, contains all maximal solutions of (12).

Let Ln : 28"
convex setS C RV its least-norm elementl.n(S)
proj S(0). Given a locally Lipschitz and regular functigh
consider

() = —Ln(0f)(x(t)) .-

In general, the vector fieldn(df) is discontinuous, and

13)

— R be the map that associates to eacl?h

a € (0,5] by wy«(p,0). Then the aread of w, o (p,0) N
wyo(p',0")¢ satisfies

1
A<2(1+a)r|p—p' + §T2|6‘ —0'].

Proof:  The area A equals are@v,.(p,0) U
w,o(p',0')) — 3r?a. To find an upper bound to

aredw, (p,8) Uw,(p',0")), consider the change in area
caused by a rotation and translationwof ,(p’, ') through
e angle||6 — ¢'|| and along the vectgs — p'. In particular,
let 1,02 be the projection angles of — p’ onto the
segments,, ls respectively. Construct the regiofs, B; as
parallelograms formed by — p’ and the segments and !,
respectively (see Fig 4). Note the area of bBthand B, can

therefore the solution of (13) must be understood in the

Filippov sense. Sincef is locally Lipschitz, Ln(9f) =

df almost everywhere. The following result guarantees the p ¥

convergence to the set of critical points fpf

Proposition A.1 Let S ¢ R™ be compact and strongly

invariant for (13). Then, any solution: : [tg, +o0) — RY

of (13) starting from a point inS converges asymptotically

to the set of critical points of contained inS.

APPENDIXB
A GENERALIZED CONSERVATION OF MASS LAW

The following result, originally stated and proved in [6],

Fig. 4. On the left is an arbitrary configuration of two intesng circular
sectors. On the right is an illustration of the various regievhich bound
the union of the sectors.

is an extension of the integral form of the Conservation-ofee bounded by||p—p'[| cos 31,2 < r|[p—p’||. Next, construct

Mass law in fluid mechanics.

Proposition B.1 Let {Q2(xz) C R? | z € (a,b)} be a piece-
wise smooth family of curves such tliatz) is strictly star-
shaped for allr € (a, b). Let the functionp : R?x (a,b) — R
be continuous orR? x (a,b), continuously differentiable
with respect to its second argument for alle (a,b) and
almost allg € ©(z), and such that for each € (a,b), the
mapsq — ¢(q,z) and g — g—i(q,m) are measurable, and
integrable on{(z). Then, the function

(a,b) > x — (g, x)dg

Q(x)
is continuously differentiable and
dp

d w(q,m>dqzzb/“ 924, 2)dg

- (14)

v
+/ o(v, z)n' () 7= dv,
o (v 2)n' () 5

wheren : 9Q(x) — R?, ¢ — n(q), denotes the unit outward
normal to9Q(x) at g € 92 (z), andy : S x (a,b) — R? is
a parameterization for the familyQ(z) ¢ R? | x € (a,b)}.

the regionS as an annular sector with inner raditisouter
radiusr + ||p — p’|| cos B2, and angular widthy. The area of
S can be bounded by (r + ||p — p/|| cos B2)%a — r?a <
2ra|lp — p’||. Lastly, construct the regiofi’ as a circular
sector with radius- and angular width|6 — ¢’||. The area
of the sectorT’ can be computed asr?||6 — ¢'||. Since any
configuration ofw, ,(p,#) U w,«(p’,8") can be contained
within the union of these regions with.. . (p’,0’), we are
able to define the upper bound b by

1
A = aredw, o (p,0) Uw,o(p',0")) — §r2a
<aredB; +Bs+S+1T)
1
<201+ a)rllp— ' + 31210~ 01,

as claimed.



