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Abstract— This paper studies distributed algorithms for per-  the formation is to switch between are known in advance,
forming graph rearrangements that preserve the connectivity then [6] provides a robust method for transitioning between

of a robotic network. Given a connected graph describing the them. Many solutions exist which satisfy non-zero-edge 1-
topology of the network, preserving a fixed set of edges while

performing a coordination task guarantees that connectivity .conne(-:t|V|ty-for a spec-|f|-c task, among th-e most notable
is maintained. However, the preservation of a fixed set of IS [7], in which connectivity-preserving motions are gener
edges often results in suboptimal and over-constrained robot ated between pairs of formations. To our knowledge, there
operation. This paper presents a distributed algorithm to  are no solutions, distributed or otherwise, to problem (ii)

perform graph rearrangements that allow the robotic network  payonq those described above. Much of the related literatur
to transform its interconnection topology between any two trees

We present a method for composing this algorithm with other dgals with aIgonthm; to. repar a spannlng tree after link
control algorithms, and make preference guarantees about the failure, rather than adjusting a spanning tree to allow &gen
choices of links to be preserved under the resulting composition. to break desired links. For a survey of such algorithms
We use these ideas to propose a distributed formation morphing see [8] and references contained therein. Finally, oumiech
algorithm, and characterize its time complexity. cal approach uses the modeling framework proposed in [9]
. INTRODUCTION to combine connectivity maintenance algorithms with other

. ) e trol algorithms.
This paper considers the problem of maintaining conne&" o . .
pap P g Statement of contributionsThis paper introduces the

tivity of a robotic network while performing a coordination c M A for d
task. Given a group of robots and an interaction graph inz ONNECTIVITY MAINTENANCE ALGORITHM lor dynam-

duced by the set of robot positions, we identify the follogvin ically agreeing upon a subgraph (specifically, a tree) of a
connectivity-related problems: ' proximity graph. Maintaining each edge of the tree mairgtain

connectivity of the robotic network. The advantage of the

() HOV\.’ should the robots move so as t_o maximize Som(paroposed algorithm is that it allows for on-line topolodirz
desired measure of connectivity subject to some posk

. . rrangements of the tree in a distributed manner. We analyze
. t".)n constraints? - . . the correctness of this algorithm, and show that the allowed
(i) Given a measure gf the connectivity of the '“te“f"C“‘.’ earrangements are sufficient to allow configuration change
graph, a connectivity threshold, and some coordinatio etween any two constraint trees. The paper also introduces
tasl§, how should robots move to achieve the .ta.s e notion ofinput-output control and communication law
subject to t_he value of the measure of ConneCtIVIt3bne can formally compose different input-output control
never crossing the threshold?

i . ) ~and communication laws to yield a coordination algorithm
We are motivated by the case in which the edge weigh{§hose execution can be characterized by studying the in-

of the graph represent some measure of inter-robot comMyiyidual components. Our GINECTIVITY MAINTENANCE
nication channel capabilities. o ALGORITHM is an example of an input-output control and
Literature review: In [1], convex optimization is used communication law, which, in Section IV, is composed with
to solve problem (i) in the presence of convex constrainignyther Jaw to synthesize a formation morphing algorithm.
on the space of edge weights. A solution to (i) with nONye show that given initial and final configurations, the
convex constraints is presented in [2]. An extension ofymation morphing algorithm steers the robotic network
similar methods to provide a distributed algorithm for €) i from one to the other while maintaining connectivity in
presented in [3]. A commonly addressed sub-problem of (ighe ;-.gisk proximity graph. We also characterize the time

occurs when one is merely concerned with whether the grapypiexity of the algorithm, and present simulations that
induced by the non-zero-weight edges of the interactiogynfirm the theoretical analysis.

graph is 1-connected. The solution to this problem proposed oganization: Section Il introduces useful notions from

in [4] allows for a general range of agent motions, but i%;raph theory, proximity graphs, and the robotic network
not distributed. A distributed solution to this sub-prable ,o4el. Section IlI presents, and analyzes thenGEc-

appears in [S], but the solution as presented requireshiat tr)y,ry MaNTENANCE ALGORITHM algorithm. Section IV
robots maintain a fixed set of edges. If the configurationg,oquces the formation morphing algorithm, studies its
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Notation: Throughout the papeR, R>,, andR., denote G : F(RY) — G(F(R?)) associates t@ € F(R?), |P| = n,
the sets of reals, non-negative reals, and positive reaks undirected graph ifs(7P) with vertex set isomorphic to
respectively. For a sef, F(S) denotes the collection of all Z,, and edge sefg(P), where&g : F(R?) — F(Z,, x Zy,).
finite subsets of. Whenever we provide algorithm pseudo-For convenience, letr : (RY)" — F(R?) take a tuple
code, we user < b to mean % is assigned a value @f” P = (pi,...,p,) of n points inR? to the finite collection
We usef(n) € O(g(n)) to mean that there exisVy € N, P = {p1,...,p,} € F(R?). Thus, given a tuple of agent
¢ € R such thatf(n) < cg(n) for all n > Ny; we use positions,P, and a proximity graply, G(ix(P)) is the graph
f(n) € Q(g(n)) to mean that there exisiy € N, ¢ € Rsuch induced byP underg.
that f(n) > cg(n) for all n > Ny. Finally, f(n) € ©(g(n)) Definition 2.1 (Configuration):Given a proximity graph
meansf(n) € O(g(n))NQ(g(n)). We useA to mean “logical G, let (T, P) be a pair consisting of a tré€ on n nodes
and” andv to mean “logical or.” and a vectorP € (R?)" of agent positions such thdt is a
spanning subgraph @ (ir(P)). A G-configuration[(T', P)]
of n agents ind-dimensional space is the equivalence class

In this section, we review some useful notions from grapbf (7', P) under the relatiores; defined by (Ty, P1) o
theory and computational geometry. We also introduce a fo(7y, P») if 73 = Ty and there is some bijective affine
mal model for robotic networks and coordination algorithmstransformation that map®, onto P,.

When the proximity graph in question is clear, we simply
use the word “configuration.” Note thaf-configurations

Here, we recall some standard notions from graph thexist only if G(ix(P)) is connected. We us§T, P)] to
ory [11], [12], [13]. A directed graph, odigraph is a pair denote the equivalence class containifig P), and refer
of sets,G = (V, E), such thatE C V x V. Elements of to T as the “constraint tree.”

V and E are known as vertices and edges, respectively. An

undirected graph, or simplyraph, G = (V, E), consists of a C. Robotic network model

vertex setl” and a sef” of unordered pairs of vertices. Given  We present our algorithms within the framework intro-
a digraph(V, E), one can define the associated underlyinguced in [9] for synchronous robotic networks. For com-
undirected graph(V, E’) by setting (u,v) € E implies pleteness, we present a brief account of the model here.
(u,v),(v,u) € E'. A digraph (V’, E’) is a subgraphof Definition 2.2 (Robotic network)A robotic networks is

a digraph(V, E) if V' C V and E' C E; additionally, a a tuple (I, A, Egnm) consisting of

digraph (", 1) is a spanningsubgraph if it is a subgraph i) 1 — o, ... n—1}; theset of unique identifiers (UIDs)
and V* = V. Two digraphs,Gy = (Vi, Eh) and Ga = ) 4 — (401}, with Al = (xT0, 06, x[7 £, the
(Va, E?) areisomorphicif there exists a bijective functioyf set of physical agenthere X[l is the state-space of
mapping V, onto V5 such that(i,j) € Ey if and only if the ith control system an@ ! is the control space of
(f(i), f(4)) € Eo. From this point on, for a graph onnodes the ith control system;

(i.e., |V| = n) we assume without. loss of generali‘ty that (i) Eemm the communication edge magis a map from
V =Zn = {0,...,n—1}, thus allowing us to refer to “node [L.., X! to the subsets of x I\ diag(I x I).

0,” etc. Given a graphG = (V, E), the set of neighbors of il :e _ )

nodei € Vis N (i) = {j € V | (i,5) € EV (j.i) € E}. _If Al = (X_, U, Xy, f) forall i € I, then the robotic network

A tree is a connected graph with no cycles. diected 'S calleduniform , ,
tree T is a digraph whose underlying undirected graph is a 'N€Xt we introduce the notion of input-output control
tree. In this paper, we only deal with directed rooted trées. and communication law. This notlor? is a generalization of
a rooted tree, each edge connectshitd nodei node to its the concept ofcontrol and communications layroposed

parentnodepLﬂrr. The unique node with no parents is called” [9], and aims at facilitating the composition of reusable

theroot, and the distance in a tree from a nad® the root algorlt_hmlc components. ) )
is called thedepth of i, denoted dﬁ]. Nodesi and j are Definition 2.3: A (synchronous, static, uniform, feedback)

calledsiblingsin a given tree if they have the same parent'npm'oUtput control and communication lagC for a uni-

p[cﬂr, = péju]r,. We sayi is adescendanbf j, or equivalently orm networksS consists of the sets:

j is an ancestorof i, if there exists a sequence of nodes, () T = {te}ren, C R>0, @ communication schedule;

II. PRELIMINARY DEVELOPMENTS

A. Graph-theoretic notions

ki, .k, such thatplhe =k, plitd — ko, pllind — ;. (i) L, a communication language;

! Pour = 61, Bour = Kz, - Poudt' = J @iy Wl = w, i € I, sets of values ofogic variables
B. Proximity graphs wll, i eI

We use proximity graphs as an abstraction of network(iV) Wé’%ﬂg W, i €I, subsets otllowable initial values
interconnection among spatially distributed agents. ifmiy (v) Win'" = Wi, sets of values ofnput logic variables

graphs associate network topology with robot positions by win[?]: i€l o

defining mappings from finite collections of points B¢ (Vi) Wing' C Win, subsets ofllowable initial input values
to graphs, e.g., see [14], [15]. F® ¢ F(R%), let G(P) (vii) Wout[f] = Wout, Sets of values obutput logic variables
denote the set of undirected graphs whose vertex set is woul’l, i € T;

some labeling of the elements iR. A proximity graph and of the maps:



(i) msg: T x X xW x Wi, x I — L, the message- A. Algorithm description

Given a uniform networlkS with communication edge map
determined by a proximity grapky, the GONNECTIVITY
MAINTENANCE ALGORITHM is an input-output control and
communication lanCC for S consisting of the sets:

generation function

(i) stf: Tx Win x W x L™ — W x Woy the (input-output)
state-transition function

@iy ctl : Ry x X x X x W x Win x L™ — U, i € I, the
control function

()

= {te}een, C R>o;

For notational convenience, we often write an input-output (ii) L W

state-transition function, stf as the pdstfy, stfou), where
stfy, computes values iV and stf, in Woy. We will
sometimes call sif; the “output state transition function.”

By a control and communication lawe mean an input-

(i)

output control and communication law with no inputs and no

outputs, i.e..Win = 0 = Wy This definition is equivalent
to the definition put forth in [9]. When we refer to an

“evolution” of a robotic network, we mean the behavior of

the network starting from a valid initial state. The exegnti

of a control and communication law can be roughly describediVv)
as follows: at each communication round, each agents sends
messages to its neighbors according to the evaluation of msg

With the messages received, each agent updates the valu)

of its logic variables using stf. In between communication
rounds, the motion of each agent motion is governed by ctl.

A precise description of an execution can be found in [9].

Definition 2.4: (Composition of input-output law3he

composition of two input-output control and communication

laws CC; and CC,, subject toCCoWoy = CC1 Wi, and

(Vi)

CC1Wout = CCoWin, is a control and communications law, (Vii)

CC,®CCy = (T, L,W, Wy, msg stf, ctl), with sets

T =CC.T = CC,T,
L =CCyL x CCsL,
W =CC1W x CCoWin x CCoW x CCyWin,
= CC1Wy x CCaWing x CCaWy x CC1Wino,

and functions

msgt, z,w) = (CCymsyt, z,CCiw,CCrwin),
CCQmSQ{t, I,CCQU/,CCQIUin)),
Stf(t, w, l) = (CClstf(t, CCqwin, CClw),

CCQStf(t CCQ’wimCCQU}))
CCyctl(t, ¢, x,CCLw, CCrwin)
+ CCoctl(t, zy,, x,CCow, CCowin).

ctl(t, z,, z, wlil) =

W = N* x Z, i € I, are sets of values of tHegic

variablesw!i = (péﬁrr7dpg§b phasé/ 7pniext7 niar lesds @ €

I, consisting of a parent |dentlflepcurr, a “depth
estimate” dr[jst, a round counter indicating the current
mode of the algorithm phale a proposed next parent

P!l and a boolean mdrcatdiégIr lessdenoting whether

'S parentpCurr had a strictly smaller depth estimate
thani as of the most recent communication round,;
W(E] {(pcu ,dpest pcun, falsg} C W, ¢ € I such
that pgdm i € I, induces a connected trdéand drﬁst

is the depth ofi in T

Win, are sets of values afiput logic variables wi,!? :
Z,, — NU{oo} which specify a preference for attach-
ing to one node over another. i, (k) < winl?(5),
then nodei would prefer to attach td over j. By
convention, any domain element on which the action
of the function is unspecified maps to.

For simplicity, we letwin, ! map eachj € Z,, to oc;
Wou = Z,, are sets of values afutput logic variables
woutm = pr[:lt]rrr foriel;

and of the maps:

@)

(ii)

(iii)
(iv)

function msgt, z, (play, dpldl phasé?), wi,, j) =
(id, dpggl, plal. p,[{glq, La]r lesd, Where id is the unique
identifier of the send|n? agent;

function sthy (£, win, (piar, dpi<l, phasé? pidl) 1) as
defined in Table I; .

function stfout(t,win,(pc'ﬂlr, Pl phaséd pldl) 1) =
pgglr-

ctl(t, x4, z, w, win) = 0.

Remark 3.1 (Re-attach operationsfhe CONNECTIVITY
MAINTENANCE ALGORITHM allows for two types of graph
re-arrangements:

@

In other words, the composition of two input-output
control and communication laws is the natural result of

substituting each law’s output for the other law’s input.

I[I. CONNECTIVITY MAINTENANCE ALGORITHM

This section introduces the ABINECTIVITY MAINTE-

NANCE ALGORITHM. Section IlI-A describes the algorithm

The first type of re arrangement isr@-attachof ¢ to j
having dé’st < dpesr If agenti determines that it would
rather have its parent berather than its current parent
(via winl), it first checks that dg; < dpil; (line 15

of Table 1), naotifies its current parerrntg]Jrr and j of

the proposed move on the natification step (via msg),
and performs the topology rearrangement (Ihef
Table I) on the rearrangement step.

(i) The second type of re- arrangement igeaattach of

in detail and Section IlI-B analyzes its properties. The
algorithm by itself does not invoke either physical agents

or their mobility, and fits within common frameworks of
[16]. We present it as an

distributed algorithms, see e.g.,

input-output control and communication law as defined in

Section II-C.

i to j having dé’t = dpesr We show later that no
descendant of has a lesser depth estimate thign
and that the rules Concernir[é’glr_Iess preventi from
attaching to a descendant with equal depth estimate.
The tie-breaking procedure of liriein Table | ensures
that no cycles are created by simultaneous re-attach

operations between agents of equal depth estimate.



function sthy, (£, win, (plak, dpl%l, phasdd pld) 1)
1: if phas@‘[‘]]: 0 then “ “
id id id .
2 if plned 2 e and dfpd = dpld and id >
X | plheivi=plily )
then ) i) : [ [i]
3: return ((peutr, dpsst » (Phaséd + 1) mod 4), pegrr, Tpartesd
4:  else ) ) ) ' )
5. retum((phek, dplS(, (Phaséd + 1) mod 4), phok, Togy o)
6: if phaséd = 1 then
id] (pLiN]
7:  Set d;éSI — dpgg™™ + 1 ) _
8 retumn ((plih, dplel, (phaséd + 1) mod 4), plak, The )
9: if phasé;’] = 2 then
) i
10: Set]I’[)a]r_|ess<— false
. golPh] fid]
110 if dpegi™™ < dpgg; then
: id
12: Setﬂga]r,!essh Frue . _ _
13: retum((pé'ﬂl,, dpl | (phasé) + 1) mod 4), pl9l, ]I’[)'gl_less)
14: if phasél = 3 then A _ ,
15 Let phdl — argmin,, (;{j € N(id)|dp} < dpl¥ or pldl, =
pgﬂ;f ord _]s]t = dpggg and Héja]r-less: true} ) )
16:  return((pld), dpl¥, (phaséd + 1) mod 4), pl%, ]I'[)'gl_lesg

TABLE |
stfy, FOR THECONNECTIVITY MAINTENANCE ALGORITHM.

B. Correctness analysis and reachability

In this section, we analyze theGBINECTIVITY MAINTE-
NANCE ALGORITHM. In particular, we show that connectiv-
ity is preserved throughout the execution of the algorith
and that for any two treed;, andTs, there is a sequence of
inputs that cause the algorithm to transfafinonto 75. For
convenience in the forthcoming analysis, we let(md= N
be the number of times the assignment pHase 2 has been
made at timg. We denote the value of, sayfﬁpat iteration
md(t) by da(rnd(t)).

Theorem 3.2:The execution of ONNECTIVITY MAIN-
TENANCE ALGORITHM verifies that

o dpfl(rnd(t)) < dpé’gtgrnd(w —1)+1,

 dpil(md(r)) > dp (),
forall i € {0,...,n—1}, where for convenience, éﬁr) =
dp[}] (to) for all roundsr < 0. Thus, at any time > 0, if k
is an ancestor of, then dgl(rd(t)) > dpl(md(1)).

Theorem 3.3:At all times during the execution of @\-
NECTIVITY MAINTENANCE ALGORITHM, the graph in-
duced by the parent relation among the agents contains
cycles (and is therefore a connected tree).

Definition 3.4: An input-output control and communica-
tion law CC. is fully compatible with CONNECTIVITY
MAINTENANCE ALGORITHM if the following holds:

o Wout and Wi, of CC. match up, respectively, withi,

and Wyt of CONNECTIVITY MAINTENANCE ALGO-
RITHM;

(stfouy), and control function ofCC,. are such that the

control function is guaranteed never to induce a motion

which causesi, pLﬂxt) or (i, p[cﬂrr) to cease to be an edge
of the underlying proximity graph.

m

Corollary 3.5: The composition of ONNECTIVITY
MAINTENANCE ALGORITHM with a fully compatible
input-output control and communication law;C,., is a
control and communication law with the property that any
robotic network which starts with a connected proximity
graph remains connected throughout its execution.

Next, we show that the trees produced by this algorithm
are somehow better than an arbitrarily chosen tree.

Proposition 3.6: Suppose two nodeg,and j, are neigh-
bors in the current communication graph at some time
andIf), ese= 15 ess= true. Suppose further that, ! (j) <
winl (k) for all k € N(i) for t, <t < tyyq andwinb! (i) <
winbl(m) for all m € N'(j) for all t, <t < tyy4. Then ifi
and j remain neighbors iy for the next 4 communication
rounds, eithet will be p¥l, or j will be pl.

IV. FORMATION MORPHING PROBLEM

Here, we illustrate the utility of the @NNECTIVITY
MAINTENANCE ALGORITHM introduced in Section Ill. We
design a coordination algorithm that allows the network to
move between any two different formations while maintain-
ing connectivity. We begin by formally stating the problem.

Definition 4.1 (Formation morphing problemfGiven a
proximity graph, G, the formation morphing problem is
that of designing a distributed algorithm to compute motion
between two configurations(Ps,Ts)] and [(Piarg Ttarg)],
of n robots in d-dimensional space such that the graph
G(ir(P)) remains connected at all times and the network
reaches(Parg, Trarg)] in finite time.

Next, Section IV-A describes the algorithm in detail and
Section IV-B analyzes its correctness.

A. Algorithm framework and specification

In this section, we introduce thedRMATION MORPHING
ALGORITHM to solve the formation morphing problem. For
clarity, we use the symbols; 1, ..., a; n,, wherem; is the
depth of in the target constraint tre€j. to denote the
ancestors of in Tiag. We usea;; to mean the parent of
in Tiarg, anda; ,,, to mean the root offjag.

Consider a uniform networkS with identifiers I
{0,...,n — 1}, identical agents of the formA
(R2,R2,R?, f(x,u) = u), andr-disk communication edge
map Ecmm, that is,i and;j are connected iffz[!! — 2Ul|| < r.

We use several constants to specify values known a priori
HAd used by each agent’s control law, message generation
function, and state transition function. Pick some lower
numbersd; < ds < r to be the distance constraints used in
practice, and let all robots knod; andd, before executing

the algorithm. Each robot also knows its positiafina, Ysinal)

in the final configuration;

A formation morphing input-output control and commu-
nication law overS consists of

This implies thattcmm, is the time for @NNECTIVITY
MAINTENANCE ALGORITHM to go through all four
iterations in a cycle. We also choose;,e such that
4vscaldemm < |d2 - d1|;



(i) communication languagé = R? x Wi:

(iii) logic variables, Wl = 7, x {true, false} X Zn x N3 x
Zs, wll = (i, Ht[;r]ancn nl[:hld,andb Ml ), wherei is
the agent unique |dent|f|eELb,]anch is a flag used to
indicate which stage of the algorithiis executing and
n([:ltlld is the number of children of in the target tree.
Each robot;, will know enough about its ancestors in

the constraint tree7iaq Of the target configuration,

[(Prarg, Trarg)] t0 answer membership queries of the

form “is j an ancestor of?” and distance queries of the
form “given thatj is an ancestor of, how many edges
are in the shortest path froimo j in Tiag?” We show

function stf (¢, pla, win[, wl, {1; | j € Nig})
if ||l — 2 Pcurr]|| > dj then
[id]
SetM . ue
. else if,ﬂ[rancﬁé true then
if phar = aig,1 then
if eachj such thatpéu]Irr =
aren[ﬁl]d suchj then
setn

fid] branch
Mmo e < Morlgln

: else |f]Ibre]mch: true then
id

Mmode id

: return(id,]lgra]mmn

«— M, parent

4]

f— D
branch —

id has sentl, true and there

«— true

— Mu,v final
[id]

. d
chig» NG, Mr&o]de)

in Theorem 4.2 that this information can be stored witl

three integers which we denote by Bhalzl e 7,
is used to indicate to the control function which of
three motion modes to US87say, Morigin aNd My,y final,

corresponding to a stationary mode, a “move towards

origin” mode and a “move towards final configuration”

mode respecnveIP/
wil = {(i, false n.2 ,, and’! Mstay)} c wii,
U, indicates theith

I/VmH = Zn, Wherewn[l] = Pcurn
robots parent in the constraint tree;

Wm([}] such that the tree induced bﬂ?&rr is a connected
spanning tree of the robotic network;

Woud” = {wout[i] 2Ly — L U {00}, wherewg,l! €
Woul” is a ranking of which nearby robotswould
prefer to be connected to;

and with the following functions

(iv)
v)

(vi)
(vii)

1 TABLE I

stfyy, FOR FORMATION MORPHINGALGORITHM.

Ttarg, Of [(Parg, Ttarg)]. Perform a depth-first search
on Tiarg. Mark each nodej, with the number of
nodesn,isit(7) visited before nodeé and the number
of descendantsgesd?) Of i in the treeTiag . Note
that nyisit(i) + ngesd?) is the number of nodes
visited before the first node after that is not
an ancestor of is visited. Recalling thatn; is
the depth in the final target tree of nodeg let
and’ « (nwsn() ndes&l) mz)
Theorem 4.2:The numbers af¢ ¢ N3, i € I, allow
FORMATION MORPHING ALGORITHM to answer queries
of the form “Is robotj a; q iN [(Parg Ttarg)]?” Using only
O(log(n)) bits of storage inD(1) time.

(i) the standard message generation function (i.e., Note that storing a unique identifier for each robot re-

msg(t, 219 ] j) — (1) ,ld)y.
(i) function stfou(t, 21, plil, (id, I, and®, A2heL ),
{17 € Na})
1 Let wou® : Z, — Z, U {cc} be defined by
wout[id] (])
0, ||x I g lid) || > di,
k, J = aidkx A (]Ibranch_ Hbranch\/ Jj= pgu;r)
mia+1, j&{aigr|kel...matNj= [p“‘”]
mig +2, j & {aigk | k€ 1~~-m|d} AJ —PQS;n
0, otherwise

2: return woyd¥
In other words, if no member ofaiqr | k& €
{1,...,miq}} is available, id would prefer to attach to
P[czfﬁ“r", and if Cﬁ%@f]'] is also not in reach, id will remain
attached tcpcurr,
function Stf|v(t,p([:3lr, winl, wld {1 ] 5 € Ng}) as
defined in Table II;

(iii)

(iv) the control funct_ion is cft!, wi?) = 0 if Mrg']g,]de—
Mstay, Ct|( [Id]) = Uscalevers(— [Id]) if ]\/[mode

Morigin, and Ct(z['d] w['d]) = VscaleVers(Zfinal — 2l
Mr[node Muvflnal
Next, we specify how the numbers dhce N° are
initialized.
Prior to running any control algorithms, perform
the following operations on the constraint tree,

dhy if

quiresO(log(n)) bits. The ORMATION MORPHINGALGO-
RITHM is the composition (in the sense of Definition 2.4)
of CONNECTIVITY MAINTENANCE ALGORITHM with the

formation morphing input-output law defined above.

B. Correctness analysis

We now establish the correctness abHEMATION MOR-
PHING ALGORITHM. Lemma 4.3 shows that we do not break
any edges in the constraint tree.

Lemma 4.3:While following FORMATION MORPHING

ALGORITHM composed with ©ONNECTIVITY MAINTE-

NANCE ALGORITHM, no two robots that are connected in

the constraint tree are evds apart.

The next result specifies the time it takes for the contrac-

tion to complete, and the constraint tree to achieve its final
topology.

Lemma 4.4:Let diam(P(ty)) be the initial diameter of

the convex hull of the robot positions.

(i) Within O(d'am(lz(t"))) rounds, each robot is within
d, of each robot in the current path froirto a; ;, or
SatISfIESpct]Jrr =ai1.

(i) Within 4 K further rounds, each roboi is at depth

and depth estimate of at Ieavstm{dpr ,max{K —

p[Il‘t]ar }}

Finally, the next theorem ties the previous results togethe

characterizing the time necessary for expansion into the



final configuration, and establishes the correctness aral tirto perform formation morphing while maintaining network
complexity of FORMATION MORPHING ALGORITHM. connectivity. Finally, we have also characterized the querf

Theorem 4.5:Within O((d'am(P(tt"))td'al‘m(T‘a'g)dl) rounds mance of this algorithm by analyzing the time complexity of
FORMATION MORPHING ALGORITHM achieves formation its execution as the number of agents grow.
morphing, whereli,q is the final tree in the target configu- Future work will improve the robustness of these algo-
ration, and diar(iliag) is its graph diameter. rithms, while loosening the strict synchronization requir
ments currently in place. We will also explore the inter-
connection of the ONNECTIVITY MAINTENANCE ALGO-

We have developed a custom java simulation engine fofitHm with other algorithms to achieve more complex
robotic networks expressed in the formalism of [9]. We usegoordination tasks. Natural candidates are multipledead
this framework to develop simulations and visualizatiohs deader-follower behaviors, and sensor coverage tasks for
the FORMATION MORPHINGALGORITHM (Figure 1 shows mobile sensor networks. We will also investigate the additi
a sample execution). The source is available upon requespf more operations to GNNECTIVITY MAINTENANCE AL-

. GORITHM that still guarantee distributed correctness (e.g.,
“identity swap” operations between robots). Regarding the
FORMATION MORPHINGALGORITHM, we will explore the
incorporation of collision-free guarantees on its exeuti

V. SIMULATION RESULTS

(@) (©

Fig. 1. Plots show (a) the initial positions, (b) the pathketa by and
(c) the final configuration (including constraint tree) of erecution of
FORMATION MORPHINGALGORITHM.

We further developed the simulator to run approximately
80000 runs of BRMATION MORPHING ALGORITHM with
initial and final configurations sampled randomly. In Fig@re
we plot the actual task completion times of each of these rung;
versus the function dia(®(ty)) + diam(ZTiarg). Because of
the uniform time schedule, the number of communication[3]
rounds required for completion is linearly related to the
time required for completion. From the graph one can see
a linear relationship between the worst completion times fo [4]
FORMATION MORPHING ALGORITHM and dianiP(tg)) +
diam(Tiarg), as fore-casted by our analysis, see Theorem 4.95]
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Fig. 2. Comparison of the time complexity bound in Theorem 4.5{11]

with actual running times of GRMATION MORPHINGALGORITHM under

random choices of initial and final configurations. Each poapresents a [12]

successful execution.

[13]
VI. CONCLUSIONS AND FUTURE WORK

We have introduced the @INECTIVITY MAINTENANCE ral
ALGORITHM and shown its desirable properties as an exten-
sion to existing connectivity maintenance mechanisms fdt®]
distributed control of robotic networks. We have used the
CONNECTIVITY MAINTENANCE ALGORITHM to create the [16]
FORMATION MORPHINGALGORITHM, wWhich is guaranteed
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