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Abstract— This paper proposes a simple, distributed algorithm  for arbitrary dimensions. The formation control objectdan
that _achieves global st{ibilizatipn Of. formations TOF relative  pe encoded by means of the global minimization of the stress
sensing networks in arbitrary dimensions. Assuming the net-  nction associated to the network. Our algorithmic design
work runs an initialization procedure to equally orient all the build dditi | ibuti di h L
agent reference frames, convergence to the desired formation tilds on & |t|ong contri _Ut'on,S regar_ Ing the mald{'m
shape is guaranteed even in partially asynchronous settings. Of the stress function and its critical points when the iater
We also characterize the algorithm robustness to errors in the tion graph is directed. In particular, we show how the caitic
initialization procedure. The technical approach merges ideas points can be characterized as the solutions to a sparse line
from graph drawing, algebraic graph theory, multidimensional  oqation whose elements are computable in a distributed
scaling, and distributed linear iterations. . . . .
way over the interaction graph, in both the undirected and
l. INTRODUCTION the directed cases. The poordinatjon strategy then results
from a Jacobi overrelaxation algorithm to solve the linear
This paper proposes a distributed algorithm for relativequation. We characterize the convergence propertieseof th
sensing networks to achieve formation shape stabilizationlgorithm as well as its descent properties with regardieo t
A relative sensing network consists of a group of agentstress majorization function. In particular, we show thed t
each with its own reference frame, that can sense tlagorithm guarantees that the network acquires the desired
relative position of their neighbors. The proposed alfponit formation starting from any initial condition. We also aywzd
guarantees that the network shape converges to the desiitsdperformance in partially asynchronous executions and
formation shape starting from any initial configuration. under errors in the initialization of the common agent frame

Literature review: There is a large body of work on for- Organization: Section Il introduces notions from graph
mation control in the multi-agent systems literature. A avid theory and distributed linear iterations. Section Il stathe
range of issues have been addressed, including pattern ffarmation control problem and the relative sensing network
mation, stability, and merging, see e.g., [1], [2], [3] formodel. Section IV develops several results on the stress fun
a very small sample of works. Numerous continuous-tim#&on from scaling theory. Section V presents the coopegativ
formation control strategies employ algebraic graph+tbo strategy and analyzes its convergence under asynchronism
tools, see e.g., [4], [5], [6], [7]. The works [8], [9], [10], and errors in the agents’ orientation. Section VI gathers ou
[11] use graph rigidity ideas to achieve formation shapeonclusions. For reasons of space, all proofs are omitted.
stabilization on the plane. However, in the rigidity apmioa Notation: We do not distinguish between a vectét =

the desired formation shape is in general only locally stay, ... p,) € (R%)" and the matrixP € R"*? whose
ble (e.g., collinear network configurations are invariandi & jth row is p;,. We let I, € R¢*? denote the identity matrix
additional undesired |0ca”y stable equi”bria eXiSt).ONTIer and 1,4 € Rd denote the vector whose entries are lalWe
source of inspiration for this work is the literature on drap let diag (4;,..., A,) € R™*" denote the block-diagonal

drawing [12], [13], multidimensional scaling and iter&iv matrix that hasAy, ..., A, € R%*? in the diagonal. Given
majorization [14], where the design of global optimizationg ¢ Rd1xdz and B € Re1*¢2, we let A @ B € Rdie1xdzez

algorithms that overcome the local stability propertiesh& denote its Kronecker product. Fot € R¥*4, B e Rexe,
desired configurations is a topic of vigorous research.lijina the eigenvalues ofl ® B are the product of the eigenvalues
groups of agents with only relative information about eacf 4 and B. The (Cartesian) product of, : X; — ¥; and
other’s state are considered in [15], [16], [17]. fo:Xo = Yois fix fo:XyixXe — Y1 xYs, (fi ¥
Statement of contributionsThe main contribution of the f2)(x1,22) = (fi(x1), f2(x2)). The product offy,..., fm
paper is a simple, distributed coordination algorithm thais denotedlI™, f;.. Finally, 7, : R? = R, a € {1,...,d},
stabilizes the shape of a relative sensing network to aetgsiris the projection of a vector onto itsth-component.
formation. In contrast to previous work, the desired forma-
tion is not encoded using inter-agent distances and asgumin

that the interaction topology is rigid. Instead, dhe Z-o Here we introduce basic notions on kinematic motions,
dimensions and assuming that the interaction topology hagyebraic graph theory, and linear iterations. For further

at least a globally reachable node, we encode the desirggails on these topics, we refer to [18], [19], [16].
formation by assigning to each agent a vectorRifv The

proposed strategy is executed in discrete time and is valill Fixed and body reference frames

II. PRELIMINARY DEVELOPMENTS
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Engineering, University of California, San Diegoor t es@icsd. edu  frame inR? and letS, = (py, {zf, ...,z }) be a reference



frame fixed with a moving body. A poing and a vector In generaI,L(é) # L(G)T. The mirror digraph Gof Gis
v expressed with respect to the framBgeq and ¥, are the undirected grapty, & U £) with
denoted by;™ed and ¢®, andv™e? and P, respectively. The

origin of ¥y, is the pointpy, denoted by{**? when expressed A(G) = 1(A(G) + A(G)T) = Sym(A(Q)),

with respect tixeq. The orientation ofy, is characterized %

by the rotation matrixz{*® € SO(d), whose columns are L(G) = (L(G) + L(G)).

the frame vectorgzi, ..., z{} of ¥y, expressed with respect 2

to Yiixeg- With this notation, changes of frames read C. Jacobi overrelaxation iteration
" = R + i, (12)  Given an invertible matrixd € R"*" and a vectob € R",
pfxed — pixedyb, (1b) consider the linear syster: = b. The Jacobi overrelaxation

(JOR) algorithm is an iterative procedure to compute the
unique solutionz = A6 € R". It is formulated as the

A directed graph(or digraph) G' = (V, £) of ordern consists  discrete-time dynamical system

of a vertex setV with n elements, and aedge setf C 1

V x V. For simplicity, we take) = {1,...,n}. A digraph r;(0+1) = (1—h)z;({) - hf(zaijl’j(f) - bi),

is undirectedif (j,4) € £ anytime (i,5) € £. In a digraph @i

G with an edge(i,j) € &, i is called anin-neighbor of With £ € Zsg, i € {1,....n}, 2(0) € R, andh € (0,1).

j» andj is called anout-neighborof <. A directed pathin The conve?gence {propertie}s o(f 1he JOR algorith(m c)an be

a digraph is an orde_red séquence of vertices such that B ly characterized in terms of the eigenvalues of the matri
two consecutive vertices in the sequence are an edge of t(q

digraph. A vertex of a digraph iglobally reachabléf it can agsltc:)rrlltgnagstr(]i()a ggii; I:]erat;%r;’eziew[}ﬂh (? ;ana&:] g |g(3|:;i£l)fh
be reached from any other vertex by traversing a directe(gs‘ £ 0, then (7, 1) € &, the JOR alglorithm ifs amenable to
path. An undirected graph zonnectedf there exists a path dﬁétribuied impiementa’ltion in the following sense: agént
between any two vertices. For an undirected graph, this 5in compute théth component:; of the solution: — A*lb
equivalent to the graph having a globally reachable vertex .. i tcrmation gathered fromz its out-neighborsdh

A weighted digraphs a tripletG = (V, £, A) where(V, €)

is a digraph and wherel is ann x n weighted adjacency I1l. PROBLEM STATEMENT

matrix with the following properties: foi,j € {1,...,n},

the entrya;; > 0 if (i,7) is an edge ofG, anda;; = 0 Our objective is to synthesize a discrete-time distribuded
otherwise. A weighted digraph isndirectedif a;; = aj; ordination algorithm that achieves global stabilizatidrihe
for all i,j € {1,...,n}. When convenient, we writed(G) desired formation shape. Here we describe the capabitities
to make clear the explicit dependence on the graph. Notee robotic network and formally state the control objeztiv
that a digraphG = (V,€) can be naturally thought of

as a weighted digraph by defining the weighted adjacendy: Relative sensing network

matrix A with entriesa;; = 1 if (i,7) is an edge of cqngiger a group of agents inR?. We assume that each

G, anda;; = 0 otherwise. Reciprocally, one can define;yent has its own reference framie Expressed with respect
the unweighted versionf a weighted digrapi{),£,.4) by 15 the fixed frameSyeq, the ith framey; is described by

simply considering the digrapfV, &). a positionp™® € R? and an orientation?™@ ¢ SO(d).
The weighted out-degree and in-degree matric@® the The dynamical model of each agent is as follows. With its

B. Graph-theoretic notions

diagonal matrices defined by sensed information, agente {1,...,n} computes its own
Douw(@) = diag (A1,), Din(G) = diag (4A71,,). control input, expressed in its local framdg asu!. In the
) . ) local frame, each agent moves according to
If G is undirected, we use the notatidWG) = Dow(G) =
Din(G). Thegraph Laplacianof the weighted digrapld- is Pl +1) = ul.

L(G) = Dout(G) - -A(G)-

Note thatL(G)1,, = 0, and thatG is undirected iff L(G . . ) .
is symmetr(ic.) For undirected graphs, the Laplacigan) is a pfilxed(g +1) :p?xed(g) + R?XEd“;'
symmetric, positive semidefinite matrix. The Laplaciarals 1o sensing interactions between agents are encoded by a
captures the connectivity properties of the graph&) has digraphG = ({1,...,n},&). An edge(i, /) means that agent
rankn — 1 iff G has a globally reachable vertex. i can sense the relative position of aggrin its own local
Next, we define reverse and mirror digraphs. £dte the set frame,pi. There is no explicit communication among agents.
of reverse edges af obtained by reversing the order of all We refer to this group of robots bgS. A coordination
pairs in&. Thereverse digraphG: of G is (V,&). Observe  algorithm is a specification of an input: for each agent
A(é) — A(G)T, 1€{l,...,n}. The algorithm isdi;tributed_ oversg_ if each.
~ ~ ~ T agent can compute its control input with the information
L(G) = Dou(G) — A(G) = Din(G) = A(G)" . collected on the relative position of its neighbors@n

According to (1), in the global framEsyeq this reads as



B. The control objective B. Stress majorization

Our objective is to stabilize the group configuration to a dein general, the direct optimization of the stress functisn i
sired formation. The desired formation is encoded as falowprone to local minima. An alternative route involves the
Given Z* € (R%)", letRgd(Z*) be the set of configurations construction of majorization functions that are easier to
in (RY)™ which are related taZ* by a translation and a optimize. This is what we discuss next.

rotation inR?. In other words, define Let us start with some notation. Givehi = (z1,...,2,) €
o dn : (RY)™ and an undirected grapf, let G be the weighted
Rgd(Z7) = {W" € (RY)" | there existd(q, 1) € graph with adjacency matrix{(G#) with entries
R? x SO(d) such thatw; = Rz +q, i € {1,...,n}}.

Obviously,Z* € Rgd(Z*). Note that any two configurations a;; = {gij v ([lzs = 251), (l,’J.) €&,
in Rgd(Z*) have the same inter-agent distances, ig.~ 0, (@.7) ¢ £,
[wi — w;|| € Rso, 0 7# j € {1,...,n} are the same for any whereinv(z) = 1/ if = # 0, andinv(0) = 0. Note that,
W € Rgd(Z*). The control objective is then to stabilize thegg, 7 Rgd(Z*), the graphsz? andG are the same. The
group of agents to a configuration that belong®Rgm (Z*).  stress majorization functiofFZ : (R)" — R is

IV. SCALING THEORY AND STRESS MAJORIZATION 1

FE(P) =tr (PTL(G)P) —2tx (PTL(G#)Z2) + 5 Y 43

Here, we introduce the notion of stress function from mul- 2 (i.5)€€
tidimensional scaling theory [20], [14] and explain itserel T :
tionship with the formation control problem. We also proveThe name of the function is justified by the following result.
various results that will be instrumental in the algorith

design, paying particular attention to the directed gragsec nbroposmon V.1 ([14]) Given an undirected grapi, for

any P = (p1,...,0n), Z = (21,---,2n) € (RH)™,
Stresg (p1,...,0n) < FA(P).
Moreover, if P = Z, then 7L (P) = Stresg; (P).

A. The stress function
Theraw Stressunction Stresg : (R%)" — R is defined by

1
Stres ooy Pn) = = =il — 6% (2 .
& n) 2 Z (lp: =il i) @ The result can be extended to the digraph case.

(i,5)€E
For an undirected graply, this definition coincides with Proposition IV.2 Given a digraph G, for any P =
the classical one used in the multidimensional scaling. T eeeapn)y Z = (21, ) € (R)™,
desired formation configurations are global minimizers o
Stress; . Under additional assumptions on the rigidity of Stresg; (p1,---,pn) < FA(P).

the graph, one can guarantee that they are the only on

: £p P -
Alternatively, one may consider tHe-Stresg21] function ﬁoreover, P =2z, then]—‘@ (P) = Stresg; (P).

1 Alternatively, the stress majorization function can be ex-
Pn) = = Z (||Pi—Pj||2—ffj)2, y, the stress jo ction can b

S-Stres, . )
& (p1 pressed using the Kronecker product as

(i,4)€E
which has the same global minimizers. The S-Stress function]:Z(p) = PT(L(G) ® I;)P

is the Lyapunov function considered in [8], [9] in the . s 1 )
context of formation control. Here, instead, we focus on —2P (L(G")® 1a)Z + 5 S G @
the raw Stress, although the developments described later (i,4)€E
apply equally with the appropriate modifications. The @arti This expression is useful in establishing the following key
derivative of Stress with respect top;, i € {1,...,n}, IS properties of the stress majorization function.
OStresg bi — Py
oy 2 _ Z (Ilpi = psll =€) i — ;1 () proposition V.3 GivenZ = (z1,...,2,) € (R4)" and an
jiig)ee undirected graph, the following holds:

In an inter-agent distance approach, this partial devigatan

. . . z .
be computed by agentwith local information, and hence (i) The gradient and Hessian df¢; are, respectively,

one can design a gradient-descent algorithm to minimize VFEZ =2(L(G)® I)P - 2(L(G?) @ 1) Z,
Stresg; . Indeed, one can show [9] that the desired equmk_nna V(FZ) = 2L(G) ® I,.

of the system are locally stable. However, the gradient _ o

system has other undesired equilibria (other local mirémsiz In particular, both are distributed over the grapf;

of Stresg;), which turn out to be also locally stable [9], (i) The functionFZ is globally convex;
[10]. In addition, it is not difficult to establish that thetse (iii) P € (R%)" is a global minimizer ofF{ iff

of collinear network configurations is invariant under the _ z
gradient flow defined by (3). These observations are also (L&) ® L)P = (L(G7) @ La)Z. ©)
valid for the gradient flow of S-Stregs Here, instead, we In particular, any two minima ofFZ are equal up to

take an alternative approach that uses stress majorization a translation inR.



The following result will be important later for our dis- optimize}"g*. From Proposition IV.3 and Lemma V.4, this
tributed algorithmic design in the case of directed graphs.can be achieved by solving the sparse linear equation

. _ _ (L(G)® 1) P = (L(G)® 1) Z*.
Lemma IV.4 GivenZ € Rgd(Z*) and a digraphG with a ) ) ,
globally reachable vertex? is a global minimizer ofFZ iff 10 Solve this equation, we propose to use a Jacobi overre-
G laxation iteration (JOR), as described in Section II-C. Let

(L(G) @ 1a)P = (L(G) ® 14)Z. (6) b= (b1,...,b,) = (L(G) ® [)Z*,

The importance of Lemma IV.4 stems from the followingVith bi € Rd’ i € {1,...,n}. In Cartesian coordinates, the

observation: the critical points oFZ can be characterized JOR algorithm for each agents

by a linear equation (6) defined by the Laplacian matrigof 1

which is distributed over the digraggi. Note that the original pil+1) = (1= h)pi(6) + hd7<z a:3p; (€) + bi)’

characterization (5) is defined by the Laplacian matrix ef th i

mirror graph, which is not distributed ovét. where (dy, ..., d,) is the diagonal ofDow(G). If d; = 0,
then we sep;(£+ 1) = p;(£). In the local frame of agenit

V. COORDINATION ALGORITHM FOR GLOBAL this is written as

) 1 . )
STABILIZATION OF FORMATIONS p%(( + 1) _ hg(zaijp;‘(g) + (R?XEd)Tbi), (7)

In this section, we propose a discrete-time distributed co- 7

ordination algorithm that achieves global stabilizatidrtre if d; # 0, andpi(¢+ 1) = 0 otherwise. The individual agent
desired formation, i.e., it guarantees that the networkimeg does not know the rotation matrikf*®d = R. Therefore,
the desired formation starting from any initial conditistle  instead of (7), agent implements

begin by discussing the problem of finding a network-wide . 1 .

reference frame and then design the coordination algorithm pill+1)=h-r ( > aiph(6) + bi), (8)
LG

A. Common orientation of local reference frames if d; # 0, andpi(¢+ 1) = 0 otherwise. In the global frame,

The reference frames of the individual agentsS§i might using (1), the algorithm (8) can be written as

. . . . 1
have different orientations with respect to the global refe (s 1 1)—(1 — h)pi(ﬁ)—&-h*(z @ijP; (E)J’_Rbi)v 9)
ence frame. However, the network can execute some ini- d; =

tialization algorithm to equally orient all agent referenc . . .
frames. Here we describe one simple procedure based off él%#‘?égndf’i(f_tl) = pi(f) ot#erlwlse. This corresponds
distributed implementation of the flooding algorithm [22] o © 1€ algorithm to solve the linear equation

the relative sensing network. Other solutions to the common (L(G) ® I4)P = (I, ® R)b. (10)
reference frame problem are explored in [17].

Assume the digrapti¥ has at least a globally reachable node
For simplicity, we describe the strategy firstiki. At the first
time step, a preselected globally reachable node moved a followi it ch eri the distributed chtam
in the direction of itsz-axis. All other agents that can sense feh.o (I)wm_ghresu ¢ l?rac_enzes € distributed ci ¢
the position of this agent measure the relative displacemeﬂ this algorithm as well as its convergence properties.
in their local frames and flgure out theaxls d|rect|on' of Proposition V.1 Consider the relative sensing netwa$§,
the agent. They rotate their frames to align them with the

TS T . WhereG has a globally reachable vertex. Lkte (0, 1) and
direction of the relative displacement. The process isatguke ;

i . . . assume all agent frames are equally oriented. Then,

until all agents have rotated their frames to align them witht . o . o
the frame of the globally reachable node. (i) the coordmau_on_algonthrT(S_) is distributed overSg.
In R3, it takes two time steps for each agent to figure out Moreover, as initial information, each agent only needs

o
the orientation of the frame of the globally reachable node. . to store a vet_:tor IR i ,
This node first moves in the direction of itsaxis, and then (1) the coordination algorithm(8) converges to a config-

moves in the direction of itg-axis. The process is repeated ... uration W in Rgd(Z*);

until all agents have frames with the same orientation. (i) if G is undirected, the stress majorization functigp’
is monotonically decreasing alon@).

Note that all the solutions of this equation correspond to
translations of a rotated configuration g, and therefore,
all belong toRgd(Z*), as desired.

B. Motion coordination via Jacobi iteration Remark V.2 Proposition V.1(iii) does not hold in general

Here, we assume that all agent reference frames have the( is directed. A counter example is given by the di-
same orientation, i.e R = R, for i € {1,...,n}, for graph plotted in Figure 1. For this digraph, the matrix
some R € SO(d) which may be unknown to the agents.Sym(L(G)D(G)™'L(G)) has a negative eigenvalue, and
Given the discussion in Section IV, our strategy to make thigierefore there exist initial network configurations foriafh
network achieve the desired formation shape is to globallf¢ i not monotonically decreasing along (8). .



which corresponds to the JOR algorithm to solve the linear
algebraic equation

(L(G) ® I3)P = diag (R7®%, ..., R™ b, (14)

Observe that the mismatch in the orientation of the frames
makes this linear equation ill-posed. In other words, the
Fig. 1. Counter example to Proposition V.1(iii) in the diesttcase. For : fixed fixed

this digraph, there exist initial network configurations ¥ehich £ is not vectordiag <R1 oo i ) b does not belong t.o the range
monotonically decreasing along the execution of (8). of L(G) ® Ia, and thergfore, there. do?s not ?XlSt a §0|Ut|0n
P of (14). Intuitively, this observation is consistent witiet
fact that the algorithm design assumes all frames are gquall

C. Convergence of asynchronous executions oriented. Even though (14) has no solution, the question

In this section, we analyze the asymptotic convergence—proBbOUt the convergence properties of (13) still remains..tNex
erties of (8) when agents operate asynchronously. The id#§ analyze the convergence of (8) under errors in the
is that, at each time step, the information that an agent h§8Mputation of the common orientation of the frames.
about other neighboring agents is outdated to some degree.

The asynchronous model for the network operation hefaoposition V.4 Consider the relative sensing netwosg,
corresponds to theartially asynchronous moddtom [18, WhereG has a globally reachable vertex. Lét € (0,1).
Chapter 7]. Roughly speaking, when ageénat time/, uses €t the orientation of the frame of agent {1,...,n} be
the valuep’ from another agent, that value is not necessaril§'Ve" by(12). Then, there eX'StSKdEn R such that the
the most recent onep(¢), but rather an outdated one, &lgorithm (8) converges toZ € (RY)" | there existsV <

pi((£)), where0 < 7i(f) < (. The quantity¢ — 7i(¢) R9d(Z7)such that||Z — Wljo < Khe}.
represents the delay. Therefore, the JOR algorithm (8)srea,g|0te that while Propositions V.1 and V.3 guarantee conver-

j 1 i (i ence to a point, Proposition V.4 only guarantees conver-
He+1 :hf( Pt (e +bi>. 11) 9 , Prol 4 only > cony
Pil ) d; Z aij; (75 (6)) (11) gence to a set. According to the statement, the configusation
VES) : . . .
_ in this set correspond to translations and rotations of the
Next, we characterize the convergence of (11). desired formation slightly deformed by the effect of the
mismatch in the orientation of the agent frames.
Proposition V.3 Consider the relative sensing netwos#
operating asynchronously, whe¢ has a globally reachable E. Simulations

vertex. L?lm < .(O’tl) darf assumt(ta] all ageg refgrencE ';La'?eﬁn this section we show various executions of the discrete-
are equally oriented. Assume thereé exists> § such that 4,0 gistributed coordination algorithm (8) to illustraits

t-=B+1 StTf(g) < l;: for "’t‘.”éva.ndsnéi’zjz € . Then,(11) convergence properties, paying attention to asynchronism
converges to a configuratio” in Rgd(Z*). and robustness against errors in the common orientation

Proposition V.3 is established by rewriting the coordioati of the agent_ frames._ Figure 2 Sh?"gs an execution of (8)
over a relative sensing network iR® composed of60

algorithm in a manner analogous to the expressions obtaingdents with interaction tooolo iven by the Buckminster
in the proof of Proposition V.1(ii), and then applying the g ' pology 9 y

results in [23], [24]. We omit it for reasons of space. Fuller geodesic dome [.25]' Proposltlon Vi g_uaran.tees that
convergence to the desired formation shape is achieved.

D. Robustness to errors in orientation of reference frames

Here we explore the robustness properties of the coordin
tion algorithm (8) against errors in the computation of the |
common orientation of the reference frame, cf. Section
A. Suppose that the algorithm selected by the network t /
orient all agent frames equally is not executed perfectly| — \77
and consequently the final orientation of the frame of agen
i€ {l1,...,n} is of the form

(@) (b) (©)
Fig. 2. Execution of the coordination algorithm (8) with= .25 over a
relative sensing network iR3 composed of0 agents. (a) shows the initial

whereR € SO(d) and the error matri€; satisfies|Z;[|.c <  configuration, (b) shows the evolution, and (c) shows thel fimaation.
e. Given the difference in the orientation of the agent frames
the algorithm (8) reads now in the global frame as Figure 3 shows an execution of (11) over a relative sensing
1 _ network composed o020 agents, with interaction topology
pi(f+1) = (1—h)p;(£) + ha(zaiﬂ’j(ﬁ) + R?XEdbi) given by a directed version of the Desargues graph [26].
b The maximum delay isB = 25 steps, i.e., no agent has
(13)  relative position information on its neighbors that is more

R = R4 =, (12)



than 25 steps outdated. As forecasted by Proposition V.3,
convergence to the desired formation shape is achieved.

(1]
(2]
(3]
NSV

=AY 4]
@) (b) (©) (5]

Fig. 3. Execution of the coordination algorithm (11) with= .25 over a
relative sensing network iR2 composed o0 agents. (a) shows the initial ~ [6]

configuration, (b) shows the evolution, and (c) shows thd fioanation.

Figure 4 shows an execution of (8) over the relative sensingy]
network of Figure 1 under errors in the computation of
the common orientation of the agent frames. Each ageng;
orients its own frame with an angle 60 degrees with an
error whose absolute value is bounded ®bylegrees. The
desired formation is a regular hexagon. As forecasted b[gl
g g y
Proposition V.4, the network shape converges to a formation
close to the desired one, while the group of agents mové&¥!

along a straight line in the plane. [11]
[12]
[13]
[14]
[15]

@) (b) (©)

Fig. 4. Execution of the coordination algorithm (8) with= .25 over the  [16]

relative sensing network of Figure 1 R? under errors in the orientation of

the agent frames. (a) shows the initial configuration, (byshihe evolution,

and (c) shows the final shape of the formation.
[17]

V1. CONCLUSIONS AND FUTURE WORK

We have proposed a distributed formation control strategy f 18]
relative sensing networks. The algorithm design combingso
ideas on stress majorization from scaling theory with Jacob
overrelaxation algorithms from distributed linear itéoas.
We have analyzed the convergence properties of the proposgg
algorithm in partially asynchronous settings and undesrsrr
in the initial computation of a common reference frame 22]
Future work will include the study of robustness for gen-
eral digraphs, the design of error-correcting algorithivet t [23]
completely eliminate any mismatch in the orientation of the
agent frames, and the extension of the results to switching
interaction topologies and individual agent dynamics. [24]
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