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Abstract— The map merging problem in a robotic network
consists of the construction of a global map of the environment
using the partial (local) maps individually acquired by the
robots. We build on ideas from distributed sensor fusion to
provide an algorithmic solution to the map merging problem
that uses the local maps as sensor measurements. We use a
distributed average consensus algorithm that reaches asymp-
totic consensus on the value of the global map. The proposed
solution can be used in a network with switching topology. We
also present some experimental results of the algorithm.

I. INTRODUCTION

Multi-robot applications are receiving a lot of attention
in the last years. In these scenarios, a team of robots
cooperatively perform some task in a more efficient way than
a single robot would do. In addition to the classical issues
associated to the operation of individual robots, these scenar-
ios introduce novel challenges specific to the coordinationof
multiple robots.

Many multi-robot applications require that the agents
know their own location and the location of other agents, as
well as some information about the surrounding environment.
Agents may have different knowledge of the environment due
to the fact that they are located in different places and may
observe only a portion of the environment. The map merging
problem is motivated by the need to fuse the local robot
information into a global knowledge of the environment with
the objective of enabling the network to perform the task
in an efficient way. The map merging problem consists of
combining the environmental information acquired by all
the robots in the team in order to build a global map that
represents the global knowledge. This particular problem
has been long studied in the robotic literature, see for
instance [1]–[5].

In [1] a single global map is updated by all the robots.
Robots search for features in the global map that have been
observed by themselves along the exploration. Then, they use
these coincident features to computeimplicit measurements
(the difference between the Cartesian coordinates of equal
features must be zero) and use these constrains to update
the map. In [2] maps are represented as constraint graphs,
where nodes are scans measured from a robot pose and edges
represent the difference between pairs of robot poses. Robot
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to robot measurements are used to merge two local maps
into a single map. An optimization phase must be carried out
in order to transform the constraint graph into a Cartesian
map. [5] also represents the global map using a graph. Nodes
are local metric maps and edges describe relative positions
between adjacent local. The map merging process consists
of adding an edge between the maps. Global optimization
techniques are applied to obtain the global metric map. [3]
merges two maps into a single one using robot to robot
measurements to align the two maps and then detecting
duplicated landmarks and imposing the implicit measurement
constraints. [4] addresses the map merging problem using an
Information Filter to acquire the local maps. This local map
representation simplifies the merging process. [5] maintains
a global map represented by a graph where nodes are local
metric maps and edges describe relative positions between
adjacent local. Map merging process consists of adding an
edge between the maps. Global optimization techniques are
applied to obtain the global metric map.

Other problem associated to multi-robot applications is
that many existing algorithms require that each robot has
the capability to communicate with all other robots at every
time instant. A more realistic situation is when, at any time
instant, robots can communicate only with a limited number
of other robots, e.g., agents within a specific distance. These
situations can be best modeled using communication graphs,
where nodes correspond to the agents and edges represent
communication capabilities between the robots. Additionally,
since agents are moving, the topology of the graph may vary
along the time, given rise to switching topologies, see for
instance [6].

Among the general approaches to the synthesis of co-
ordination algorithms for multi-robot systems we mention
centralized and distributed strategies. In a centralized strat-
egy, there exists a central node that compiles all the infor-
mation from other robots, performs the computations, and
propagates the processed information or decisions to the
other nodes. Centralized approaches have many drawbacks:
the whole system can fail if the central node fails, leader
selection algorithms may be needed, and a (direct or indirect)
communication of all agents with the central system may
be required. On the other hand, in distributed systems, all
robots play the same role, and therefore the computations can
be distributed among all the agents. In addition, distributed
systems are naturally more robust to individual failures.

In this paper, we propose a solution to the map merging
problem for a robotic network modeled by a communication
graph, where all computations are distributed among the
agents and where, at every time step, robots only use its own



(local) data and the information received from its neighbors
in the graph. The solution is based on distributed average
consensus algorithms for data fusion problems [7], [8].

II. PROBLEM DESCRIPTION

We consider a situation wheren robots have explored an
unknown environment building a stochastic map based on
their own observations. Robots stop exploring and merge
their information in order to obtain a global estimate of
the map. Then robots have communication capabilities that
enables information exchange with other robots within a
specific distance.

Each robot has observed and estimated the position of
some static features in the environment. Thedata association
problem consists of establishing relationships between the
features observed by different robots. In this paper this
problem is not discussed and a perfect data association
is simulated. Every feature has associated an identifier so
that the same features in different maps have the same id
number and different features have different id. Theinitial
correspondence problem consists of establishing a global
reference frame for all robots so that all local maps are
expressed in this reference. In this paper it is assumed
that all local maps are represented in the same reference
frame. These two problems are highly correlated and many
solutions have been presented to solve them. For the initial
correspondence problem, a simple (but not very flexible)
solution is to initialize all robots at known relative positions.
Another solution is to make all robots start from nearby
positions; then, techniques from vision [9] can be used
to recover the relative pose between the cameras (agents)
with the condition that a minimal number of landmarks
must be visible from all the cameras. Alternatively, robots
may start from completely unknown poses and use robot-
to-robot measurements to estimate the relative positions and
orientations [3]. The data association problem simplifies if
the features are expressed in the same reference frame. If
the sensor is a camera, the use of SIFT or SURF feature
descriptors [10] also simplifies the data association because
different features are more easily detected.

The problem of creating a global estimate of the map
can be expressed as the estimation of a vector of unknown
and constant parametersθ ∈ R

m (the static position of the
features in the map), combining the noisy observations of
the n distributed sensors (the local maps and covariances
estimated by the robots). If we express the problem in this
way, we can apply the distributed sensor fusion solution
in [7] that we briefly describe next for reference.

A. Distributed averaging for sensor fusion

Assume all robots know the total amount of parameters
to be estimatedm and the order of their local parameters
relative to θ ∈ R

m. Then, the local observations of each
robot i, for i ∈ {1, . . . , n}, can be expressed as

yi = Aiθ + vi, (1)

whereyi ∈ R
m
i are themi observations (estimation of the

feature positions),Ai ∈ R
mi×m relates the parametersθ and

the observationsyi, and vi is a random Gaussian variable
with zero mean and covariance matrixΣi ∈ R

mi×mi .
The matricesAi establish the relation between the param-

eters to be estimated (Cartesian coordinates of the features)
and the local estimates of each robot. Since the local esti-
mates are also the Cartesian coordinates of features and all
local maps are expressed in the same reference frame, the
matricesAi are just a permutation of an identity matrix with
additional zero-columns.

Collecting the information in then robots we have

y = Aθ + v (2)
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We assume that the noisesvi are independent since every
robot has constructed the map based on its own obser-
vations. The covariance of the matrixv is then Σ =
diag(Σ1, · · · ,Σn).

The maximum-likelihood estimatêθML for the parameters
θ based on the observationsy and its error covariance matrix
Σ

θ̂ML
are

θ̂ML =
(

AT Σ−1A
)−1

AT Σ−1y

Σ
θ̂ML

= (AT Σ−1A)
−1 (3)

where

AT Σ−1A =

n
∑

i=1

AT
i Σ−1

i Ai (4)

AT Σ−1y =

n
∑

i=1

AT
i Σ−1

i yi (5)

Following [7], we can solve this problem as a distributed
average consensus problem on the values of two variables
P and q, termed respectivelycomposite information matrix
and composite information state. This algorithm achieves
asymptotic consensus (nodes reach consensus whent → ∞)
and has the property that computations in every node are
carried out using only local information in nodei and
information from its neighbors in the graph.

The variablesP andq are initialized att = 0 as follows

Pi(0) = AT
i Σ−1

i Ai

qi(0) = AT
i Σ−1

i yi
(6)

At every step,P andq are updated using the value in the
node and values from the neighbor nodes

Pi(t + 1) = wii(t)Pi(t) +
∑

j∈Ni(t)

wij(t)Pj(t) (7)

qi(t + 1) = wii(t)qi(t) +
∑

j∈Ni(t)

wij(t)qj(t) (8)



where Ni(t) is the set of neighbors of the nodei and
wii(t), wij(t) ∈ [0, 1] are some weights. In our case, we
use the Metropolis weights given by

wij(t) =







1
1+max{di(t),dj(t)}

if j ∈ Ni(t)

1 −
∑

k∈Ni(t)
wik(t) if i = j

0 otherwise
(9)

Using this iterative scheme, one can show [7] that, ast

tends to infinity, all nodes reach consensus on the values of
P andq, and the agreement values are given by

lim
t→∞

Pi(t) =
1

n

n
∑

i=1

AT
i Σ−1

i Ai, (10)

lim
t→∞

qi(t) =
1

n

n
∑

i=1

AT
i Σ−1

i yi. (11)

wheren is the total number of nodes in the network.
Therefore,θ̂ML can be asymptotically computed by each

node, combiningP andq

θ̂ML = lim
t→∞

Pi(t)
−1

qi(t) (12)

In order to computeΣ
θ̂ML

, it is necessary that nodes also
know n

Σ
θ̂ML

= lim
t→∞

1

n
Pi(t)

−1 (13)

B. Global map merging as a sensor fusion problem

The approach described in the section cannot be directly
applied to the map merging problem because the total
number of parametersm is unknown (each robot only
has information of themi parameters observed by itself).
Therefore, the matricesAi are unknown. The information
available at every node is instead

yi = Ãiθ̃i + vi, (14)

where Ãi ∈ R
mi×mi , θ̃i ∈ R

mi . The relationship between
the unknown matrixAi and the knownÃi is that the first
matrix is a permutation of the columns of the second matrix
with additional zero columns for those parameters inθ not
observed by roboti.

Our goal is to simultaneous estimatem, Ai, θ̂ML and
Σ

θ̂ML
in a distributed way based on the information ex-

changed between each robot and its neighbors in the com-
munication graph.

III. APPROACHES

We propose two alternative approaches to solve the prob-
lem of the global map merging. The first approach begins
by reaching consensus on the total amount and order of the
parameters to be estimated, and then computes the matrices
Ai and executes the average consensus algorithm described
in Section II-A. The second approach does not require the
initial consensus stage on the number and order of the
parameters. Instead, each node updates the number and order
of parameters at every time step using the information of its
neighbors and, simultaneously, arrangesP and q according
to this information.

A. First Approach

Let us provide an overview of the steps of the first
approach:

BFS tree construction: The agents begin by constructing
a BFS spanning tree in the undirected graph using a
variation of the flood with termination algorithm, see
e.g., [11]. As a result, all nodes in the graph know the
identity of its parent and its children in the graph, and
also know its role (root, leaf of regular node).

Parameter computation: After this, the leaves initiate the
incremental computation of the identity and order of
the parameters to be estimated. When all information
is available to the root, it computes the final order and
amount of parameters and uses a flooding algorithm to
propagate this information to all nodes in the graph.

Distributed averaging: Finally, the nodes compute the ma-
tricesAi and initiate the consensus algorithm described
in Section II-A to compute the maximum-likelihood
estimate of the global map.

Next, we describe each of these steps in more detail.
1) BFS tree construction: In order to construct the BFS

tree, all nodes in the undirected graph must know if they are
the root and also must know which nodes are their neighbors
in the graph.

All nodes initialize ’parent id’ to null and ’children set’ to
be the set of neighbors. The root node initiates the process
sending a ’parent request’ to all its neighbors. When a node
receives a ’parent request’ message, it checks the value of its
’parent id’; if it is null, then it updates this value to be the
sender id; if the node already has a parent, it replays with
a ’parent reject’ message. If during a step a node receives
multiple ’parent request’ messages, it selects as a parent the
node with the smallest id and sends a ’parent reject’ message
to the other nodes. Nodes remove the parent id from the list
of children.

When a node receives a ’parent reject’ message, it updates
its children set, deleting the sender from this set.

A node with an empty children set is a leaf.
Some steps of this algorithm are illustrated in Fig. 1.
2) Incremental computation of identity and order of pa-

rameters: When a node detects that it is a leaf, it starts
the process of computing the total amount and order of
parameters. Every node has a vector with the identity of
the parameters observed by himself during the exploration.
Leaves sort their vectors and send them inside an ’up’
message to their parent.

Nodes in the graph compile all the identity vectors sent by
their children and fuse this information with its own identity
vector. Once a node has received ’up’ messages from all
its children, it sends an ’up’ message to its parent with the
resulting identity vector.

When the root has received all the information from its
children, it computes the final (global) identity vector. This
global vector contains all the identities of the parameters
observed by all the nodes in the graph, without repetition,
and sorted in ascendant order.



(a) (b) (c)

Fig. 1. Example of BFS tree construction. (a): The root (circle) initiates the process sending a parent request to all its children (blue arrows).(b):
Nodes 3 and 5 update their parent and send parent requests (blue arrows) to all their children.(c): Node 3 sends a parent reject (red arrow) to node 5 as
a response to the parent request received. Node 5 behaves in the same way. Node 6 selects as parent the node with the minimal identifier (node 3) and
sends a parent reject to node 5; then, it sends a parent request to all its children. Node 8 updates its parent and sends a parent request to its children.

Then the root sends this final vector to all its children
in a ’down’ message. Every node that receives a ’down’
message, updates its identity vector to be the global vector
and propagates this information sending a ’down’ message
to all its children. Using this global vector, nodes can
compute theAi matrices which are used in the algorithm
that computes the global map.

Some steps of this algorithm are illustrated in Fig. 2.
3) Matrix computation and distributed averaging: Every

node i has knowledge of themi parameters observed by
himself: theyi vector with themi observations, theΣi ∈
R

mi×mi covariance matrix, thẽAi ∈ R
mi×mi observation

matrix which relates parameters with observations, and its
local identity vector IΘ̃i

∈ N
mi . When the process of

estimating the total amount and order of parameter finishes,
the node also knows the global identity vector, which we
nameIΘ ∈ N

m.
The first step is the expansion of the identity vector and the

observation matrix. The expanded identity vectorI+

Θ̃i

is the
result of appending to the end ofIΘ̃i

all the ids which are in
IΘ but are not inIΘ̃i

. Since the node has not observed these
additional parameters, matrix̃Ai can be expanded adding
m − mi additional zero-columns at the end. This expanded
matrix is calledÃ+

i .
Then, nodes compute the permutation that transformsI+

Θ̃i

into IΘ. Applying this permutation to the columns of̃A+
i

nodes obtain the matrixAi.
Once all matrices have been expanded and permuted, the

distributed averaging algorithm to compute the global map
can be executed.

B. Second Approach

In the second approach, nodes do not need to compute a
tree in the graph and agree upon the order and amount of
parameters before starting the average consensus algorithm.
Instead, every node starts with the information related to the
parameters observed by itself and, incrementally, discovers
the new parameters in the information sent by its neighbors.
Then, it adds this information to its own knowledge, propa-
gating it to its neighbors in the next iteration.

At the beginning, all nodes have access to its local
information. At t = 0, nodei knows

• mi the number of parameters observed by nodei during
the exploration;

• mi(0) the total number of parameters discovered by
nodei at t = 0 is equal tomi;

• yi ∈ R
mi the observations of the parameters. This value

does not change along the iterations;
• Σi ∈ R

mi×mi the covariance matrix. This value also
remains unchanged during the algorithm execution;

• IΘ̃i
(0) ∈ N

mi(0) the vector with the identities of the
parameters discovered by nodei at time t = 0, which
is initialized with the identifiers and the order observed
by the nodei during the exploration;

• Ãi(0) ∈ R
mi×mi(0) the observation matrix relating the

parameters inIΘ̃i
(0) an the observations inyi.

Using this information, each node can compute the initial
values forP̃i and q̃i

P̃i(0) = ÃT
i (0)Σ−1

i Ãi(0)

q̃i(0) = ÃT
i (0)Σ−1

i yi

(15)

At each iteration, nodes update the order and amount of
parameters observed up to that time instant, arrange the
matricesP and q accordingly, and compute the new values
for P and q. At t + 1, node i can access the information
received from its neighbors and the information stored at
nodei: IΘ̃j

(t), which is the vector with the identities of the

parameters discovered by nodej at time t, andP̃j(t), q̃j(t)
which are arranged according toIΘ̃j

(t), for j ∈ Ni(t)∪{i}.
First, nodei usesIΘ̃j

(t) for j ∈ Ni(t)∪{i} and computes
the new order and amount of parametersIΘ̃i

(t + 1). Then,
it expands and arranges the previous matricesP̃j(t), q̃j(t)
according to this new order of parameters. For allj ∈ Ni(t)∪
{i}, I+

Θ̃j

is the result of appending to the end ofIΘ̃j
(t) all

the ids which are inIΘ̃i
(t + 1) but are not inIΘ̃i

(t).

P̃+

j,I
+

Θ̃j

=

[

P̃j(t) 0

0 0

]

, q̃+

j,I
+

Θ̃j

=

[

q̃j(t)
0

]

. (16)

Then, nodei computes the permutation that transforms
I+

Θ̃j

into IΘ̃i
(t + 1) and applies this permutation to the rows

and columns ofP̃+

j,I
+

Θ̃j

and to the rows of̃q+

j,I
+

Θ̃j

, obtaining

respectivelyP̃+
j,I

Θ̃i
(t+1) and q̃+

j,I
Θ̃i

(t+1).



(a) (b) (c)

Fig. 2. Incremental computation of identity and order of parameters. (a): Nodes 5 and 9 send an up message (yellow arrow) to their parent. (b):
The root receives an up message from node 2. It had previously received an up message from its other children (node 4).(c): The root computes the final
(global) parameter vector and starts a flooding process to communicate this vector to all the nodes. It sends a down message (pink arrow) to all its children.

Once all matrices are arranged according to the same
parameter identity vector, an iteration can be carried out at
nodei to compute the new̃Pi(t + 1) and q̃i(t + 1)

P̃i(t + 1) = wii(t)P̃
+
i,I

Θ̃i
(t+1) +

∑

j∈Ni(t)

wij(t)P̃
+
j,I

Θ̃i
(t+1),

(17)

q̃i(t + 1) = wii(t)q̃
+
i,I

Θ̃i
(t+1) +

∑

j∈Ni(t)

wij(t)q̃
+
j,I

Θ̃i
(t+1).

(18)

Notice that the obtained matrices̃Pi(t + 1), q̃i(t + 1)
can be transformed into the matrices computed by the first
approachPi(t+1), qi(t+1) by an expansion and arrangement
process based on the parameter identity vectorsIΘ̃i

(t + 1)
and IΘ. Therefore, the results obtained by both approaches
are completely equivalent and the convergence speed is the
same.

IV. DYNAMIC MAP MERGING

The problem solved by our algorithm is an static map
merging where robots compute the global map for the local
maps acquired until some time instant. If a more flexible
solution is desired, where robots resume the exploration and
in some posterior instant decide to merge their local maps
again, a dynamic map merging strategy must be provided.
In this section, we propose a solution to this problem.

It is worth mentioning that the distributed averaging
algorithm in Section II-A also works when the topology
of the network is switching. Therefore, it is not necessary
for the robots to remain stationary while they compute the
global map. The convergence of the algorithm is guaranteed
so long as the collection of communication graphs that
occur infinitely often is jointly connected. Robots can go on
exploring and building local maps while they run the global
map merging algorithm. Based on this property, we propose
the following strategy for dynamic exploration:

• At time t0, nodes begin their exploration, building a
local map of the environment;

• At time instantt1, robots create a new empty local map
and start the map merging process for merging the local
maps at timet0 (the goal global map will be for time
t0);

• At time instant tk, robots initiate the same process,
creating a new empty local map fortk and starting
the map merging for maps attk−1. If desired, they
can simultaneously continue with older map merging
algorithms (for any previoustl).

Since all local maps at timetk are independent of all
previous local maps, the computed global maps are also
independent. This means that all nodes are computing and
storing global submaps. All these global submaps can be
merged into a whole global map using the submapping
strategy in [12].

V. SIMULATIONS

In order to show the performance of the algorithm, a
simulation has been carried out where a team composed by
9 robots have explored an environment, obtaining a set of
local maps, see Fig. 3(a-i).

In the simulation, robots estimate their motion based on
odometry information and sense the environment using a
camera device that provides bearings to the landmarks. Every
robot explores only a small portion of the environment so that
none robot observes all the landmarks. Due to the short tra-
jectories followed by the robots and to the nature of bearing-
only data, landmark estimates present large uncertainty inthe
local maps. In Fig. 3(a-i) black dots represent obstacles, red
dots are the ground-truth location of landmarks, blue crosses
are the estimates of the landmark positions and blue ellipses
are the estimated covariance.

The goal of the map merging process is the combination
of the local maps to obtain a the maximum-likelihood
estimate for the global map (see Fig. 4(a)). Every node
executes the algorithm described in this paper so that their
estimates asymptotically approach this maximum-likelihood
global map. Even thought the consensus is asymptotically
reached, we can see that in practice, the convergence of
the averaging algorithm is very fast, and in a few steps the
estimates at every node approach the global map. In Fig. 4(b)
we show the global map estimated by robot 1 at time step
3.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have formulated a global map merging
problem as a sensor fusion problem. This has enabled us
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Fig. 3. Local maps. (a-i) Local maps obtained by robots 1 to 9. Red dots are the ground-truth location of landmarks. Blue crosses are the estimates of
the landmark positions and blue ellipses are the estimated covariance.
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Fig. 4. Experimental results. (a) Maximum-likelihood goal global map.(b) Global map estimated by robot 1 att = 3

to propose a solution based on distributed averaging. The
resulting algorithm is distributed and asymptotically correct.

This algorithm computes a static consensus, that is, it

computes the average of some static inputs (the local maps).
We have briefly discussed a dynamic fusion strategy in
Section IV. As future work, we plan to investigate distributed



dynamic consensus algorithms, which instead of computing
an average of a static input, track the average of time-varying
inputs. For map merging problems, this is equivalent to
the situation where robots continue to explore and update
their local maps while, simultaneously, running a distributed
algorithm to track the global map.

Another area of future research is the design of optimal
motion control strategies for improved coverage of the envi-
ronment. The idea is that robots cooperatively decide their
next movements in order to optimally explore more uncertain
regions and improve the quality of the global map.
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