Distributed Map Merging in a Robotic Network

Rosario Aragues and Jorge Cortes and Carlos Sagues

Abstract— The map merging problem in a robotic network  to robot measurements are used to merge two local maps
consists of the construction of a global map of the environment into a single map. An optimization phase must be carried out
using the partial (local) maps individually acquired by the i, orqer to transform the constraint graph into a Cartesian

robots. We build on ideas from distributed sensor fusion to 51 al ts the alobal . h. Nod
provide an algorithmic solution to the map merging problem ~MaPp- [5] also represents the global map using a graph. Nodes

that uses the local maps as sensor measurements. We use '€ local m?tric maps and edges descri_be relative pOSitian
distributed average consensus algorithm that reaches asymp- between adjacent local. The map merging process consists

totic consensus on the value of the global map. The proposed of adding an edge between the maps. Global optimization

solution can be used in a network with switching topology. We techniques are applied to obtain the global metric map. [3]
also present some experimental results of the algorithm. . . .

merges two maps into a single one using robot to robot

. INTRODUCTION measurements to align the two maps and then detecting

Multi-robot applications are receiving a lot of attentiondl"pl'cat,ed landmarks and imposing the |mpI|C|t measurdmen
in the last years. In these scenarios, a team of robofgnstraints. [4] addresses the map merging problem using an

cooperatively perform some task in a more efficient way thatfiformation Filter to acquire the local maps. This local map

a single robot would do. In addition to the classical issueePresentation simplifies the merging process. [5] maistai
associated to the operation of individual robots, thesaaee a global map represented by a graph where nodes are local

ios introduce novel challenges specific to the coordination metric maps and edges describe relative positions between
multiple robots adjacent local. Map merging process consists of adding an
Many multi-robot applications require that the agent’s:dge between the maps. Global optimization techniques are

know their own location and the location of other agents, a@pplled to obtain the glqbal metric map. L .

well as some information about the surrounding environmen Other probllem assomgted to mu_ltl-robot applications is
Agents may have different knowledge of the environment duffiat many existing algorithms require that each robot has
to the fact that they are located in different places and m € cgpablllty to commun_|c§1te \,N'th .aII (_)ther robots at every
observe only a portion of the environment. The map merging "€ instant. A more realistic situation is when, at any time
problem is motivated by the need to fuse the local robd stant, robots can communicate only with a limited number

information into a global knowledge of the environment with ©ther robots, e.g., agents within a specific distances&he
the objective of enabling the network to perform the tagRituations can be best modeled using communication graphs,

in an efficient way. The map merging problem consists O\fvhere ngde; corresppln.d to the agents and edge; represent
combining the environmental information acquired by alppmmunlcatlon Capab,'““es between the robots. Additigna
the robots in the team in order to build a global map that"CE @gents are moving, the topology of the graph may vary

represents the global knowledge. This particular problef@©nd the time, given rise to switching topologies, see for

has been long studied in the robotic literature, see fdpstance [6]. )
instance [1]-[5]. Among the general approaches to the synthesis of co-

In [1] a single global map is updated by all the rolootsprdination algorithms for multi-robot systems we mention

Robots search for features in the global map that have begﬁntralized and distributed strategies. In a centralizeat-s

observed by themselves along the exploration. Then, they LEIY; there exists a central node that compiles all the infor-

these coincident features to compinplicit measurements mation from other robots, performs the computations, and
(the difference between the Cartesian coordinates of eqﬁppagatéas the prO(I;eszed mforn;]atloE or demsnzns tg thke-
features must be zero) and use these constrains to upd%@er nodes. Centralize approacnes have many drawbacks.
the map. In [2] maps are represented as constraint grapH%e Whole system can fail if the central node falls,.legder
where nodes are scans measured from a robot pose and eo‘ifé@cuon algorithms may be needed, and a (direct or inglirec

represent the difference between pairs of robot poses. tRof@Mmunication of all agents with the central system may
be required. On the other hand, in distributed systems, all
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(local) data and the information received from its neiglsborwherey, € R7* are them; observations (estimation of the
in the graph. The solution is based on distributed averadeature positions)4; € R™:*™ relates the parametefsand
consensus algorithms for data fusion problems [7], [8]. the observationg;, andv; is a random Gaussian variable
with zero mean and covariance matbix ¢ R >,
Il. PROBLEM DESCRIPTION The matricesA; establish the relation between the param-

Wi id . h bots h lored eters to be estimated (Cartesian coordinates of the feture
€ consider a situation whererobots have explored an . e |ocal estimates of each robot. Since the local esti-

uhnk_nown enk\)/ |ronm_ent bul'?ld'l?g a stochast;c map bdased HMWates are also the Cartesian coordinates of features and all
their own observations. Robots stop exploring an mer$80al maps are expressed in the same reference frame, the

their information in order to obtam a _global es_t|.n.1ate c’matricesAZ- are just a permutation of an identity matrix with
the map. The: robots have communication capabilities thatadditional zero-columns

enables information exchange with other robots within a
specific distance.

Each robot has observed and estimated the position of y=A0+v (2)
some static features in the environment. Tata association with
problem consists of establishing relationships between the

Collecting the information in the. robots we have

features observed by different robots. In this paper this Y1 Ay vy
problem is not discussed and a perfect data association Y2 Az U2
is simulated. Every feature has associated an identifier so Y~ | A=1 . v= o
that the same features in different maps have the same id yn An v'n

number and different features have different id. Thigial

correspondence problem consists of establishing a global We assume that the noises are independent since every
reference frame for all robots so that all local maps arEPbot has constructed the map based on its own obser-
expressed in this reference. In this paper it is assum@tions. The covariance of the matrix is then ¥ =

that all local maps are represented in the same referen@tag(X1,---,3n). X

frame. These two problems are highly correlated and many The maximum-likelihood estimatg, . for the parameters
solutions have been presented to solve them. For the initflPased on the observatiopsand its error covariance matrix
correspondence problem, a simple (but not very flexible¥s,,, are
solution is to initialize all robots at known relative pasits. A
Another solution is to make all robots start from nearby Onr
positions; then, techniques from vision [9] can be used %, = (ATZ7'4)
to recover the relative pose between the cameras (agenjfere

with the condition that a minimal number of landmarks "
must be visible from all the cameras. Alternatively, robots ATy =14 = ZAzTZi_lAi (4)
may start from completely unknown poses and use robot- i—1

_ Ts—1 g\~ gTy—1
= (A by A)—1A Sy 3)

to-robot measurements to estimate the relative positiods a n
orientations [3]. The data association problem simpliffes i ATSy = ZAZTZ[lyi (5)
the features are expressed in the same reference frame. If i=1

the sensor is a camera, the use of SIFT or SURF featureFollowing [7], we can solve this problem as a distributed
descriptors [10] also simplifies the data association k&auaverage consensus problem on the values of two variables
different features are more easily detected. P and g, termed respectivelgomposite information matrix

The problem of creating a global estimate of the mapnd composite information state. This algorithm achieves
can be expressed as the estimation of a vector of unknowsymptotic consensus (nodes reach consensus tvhenc)
and constant parametefisc R™ (the static position of the and has the property that computations in every node are
features in the map), combining the noisy observations @frried out using only local information in node and
the n distributed sensors (the local maps and covarianc@sformation from its neighbors in the graph.
estimated by the robots). If we express the problem in this The variablesP and g are initialized att = 0 as follows
way, we can apply the distributed sensor fusion solution

. : ) Pi(0) = ATx;'A,

in [7] that we briefly describe next for reference. ! Lot 6

A. Distributed averaging for sensor fusion At every step,P andq are updated using the value in the
Assume all robots know the total amount of parameterrs]Ode and values from the neighbor nodes

to bg estimatedn and the order of their Ioca_l parameters Pi(t+1) = wy(t)Pi(t) + Z w;j () P;(t) (7

relative tod € R™. Then, the local observations of each JEN (1)

roboti, for i € {1,...,n}, can be expressed as

G(t+1) =wi(t)g(t) + > wi(t)g(t)  (8)
yi = A0 + vy, Q) FEN;(t)



where N;(t) is the set of neighbors of the nodeand A. First Approach
wi;(t),w;;(t) € [0,1] are some weights.

X i . In our case, we | o yg provide an overview of the steps of the first
use the Metropolis weights given by

approach:
m if j € Ni(t) BFS tree construction: The agents begin by constructing
wij(t) =4 1— ZkeN,;(t) wir(t) ifi=j 9) a BFS spanning tree ir! the un_dire_cted graph using a
otherwise variation of the flood with termination algorithm, see

e.g., [11]. As a result, all nodes in the graph know the
identity of its parent and its children in the graph, and
also know its role (root, leaf of regular node).
Parameter computation: After this, the leaves initiate the

Using this iterative scheme, one can show [7] thatf as
tends to infinity, all nodes reach consensus on the values of
P andg, and the agreement values are given by

) 1~ ey incremental computation of the identity and order of
Jim Fi(t) = — > ATSA;, (10) the parameters to be estimated. When all information
i=1 is available to the root, it computes the final order and
. 1 “\ pelt amount of parameters and uses a flooding algorithm to
tlggo e(t) = n ZlAi X Y a1 propagate this information to all nodes in the graph.

Distributed averaging: Finally, the nodes compute the ma-
trices A; and initiate the consensus algorithm described
in Section 1I-A to compute the maximume-likelihood
estimate of the global map.

Opr = lim Py(t) 'qi(t) (12) Next, we describe each of these steps in more detail.
fee 1) BFS tree construction: In order to construct the BFS
In order to computeZ; , it is necessary that nodes alsotree, all nodes in the undirected graph must know if they are
know n 1 the root and also must know which nodes are their neighbors
Y., = flirglo gPZ-(t)_1 (13) in the graph.
) ’ . All nodes initialize "parent id’ to null and 'children setot
B. Global map merging as a sensor fusion problem be the set of neighbors. The root node initiates the process
The approach described in the section cannot be directygnding a 'parent request’ to all its neighbors. When a node
applied to the map merging problem because the totatceives a 'parent request’ message, it checks the valug of i
number of parametersn is unknown (each robot only ’parent id’; if it is null, then it updates this value to be the
has information of then,; parameters observed by itself). sender id; if the node already has a parent, it replays with
Therefore, the matricegl; are unknown. The information a 'parent reject’ message. If during a step a node receives
available at every node is instead multiple 'parent request’ messages, it selects as a pdrent t
- node with the smallest id and sends a 'parent reject’ message
yi = Aibi + i, (14) {5 the other nodes. Nodes remove the parent id from the list
where A; € R™i*mi g, ¢ R™. The relationship between Of children.
the unknown matrix4; and the known4; is that the first ~ When a node receives a 'parent reject’ message, it updates
matrix is a permutation of the columns of the second matriis children set, deleting the sender from this set.

wheren is the total number of nodes in the network.
Therefore,f,,;, can be asymptotically computed by each
node, combiningP and g

with additional zero columns for those parameterd inot A node with an empty children set is a leaf.
observed by robot. Some steps of this algorithm are illustrated in Fig. 1.
Our goal is to simultaneous estimate, A;, Op . and 2) Incremental computation of identity and order of pa-

¥y,,, In a distributed way based on the information ex+ameters: When a node detects that it is a leaf, it starts
changed between each robot and its neighbors in the coihe process of computing the total amount and order of
munication graph. parameters. Every node has a vector with the identity of
the parameters observed by himself during the exploration.
Il. APPROACHES Leaves sort their vectors and send them inside an 'up’
We propose two alternative approaches to solve the probiessage to their parent.
lem of the global map merging. The first approach begins Nodes in the graph compile all the identity vectors sent by
by reaching consensus on the total amount and order of theeir children and fuse this information with its own idewyti
parameters to be estimated, and then computes the matrizestor. Once a node has received 'up’ messages from all
A; and executes the average consensus algorithm descriliisdchildren, it sends an 'up’ message to its parent with the
in Section II-A. The second approach does not require thesulting identity vector.
initial consensus stage on the number and order of the When the root has received all the information from its
parameters. Instead, each node updates the number and oddtéidren, it computes the final (global) identity vector.igh
of parameters at every time step using the information of itglobal vector contains all the identities of the parameters
neighbors and, simultaneously, arrangésand ¢ according observed by all the nodes in the graph, without repetition,
to this information. and sorted in ascendant order.



(b)

Fig. 1. Example of BFS tree construction (a): The root (circle) initiates the process sending a parequest to all its children (blue arrows(b):
Nodes 3 and 5 update their parent and send parent requastsafiobws) to all their childrer(c): Node 3 sends a parent reject (red arrow) to node 5 as
a response to the parent request received. Node 5 behaves game way. Node 6 selects as parent the node with the mininmifiele(node 3) and
sends a parent reject to node 5; then, it sends a parent tequasits children. Node 8 updates its parent and sends enpaequest to its children.

Then the root sends this final vector to all its children « m,; the number of parameters observed by nodaring
in a 'down’ message. Every node that receives a 'down’ the exploration;
message, updates its identity vector to be the global vectore m;(0) the total number of parameters discovered by
and propagates this information sending a 'down’ message nodei at¢ = 0 is equal tom,;
to all its children. Using this global vector, nodes can « y; € R™ the observations of the parameters. This value
compute theA; matrices which are used in the algorithm does not change along the iterations;
that computes the global map. o X; € R™ ™ the covariance matrix. This value also

Some steps of this algorithm are illustrated in Fig. 2.
3) Matrix computation and distributed averaging: Every

node i has knowledge of then,; parameters observed by

himself: they; vector with them; observations, th&; €
R™i*x™i covariance matrix, thed, € R™i*™i gbservation

remains unchanged during the algorithm execution;
Is,(0) € N™(0) the vector with the identities of the
parameters discovered by nodat time¢ = 0, which

is initialized with the identifiers and the order observed
by the nodei during the exploration;

matrix which relates parameters with observations, and its  A;(0) € R™*™:(%) the observation matrix relating the

local identity vector/s € N™. When the process of parameters ing (0) an the observations if;.

estimating the total amount and order of parameter finishes,Using this information, each node can compute the initial

the node also knows the global identity vector, which wealues forP; and g;

namelg € N, - ~ 1 s
The first step is the expansion of the identity vector and the Pi(0) = Aj‘T(O)Ei Ai(0)

observation matrix. The expanded identity vedgr is the Gi(0) = AT(0)x; 1y,

result of appending to the end &f; all the ids which are in - At each jteration, nodes update the order and amount of
Ie but are not in/g, . Since the node has not observed thesgaameters observed up to that time instant, arrange the
additional parameters, matrid; can be expanded adding matricesP and ¢ accordingly, and compute the new values
m — m,; additional zero-columns at the end. This expandegy; p and ¢. At t + 1, nodei can access the information
matrix is calledA;. received from its neighbors and the information stored at
Then, nodes compute the permutation that transfaffis  nodei: I, (t), which is the vector with the identities of the
into Ie. Applying this permutation to the columns off  parameters discovered by noget timet, and P;(t), g;(t)
nodes obtain the matrix;. which are arranged according Ig (t), for j € N;(t)U{i}.
Once all matrices have been expanded and permuted, theFirst, nodei useslg () for j € ]Jvi(t)u{z’} and computes
distributed averaging algorithm to compute the global maghe new order and amount of parametégs(t + 1). Then,
can be executed. it expands and arranges the previous métriég@), g;(t)

(15)

according to this new order of parameters. Forail NV, (¢)U

B. Second Approach {i}, I is the result of appending to the end & (¢) all

In the second approach, nodes do not need to computehe ids which are i, (t+ 1) but are not inlg_(t).
tree in the graph and agree upon the order and amount of
Fne;rtaerggteerje?efore starting t_he average consensus afgorith B Pi(t) 0 [ (t) s

, y node starts with the information relatedéo t f¥5e 0 o’ qug 0

parameters observed by itself and, incrementally, digsove ’ ’
the new parameters in the information sent by its neighbors. Then, nodei computes the permutation that transforms
Then, it adds this information to its own knowledge, propafgj into I (t+1) and applies this permutation to the rows
gating it to its neighbors in the next iteration. and columns ofP™ . and to the rows ofj" , , obtaining

At the beginning, all nodes have access to its local s, s,
information. Att = 0, nodei knows respectivelyP,

andg’

5, (t+1) i1, (t+1)°



Fig. 2. Incremental computation of identity and order of parameters. (a): Nodes 5 and 9 send an up message (yellow arrow) to their pgkgnt
The root receives an up message from node 2. It had previoesgived an up message from its other children (nodéc)The root computes the final
(global) parameter vector and starts a flooding process to comeate this vector to all the nodes. It sends a down messagl gpiow) to all its children.

Once all matrices are arranged according to the samee. At time instantt,, robots initiate the same process,
parameter identity vector, an iteration can be carried out a  creating a new empty local map fag, and starting

nodei to compute the new?; (¢ + 1) andg;(t+1) the map merging for maps dat_;. If desired, they
. . N can simultaneously continue with older map merging
Pi(t+1) = wu‘(t)P;,rfé_(tH) + Z wij(t)P‘;r[év(th)a algorithms (for any previous).
l JeENi(t) l Since all local maps at time;, are independent of all
a7 previous local maps, the computed global maps are also
Gt+1)= wii(t)(’j:[é (41 + Z wij(t)q;flé (t41)" independent. This means that all nodes are computing and
’ FEN(t) Y storing global submaps. All these global submaps can be

(18) merged into a whole global map using the submapping
- strategy in [12].
Notice that the obtained matriceB; (¢ + 1), ¢;(t + 1)
can be transformed into the matrices computed by the first V. SIMULATIONS
approachP;(t-+1), ¢;(t+1) by an expansion and arrangement | 1o 10 show the performance of the algorithm, a

process based on the parameter identity veclgrst + 1) simulation has been carried out where a team composed by

and Ig. Therefore, the resulis obtained by both approach robots have explored an environment, obtaining a set of
are completely equivalent and the convergence speed is li al maps, see Fig. 3(a-i) '

same. In the simulation, robots estimate their motion based on
odometry information and sense the environment using a
camera device that provides bearings to the landmarksyEver
The problem solved by our algorithm is an static magobot explores only a small portion of the environment s¢ tha
merging where robots compute the global map for the locaone robot observes all the landmarks. Due to the short tra-
maps acquired until some time instant. If a more flexiblgectories followed by the robots and to the nature of bearing
solution is desired, where robots resume the exploratioh aonly data, landmark estimates present large uncertairttyein
in some posterior instant decide to merge their local magecal maps. In Fig. 3(a-i) black dots represent obstackss, r
again, a dynamic map merging strategy must be providedots are the ground-truth location of landmarks, blue @®ss
In this section, we propose a solution to this problem. are the estimates of the landmark positions and blue edlipse
It is worth mentioning that the distributed averagingare the estimated covariance.
algorithm in Section II-A also works when the topology The goal of the map merging process is the combination
of the network is switching. Therefore, it is not necessargf the local maps to obtain a the maximum-likelihood
for the robots to remain stationary while they compute thestimate for the global map (see Fig. 4(a)). Every node
global map. The convergence of the algorithm is guaranteedecutes the algorithm described in this paper so that their
so long as the collection of communication graphs thatstimates asymptotically approach this maximum-likeditho
occur infinitely often is jointly connected. Robots can go omglobal map. Even thought the consensus is asymptotically
exploring and building local maps while they run the globateached, we can see that in practice, the convergence of
map merging algorithm. Based on this property, we propodbe averaging algorithm is very fast, and in a few steps the
the following strategy for dynamic exploration: estimates at every node approach the global map. In Fig. 4(b)
« At time to, nodes begin their exploration, building a"e show the global map estimated by robot 1 at time step

local map of the environment;

« Attime instantt;, robots create a new empty local map
and start the map merging process for merging the local VIl. CONCLUSIONS AND FUTURE WORK
maps at timety (the goal global map will be for time  In this paper, we have formulated a global map merging
to); problem as a sensor fusion problem. This has enabled us

IV. DYNAMIC MAP MERGING



) (h) (i)

Fig. 3. Local maps (a-i) Local maps obtained by robots 1 to 9. Red dots are the grouitl{wcation of landmarks. Blue crosses are the estimates of
the landmark positions and blue ellipses are the estimatearience.

Estimacion ML Robot 1. t=3

(@) (b)

Fig. 4. Experimental results. (a) Maximume-likelihood goal global magb) Global map estimated by robot 1 at= 3

to propose a solution based on distributed averaging. Tleemputes the average of some static inputs (the local maps).
resulting algorithm is distributed and asymptoticallyrest. We have briefly discussed a dynamic fusion strategy in
This algorithm computes a static consensus, that is, 8ection IV. As future work, we plan to investigate distribadit



dynamic consensus algorithms, which instead of computing
an average of a static input, track the average of time-ngryi
inputs. For map merging problems, this is equivalent to
the situation where robots continue to explore and update
their local maps while, simultaneously, running a distiéal
algorithm to track the global map.

Another area of future research is the design of optimal
motion control strategies for improved coverage of the envi
ronment. The idea is that robots cooperatively decide their
next movements in order to optimally explore more uncertain
regions and improve the quality of the global map.
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