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Abstract— This paper proposes a simple, distributed algorithm
that achieves global stabilization of formations for relative
sensing networks in arbitrary dimensions. Assuming the net-
work runs an initialization procedure to equally orient all the
agent reference frames, convergence to the desired formation
shape is guaranteed even in partially asynchronous settings.
We also characterize the algorithm robustness to errors in the
initialization procedure. The technical approach merges ideas
from graph drawing, algebraic graph theory, multidimensional
scaling, and distributed linear iterations.

I. I NTRODUCTION

This paper proposes a distributed algorithm for relative
sensing networks to achieve formation shape stabilization.
A relative sensing network consists of a group of agents,
each with its own reference frame, that can sense the
relative position of their neighbors. The proposed algorithm
guarantees that the network shape converges to the desired
formation shape starting from any initial configuration.

Literature review: There is a large body of work on for-
mation control in the multi-agent systems literature. A wide
range of issues have been addressed, including pattern for-
mation, stability, and merging, see e.g., [1], [2], [3] for
a very small sample of works. Numerous continuous-time
formation control strategies employ algebraic graph-theoretic
tools, see e.g., [4], [5], [6], [7]. The works [8], [9], [10],
[11] use graph rigidity ideas to achieve formation shape
stabilization on the plane. However, in the rigidity approach,
the desired formation shape is in general only locally sta-
ble (e.g., collinear network configurations are invariant and
additional undesired locally stable equilibria exist). Another
source of inspiration for this work is the literature on graph
drawing [12], [13], multidimensional scaling and iterative
majorization [14], where the design of global optimization
algorithms that overcome the local stability properties ofthe
desired configurations is a topic of vigorous research. Finally,
groups of agents with only relative information about each
other’s state are considered in [15], [16], [17].

Statement of contributions:The main contribution of the
paper is a simple, distributed coordination algorithm that
stabilizes the shape of a relative sensing network to a desired
formation. In contrast to previous work, the desired forma-
tion is not encoded using inter-agent distances and assuming
that the interaction topology is rigid. Instead, ind ∈ Z>0

dimensions and assuming that the interaction topology has
at least a globally reachable node, we encode the desired
formation by assigning to each agent a vector inR

d. The
proposed strategy is executed in discrete time and is valid
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for arbitrary dimensions. The formation control objectivecan
be encoded by means of the global minimization of the stress
function associated to the network. Our algorithmic design
builds on additional contributions regarding the majorization
of the stress function and its critical points when the interac-
tion graph is directed. In particular, we show how the critical
points can be characterized as the solutions to a sparse linear
equation whose elements are computable in a distributed
way over the interaction graph, in both the undirected and
the directed cases. The coordination strategy then results
from a Jacobi overrelaxation algorithm to solve the linear
equation. We characterize the convergence properties of the
algorithm as well as its descent properties with regards to the
stress majorization function. In particular, we show that the
algorithm guarantees that the network acquires the desired
formation starting from any initial condition. We also analyze
its performance in partially asynchronous executions and
under errors in the initialization of the common agent frames.

Organization: Section II introduces notions from graph
theory and distributed linear iterations. Section III states the
formation control problem and the relative sensing network
model. Section IV develops several results on the stress func-
tion from scaling theory. Section V presents the cooperative
strategy and analyzes its convergence under asynchronism
and errors in the agents’ orientation. Section VI gathers our
conclusions. For reasons of space, all proofs are omitted.

Notation: We do not distinguish between a vectorP =
(p1, . . . , pn) ∈ (Rd)n and the matrixP ∈ R

n×d whose
ith row is pi. We let Id ∈ R

d×d denote the identity matrix
and1d ∈ R

d denote the vector whose entries are all1. We
let diag (A1, . . . , An) ∈ R

dn×dn denote the block-diagonal
matrix that hasA1, . . . , An ∈ R

d×d in the diagonal. Given
A ∈ R

d1×d2 and B ∈ R
e1×e2 , we let A ⊗ B ∈ R

d1e1×d2e2

denote its Kronecker product. ForA ∈ R
d×d, B ∈ R

e×e,
the eigenvalues ofA⊗B are the product of the eigenvalues
of A andB. The (Cartesian) product off1 : X1 → Y1 and
f2 : X2 → Y2 is f1 × f2 : X1 × X2 → Y1 × Y2, (f1 ×
f2)(x1, x2) = (f1(x1), f2(x2)). The product off1, . . . , fm

is denotedΠm
k=1fk. Finally, πα : R

d → R, α ∈ {1, . . . , d},
is the projection of a vector onto itsαth-component.

II. PRELIMINARY DEVELOPMENTS

Here we introduce basic notions on kinematic motions,
algebraic graph theory, and linear iterations. For further
details on these topics, we refer to [18], [19], [16].

A. Fixed and body reference frames

Let Σfixed = (pfixed, {x
1
fixed, . . . ,x

d
fixed}) be a fixed reference

frame inR
d and letΣb = (pb, {x

1
b, . . . ,x

n
b }) be a reference



frame fixed with a moving body. A pointq and a vector
v expressed with respect to the framesΣfixed and Σb are
denoted byqfixed andqb, andvfixed andvb, respectively. The
origin of Σb is the pointpb, denoted bypfixed

b when expressed
with respect toΣfixed. The orientation ofΣb is characterized
by the rotation matrixRfixed

b ∈ SO(d), whose columns are
the frame vectors{x1

b, . . . ,x
d
b} of Σb expressed with respect

to Σfixed. With this notation, changes of frames read

qfixed = Rfixed
b qb + pfixed

b , (1a)

vfixed = Rfixed
b vb. (1b)

B. Graph-theoretic notions

A directed graph(or digraph) G = (V, E) of ordern consists
of a vertex setV with n elements, and anedge setE ⊂
V × V. For simplicity, we takeV = {1, . . . , n}. A digraph
is undirectedif (j, i) ∈ E anytime (i, j) ∈ E . In a digraph
G with an edge(i, j) ∈ E , i is called anin-neighbor of
j, and j is called anout-neighborof i. A directed pathin
a digraph is an ordered sequence of vertices such that any
two consecutive vertices in the sequence are an edge of the
digraph. A vertex of a digraph isglobally reachableif it can
be reached from any other vertex by traversing a directed
path. An undirected graph isconnectedif there exists a path
between any two vertices. For an undirected graph, this is
equivalent to the graph having a globally reachable vertex.

A weighted digraphis a tripletG = (V, E ,A) where(V, E)
is a digraph and whereA is an n × n weighted adjacency
matrix with the following properties: fori, j ∈ {1, . . . , n},
the entryaij > 0 if (i, j) is an edge ofG, and aij = 0
otherwise. A weighted digraph isundirected if aij = aji

for all i, j ∈ {1, . . . , n}. When convenient, we writeA(G)
to make clear the explicit dependence on the graph. Note
that a digraphG = (V, E) can be naturally thought of
as a weighted digraph by defining the weighted adjacency
matrix A with entries aij = 1 if (i, j) is an edge of
G, and aij = 0 otherwise. Reciprocally, one can define
the unweighted versionof a weighted digraph(V, E ,A) by
simply considering the digraph(V, E).

The weighted out-degree and in-degree matricesare the
diagonal matrices defined by

Dout(G) = diag (A1n) , Din(G) = diag
(
AT

1n

)
.

If G is undirected, we use the notationD(G) = Dout(G) =
Din(G). The graph Laplacianof the weighted digraphG is

L(G) = Dout(G) −A(G).

Note thatL(G)1n = 0, and thatG is undirected iffL(G)
is symmetric. For undirected graphs, the Laplacian is a
symmetric, positive semidefinite matrix. The Laplacian also
captures the connectivity properties of the graph:L(G) has
rank n − 1 iff G has a globally reachable vertex.

Next, we define reverse and mirror digraphs. LetẼ be the set
of reverse edges ofG obtained by reversing the order of all
pairs inE . The reverse digraphG̃ of G is (V, Ẽ). Observe

A(G̃) = A(G)T ,

L(G̃) = Dout(G̃) −A(G̃) = Din(G) −A(G)T .

In general,L(G̃) 6= L(G)T . The mirror digraph Ĝ of G is
the undirected graph(V, E ∪ Ẽ) with

A(Ĝ) =
1

2
(A(G) + A(G)T ) = Sym(A(G)),

L(Ĝ) =
1

2
(L(G) + L(G̃)).

C. Jacobi overrelaxation iteration

Given an invertible matrixA ∈ R
n×n and a vectorb ∈ R

n,
consider the linear systemAx = b. The Jacobi overrelaxation
(JOR) algorithm is an iterative procedure to compute the
unique solutionx = A−1b ∈ R

n. It is formulated as the
discrete-time dynamical system

xi(ℓ + 1) = (1 − h)xi(ℓ) − h
1

aii

(∑

j 6=i

aijxj(ℓ) − bi

)
,

with ℓ ∈ Z≥0, i ∈ {1, . . . , n}, x(0) ∈ R
n, andh ∈ (0, 1).

The convergence properties of the JOR algorithm can be
fully characterized in terms of the eigenvalues of the matrix
describing the linear iteration, see [18]. Given a digraphG,
as long as (i) agenti has access tobi and aii, and (ii) if
aij 6= 0, then (i, j) ∈ E , the JOR algorithm is amenable to
distributed implementation in the following sense: agenti
can compute theith componentxi of the solutionx = A−1b
with information gathered from its out-neighbors inG.

III. PROBLEM STATEMENT

Our objective is to synthesize a discrete-time distributedco-
ordination algorithm that achieves global stabilization of the
desired formation shape. Here we describe the capabilitiesof
the robotic network and formally state the control objective.

A. Relative sensing network

Consider a group ofn agents inR
d. We assume that each

agent has its own reference frameΣi. Expressed with respect
to the fixed frameΣfixed, the ith frameΣi is described by
a positionpfixed

i ∈ R
d and an orientationRfixed

i ∈ SO(d).
The dynamical model of each agent is as follows. With its
sensed information, agenti ∈ {1, . . . , n} computes its own
control input, expressed in its local frameΣi as ui

i. In the
local frame, each agent moves according to

pi
i(ℓ + 1) = ui

i.

According to (1), in the global frameΣfixed this reads as

pfixed
i (ℓ + 1) = pfixed

i (ℓ) + Rfixed
i ui

i.

The sensing interactions between agents are encoded by a
digraphG = ({1, . . . , n}, E). An edge(i, j) means that agent
i can sense the relative position of agentj in its own local
frame,pi

j . There is no explicit communication among agents.
We refer to this group of robots byS rs

G. A coordination
algorithm is a specification of an inputui

i for each agent
i ∈ {1, . . . , n}. The algorithm isdistributed overS rs

G if each
agent can compute its control input with the information
collected on the relative position of its neighbors inG.



B. The control objective

Our objective is to stabilize the group configuration to a de-
sired formation. The desired formation is encoded as follows.
GivenZ∗ ∈ (Rd)n, let Rgd(Z∗) be the set of configurations
in (Rd)n which are related toZ∗ by a translation and a
rotation inR

d. In other words, define

Rgd(Z∗) = {W ∈ (Rd)n | there exists(q,R) ∈

R
d × SO(d) such thatwi = Rzi + q, i ∈ {1, . . . , n}}.

Obviously,Z∗ ∈ Rgd(Z∗). Note that any two configurations
in Rgd(Z∗) have the same inter-agent distances, i.e.,ℓij =
‖wi − wj‖ ∈ R>0, i 6= j ∈ {1, . . . , n} are the same for any
W ∈ Rgd(Z∗). The control objective is then to stabilize the
group of agents to a configuration that belongs toRgd(Z∗).

IV. SCALING THEORY AND STRESS MAJORIZATION

Here, we introduce the notion of stress function from mul-
tidimensional scaling theory [20], [14] and explain its rela-
tionship with the formation control problem. We also prove
various results that will be instrumental in the algorithm
design, paying particular attention to the directed graph case.

A. The stress function

The raw Stressfunction StressG : (Rd)n → R is defined by

StressG (p1, . . . , pn) =
1

2

∑

(i,j)∈E

(‖pi − pj‖ − ℓij)
2. (2)

For an undirected graphG, this definition coincides with
the classical one used in the multidimensional scaling. The
desired formation configurations are global minimizers of
StressG . Under additional assumptions on the rigidity of
the graph, one can guarantee that they are the only ones.
Alternatively, one may consider theS-Stress[21] function

S-StressG (p1, . . . , pn) =
1

2

∑

(i,j)∈E

(‖pi − pj‖
2 − ℓ2ij)

2,

which has the same global minimizers. The S-Stress function
is the Lyapunov function considered in [8], [9] in the
context of formation control. Here, instead, we focus on
the raw Stress, although the developments described later
apply equally with the appropriate modifications. The partial
derivative of StressG with respect topi, i ∈ {1, . . . , n}, is

∂StressG
∂pi

= 2
∑

j:(i,j)∈E

(‖pi − pj‖ − ℓij)
pi − pj

‖pi − pj‖
. (3)

In an inter-agent distance approach, this partial derivative can
be computed by agenti with local information, and hence
one can design a gradient-descent algorithm to minimize
StressG . Indeed, one can show [9] that the desired equilibria
of the system are locally stable. However, the gradient
system has other undesired equilibria (other local minimizers
of StressG ), which turn out to be also locally stable [9],
[10]. In addition, it is not difficult to establish that the set
of collinear network configurations is invariant under the
gradient flow defined by (3). These observations are also
valid for the gradient flow of S-StressG . Here, instead, we
take an alternative approach that uses stress majorization.

B. Stress majorization

In general, the direct optimization of the stress function is
prone to local minima. An alternative route involves the
construction of majorization functions that are easier to
optimize. This is what we discuss next.

Let us start with some notation. GivenZ = (z1, . . . , zn) ∈
(Rd)n and an undirected graphG, let GZ be the weighted
graph with adjacency matrixA(GZ) with entries

aij =

{
ℓij inv(‖zi − zj‖), (i, j) ∈ E ,

0, (i, j) 6∈ E ,

where inv(x) = 1/x if x 6= 0, and inv(0) = 0. Note that,
for Z ∈ Rgd(Z∗), the graphsGZ andG are the same. The
stress majorization functionFZ

G : (Rd)n → R is

FZ
G (P ) = tr (PT L(G)P ) − 2 tr (PT L(GZ)Z) +

1

2

∑

(i,j)∈E

ℓ2ij .

The name of the function is justified by the following result.

Proposition IV.1 ([14]) Given an undirected graphG, for
any P = (p1, . . . , pn), Z = (z1, . . . , zn) ∈ (Rd)n,

StressG (p1, . . . , pn) ≤ FZ
G (P ).

Moreover, ifP = Z, thenFP
G (P ) = StressG (P ).

The result can be extended to the digraph case.

Proposition IV.2 Given a digraph G, for any P =
(p1, . . . , pn), Z = (z1, . . . , zn) ∈ (Rd)n,

StressG (p1, . . . , pn) ≤ FZ
bG
(P ).

Moreover, ifP = Z, thenFP
bG
(P ) = StressG (P ).

Alternatively, the stress majorization function can be ex-
pressed using the Kronecker product as

FZ(P ) = PT (L(G) ⊗ Id)P

− 2PT (L(GZ) ⊗ Id)Z +
1

2

∑

(i,j)∈E

ℓ2ij . (4)

This expression is useful in establishing the following key
properties of the stress majorization function.

Proposition IV.3 Given Z = (z1, . . . , zn) ∈ (Rd)n and an
undirected graphG, the following holds:

(i) The gradient and Hessian ofFZ
G are, respectively,

∇FZ
G = 2(L(G) ⊗ Id)P − 2(L(GZ) ⊗ Id)Z,

∇2(FZ
G ) = 2L(G) ⊗ Id.

In particular, both are distributed over the graphG;
(ii) The functionFZ

G is globally convex;
(iii) P ∈ (Rd)n is a global minimizer ofFZ

G iff

(L(G) ⊗ Id)P = (L(GZ) ⊗ Id)Z. (5)

In particular, any two minima ofFZ
G are equal up to

a translation inR
d.



The following result will be important later for our dis-
tributed algorithmic design in the case of directed graphs.

Lemma IV.4 GivenZ ∈ Rgd(Z∗) and a digraphG with a
globally reachable vertex,P is a global minimizer ofFZ

bG
iff

(L(G) ⊗ Id)P = (L(G) ⊗ Id)Z. (6)

The importance of Lemma IV.4 stems from the following
observation: the critical points ofFZ

bG
can be characterized

by a linear equation (6) defined by the Laplacian matrix ofG,
which is distributed over the digraphG. Note that the original
characterization (5) is defined by the Laplacian matrix of the
mirror graph, which is not distributed overG.

V. COORDINATION ALGORITHM FOR GLOBAL

STABILIZATION OF FORMATIONS

In this section, we propose a discrete-time distributed co-
ordination algorithm that achieves global stabilization of the
desired formation, i.e., it guarantees that the network acquires
the desired formation starting from any initial condition.We
begin by discussing the problem of finding a network-wide
reference frame and then design the coordination algorithm.

A. Common orientation of local reference frames

The reference frames of the individual agents inS rs
G might

have different orientations with respect to the global refer-
ence frame. However, the network can execute some ini-
tialization algorithm to equally orient all agent reference
frames. Here we describe one simple procedure based on a
distributed implementation of the flooding algorithm [22] on
the relative sensing network. Other solutions to the common
reference frame problem are explored in [17].

Assume the digraphG has at least a globally reachable node.
For simplicity, we describe the strategy first inR

2. At the first
time step, a preselected globally reachable node moves a unit
in the direction of itsx-axis. All other agents that can sense
the position of this agent measure the relative displacement
in their local frames and figure out thex-axis direction of
the agent. They rotate their frames to align them with the
direction of the relative displacement. The process is repeated
until all agents have rotated their frames to align them with
the frame of the globally reachable node.

In R
3, it takes two time steps for each agent to figure out

the orientation of the frame of the globally reachable node.
This node first moves in the direction of itsx-axis, and then
moves in the direction of itsy-axis. The process is repeated
until all agents have frames with the same orientation.

B. Motion coordination via Jacobi iteration

Here, we assume that all agent reference frames have the
same orientation, i.e.,Rfixed

i = R, for i ∈ {1, . . . , n}, for
someR ∈ SO(d) which may be unknown to the agents.
Given the discussion in Section IV, our strategy to make the
network achieve the desired formation shape is to globally

optimizeFZ∗

G . From Proposition IV.3 and Lemma IV.4, this
can be achieved by solving the sparse linear equation

(L(G) ⊗ Id)P = (L(G) ⊗ Id)Z
∗.

To solve this equation, we propose to use a Jacobi overre-
laxation iteration (JOR), as described in Section II-C. Let

b = (b1, . . . , bn) = (L(G) ⊗ Id)Z
∗,

with bi ∈ R
d, i ∈ {1, . . . , n}. In Cartesian coordinates, the

JOR algorithm for each agenti is

pi(ℓ + 1) = (1 − h)pi(ℓ) + h
1

di

(∑

j 6=i

aijpj(ℓ) + bi

)
,

where (d1, . . . , dn) is the diagonal ofDout(G). If di = 0,
then we setpi(ℓ + 1) = pi(ℓ). In the local frame of agenti,
this is written as

pi
i(ℓ + 1) = h

1

di

( ∑

j 6=i

aijp
i
j(ℓ) + (Rfixed

i )T bi

)
, (7)

if di 6= 0, andpi
i(ℓ+1) = 0 otherwise. The individual agent

does not know the rotation matrixRfixed
i = R. Therefore,

instead of (7), agenti implements

pi
i(ℓ + 1) = h

1

di

(∑

j 6=i

aijp
i
j(ℓ) + bi

)
, (8)

if di 6= 0, andpi
i(ℓ + 1) = 0 otherwise. In the global frame,

using (1), the algorithm (8) can be written as

pi(ℓ + 1)=(1 − h)pi(ℓ)+h
1

di

( ∑

j 6=i

aijpj(ℓ)+Rbi

)
, (9)

if di 6= 0, andpi(ℓ+1) = pi(ℓ) otherwise. This corresponds
to the JOR algorithm to solve the linear equation

(L(G) ⊗ Id)P = (In ⊗ R)b. (10)

Note that all the solutions of this equation correspond to
translations of a rotated configuration ofZ∗, and therefore,
all belong toRgd(Z∗), as desired.

The following result characterizes the distributed character
of this algorithm as well as its convergence properties.

Proposition V.1 Consider the relative sensing networkS rs
G,

whereG has a globally reachable vertex. Leth ∈ (0, 1) and
assume all agent frames are equally oriented. Then,

(i) the coordination algorithm(8) is distributed overS rs
G.

Moreover, as initial information, each agent only needs
to store a vector inRd;

(ii) the coordination algorithm(8) converges to a config-
uration W in Rgd(Z∗);

(iii) if G is undirected, the stress majorization functionFW
G

is monotonically decreasing along(8).

Remark V.2 Proposition V.1(iii) does not hold in general
if G is directed. A counter example is given by the di-
graph plotted in Figure 1. For this digraph, the matrix
Sym(L(G̃)D(G)−1L(G)) has a negative eigenvalue, and
therefore there exist initial network configurations for which
FW

G is not monotonically decreasing along (8). •
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Fig. 1. Counter example to Proposition V.1(iii) in the directed case. For
this digraph, there exist initial network configurations for whichFW

G
is not

monotonically decreasing along the execution of (8).

C. Convergence of asynchronous executions

In this section, we analyze the asymptotic convergence prop-
erties of (8) when agents operate asynchronously. The idea
is that, at each time step, the information that an agent has
about other neighboring agents is outdated to some degree.

The asynchronous model for the network operation here
corresponds to thepartially asynchronous modelfrom [18,
Chapter 7]. Roughly speaking, when agenti, at timeℓ, uses
the valuepi

j from another agent, that value is not necessarily
the most recent one,pi

j(ℓ), but rather an outdated one,
pi

j(τ
i
j(ℓ)), where 0 ≤ τ i

j(ℓ) ≤ ℓ. The quantityℓ − τ i
j(ℓ)

represents the delay. Therefore, the JOR algorithm (8) reads

pi
i(ℓ + 1) = h

1

di

(∑

j 6=i

aijp
i
j(τ

i
j(ℓ)) + bi

)
. (11)

Next, we characterize the convergence of (11).

Proposition V.3 Consider the relative sensing networkS rs
G

operating asynchronously, whereG has a globally reachable
vertex. Leth ∈ (0, 1) and assume all agent reference frames
are equally oriented. Assume there existsB > 0 such that
ℓ−B+1 ≤ τ i

j(ℓ) ≤ ℓ, for all ℓ and all (i, j) ∈ E . Then,(11)
converges to a configurationW in Rgd(Z∗).

Proposition V.3 is established by rewriting the coordination
algorithm in a manner analogous to the expressions obtained
in the proof of Proposition V.1(ii), and then applying the
results in [23], [24]. We omit it for reasons of space.

D. Robustness to errors in orientation of reference frames

Here we explore the robustness properties of the coordina-
tion algorithm (8) against errors in the computation of the
common orientation of the reference frame, cf. Section V-
A. Suppose that the algorithm selected by the network to
orient all agent frames equally is not executed perfectly
and consequently the final orientation of the frame of agent
i ∈ {1, . . . , n} is of the form

Rfixed
i = R + Ξi, (12)

whereR ∈ SO(d) and the error matrixΞi satisfies‖Ξi‖∞ ≤
ε. Given the difference in the orientation of the agent frames,
the algorithm (8) reads now in the global frame as

pi(ℓ + 1) = (1 − h)pi(ℓ) + h
1

di

(∑

j 6=i

aijpj(ℓ) + Rfixed
i bi

)
.

(13)

which corresponds to the JOR algorithm to solve the linear
algebraic equation

(L(G) ⊗ Id)P = diag
(
Rfixed

1 , . . . , Rfixed
n

)
b. (14)

Observe that the mismatch in the orientation of the frames
makes this linear equation ill-posed. In other words, the
vectordiag

(
Rfixed

1 , . . . , Rfixed
n

)
b does not belong to the range

of L(G) ⊗ Id, and therefore, there does not exist a solution
P of (14). Intuitively, this observation is consistent with the
fact that the algorithm design assumes all frames are equally
oriented. Even though (14) has no solution, the question
about the convergence properties of (13) still remains. Next,
we analyze the convergence of (8) under errors in the
computation of the common orientation of the frames.

Proposition V.4 Consider the relative sensing networkS rs
G,

where G has a globally reachable vertex. Leth ∈ (0, 1).
Let the orientation of the frame of agenti ∈ {1, . . . , n} be
given by (12). Then, there exists̃K ∈ R>0 such that the
algorithm (8) converges to{Z ∈ (Rd)n | there existsW ∈
Rgd(Z∗)such that‖Z − W‖∞ ≤ K̃hε}.

Note that while Propositions V.1 and V.3 guarantee conver-
gence to a point, Proposition V.4 only guarantees conver-
gence to a set. According to the statement, the configurations
in this set correspond to translations and rotations of the
desired formation slightly deformed by the effect of the
mismatch in the orientation of the agent frames.

E. Simulations

In this section we show various executions of the discrete-
time distributed coordination algorithm (8) to illustrateits
convergence properties, paying attention to asynchronism
and robustness against errors in the common orientation
of the agent frames. Figure 2 shows an execution of (8)
over a relative sensing network inR3 composed of60
agents, with interaction topology given by the Buckminster
Fuller geodesic dome [25]. Proposition V.1 guarantees that
convergence to the desired formation shape is achieved.

(a) (b) (c)

Fig. 2. Execution of the coordination algorithm (8) withh = .25 over a
relative sensing network inR3 composed of60 agents. (a) shows the initial
configuration, (b) shows the evolution, and (c) shows the final formation.

Figure 3 shows an execution of (11) over a relative sensing
network composed of20 agents, with interaction topology
given by a directed version of the Desargues graph [26].
The maximum delay isB = 25 steps, i.e., no agent has
relative position information on its neighbors that is more



than 25 steps outdated. As forecasted by Proposition V.3,
convergence to the desired formation shape is achieved.
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Fig. 3. Execution of the coordination algorithm (11) withh = .25 over a
relative sensing network inR2 composed of20 agents. (a) shows the initial
configuration, (b) shows the evolution, and (c) shows the final formation.

Figure 4 shows an execution of (8) over the relative sensing
network of Figure 1 under errors in the computation of
the common orientation of the agent frames. Each agent
orients its own frame with an angle of90 degrees with an
error whose absolute value is bounded by9 degrees. The
desired formation is a regular hexagon. As forecasted by
Proposition V.4, the network shape converges to a formation
close to the desired one, while the group of agents moves
along a straight line in the plane.
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Fig. 4. Execution of the coordination algorithm (8) withh = .25 over the
relative sensing network of Figure 1 inR2 under errors in the orientation of
the agent frames. (a) shows the initial configuration, (b) shows the evolution,
and (c) shows the final shape of the formation.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a distributed formation control strategy for
relative sensing networks. The algorithm design combines
ideas on stress majorization from scaling theory with Jacobi
overrelaxation algorithms from distributed linear iterations.
We have analyzed the convergence properties of the proposed
algorithm in partially asynchronous settings and under errors
in the initial computation of a common reference frame.
Future work will include the study of robustness for gen-
eral digraphs, the design of error-correcting algorithms that
completely eliminate any mismatch in the orientation of the
agent frames, and the extension of the results to switching
interaction topologies and individual agent dynamics.
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pp. 2326–2331.

[18] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Compu-
tation: Numerical Methods. Athena Scientific, 1997.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction
to Algorithms, 2nd ed. MIT Press, 2001.

[20] J. B. Kruskal, “Nonmetric multidimensional scaling: a numerical
method,”Psychometrika, vol. 29, pp. 115–129, 1964.

[21] Y. Takane, F. W. Young, and J. D. Leeuw, “Nonmetric individual dif-
ferences multidimensional scaling: an alternating least-squares method
with optimal scaling features,”Psychometrika, vol. 42, pp. 7–67, 1977.

[22] D. Peleg,Distributed Computing. A Locality-Sensitive Approach, ser.
Monographs on Discrete Mathematics and Applications. SIAM,2000.

[23] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,”
in IEEE Conf. on Decision and Control and European Control
Conference, Seville, Spain, Dec. 2005, pp. 2996–3000.

[24] L. Moreau, “Stability of multiagent systems with time-dependent com-
munication links,”IEEE Transactions on Automatic Control, vol. 50,
no. 2, pp. 169–182, 2005.

[25] H. Aldersey-Williams,The Most Beautiful Molecule: The Discovery
of the Buckyball. New York: John Wiley, 1995.

[26] F. Harary,Graph Theory. Boulder, CO: Westview Press, 1994.


