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Abstract— This paper considers the deployment of a net-
work of robotic agents with limited-range communication
and anisotropic sensing capabilities. The natural locational
optimization function to measure the network coverage of the
environment has a gradient which is not amenable to distributed
computation. We provide a constant-factor approximation of
this measure via another objective function, whose gradient is
spatially distributed over the limited-range Delaunay proximity
graph. We characterize the smoothness properties of the latter
function, and propose a distributed deployment algorithm to
optimize it. Simulations illustrate the results.

I. I NTRODUCTION

Currently there is a large interest in the design of stable
and decentralized control laws for distributed motion coordi-
nation. In this paper, we focus on the deployment of a robotic
network where each agent is equipped with limited-range
omnidirectional communication and anisotropic sensing ca-
pabilities (e.g., cameras). We model the restricted sensory
range by defining a wedge-shaped region centered about
each agent’s orientation with an angular width less than or
equal toπ radians. Our objective is to design a distributed
coordination algorithm that optimizes sensory coverage by
the robotic network of a convex closed environment.

The literature on coordination tasks for robotic systems is
becoming quite extensive. A sample of the research currently
ongoing is presented in the recent special section [1] of the
IEEE Control Systems Magazine. The deployment problem
considered here falls within the field of facility location [2],
[3], [4], where one seeks to optimize the position of a number
of resources in order to provide better quality-of-service.
In particular, this paper builds on [5], which provides an
overview of coverage control for mobile networks, and [6],
which models systems with limited-range interactions. Other
works on coverage problems include [7], [8], [9], [10]. Our
technical approach builds on concepts and notions from
computational geometry and geometric optimization, such as
Voronoi partitions [2], proximity graphs [11], and spatially
distributed maps [6]. Lastly, we refer to [12], [13], [14] for
an exposition of the nonsmooth stability analysis tools used
in our discussion.

The contributions of the paper are threefold. First, we
define a novel proximity graph, termed the(r, α)-limited
wedge graph, which is relevant in our deployment problem.
Second, we introduce a locational optimization function to
measure the network coverage of the environment. Motivated
by the fact that the gradient of this function is not amenable
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to distributed computation, we provide a constant-factor
approximation via another aggregate objective function. We
characterize the smoothness properties of the latter function
and show that its gradient is spatially distributed over ther-
limited Delaunay graph. Third, we propose a gradient ascent
algorithm to optimize the network coverage of the envi-
ronment and provide simulations to illustrate the algorithm
execution.

The organization of this paper is as follows. Section II
presents useful concepts on Voronoi partitions, proximity
graphs, and spatially distributed maps. Section III intro-
duces the locational optimization functions mentioned above,
discusses a constant-factor approximation between them,
and analyzes their distributed character. Based on these
results, Section IV designs a deployment algorithm spatially
distributed over the(r, α)-limited wedge graph. Section V
presents simulations of our algorithm. Conclusions and plans
for future research are discussed in Section VI. The appen-
dices gather several auxiliary results. For reasons of space,
the proofs of some results is omitted, and will be presented
elsewhere.

II. PRELIMINARY DEVELOPMENTS

In this section we present various notational conventions,
and discuss useful notions from computational geometry. We
begin by presenting some general notation. LetR, R>0, and
R≥0 be the set of real, positive real, and non-negative real
numbers. LetF(Rd) be the set of all finite pointsets inRd.
For x ∈ R

d, let xT denote the transpose ofx. Given a set
S in R

d, let co(S) and int(S) be the convex hull and the
interior of S, respectively. Forφ : R

n → R≥0 integrable and
A ⊂ R

n, let areaφ(A) =
∫

A
φ(x)dx. Let B(x, r) denote

the closed ball centered atx with radius r, and arc(x, r)
be an arc segment of∂B(x, r). Throughout the paperQ ⊂
R

2 denotes a simple convex polygon thediameterof Q is
defined asdiam(Q) = maxq,p∈Q ‖q − p‖. Lastly, define the
unit direction vectoruθ = [cos θ, sin θ]T and the matrices

Rotθ =

[

cos θ − sin θ

sin θ cos θ

]

, Refy =

[

−1 0
0 1

]

.

A. Voronoi partitions and boundary parameterizations

We begin by defining the notion of Voronoi partition
generated by a set of distinct points, and then extend this
notion to consider tuples of possibly coincident points.

1) Voronoi partitions for configurations with distinct
points: Let P = {p1, . . . , pn} ⊂ R

2 be a finite set. The
Voronoi partition generated byP is the collectionV(P) =
(V1(P), . . . , Vn(P)) where,

Vi(P) = {q ∈ R
2 | ‖q − pi‖ ≤ ‖q − pj‖, for all pj ∈ P}.



We will often useVi instead ofVi(P) to denote the Voronoi
cell of agenti. Two agentsi andj are Voronoi neighbors if
Vi ∩ Vj 6= ∅.

The section of the boundary ofVi(P) that corresponds to
the intersection withVj(P) is (counterclockwise) parameter-
ized as

γij(t) =
pi + pj

2
+ t Rotπ

2
(pj − pi), t ∈ [ci, di], (1)

for someci, di ∈ R. The corresponding outward unit normal
vector isnij =

pj−pi

‖pj−pi‖
, see Figure 1.
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Fig. 1. Voronoi partition and sensing regions corresponding to a random
deployment of a robotic network. Each agent has a wedge-shaped sensing
region with α = π

4
and r = 0.5. The various parameterizations of the

Voronoi cell boundary and wedge sensing region are specifiedfor agent1.

2) Voronoi partitions for configurations with coincident
points: We have introduced Voronoi partitions defined by
sets of distinct points. We will also find it necessary to con-
sider tuples of elements inR2 of the formP = (p1, . . . , pn),
i.e., ordered sets of possibly coincident points. For this
reason, we introduce the natural immersioniF : (R2)n →
F(R2) that mapsP to the pointsetP containing all distinct
points inP . The cardinality ofP is determined by whether
P is an element of the set

S = {(p1, . . . ,pn) ∈ (Rd)n (2)

| pi = pj for somei, j ∈ {1, . . . , n}, i 6= j}.

For P ∈ S, the cardinality ofP is smaller thann, otherwise
it is exactlyn.

We are now ready to consider the notion of Voronoi
partition generated byP = (p1, . . . , pn). Let P = iF(P ) =
{r1, . . . , rm}, m ≤ n. For eachj ∈ {1, . . . ,m}, if there is
only one i ∈ {1, . . . , n} such thatpi = rj , set Vi(P ) =
Vj(P). Consider the case when there exist{i1, . . . , ik} ⊂
{1, . . . , n} such thatpi1 = · · · = pik

= rj . Let Γ be a
circle centered atrj contained withinVrj

. Let L1, . . . , Lk

be a collection of rays emanating fromrj and letxi be the
point Γ ∩ Li for eachi ∈ {1, . . . , k}. Define the angleφi

as the length of the arc[xi, xi+1], so that
∑k

i=1 φi = 2π.
Then the set of anglesΦ = {φ1, . . . , φk} define a partition
of Vrj

into k sub-regions{R1(Φ), . . . , Rk(Φ)}. We wish to
put a constraint onΦ to ensure that these regions represent
a Voronoi partition. This is done so by administering the

criteria established in [15, Theorems 7 & 8]. Specifically,
for n odd, Φ corresponds to a Voronoi partition of the unit
circle if and only if

n−1
∑

j=0

(−1)jφi+j > 0, for all i ∈ {1, . . . , n}. (3a)

If n is even,Φ corresponds to a Voronoi partition of the unit
circle if and only if

s
∑

i=r

(−1)i−rφi

{

= 0, if r = 1 ands = n,

> 0, if s − r even,1≤r<s≤n.
(3b)

We then assignVpij
(P ) = Rj(Φ) for eachj ∈ {1, . . . , k}.

The resulting partition ofQ is referred to asV(P,Φ). Since
the partitioning ofVrj

(P) varies with the choice ofΦ, we
define the set∆ = {Φ = {φ1, . . . , φn} | Φ satisfies (3)}.
We may now define thecollection of Voronoi partitions
generated byP as

V(P ) =
{

V(P,Φ)
}

Φ∈∆
.

Note that ifP 6∈ S, thenV(P ) = {V(P)}.

B. Limited-range anisotropic sensory

Let P = (p1, . . . , pn) ∈ Qn be a tuple of points
in Q, where pi denotes the position of roboti, and
let Θ = (θ1, . . . , θn) ∈ (S1)n be a tuple of angles,
where θi indicates the orientation of roboti. For P =
(p1, . . . , pn) ∈ (R2)n and Θ = (θ1, . . . , θn) ∈ (S1)n, we
denote((p1, θ1), . . . , (pn, θn)) ∈ (R2 ×S

1)n by (P,Θ) with
a slight abuse of notation. We define the sensory region of
the ith agent as the sector of a circle of radiusr, centered
at pi, with orientationθi and amplitude2α, α ∈ (0, π

2 ].
We call this region the wedge viewing region and denote it
by wr,α(pi, θi). For brevity, we occasionally refer to agent
i’s wedge bywi. The angular range indicatorfunction is
defined as

1α(z) =

{

1, if arccos
( |(z−pi)·(cos θi,sin θi)|

‖z−pi‖

)

≤ α,

0, otherwise.

We also define thelimited-range indicatorfunction as

1B(pi,r)
(z) =

{

1, if ‖z − pi‖ ≤ r,

0, otherwise.

Then thewedge indicatorfunction is defined as

1wr,α(pi,θi) = 1α 1B(pi,r)
.

It is convenient to decompose the boundary of the wedge
into the union of two line segments and an arc. We denote the
wedge boundary line segments by∂w+

i and∂w−
i . We then

introduce the following (counterclockwise) parameterization
of ∂wr,α(pi, θi) = ∂w+

i ∪ arc(pi, r) ∪ ∂w−
i as

γ∂w−
i
(t) = pi + tuθ−α, t ∈ [0, r], (4a)

γarc(pi,r)(t) = pi + ruθ+t, t ∈ [−α, α], (4b)

γ∂w+
i
(t) = pi + (r − t)uθ+α, t ∈ [0, r]. (4c)



The corresponding (outward) normal vectors are

n∂w+
i
(q) = Refy uθ+α, q ∈ ∂w+

i , (5a)

narc(pi,r)(q) =
q − pi

‖q − pi‖
, q ∈ arc(pi, r), (5b)

n∂w−
i
(q) = −Refy uθ+α, q ∈ ∂w−

i . (5c)

These parameterizations are illustrated in Figure 1.

C. Proximity graphs and spatially distributed maps

A proximity graph functions assigns to a pointset a graph
whose vertex set is the pointset, and whose edge set is
determined by the relative location of its vertices. The
notion of proximity graph is useful to model the changing
interaction between the agents of a mobile network. The
reader is referred to [6], [11] for a detailed treatment.

Let X be ad-dimensional space composed of eitherR
d,

S
d or the Cartesian productRd1 × S

d2 , whered1 + d2 = d.
Let G(X) be the set of directed graphs whose vertex set is an
element ofF(X). A proximity graph functionG : F(X) →
G(X) associates toV ∈ F(X) a graph with vertex setV
and edge setEG(V ), whereEG : F(X) → F(X ×X) has the
property thatEG(V ) ⊆ V × V \ diag(V × V ).

The following proximity graph functions are relevant to
our discussion:

(i) the Delaunay graphP 7→ GD(P) = (P, EGD
(P)),

with

EGD(P) = {pi, pj ∈ P,×P | Vi ∩ Vj 6= ∅};

(ii) the r-disk graphP 7→ Gdisk(P, r) = (P, EGdisk(P, r)),
with

EGdisk(P, r)

= {(pi, pj) ∈ P × P \ diag(P × P) | ‖pi − pj‖ ≤ r} ;

(iii) the r-limited Delaunay (or limited-range Delaunay)
graph P 7→ GLD(P, r) = (P, EGLD (P, r)) consists of
the edges(pi, pj) ∈ P × P \ diag(P × P) with the
property that

(

Vi(P) ∩ B(pi,
r
2 )

)

∩
(

Vj(P) ∩ B(pj ,
r
2 )

)

6= ∅ ;

(iv) the (r, α)-limited wedge graph (P,Θ) 7→
GLW(P,Θ) = (P, EGLW (P,Θ)) consists of the
edges((pi, θi), (pj , θj)) ∈ (P,Θ) × (P,Θ) with the
property that
(

Vi(P) ∩ Vj(P)
)

∩
(

w r
2 ,α

(pi, θi) ∪ w r
2 ,α

(pj , θj)
)

6= ∅.

Note that the orientation of the agents does not affect
the computation of ther-limited Delaunay graph. Ther-
limited Delaunay graph is undirected, whereas the(r, α)-
limited wedge graph is directed. Clearly it is possible for
Vi ∩ Vj ∩ wr,α(pi, θi) 6= ∅ and Vi ∩ Vj ∩ wr,α(pj , θj) = ∅
simultaneously (see Figure 2).

For a directed proximity graph with vertexv, a vertexq

is an in-neighbor of v if the ordered pair(q, v) ∈ EG(V ).
Likewise, vertexv is an out-neighborof q. To a proximity

Fig. 2. From left to right, top to bottom: The Delaunay graph, the r-disk
graph, ther-limited Delaunay graph, and the(r, α)-limited wedge graph
which correspond to the configuration in Figure 1.

graph G and a vertexv, one can associate the set ofin-
neighborsand out-neighborsmapsN in

G,v,N
out
G,v : F(X) →

F(X), defined as

N in
G,v(V ) = {q ∈ V | (q, v) ∈ EG(V ∪ {v})},

N out
G,v (V ) = {q ∈ V | (v, q) ∈ EG(V ∪ {v})}.

For the(r, α)-limited wedge graph, we define the neighbor
maps

N in
GLW ,(pi,θi)

(P,Θ)

= {(pj , θj) ∈ (P,Θ) | Vi(P) ∩ Vj(P) ∩ w r
2 ,α

(pj , θj) 6= ∅},

N out
GLW ,(pi,θi)

(P,Θ)

= {(pj , θj) ∈ (P,Θ) | Vi(P) ∩ Vj(P) ∩ w r
2 ,α

(pi, θi) 6= ∅}.

In other words, agentj is an in-neighbor of agenti if it is a
nearby neighbor who “sees” agenti and is an out-neighbor
of agenti if it is “seen” by agenti.

A proximity graph G1 is spatially distributedover an
undirected proximity graphG2 if, for all v ∈ V ,

N in
G1,v(V ) = N in

G1,v(NG2,v(V )),

N out
G1,v(V ) = N out

G1,v(NG2,v(V )).

Lemma II.1 The (r, α)-limited wedge graphGLW is spa-
tially distributed over ther-limited Delaunay graphGLD .

Functions which are spatially distributed over proximity
graphs do not necessarily have to be defined as graph
functions. More generally, given a setY and an undirected
proximity graphG, the mapf : Xn → Y n is spatially
distributed over G if there exists maps̃fi : X × F(X) →
Y n, for i ∈ {1, . . . , n} with the property that for all
(v1, . . . , vn) ∈ Xn,

fi(v1, . . . , vn) = f̃i(vi,NG,i(v1, . . . , vn)),

wherefi denoted theith component off . Thus to compute
the ith component of a spatially distributed function, one
needs only to know the location of the vertexvi and the lo-
cation (and possibly orientation) of its neighbors on the graph
G(V ). This generalization allows for objects like vector fields
and set-valued maps to seen as spatially distributed over
proximity graphs when defined in the appropriate context.



III. L OCATIONAL OPTIMIZATION : NETWORK

PERFORMANCE AND SMOOTHNESS ANALYSIS

We begin by introducing measures of the sensory coverage
of the environment by our robotic network.

A. Locational optimization functions

Let φ : Q → R≥0 be an integrable function that we
term density function. It can be thought of as a measure
of the probability of some event taking place overQ. Due
to noise and interference, the sensory performance of each
agentpi degrades at pointq in proportion to the distance
‖q − pi‖. Thus, we introduce a continuously differentiable,
strictly positive, non-increasing functionf : R≥0 → R≥0

to measure this degradation. In other words,f(‖q − pi‖)
provides a quantitative assessment of sensory quality of the
ith robot at pointq ∈ Q. We refer tof as aperformance
function.

Consider the locational optimization functionH : (Q ×
S

1)n → R≥0 defined by

H(P,Θ) =

∫

Q

max
i∈{1,...,n}

f(‖q − pi‖)1wr,α(pi,θi)(q)φ(q)dq.

(6)

This function provides an expected value of the sensory
performance by the robotic network weighted by the density
function φ. Hence, it is of interest to find maximizers ofH.
However, its gradient is in general not distributed over ther-
limited Delaunay or(r, α)-limited wedge proximity graphs.
Figure 1 illustrates this assertion. The sensing region ofp2

is the only one that contains the grey region depicted in the
plot. Therefore, changes inp5 will affect the gradient ofH
with respect top2. However,p2 andp5 are not neighbors in
the r-limited Delaunay or(r, α)-limited wedge graphs.

Our approach is to provide an alternative locational op-
timization function that approximatesH. Specifically, we
define

HV (P,Θ) =

n
∑

i=1

∫

Vi(P )

f(‖q − pi‖)1wr,α(pi,θi)(q)φ(q)dq.

(7)

Note thatHV sums the individual sensory performance of
the robots within the intersection of their respective sensing
wedge and Voronoi cell. Next, we establish two important
properties of this function. On one hand, we show that it
provides a good approximation ofH. On the other hand,
we characterize its smoothness properties, and compute its
(generalized) gradient.

B. Additive and constant-factor approximations

We next provide an additive and constant factor approx-
imation of the locational optimization functionH by HV .
Given ǫ > 0, let

Σǫ = {(P,Θ) ∈ (Q × S
1)n |

n
∑

i=1

areaφ(Vi ∩ wi) ≥ ǫ}.

The constant-factor approximations are restricted to config-
urations inΣǫ.

Proposition III.1 Let f be a strictly positive performance
function. Consider the objective functions defined in(6)
and (7). Then, for all(P,Θ) ∈ Σǫ,

HV (P,Θ) ≤ H(P,Θ) ≤ HV (P,Θ) + C,

HV (P,Θ) ≤ H(P,Θ) ≤ KHV (P,Θ),

whereC = ‖f‖∞ areaφ(Q) and K = 1 +
‖f‖∞ areaφ(Q)

ǫf(diam(Q)) .

Remark III.2 For any configurationP 6∈ S with the prop-
erty that ‖pi − pj‖ is strictly greater than2r for each
i, j ∈ {1, . . . , n}, it is not hard to show that the values of
H and HV coincide, i.e.,H(P,Θ) = HV (P,Θ), for any
Θ ∈ (S1)n. •

C. Smoothness properties ofHV

We next explore the smoothness properties of the loca-
tional optimization functionHV and compute its gradient.

Theorem III.3 Given a density functionφ and a perfor-
mance functionf , the locational optimization functionHV

is globally Lipschitz on(Q × S
1)n.

Proof: Let P = (p1, . . . , pn) ∈ Qn and for eachq ∈ Q

definepmin(q) ∈ P so that‖q−pmin(q)‖ = mini∈{1,...,n} ‖q−
pi‖. For the sake of simplicity, denotepmin(q) aspmin. Then
we can writeHV as

HV (P,Θ) =

∫

Q

f(‖q − pmin‖)1wα(pmin,θmin)(q)φ(q)dq,

We now introduce a useful partition ofQ. For W ⊂ Q,
recallW c = Q\W . Given(P,Θ) =

(

(p1, θ1) . . . , (pn, θn)
)

,

(P ′,Θ′) =
(

(p′1, θ
′
1) . . . , (p′n, θ′n)

)

, define the following sets

W1

=
(

∩i∈{1,...,n} wr,α(pi, θi)
c
)

∩
(

∪i∈{1,...,n} wr,α(pi′ , θi′)
c
)

,

W2

=
(

∪i∈{1,...,n} wr,α(pi, θi)
)

∩
(

∪i∈{1,...,n} wr,α(pi′ , θi′)
)

,

W3

=
(

∪i∈{1,...,n} wr,α(pi, θi)
)

∩
(

∩i∈{1,...,n} wr,α(pi′ , θi′)
c
)

,

W4

=
(

∪i∈{1,...,n} wr,α(pi′ , θi′)
)

∩
(

∩i∈{1,...,n} wr,α(pi, θi)
c
)

.

Note thatW1, . . . ,W4 form a pairwise disjoint partition of
Q. We then write,

HV (P,Θ) −HV (P ′,Θ′)

=
4

∑

k=1

∫

Wk

(

f(‖q − pmin‖)1wα(pmin,θmin)(q)

− f(‖q − p′min‖)1wα(p′
min,θ

′
min)(q)

(q)
)

φ(q)dq.

Now we shall find an upper bound of this sum. Forq ∈
W1, both 1wα(pmin,θmin)(q) and 1wα(pmin,θmin)(q) are zero, so



the integral overW1 vanishes. Forq ∈ W2 we have,
∣

∣

∣

∫

W2

(

f(‖q − pmin‖)1wα(pmin,θmin)(q)

− f(‖q − p′min‖)1wα(p′
min,θ

′
min)

(q)
)

φ(q)dq
∣

∣

∣

≤

∫

W2

|f(‖q − pmin‖) − f(‖q − p′min‖)|φ(q)dq

≤

∫

W2

∥

∥

∥

∥

df

dx

∥

∥

∥

∥

∞

∣

∣

∣
‖q − pmin‖ − ‖q − p′min‖

∣

∣

∣
φ(q)dq

≤

∥

∥

∥

∥

df

dx

∥

∥

∥

∥

∞

‖P − P ′‖

∫

W2

φ(q)dq

=

∥

∥

∥

∥

df

dx

∥

∥

∥

∥

∞

areaφ(Q)‖P − P ′‖.

Here, we have made use of the fact that for allq ∈ Q, the
maps‖q − pmin‖ 7→ f(‖q − pmin‖) and P 7→ ‖q − pmin‖
are both continuous on a compact domain and therefore
Lipschitz continuous with a Lipschitz constant equal to their
respective derivatives. Forq ∈ W3 we have,

∣

∣

∣

∫

W3

(

f(‖q − pmin‖)1wα(pmin,θmin)(q)

− f(‖q − p′min‖)1wα(p′
min,θ

′
min)

(q)
)

φ(q)dq
∣

∣

∣

≤

∫

W3

f(‖q − pmin‖)φ(q)dq

≤ ‖f‖∞‖φ‖Q

n
∑

i=1

∫

wr,α(pi,θi)∩i∈{1,...,n} wr,α(pi′ ,θi′ )
c

dq

≤ ‖f‖∞‖φ‖Q

n
∑

i=1

∫

wr,α(pi,θi)∩wr,α(pi′ ,θi′ )
c

dq,

where‖φ‖Q = maxq∈Qφ(q). We then observe
∫

wr,α(pi,θi)∩wr,α(pi′ ,θi′ )
c

dq

≤ 2(1 + α)r‖pi − p′i‖ +
1

2
r2|θi − θ′i|

by Lemma C.1. Hence,
∣

∣

∣

∫

W3

(

f(‖q − pmin‖)1wα(pmin,θmin)(q)

− f(‖q − p′min‖)1wα(p′
min,θ

′
min)

(q)
)

φ(q)dq
∣

∣

∣

≤ ‖f‖∞‖φ‖Q

n
∑

i=1

2(1 + α)r‖pi − p′i‖ +
1

2
r2|θi − θ′i|

= ‖f‖∞‖φ‖Q(2(1 + α)r‖P − P ′‖ +
1

2
r2|Θ − Θ′|).

The integral overW4 can be bounded in a similar fashion.
We have now shown

|HV (P,Θ)−HV (P ′,Θ′)| ≤ L‖P − P ′‖ + M‖Θ − Θ′‖

≤ max{M,L}(‖P − P ′‖ + ‖Θ − Θ′‖)

= max{M,L}‖(P,Θ) − (P ′,Θ′)‖

where L =
∥

∥

∥

df
dx

∥

∥

∥

∞
areaφ(Q) + 4r(1 + α)‖f‖∞‖φ‖Q and

M = ‖f‖∞‖φ‖Qr2. Thus,HV is globally Lipschitz.

Theorem III.4 Given a density functionφ and a perfor-
mance functionf , the locational optimization functionHV

is continuously differentiable on(int(Q)× S
1)n \ S and for

eachi ∈ {1, . . . , n} the gradient ofHV is given as,

∂HV

∂pi

=

∫

Vi∩wr,α(pi,θi)

∂

∂pi

f(‖q − pi‖)φ(q)dq (8a)

+

∫

(∂w+
i
∪∂w−

i
)∩Vi

f(‖q − pi‖)φ(q)n
∂w

(·)
i

dq

+

mi
∑

l=1

∫

arcl(pi,r)

f(‖q − pi‖)φ(q)n∂ arc(pi,r)dq

+

n
∑

j=1

j 6=i

1

2‖pj − pi‖

(

∫

Vi∩Vj∩wi

f(‖q − pi‖)φ(q)(q − 2pj)dq

−

∫

Vi∩Vj∩wj

f(‖q − pj‖)φ(q)(q − 2pj)dq
)

,

and

∂HV

∂θi

=

∫

∂w+
i
∩Vi

‖q − pi‖f(‖q − pi‖)φ(q)dq (8b)

−

∫

∂w−
i
∩Vi

‖q − pi‖f(‖q − pi‖)φ(q)dq,

wheren(·) : ∂(Vk∩wr,α(pk, θk)) → R
2 is the normal vector

parameterization of the specified boundaries as described in
Section II-A andarcl(pi, r), l ∈ {1, . . . ,mi} are the arcs in
the boundaryVi ∩ arc(pi, r).

Proof: Let P ∈ int(Q) \ S. Then we can write
equation (7) as

HV =

n
∑

i=1

∫

Vi

f(‖q − pi‖)1wr,α(pi,θi)(q)φ(q)dq

=

n
∑

i=1

∫

Vi∩wr,α(pi,θi)

f(‖q − pi‖)φ(q)dq.

Note thatf(‖q − pi‖) is continuously differentiable and for
fixed (P,Θ) ∈ int(Q)n, the mapsq 7→ f(‖q − pi‖) and
q 7→ ∂

∂P
f(‖q − pi‖) are both measurable and integrable

on Vi ∩ wr,α(pi, θi). Also note since both the Voronoi
partition and the wedge are convex sets, their intersection
is also convex [6]. By Proposition B.1,HV is continuously
differentiable and for eachi ∈ {1, . . . , n},

∂HV

∂pi

(P,Θ) =
∂

∂pi

n
∑

k=1

∫

Vk∩wk

f(‖q − pk‖)φ(q)dq (9)

=

∫

Vi∩wi

∂

∂pi

f(‖q − pk‖)φ(q)dq

+

n
∑

k=1

∫

∂(Vk∩wk)

f(‖γ − pk‖)φ(γ)nT(γ)
∂γ

∂pi

dγ

To simplify the second term in this equation, note that
the boundary∂(Vk ∩ wr,α(pk, θk)) is composed of a finite
number of line segments and arcs, all of which have been
parameterized previously in Section II-A. We first integrate
over the wedge boundaryVk∩∂(wr,α(pk, θk)) = Vk∩(∂w+

k ∪



∂w−
k )∪m

l=1arcl(pk, r) (see (4) ). This integral is nonzero only
when k = i. Note that when there is a displacement in the
position of pi, the motion ofwr,α(pi, θi) (when projected
along the appropriate normal vector) is exactly the same as
pi i.e., nT

(·)

∂γ(·)

∂pi
= n(·). Hence,

∫

Vi∩(∂w+
k
∪∂w−

k
)∪m

l=1arc(pi,r))

f(‖q − pi‖)φ(q)nT

(·)

∂γ(·)

∂pi

dq

=

∫

Vi∩(∂w+
i
∪∂w−

i
)

f(‖q − pi‖)φ(q)n
∂w

(·)
i

dq

+
m

∑

l=1

∫

arcl(pi,r)

f(‖q − pi‖)φ(q)nB(pi,r)
dq.

The remaining boundary segments that must be considered
define the regionsVk ∩Vj ∩wr,α(pk, θk) for j ∈ {1, . . . , n}.
To parameterize these boundaries, consider the map given
in (1). The derivative of this map with respect topi is
non-zero only within the regionsVi ∩ Vj ∩ wr,α(pi, θi) and
Vj ∩ Vi ∩wr,α(pj , θj), i.e., whenpj ∈ N in

GLW ,(pi,θi)
(P,Θ) or

whenpj ∈ N out
GLW ,(pi,θi)

(P,Θ). We separate these boundaries
accordingly. Next observe,

nT

ij

∂γij

∂pi

=
1

2
nT

ij +
t

‖pj − pi‖
Rotπ

2
(pj − pi)

=
1

2
nT

ij +
1

‖pj − pi‖
(γij −

pi + pj

2
)

=
2γij − pj

‖pj − pi‖
.

For pj ∈ N in
GLW ,(pi,θi)

(P,Θ), the outward normal vectornij

is used and forpj ∈ N out
GLW ,(pi,θi)

(P,Θ), the inward normal
vector nji = −nij is used to preserve counter-clockwise
orientation with respect topi. We place these formulations
back into (9) to obtain the complete form of (8a).

To compute the partial derivative ofHV with respect toθi,
assume the same general form of (9) and same parameteri-
zation given in (4). Since the boundary∂(wr,α(pi, θi)) ∩ Vi

contains the only parameterization with a dependency onθi,
we have

∂HV

∂θi

(P,Θ) =

∫

∂(wr,α(pi,θi))∩Vi

f(‖γ − pi‖)φ(γ)nT(γ)
∂γ

∂θi

dγ.

Notice however, that the normal vectornB(pi,r)
is orthogonal

to
∂γarc(pi,r)

∂θi
. Hence, the only regions which need to be

considered are the line segments∂w+
i ∩ Vi and ∂w−

i ∩ Vi.

For q ∈ ∂w+
i we compute,

nT

∂w+
i

∂γ∂w+
i

∂θi

= m+ − t = ‖γ∂w+
i
− pi‖.

Hence,
∫

∂w+
i
∩Vi

f(‖γ∂w+
i
− pi‖)φ(γ∂w+

i
)n(γ∂w+

i
)T

∂γ∂w+
i

∂θi

dγ∂w+
i

=

∫

∂w+
i
∩Vi

‖q − pi‖f(‖q − pi‖)φ(q)dq.

A similar calculation is made for the integral over∂w−
i ∩Vi.

This completes the proof.

Remark III.5 Using extension by continuity, we shall rede-
fine the domain whereHV is continuously differentiable to
include the boundary ofQ. •

The functionHV fails to be differentiable on the setS
defined in (2), so it will be necessary to characterize its
generalized gradient (see Appendix A). Recall that forP ∈
S, V(P ) is defined as an infinite family of Voronoi partitions
(see Section II-A).

Proposition III.6 Let (P,Θ) ∈ (Q× S
1)n. Then the gener-

alized gradient ofHV is given by

∂HV (P,Θ)

=

{

(∂HV

∂P
, ∂HV

∂Θ ), if P 6∈ S,

co{(∂HV

∂P
, ∂HV

∂Θ )|V =W : W ∈ V(P )}, if P ∈ S.

Proof: By (∂HV

∂P
, ∂HV

∂Θ )|V =W , we mean the gradient
direction resulting from takingW as the Voronoi partition in
the evaluation of the expression (8). The result follows from
the definition of the generalized gradient (cf. (11)). Note that
the configurations inS represent the set of points over which
HV fails to be differentiable.

IV. A DISTRIBUTED ALGORITHM FOR LOCATIONAL

OPTIMIZATION

Here we present a distributed algorithm which maximizes
the locational optimization functionHV . We implement our
control law in continuous time and analyze its convergence
properties. Assume the evolution of the robotic agents obeys
a first-order dynamical system described by

[

ṗi

θ̇i

]

=

[

ui

vi

]

, i ∈ {1, . . . , n}.

We implement a (generalized) gradient ascent of the loca-
tional optimization functionHV using the result in Proposi-
tion III.6. In other words, we set

[

ui

vi

]

= Ln(∂HV )(P,Θ). (10)

We assume that the partitionV(P ) is updated continuously.
Note that this vector field is discontinuous and therefore the
solutions of this system must be understood in the Filippov
sense. The following result can be stated.

Theorem IV.1 Given a density functionφ and a perfor-
mance functionf , the control law on(Q × S

1)n defined
by (10) has the following properties:

(i) the law is spatially distributed over ther-limited
Delaunay graphGLD(P, r), and;

(ii) the agents’ location with initial configuration
(P0,Θ0) ∈ (Q× S

1)n converges asymptotically to the
set of critical points ofHV .

Proof: Statement (i) follows from the fact that, ac-
cording to (8), the gradient ofHV depends only on the
position and orientation ofpi as well as those of its in and
out neighbors in the(r, α)-limited wedge graphGLW , and,
according to Lemma II.1, this graph is spatially distributed



over GLD. Statement (ii) follows from considering the dy-
namical system defined by (10) on the compact and strongly
invariant domain(Q × S

1)n. Theorem III.3 guarantees that
the functionHV is globally Lipschitz, and Proposition A.1
ensures the gradient ascent system converges to the set of
critical points ofHV .

V. SIMULATIONS

To illustrate the performance of the network under the
coordination algorithm (10), we present some numerical
simulations. The algorithm is implemented in MathematicaR©

as a main program running the simulation that makes use of a
library of routines. The structure of this simulation is loosely
described by the following procedure: first, the intersection of
the bounded Voronoi cellVi and the wedgewr,α(pi, θi), for
i ∈ {1, . . . , n}, is computed. Next, ther-limited Delaunay
and (r, α)-limited wedge proximity graphs are constructed.
Then, for each agent, information of its in/out neighbors is
collected and used to construct the various parameterizations
necessary for the gradient computation. Finally, the various
surface and boundary integrals involved in the gradient of the
locational optimization functionHV are computed using the
MathematicaR© numerical integration routineNIntegrate.
The position and orientation of each agent are then updated
according to these results. Figure V illustrates an execution.

Fig. 3. Execution of the gradient ascent strategy (10) by a network of 7
agents. The plot on the left (resp. right) illustrates the initial (resp. final)
configuration after75 milliseconds. The central figure illustrates the gradient
ascent flow of the system, with the smaller dots representing the initial
configuration and the larger dots representing the final one.For this example,
the performance measure is given byf(x) = 2 − x2 and the distribution
density functionφ (represented by means of its contour plot) is the sum of
three Gaussian functions of the form50e−10((x−xcntr)

2+(y−ycntr)
2).

VI. CONCLUSION

We have introduced two aggregate objective functions
to measure the coverage of the environment provided by
a group of robotic agents with limited-range anisotropic
sensory. Based on considerations about the distributed com-
putation of the gradient information, we have selected the
objective function whose definition is based on a partitioning
of the environment. We have characterized the smoothness
properties of this objective function, computed its gradient,
and characterized its spatially-distributed character. Combin-
ing these results with tools from nonsmooth analysis, we
have designed a gradient ascent strategy that is guaranteed
to achieve optimal network deployment. Further research will
include the design and analysis of coordination algorithms
implemented in discrete time, the synthesis of cooperative
strategies to attain global optima of the aggregate objective
function, and the study of similar deployment problems in
nonconvex environments.
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APPENDIX A
NONSMOOTH ANALYSIS

Here we review some basic concepts from nonsmooth
analysis. The reader is referred to [12], [13], [14] for a more
detailed treatment.

From Rademacher’s Theorem [12], locally Lipschitz func-
tions are differentiable a.e. IfΩf denotes the set of points
in R

N wheref fails to be differentiable andS is any set of
measure zero, thegeneralized gradientof f is

∂f(x) = co{ lim
i→+∞

df(xi) | xi → x , xi 6∈ S ∪ Ωf} . (11)

A point x ∈ R
N with 0 ∈ ∂f(x) is a critical point of f .

Let F : R
N → 2R

N

be a set-valued map. A solution to the
differential inclusionẋ ∈ F (x) on an interval[t0, t1] ⊂ R is
defined as an absolutely continuous functionx : [t0, t1] →



R
N such thatẋ(t) ∈ F (x(t)) for almost allt ∈ [t0, t1]. Now,

consider the equation

ẋ(t) = X(x(t)) , (12)

whereX : R
N → R

N is measurable and essentially locally
bounded. Let

K[X](x) =
⋂

δ>0

⋂

µ(S)=0

co{X(BN (x, δ) \ S)} , x ∈ R
N .

A Filippov solution of (12) on an interval[t0, t1] ⊂ R

is defined as a solution of the differential inclusionẋ ∈
K[X](x). A setM is strongly invariantfor (12) if for each
x0 ∈ M , contains all maximal solutions of (12).

Let Ln : 2R
N

→ R be the map that associates to each
convex setS ⊂ R

N its least-norm element,Ln(S) =
projS(0). Given a locally Lipschitz and regular functionf ,
consider

ẋ(t) = −Ln(∂f)(x(t)) . (13)

In general, the vector fieldLn(∂f) is discontinuous, and
therefore the solution of (13) must be understood in the
Filippov sense. Sincef is locally Lipschitz, Ln(∂f) =
df almost everywhere. The following result guarantees the
convergence to the set of critical points off .

Proposition A.1 Let S ⊂ R
N be compact and strongly

invariant for (13). Then, any solutionx : [t0,+∞) → R
N

of (13) starting from a point inS converges asymptotically
to the set of critical points off contained inS.

APPENDIX B
A GENERALIZED CONSERVATION OF MASS LAW

The following result, originally stated and proved in [6],
is an extension of the integral form of the Conservation-of-
Mass law in fluid mechanics.

Proposition B.1 Let {Ω(x) ⊂ R
2 | x ∈ (a, b)} be a piece-

wise smooth family of curves such thatΩ(x) is strictly star-
shaped for allx ∈ (a, b). Let the functionϕ : R

2×(a, b) → R

be continuous onR2 × (a, b), continuously differentiable
with respect to its second argument for allx ∈ (a, b) and
almost all q ∈ Ω(x), and such that for eachx ∈ (a, b), the
mapsq 7→ ϕ(q, x) and q 7→ ∂ϕ

∂x
(q, x) are measurable, and

integrable onΩ(x). Then, the function

(a, b) ∋ x 7→

∫

Ω(x)

ϕ(q, x)dq

is continuously differentiable and

d

dx

∫

Ω(x)

ϕ(q, x)dq =

∫

Ω(x)

∂ϕ

∂x
(q, x)dq (14)

+

∫

∂Ω(x)

ϕ(γ, x)nt(γ)
∂γ

∂x
dγ,

wheren : ∂Ω(x) → R
2, q 7→ n(q), denotes the unit outward

normal to∂Ω(x) at q ∈ ∂Ω(x), andγ : S
1 × (a, b) → R

2 is
a parameterization for the family{Ω(x) ⊂ R

2 | x ∈ (a, b)}.

APPENDIX C
AN UPPER BOUND ON THE AREA OF INTERSECTION

BETWEEN TWO CIRCULAR SECTORS

Lemma C.1 Denote a circular sector centered at pointp ∈
R

2 with orientationθ ∈ S
1, radiusr ∈ R, and angular width

α ∈ (0, π
2 ] by wr,α(p, θ). Then the areaA of wr,α(p, θ) ∩

wr,α(p′, θ′)c satisfies

A ≤ 2(1 + α)r‖p − p′‖ +
1

2
r2|θ − θ′|.

Proof: The area A equals area(wr,α(p, θ) ∪
wr,α(p′, θ′)) − 1

2r2α. To find an upper bound to
area(wr,α(p, θ) ∪ wr,α(p′, θ′)), consider the change in area
caused by a rotation and translation ofwr,α(p′, θ′) through
the angle‖θ− θ′‖ and along the vectorp− p′. In particular,
let β1, β2 be the projection angles ofp − p′ onto the
segmentsl1, l2 respectively. Construct the regionsB1, B2 as
parallelograms formed byp− p′ and the segmentsl1 and l2
respectively (see Fig 4). Note the area of bothB1 andB2 can

p p′

θ θ′

S

T

l1 l2

|θ − θ′|

p − p′

β1

β2

‖
p
−

p
′‖

c
o
s
β

2

B1
B2

Fig. 4. On the left is an arbitrary configuration of two intersecting circular
sectors. On the right is an illustration of the various regions which bound
the union of the sectors.

be bounded byr‖p−p′‖ cos β1,2 ≤ r‖p−p′‖. Next, construct
the regionS as an annular sector with inner radiusr, outer
radiusr + ‖p− p′‖ cos β2, and angular widthα. The area of
S can be bounded by12 (r + ‖p − p′‖ cos β2)

2α − 1
2r2α ≤

2rα‖p − p′‖. Lastly, construct the regionT as a circular
sector with radiusr and angular width‖θ − θ′‖. The area
of the sectorT can be computed as12r2‖θ − θ′‖. Since any
configuration ofwr,α(p, θ) ∪ wr,α(p′, θ′) can be contained
within the union of these regions withwr,α(p′, θ′), we are
able to define the upper bound toA by

A = area(wr,α(p, θ) ∪ wr,α(p′, θ′)) −
1

2
r2α

≤ area(B1 + B2 + S + T )

≤ 2(1 + α)r‖p − p′‖ +
1

2
r2|θ − θ′|,

as claimed.


