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Abstract

This paper proposes a simple, distributed algorithm that achieves global stabilization of formations for relative sensing
networks in arbitrary dimensions with fixed topology. Assuming the network runs an initialization procedure to equally
orient all agent reference frames, convergence to the desired formation shape is guaranteed even in partially asynchronous
settings. We characterize the algorithm robustness against several sources of errors: link failures, measurement errors, and
frame initialization errors. The technical approach merges ideas from graph drawing, algebraic graph theory, multidimensional
scaling, and distributed linear iterations.
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1 Introduction

This paper proposes a distributed algorithm for relative
sensing networks to achieve formation shape stabiliza-
tion. A relative sensing network consists of a group of
agents, each with its own reference frame, that can sense
the relative position of their neighbors. The proposed al-
gorithm assumes that the interaction topology remains
fixed and guarantees that the network shape will con-
verge to the desired formation shape starting from any
initial configuration.

Literature review There is a large body of work on
formation control in the multi-agent systems literature.
A wide range of issues have been addressed, including
pattern formation, stability, and merging, see e.g., [9,
15, 27, 29] for a very small sample of works. Numerous
continuous-time formation control strategies employ al-
gebraic graph-theoretic tools, see e.g., [10, 19, 26]. The
work [13] proposes hybrid rendezvous-to-formation con-
trol strategies under state-dependent interaction topolo-
gies. The works [8, 17, 23, 30] use graph rigidity ideas
to achieve formation shape stabilization on the plane.
However, in the rigidity approach, the desired formation
shape is in general only locally stable (e.g., collinear net-
work configurations are invariant and additional unde-
sired locally stable equilibria exist). Another source of
inspiration for this work is the literature on graph draw-
ing [16], multidimensional scaling [4], and iterative ma-

⋆ This work was not presented at any IFAC meeting.

jorization [11], where the design of global optimization
algorithms that overcome the local stability properties of
the desired configurations is a topic of vigorous research.
Finally, groups of agents with only relative information
about each other’s state are considered in [5, 21, 25].

Statement of contributions The main contribution
of the paper is a simple, distributed coordination al-
gorithm that stabilizes the shape of a relative sensing
network to a desired formation. In contrast to previ-
ous work, the desired formation is not encoded using
inter-agent distances and assuming that the interaction
topology is rigid. Instead, in d ∈ Z>0 dimensions and
assuming that the interaction topology has at least a
globally reachable vertex, we encode the desired forma-
tion by assigning to each agent a vector in R

d. The pro-
posed strategy runs in discrete time and works in arbi-
trary dimensions. The formation control objective can
be encoded by means of the global minimization of the
stress function associated to the network. Our algorith-
mic design builds on additional contributions regarding
the majorization of the stress function and its critical
points when the interaction graph is directed. In partic-
ular, we show how the critical points can be character-
ized as the solutions to a sparse linear equation whose
elements are computable in a distributed way over the
interaction graph, in both the undirected and the di-
rected cases. The coordination strategy then results from
the design of a Jacobi overrelaxation algorithm to solve
the linear equation. We characterize the global conver-
gence properties of the algorithm as well as its descent
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properties with regards to the stress majorization func-
tion. We also establish the algorithm robustness against
several sources of error: when agents fail to acquire the
relative position of neighboring agents (a scenario that
can be interpreted as a partially asynchronous network
operation), when there are measurement errors in the
relative position information of neighboring agents, and
when there are errors in the initial computation of the
common reference frame of the individual agents.

Organization The paper is organized as follows. Sec-
tion 2 introduces basic notions from graph theory and
distributed linear iterations. Section 3 states the forma-
tion control problem and the model for the relative sens-
ing network. Section 4 develops several results on the
stress function from scaling theory, with special empha-
sis on the directed graph case. Section 5 presents the
coordination algorithm design and analyzes its conver-
gence properties. Section 6 characterizes the algorithm
robustness against several sources of error. Finally, Sec-
tion 7 gathers our conclusions and ideas for future work.

Notation We let R, R>0, and R≥0 denote the set of
reals, positive reals, and nonnegative reals, respectively.
We denote by ‖·‖∞ the ∞-norm in the Euclidean space,
and we denote the ∞-distance between a point p ∈ R

d

and a set S ⊂ R
d by dist∞(p, S). With a slight abuse of

notation, we do not distinguish between a vector P =
(p1, . . . , pn) ∈ (Rd)n and the matrix P ∈ R

n×d whose
ith row is pi. We let Id ∈ R

d×d denote the identity matrix
and 1d ∈ R

d denote the vector whose entries are all 1. For
A1, . . . , An ∈ R

d×d, we let diag (A1, . . . , An) ∈ R
dn×dn

denote the block-diagonal matrix that has A1, . . . , An in
the diagonal. Given A ∈ R

d1×d2 and B ∈ R
e1×e2 , we let

A ⊗ B ∈ R
d1e1×d2e2 denote its Kronecker product. For

square matrices A ∈ R
d×d, B ∈ R

e×e, the eigenvalues
of A ⊗ B are the product of the eigenvalues of A and
B. The Cartesian product of maps f1 : X1 → Y1 and
f2 : X2 → Y2 is f1 × f2 : X1 × X2 → Y1 × Y2, (f1 ×
f2)(x1, x2) = (f1(x1), f2(x2)). For brevity, the Cartesian
product of f1, . . . , fm is denoted Πm

k=1fk. Finally, we let
πα : R

d → R, α ∈ {1, . . . , d}, denote the projection of a
vector onto its αth-component.

2 Preliminary developments

Here we introduce basic notions on kinematic motions,
algebraic graph theory, and linear iterations. For further
details on these topics, we refer to [2, 5, 7].

2.1 Fixed and body reference frames

Let Σfixed = (pfixed, {x1
fixed, . . . ,xd

fixed}) be a fixed ref-
erence frame in R

d and let Σb = (pb, {x1
b, . . . ,xn

b}) be
a reference frame fixed with a moving body. A point
q and a vector v expressed with respect to the frames
Σfixed and Σb are denoted by qfixed and qb, and vfixed

and vb, respectively. The origin of Σb is the point pb,
denoted by pfixed

b when expressed with respect to Σfixed.
The orientation of Σb is characterized by the rotation
matrix Rfixed

b ∈ SO(d), whose columns are the frame vec-
tors {x1

b, . . . ,xd
b} of Σb expressed with respect to Σfixed.

With this notation, changes of frames read

qfixed = Rfixed
b qb + pfixed

b , (1a)

vfixed = Rfixed
b vb. (1b)

2.2 Graph-theoretic notions

A directed graph (or digraph) G = (V, E) of order n con-
sists of a vertex set V with n elements, and an edge set
E ⊂ V × V. For simplicity, we take V = {1, . . . , n}. A
digraph is undirected if (j, i) ∈ E anytime (i, j) ∈ E . In
a digraph G with an edge (i, j) ∈ E , i is called an in-
neighbor of j, and j is called an out-neighbor of i. A di-
rected path in a digraph is an ordered sequence of vertices
such that any two consecutive vertices in the sequence
are an edge of the digraph. A vertex of a digraph is glob-
ally reachable if it can be reached from any other ver-
tex by traversing a directed path. An undirected graph
is connected if there exists a path between any two ver-
tices. For an undirected graph, this notion is equivalent
to the graph having a globally reachable vertex.

A weighted digraph is a triplet G = (V, E ,A) where
(V, E) is a digraph and where A is an n×n weighted ad-
jacency matrix with the following properties: for i, j ∈
{1, . . . , n}, the entry aij > 0 if (i, j) is an edge of G, and
aij = 0 otherwise. A weighted digraph is undirected if
aij = aji for all i, j ∈ {1, . . . , n}. When convenient, we
write A(G) to make clear the explicit graph dependence.
A digraph G = (V, E) can be naturally thought of as a
weighted digraph by defining entries aij = 1 if (i, j) is
an edge of G, and aij = 0 otherwise. Reciprocally, one
can define the unweighted version of a weighted digraph
(V, E ,A) by simply considering the digraph (V, E).

The weighted out- and in-degree matrices are the di-
agonal matrices Dout(G) = diag (A1n) and Din(G) =
diag

(
AT 1n

)
. A weighted digraph is regular if there ex-

ists a ∈ R>0 such that Dout(G) = Din(G) = a In. If G is
undirected, we denote D(G) = Dout(G) = Din(G). The
graph Laplacian of the weighted digraph G is

L(G) = Dout(G) −A(G).

Note that L(G)1n = 0, and that G is undirected iff L(G)
is symmetric. For undirected graphs, the Laplacian is a
symmetric, positive semidefinite matrix. The Laplacian
also captures the connectivity properties of the graph:
L(G) has rank n−1 if and only if G has a globally reach-
able vertex. The following result states a useful property.

Lemma 2.1 For any connected undirected weighted
graph G, the matrix 2D(G)−1 − hD(G)−1L(G)D(G)−1

is positive definite for h ∈ (0, 1).

PROOF. Since the graph is connected, every vertex
has a positive degree, and the matrix D(G) is positive
definite. Now, note that

2D(G)−1 − hD(G)−1L(G)D(G)−1

= D(G)−1/2(2In − hD(G)−1/2L(G)D(G)−1/2)D(G)−1/2.
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It suffices to show that the symmetric matrix 2In −
hD(G)−1/2L(G)D(G)−1/2 is positive definite. The ma-
trix D(G)−1/2L(G)D(G)−1/2 is the normalized Lapla-
cian considered in [6]. According to [6, Lemma 1.7], the
eigenvalues of the normalized Laplacian all belong to the
interval [0, 2], and the result follows. 2

Next, we define reverse and mirror digraphs. Let Ẽ be
the set of edges obtained by reversing the order of all

pairs in E . The reverse digraph G̃ of G is (V, Ẽ). Observe

A(G̃) = A(G)T ,

L(G̃) = Dout(G̃) −A(G̃) = Din(G) −A(G)T .

In general, L(G̃) 6= L(G)T . The mirror digraph Ĝ of G

is (V, E ∪ Ẽ) with

A(Ĝ) =
1

2
(A(G) + A(G)T ) = Sym(A(G)),

L(Ĝ) =
1

2
(L(G) + L(G̃)).

The mirror graph is undirected.

Lemma 2.2 Given a weighted digraph G and x, y ∈ R
n,

1

2

∑

(i,j)∈E

aij(xi − xj)(yi − yj) = yT L(Ĝ)x.

PROOF. Note that, for x ∈ R
n, the ith coordinate of

the vectors L(G)x,L(G̃)x ∈ R
n are

(L(G)x)i =

n∑

j=1

aij(xi − xj), (L(G̃)x)i =

n∑

j=1

aji(xi − xj).

We use these expressions in the following manipulations,

∑

(i,j)∈E

aij(xi − xj)(yi − yj) =
n∑

i,j=1

aij(xi − xj)(yi − yj)

=
n∑

i,j=1

aij(xi − xj)yi −
n∑

i,j=1

aij(xi − xj)yj

=

n∑

i=1

yi(L(G)x)i +

n∑

i,j=1

aji(xi − xj)yi

= yT (L(G) + L(G̃))x,

as claimed. 2

2.3 Jacobi overrelaxation iteration

Given an invertible matrix A ∈ R
n×n and a vector

b ∈ R
n, consider the linear system Ax = b. The Jacobi

overrelaxation (JOR) algorithm is an iterative procedure

to compute the unique solution x = A−1b ∈ R
n. It is

formulated as the discrete-time dynamical system

xi(ℓ + 1) = (1 − h)xi(ℓ) − h
1

aii

( ∑

j 6=i

aijxj(ℓ) − bi

)
,

with ℓ ∈ Z≥0, i ∈ {1, . . . , n}, x(0) ∈ R
n, and h ∈ (0, 1).

The convergence properties of the JOR algorithm can
be fully characterized in terms of the eigenvalues of the
matrix describing the linear iteration, see [2].

Given a digraph G, as long as (i) agent i has access to bi

and aii, and (ii) if aij 6= 0, then (i, j) ∈ E , the JOR algo-
rithm is amenable to distributed implementation in the
following sense: agent i can compute the ith component
xi of the solution x = A−1b with information gathered
from its out-neighbors in G.

3 Problem statement

The objective of this paper is to synthesize a discrete-
time distributed coordination algorithm that achieves
global stabilization of the desired formation shape. Here
we describe the capabilities of the robotic network and
formally state the control objective.

3.1 Relative sensing network

Consider a group of n agents in R
d. We assume that

each agent has its own reference frame Σi. Expressed
with respect to the fixed frame Σfixed, the ith frame
Σi is described by a position pfixed

i ∈ R
d and an ori-

entation Rfixed
i ∈ SO(d). The dynamical model of each

agent is as follows. With its sensed information, agent
i ∈ {1, . . . , n} computes its own control input, expressed
in its local frame Σi as ui

i. In the local frame, each agent
moves according to

pi
i(ℓ + 1) = ui

i, ℓ ∈ Z≥0.

According to (1), in the global frame Σfixed,

pfixed
i (ℓ + 1) = pfixed

i (ℓ) + Rfixed
i ui

i, ℓ ∈ Z≥0.

The sensing interactions between agents are encoded by
a digraph G = ({1, . . . , n}, E). An edge (i, j) means that
agent i can sense the relative position of agent j in its
own local frame, pi

j . There is no explicit communication
among agents. We refer to this network by Srs

G .

A coordination algorithm is a specification of a control
input ui

i for each agent i ∈ {1, . . . , n}. The algorithm
is distributed over Srs

G if agent i can compute its control
input with the sensing information collected on the rel-
ative position of its neighbors in the graph G.

3.2 The control objective

Our objective is to stabilize the group configuration to a
desired formation. The desired formation is encoded as
follows. Given Z∗ = (z∗1 , . . . , z∗n) ∈ (Rd)n, let Rgd(Z∗)
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be the set of configurations in (Rd)n which are related
to Z∗ by a translation and a rotation in R

d, i.e.,

Rgd(Z∗) = {(w1, . . . , wn) ∈ (Rd)n | there is (q,R) ∈

R
d × SO(d) such that wi = Rz∗i + q, i ∈ {1, . . . , n}},

Obviously, Z∗ ∈ Rgd(Z∗). Note that any two configu-
rations in Rgd(Z∗) have the same inter-agent distances,
i.e., kij = ‖wi − wj‖ ∈ R>0, i 6= j ∈ {1, . . . , n} are
the same for any W ∈ Rgd(Z∗). The control objective is
then to stabilize the group of agents to a configuration
that belongs to Rgd(Z∗).

4 Scaling theory and stress majorization

In this section, we introduce the notion of stress function
from multidimensional scaling theory [4, 18] and explain
its relationship with the formation control problem. We
also prove various results that will be instrumental in
the algorithm design, paying particular attention to the
case of directed graphs.

4.1 The stress function

The raw Stress function StressG : (Rd)n → R is

StressG (p1, . . . , pn) =
1

2

∑

(i,j)∈E

(‖pi − pj‖ − kij)
2. (2)

For an undirected graph G, this definition coincides with
the classical one used in the multidimensional scaling.
Note that the desired formation configurations are global
minimizers of StressG . Under additional assumptions on
the rigidity of the graph, one can guarantee that they
are the only ones. Alternatively, one may consider the
S-Stress [28] function

S-StressG (p1, . . . , pn) =
1

2

∑

(i,j)∈E

(‖pi − pj‖
2 − k

2
ij)

2,

which has the same global minimizers. The S-Stress func-
tion is the Lyapunov function considered in [17, 23] in
the context of formation control. Here instead we focus
on the raw Stress, although the developments described
below apply equally with the appropriate modifications.

The partial derivative of StressG with respect to pi, i ∈
{1, . . . , n}, is given by

∂StressG

∂pi
= 2

∑

j:(i,j)∈E

(‖pi − pj‖ − kij)
pi − pj

‖pi − pj‖
. (3)

This partial derivative can be computed by agent i with
local information, and hence one can design a gradient-
descent coordination algorithm to minimize StressG . In-
deed, one can show [17] that the desired equilibria of the
system are locally stable. However, the gradient system
has other undesired equilibria (other local minimizers of
StressG ), which turn out to be also locally stable [8, 17].

In addition, it is not difficult to establish that the set of
collinear network configurations is invariant under the
gradient flow defined by (3). These observations are also
valid for the gradient flow of S-StressG .

4.2 Stress majorization

In general, the direct optimization of the stress function
is prone to local minima. An alternative route involves
the construction of majorization functions that are easier
to optimize. This is what we discuss next.

Let us start with some notation. Given Z = (z1, . . . , zn) ∈
(Rd)n and an undirected graph G, let GZ be the weighted
graph with adjacency matrix A(GZ) with entries

aij =

{
kij inv(‖zi − zj‖), (i, j) ∈ E ,

0, (i, j) 6∈ E ,

where inv(x) = 1/x if x 6= 0, and inv(0) = 0. Note that,
for Z ∈ Rgd(Z∗), the graphs GZ and G are the same.
The stress majorization function FZ

G : (Rd)n → R is

FZ
G (P ) = tr (PT L(G)P ) − 2 tr (PT L(GZ)Z) +

1

2

∑

(i,j)∈E

k
2
ij .

The name of the function is justified as follows.

Proposition 4.1 ([4]) Given an undirected graph G,
for any P = (p1, . . . , pn), Z = (z1, . . . , zn) ∈ (Rd)n,

StressG (p1, . . . , pn) ≤ FZ
G (P ).

Moreover, if P = Z, then FP
G (P ) = StressG (P ).

This result can be generalized to the case of directed
graphs using Lemma 2.2.

Proposition 4.2 Given a digraph G, for any P =
(p1, . . . , pn), Z = (z1, . . . , zn) ∈ (Rd)n,

StressG (p1, . . . , pn) ≤ FZ

Ĝ
(P ).

Moreover, if P = Z, then FP

Ĝ
(P ) = StressG (P ).

PROOF. We expand the expression of StressG as

StressG (p1, . . . , pn) =
1

2

∑

(i,j)∈E

‖pi − pj‖
2

−
∑

(i,j)∈E

‖pi − pj‖kij +
1

2

∑

(i,j)∈E

k
2
ij .

Using Lemma 2.2, the first summand can be rewritten

as tr (PT L(Ĝ)P ). Using the Laplacian of the graph GZ ,
the second summand can be rewritten as

−
∑

(i,j)∈E

‖pi − pj‖kij

= −
∑

(i,j)∈E

kij inv(‖zi − zj‖)‖pi − pj‖ · ‖zi − zj‖.
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Using the Cauchy-Schwarz inequality and an argument
similar to the one used in the proof of Lemma 2.2,
we deduce that this summand is upper bounded

2 tr (PT L(ĜZ)Z), with equality if P = Z, and this
concludes the proof. 2

Alternatively, the stress majorization function can be
expressed using the Kronecker product as

FZ(P ) = PT (L(G) ⊗ Id)P

− 2PT (L(GZ) ⊗ Id)Z +
1

2

∑

(i,j)∈E

k
2
ij . (4)

This expression is useful in establishing the following key
properties of the stress majorization function.

Proposition 4.3 Given Z = (z1, . . . , zn) ∈ (Rd)n and
an undirected graph G, the following holds:

(i) The gradient and Hessian of FZ
G are, respectively,

∇FZ
G = 2(L(G) ⊗ Id)P − 2(L(GZ) ⊗ Id)Z,

∇2(FZ
G ) = 2L(G) ⊗ Id.

In particular, both are distributed over the graph G;
(ii) The function FZ

G is globally convex;
(iii) P ∈ (Rd)n is a global minimizer of FZ

G if and only if

(L(G) ⊗ Id)P = (L(GZ) ⊗ Id)Z. (5)

In particular, any two minima of FZ
G are equal up

to a translation in R
d.

PROOF. Fact (i) readily follows from expression (4).
Fact (ii) follows from noting that the eigenvalues of
∇2(FZ

G ) are the same as those of L(G) with their mul-
tiplicity doubled. Since L(G) is positive semidefinite, so
is ∇2(FZ

G ). Finally, fact (iii) follows from fact (i). 2

The next result will be important later for our dis-
tributed algorithm design in the case of directed graphs.

Lemma 4.4 Given Z ∈ Rgd(Z∗) and a digraph G with
a globally reachable vertex, P is a global minimizer of FZ

Ĝ
if and only if

(L(G) ⊗ Id)P = (L(G) ⊗ Id)Z. (6)

PROOF. Note that G = GZ because Z ∈ Rgd(Z∗).
According to Proposition 4.3(iii), P is a global minimizer
of FZ

Ĝ
if and only if

(L(Ĝ) ⊗ Id)P = (L(Ĝ) ⊗ Id)Z. (7)

Since G has a globally reachable vertex, the mirror graph

Ĝ is connected, and therefore, (7) is equivalent to P =

Z + 1n ⊗ q, for some q ∈ R
d, which implies (6). The

reverse implication follows by noting that, since G has a
globally reachable vertex, its Laplacian has rank n − 1,
and therefore (L(G)⊗Id)v = 0 if and only if v ∈ 1n⊗R

d.
Consequently, (6) implies that P = Z +1n ⊗ q, for some
q ∈ R

d, which is equivalent to (7). 2

The importance of Lemma 4.4 stems from the following
observation: the critical points of FZ

Ĝ
can be character-

ized by a linear equation (6) defined by the Laplacian
matrix of G, which is distributed over the digraph G.
Note that the original characterization (7) is defined by
the Laplacian matrix of the mirror graph, which is not
distributed over G.

5 Coordination algorithm for global stabiliza-
tion of formations

In this section, we propose a discrete-time distributed
coordination algorithm that achieves global stabilization
of the desired formation. We begin by discussing the
problem of finding a network-wide reference frame and
then design the motion coordination algorithm.

5.1 Common orientation of local reference frames

The reference frames of the individual agents in Srs
G

might have different orientations with respect to the
global reference frame. However, the network can ex-
ecute some suitable initialization algorithm to equally
orient all agent reference frames. Here we describe one
simple procedure based on a distributed implementation
of the flooding algorithm [24] on the relative sensing net-
work. Other solutions to the common reference frame
problem are explored in [25].

Assume G has a globally reachable vertex. For simplic-
ity, we describe the strategy first in R

2. At the first time
step, a preselected globally reachable vertex moves a unit
in the direction of its x-axis. All other agents that can
sense the position of this agent measure the relative dis-
placement in their local frames and figure out the x-axis
direction of the agent. They rotate their frames to align
them with the direction of the relative displacement. The
process is repeated until all agents have aligned their
frames with the one of the globally reachable vertex.

In R
3, it takes two time steps for each agent to figure

out the orientation of the reference frame of the globally
reachable vertex. This vertex first moves in the direction
of its x-axis, and then moves in the direction of its y-
axis. Then the process is repeated until all agents have
equally-aligned reference frames.

Note that this algorithm does not provide the network
with a common origin or reference point, and therefore
agents cannot compute or move to positions in the en-
vironment specified in a global reference frame.

5.2 Motion coordination via Jacobi iteration

Here, we assume that all agent reference frames have the
same orientation, i.e., Rfixed

i = R, for i ∈ {1, . . . , n}, for
some R ∈ SO(d) which can be unknown to the individual
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agents. Given the discussion in Section 4, our strategy to
make the network achieve the desired formation shape
is to globally optimize the stress majorization function
FZ∗

G . From Proposition 4.3 and Lemma 4.4, this can be
achieved by solving the sparse linear equation

(L(G) ⊗ Id)P = (L(G) ⊗ Id)Z
∗.

To solve this equation, we propose to use a Jacobi over-
relaxation iteration (JOR), cf. Section 2.3. Let

b = (b1, . . . , bn) = (L(G) ⊗ Id)Z
∗, (8)

with bi ∈ R
d, i ∈ {1, . . . , n}. In Cartesian coordinates,

the JOR algorithm for each agent i is, for ℓ ∈ Z≥0,

pi(ℓ + 1) = (1 − h)pi(ℓ) + h
1

di

(∑

j 6=i

aijpj(ℓ) + bi

)
,

where (d1, . . . , dn) is the diagonal of Dout(G). If di = 0,
then we set pi(ℓ+1) = pi(ℓ). In the local frame of agent i,
this is written, for ℓ ∈ Z≥0,

pi
i(ℓ + 1) = h

1

di

(∑

j 6=i

aijp
i
j(ℓ) + (Rfixed

i )T bi

)
, (9)

if di 6= 0, and pi
i(ℓ + 1) = 0 otherwise. The individual

agent does not know the rotation matrix Rfixed
i = R.

Therefore, instead of (9), agent i runs, for ℓ ∈ Z≥0,

pi
i(ℓ + 1) = h

1

di

(∑

j 6=i

aijp
i
j(ℓ) + bi

)
, (10)

if di 6= 0, and pi
i(ℓ + 1) = 0 otherwise. In the global

frame, using (1), the algorithm (10) reads, for ℓ ∈ Z≥0,

pi(ℓ + 1)=(1 − h)pi(ℓ)+h
1

di

(∑

j 6=i

aijpj(ℓ)+Rbi

)
,

(11)

if di 6= 0, and pi(ℓ + 1) = pi(ℓ) otherwise. This corre-
sponds to the JOR algorithm to solve the linear equation

(L(G) ⊗ Id)P = (In ⊗ R)b. (12)

Note that all the solutions of this equation correspond to
translations of a rotated configuration of Z∗, and there-
fore, all belong to Rgd(Z∗), as desired.

Next, we characterize the distributed character of this
algorithm as well as its convergence properties.

Proposition 5.1 Consider the relative sensing network
Srs

G , where G has a globally reachable vertex. Let h ∈
(0, 1) and assume all agent reference frames are equally
oriented. Then, the following holds

(i) the coordination algorithm (10) is distributed over
Srs

G . Moreover, as initial information, each agent
only needs to store a vector in R

d;
(ii) the coordination algorithm (10) converges to a con-

figuration W in Rgd(Z∗);
(iii) if G is undirected, the stress majorization func-

tion FW
G is monotonically decreasing along (10).

PROOF. Fact (i) follows from directly from (10). The
only initial information that agent i ∈ {1, . . . , n} re-
quires is the vector bi ∈ R

d. To show fact (ii), we rea-
son on the expression (11) of the algorithm in the global
frame. Some basic manipulations yield

(In ⊗ R)b = (In ⊗ R)(L(G) ⊗ Id)Z
∗

= (L(G) ⊗ Id)(In ⊗ R)Z∗.

Consider the change of coordinates Y = (y1, . . . , yn) =
P − (In ⊗R)Z∗. Then, the linear equation (12) reads as

(L(G) ⊗ Id)Y = 0. (13)

For α ∈ {1, . . . , d}, let

ỹα = Πn
i=1πα(Y ) = (πα(y1), . . . , πα(yn)) ∈ R

n.

Then the JOR algorithm (11) reads, for ℓ ∈ Z≥0,

(ỹα)i(ℓ + 1) = (ỹα)i(ℓ) + h
1

di

∑

j 6=i

aij((ỹα)j(ℓ) − (ỹα)i(ℓ)),

if di 6= 0, and (ỹα)i(ℓ + 1) = (ỹα)i(ℓ) otherwise, for
α ∈ {1, . . . , d}. Therefore, we have d copies of the same
linear dynamical system, and we just need to analyze
the convergence properties of

z(ℓ + 1) = (In − hD−1
out(G)L(G))z(ℓ), (14)

with z(0) ∈ R
n and ℓ ∈ Z≥0, where for convenience

set D−1
out(G)ii = 0 if di = 0. It is easy to see that,

for h ∈ (0, 1), the matrix F = In − hD−1
out(G)L(G)

is stochastic. Using [5, Proposition 1.65(ii)], we deduce
that the trajectory of (14) starting at z(0) converges to
(vT z(0)/vT 1n)1n, where v denotes a left eigenvector of
F with eigenvalue 1. Therefore, for each α ∈ {1, . . . , d},
there exists sα ∈ R such that ỹα(ℓ) → sα1n as ℓ →
+∞. Denoting s = (s1, . . . , sd) ∈ R

d, we conclude that
yi(ℓ) → s as ℓ → +∞, for i ∈ {1, . . . , n}, or equiva-
lently, that the coordination algorithm (11) converges
to the configuration W = (RZ∗

1 + s, . . . , RZ∗
n + s) =

(In ⊗ R)Z∗ + 1n ⊗ s ∈ Rgd(Z∗).

To show fact (iii), we examine the differences FW
G (P (ℓ+

1)) − FW
G (P (ℓ)), where {P (ℓ) ∈ (Rd)n | ℓ ∈ Z≥0} is

the sequence of network configurations generated by the
JOR algorithm (11). After some manipulations, this al-
gorithm can be written in closed form as

P (ℓ + 1) = P (ℓ) − h(D(G)−1L(G) ⊗ Id)(P (ℓ) − W ),

6



for ℓ ∈ Z≥0. Next, we compute the evolution of the stress
majorization function as

FW
G (P (ℓ + 1)) −FW

G (P (ℓ)) =

= P (ℓ + 1)T (L(G) ⊗ Id)P (ℓ + 1) − P (ℓ)T (L(G) ⊗ Id)P (ℓ)

− 2(P (ℓ + 1) − P (ℓ))T (L(G) ⊗ Id)W.

Using the identity (A1 ⊗ B1)(A2 ⊗ B2) = (A1A2) ⊗
(B1B2), we can rewrite the evolution of FW

G as

FW
G (P (ℓ + 1)) −FW

G (P (ℓ)) =

= −2hzT (D(G)−1 ⊗ Id)(L(G) ⊗ Id)P (ℓ)

+ h2zT (D(G)−1L(G)D(G)−1 ⊗ Id)z

+ 2hzT (D(G)−1 ⊗ Id)(L(G) ⊗ Id)W,

where, for brevity, we use the shorthand notation z =
(L(G) ⊗ Id)(P (ℓ) − W ). A final simplification yields

FW
G (P (ℓ + 1)) −FW

G (P (ℓ)) =

= −hzT ((2D(G)−1 − hD(G)−1L(G)D(G)−1) ⊗ Id)z.

Using Lemma 2.1, we can guarantee that for h ∈ (0, 1),
the matrix (2D(G)−1 − hD(G)−1L(G)D(G)−1) ⊗ Id is
positive definite, and therefore

FW
G (P (ℓ + 1)) −FW

G (P (ℓ)) ≤ 0,

with equality holding if and only if z = (L(G) ⊗
Id)(P (ℓ) − W ) = 0, i.e., P (ℓ) ∈ Rgd(Z∗). 2

Remark 5.2 Proposition 5.1(iii) does not hold in gen-
eral if G is directed. A counter example is given by the
digraph plotted in Figure 1. For this digraph, the matrix

1

3
5

2

6

4

Fig. 1. Counter example to Proposition 5.1(iii) in the di-
rected case. For this digraph, there exist initial network con-
figurations for which F

W

G is not monotonically decreasing
along the execution of (10).

Sym(L(G̃)D(G)−1L(G)) has a negative eigenvalue, and
therefore there exist initial network configurations for
which FW

G is not monotonically decreasing along (10).•

Figure 2 shows an execution of (10) over a relative sens-
ing network in R

3 composed of 60 agents, with interac-
tion topology given by the Buckminster Fuller geodesic
dome [1]. The desired formation, shaped as a soccer ball,
is encoded via (8), and agent i ∈ {1, . . . , n} is provided
with bi ∈ R

3. Proposition 5.1 guarantees that conver-
gence to the desired formation shape is achieved.

(a) (b) (c)

Fig. 2. Execution of the algorithm (10) with h = .25 over
a relative sensing network in R

3 composed of 60 agents. (a)
initial configuration, (b) evolution, and (c) final formation.

6 Robustness against link failures, measure-
ment errors, and frame orientation errors

In this section, we examine the robustness properties of
the coordination algorithm (10) against several sources
of error. First, we consider the situation where one or
more of agents fail to sense the relative position of other
neighboring agents. We refer to such occurrences as link
failures. Second, we consider measurement errors in the
acquisition of the relative position of neighboring agents.
Finally, we study the algorithm robustness to errors in
the initialization of the orientation of the agents’ frames.

6.1 Robustness against link failures and convergence of
asynchronous executions

Consider the scenario where an agent fails to acquire the
relative position of a neighbor. In such case, it seems log-
ical for that agent to use the last recorded information
about the relative position of the neighbor. Interestingly,
this situation can be interpreted as an asynchronous ex-
ecution of (10), where, at each time step, the informa-
tion that an agent has about other neighboring agents is
outdated to some degree. In our case, the outdatedness
is due to a sensor failure, but it could also correspond to
other reasons, such as delays in processing information.

This connection allows us to study the convergence of
the resulting algorithm using well-established results
from distributed algorithms. The asynchronous model
for the network operation here corresponds to the par-
tially asynchronous model from [2, Chapter 7]. Roughly
speaking, when agent i, at time ℓ, uses the value pi

j from
another agent, that value is not necessarily the most
recent one, pi

j(ℓ), but rather an outdated one,

pi
j(τ

i
j(ℓ)), 0 ≤ τ i

j(ℓ) ≤ ℓ. (15)

The quantity ℓ − τ i
j(ℓ) represents the delay. Therefore,

the JOR algorithm (10) then reads, for ℓ ∈ Z≥0,

pi
i(ℓ + 1) = h

1

di

( ∑

j 6=i

aijp
i
j(τ

i
j(ℓ)) + bi

)
. (16)

The following result states that the convergence of (16) is
still guaranteed if the frequency of the failures is bounded
(alternatively, the delays are bounded).
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Proposition 6.1 Consider the relative sensing network
Srs

G operating asynchronously, where G has a globally
reachable vertex. Let h ∈ (0, 1) and assume all agent ref-
erence frames are equally oriented. Assume there exists
B > 0 such that ℓ − B + 1 ≤ τ i

j(ℓ) ≤ ℓ, for all ℓ ∈ Z≥0,
and all (i, j) ∈ E. Then, the algorithm (16) converges to
a configuration W in Rgd(Z∗).

Proposition 6.1 is established by rewriting the coordina-
tion algorithm in a manner analogous to the expressions
obtained in the proof of Proposition 5.1(ii), and then ap-
plying the results in [3, 22]. We omit it for space reasons.

Figure 3 shows an execution of (16) over a relative sens-
ing network composed of 20 agents, with interaction
topology given by a directed version of the Desargues
graph [12]. The maximum delay is B = 10 steps, i.e.,
no agent has relative position information on its neigh-
bors that is more than 10 steps outdated. As forecasted
by Proposition 6.1, convergence to the desired formation
shape is achieved.

6.2 Robustness against measurement errors

Here we study the convergence properties of the coor-
dination algorithm (10) in the presence of measurement
errors. Assume that, for each edge (i, j) of G, agent i
senses the position of agent j in its own local frame with
an error bounded by σ ∈ R≥0. In other words, agent i
uses the erroneous relative position

pi
j + eij , (17)

of agent j, with eij ∈ R
d, ‖eij‖∞ ≤ σ, instead of the

correct relative position pi
j . Under such measurement

errors, the JOR algorithm (10) then reads, for ℓ ∈ Z≥0,

pi
i(ℓ + 1) = h

1

di

( ∑

j 6=i

aij

(
pi

j(ℓ) + eij(ℓ)
)

+ bi

)
, (18)

with ‖eij(ℓ)‖∞ ≤ σ for each edge (i, j) of G. The follow-
ing result characterizes the convergence of (18).

Proposition 6.2 Consider the relative sensing network
Srs

G , where G has a globally reachable vertex. Let h ∈
(0, 1) and assume all agent reference frames are equally
oriented. Assume the network agents acquire erroneous
relative position information according to the model (17)
with mismatch bounded by σ ∈ R≥0. Then, there exists
K ∈ R>0 such that the algorithm (18) converges to

{Z ∈ (Rd)n | there exists W ∈ Rgd(Z∗)

such that ‖Z − W‖∞ ≤ Khσ}.

PROOF. As in the proof of Proposition 5.1, define the
change of coordinates Y = (y1, . . . , yn) = P − (In ⊗
R)Z∗, and, for each α ∈ {1, . . . , d}, let

ỹα = Πn
i=1πα(Y ) = (πα(y1), . . . , πα(yn)) ∈ R

n.

Then, the algorithm (18) can be rewritten, for ℓ ∈ Z≥0,

(ỹα)i(ℓ + 1) = (ỹα)i(ℓ)

+ h
1

di

∑

j 6=i

aij((ỹα)j(ℓ) − (ỹα)i(ℓ) + πα(eij(ℓ))),

if di 6= 0, and (ỹα)i(ℓ + 1) = (ỹα)i(ℓ) otherwise, for
α ∈ {1, . . . , d}. Note that

|
∑

j 6=i

aijπα(eij(ℓ))| ≤
∑

j 6=i

aij |πα(eij(ℓ))|

≤
∑

j 6=i

aij‖eij(ℓ)‖∞ ≤ diσ (19)

Therefore, we have d instances of a linear dynamical
system with bounded disturbances, and we just need to
analyze the convergence properties of

z(ℓ + 1) = (In − hD−1
out(G)L(G))z(ℓ) + hv(ℓ), (20)

with z(0) ∈ R
n and ℓ ∈ Z≥0. From (19), we deduce

that ‖v(ℓ)‖∞ ≤ σ. Note that F = In − hD−1
out(G)L(G)

is stochastic. Moreover, since G is globally reachable, F
has 1 as the unique eigenvalue of maximum magnitude
and with multiplicity 1. Therefore, the linear system (20)
is input-to-state stable [14] with respect to the agree-
ment configurations {s1n | s ∈ R}. The convergence
result then follows from this observation. The constant
K is obtained by observing that F − 1

vT 1n

1nvT , where
v denotes a left eigenvector of F with eigenvalue 1, has
all its eigenvalues in the unit complex disk centered at
0, i.e., the matrix is Schur stable. Therefore, from [20,
Chapter 5], there exist c > 1 and b ∈ (0, 1) such that
‖(F − 1

vT 1n

1nvT )k‖∞ ≤ c bk. After upper bounding the

evolution in (20), we obtain K = c
1−b . 2

Note that Proposition 6.2 only guarantees convergence
to a set. According to the statement, the configurations
in this set correspond to translations and rotations of
the desired formation slightly deformed by the effect of
the erroneous relative position readings of the sensors.

Figure 4 shows an execution of (18) over the relative
sensing network of Figure 3 under measurement errors
in the acquisition of the relative position of neighboring
agents. The norm of the measurement errors is upper
bounded by σ = .2. As forecasted by Proposition 6.2,
the network shape converges to a formation close to the
desired one, while the group of agents moves in the plane.

6.3 Robustness against frame orientation errors

Here we explore the robustness properties of the coor-
dination algorithm (10) against errors in the computa-
tion of the common orientation of the reference frame,
cf. Section 5.1. Suppose that the algorithm selected by
the network to orient all agent frames equally is not ex-
ecuted perfectly and consequently the final orientation
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Fig. 3. Execution of the algorithm (16) with h = .2 over a relative sensing network in R
2 composed of 20 agents. (a) initial

configuration, (b) evolution, (c) final formation, and (d) evolution of (10) from the same initial condition for comparison.
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Fig. 4. Execution of the algorithm (18) with h = .25 and
σ = .2 over a relative sensing network in R

2 composed of
20 agents. (a) initial configuration, (b) evolution, and (c)
formation after 80 iterations.

of the frame of agent i ∈ {1, . . . , n} is of the form

Rfixed
i = R + Ξi, (21)

where R ∈ SO(d) and the error matrix Ξi satisfies
‖Ξi‖∞ ≤ ε. Given the difference in the orientation of
the frames, (10) reads now in the global frame as

pi(ℓ + 1) = (1 − h)pi(ℓ) + h
1

di

( ∑

j 6=i

aijpj(ℓ) + Rfixed
i bi

)
,

(22)

for ℓ ∈ Z≥0, which corresponds to the JOR algorithm to
solve the linear algebraic equation

(L(G) ⊗ Id)P = diag
(
Rfixed

1 , . . . , Rfixed
n

)
b. (23)

Observe that the mismatch in the orientation of the
frames makes this linear equation ill-posed. In other
words, the vector diag

(
Rfixed

1 , . . . , Rfixed
n

)
b does not be-

long to the range of the matrix L(G)⊗Id, and therefore,
there does not exist a solution P of (23). Intuitively, this
observation is consistent with the fact that the algorithm
design assumes all frames are equally oriented.

Even though (23) has no solution, the question about
the convergence properties of (22) still remains. The fol-
lowing result provides an answer to it.

Proposition 6.3 Consider the relative sensing network
Srs

G , where G has a globally reachable vertex. Let h ∈
(0, 1). Let the orientation of the frame of agent i ∈

{1, . . . , n} be given by (21). Then, there exists K̃ ∈ R>0

such that the algorithm (10) converges to

{Z ∈ (Rd)n | there exists W ∈ Rgd(Z∗)

such that ‖Z − W‖∞ ≤ K̃hε}.

The proof of this result is analogous to the proof of
Proposition 6.2, and we omit it in the interest of space.
After some manipulations, one can show that

K̃ = K
max{‖bi‖∞ | i ∈ {1, . . . , n}}

min{di | di 6= 0, i ∈ {1, . . . , n}}
.

Note that Proposition 6.3 only guarantees convergence
to a set. According to the statement, the configurations
in this set correspond to translations and rotations of
the desired formation slightly deformed by the effect of
the mismatch in the orientation of the agent frames.

Figure 5 shows an execution of (10) over the relative
sensing network of Figure 3 under errors in the compu-
tation of the common orientation of the agent frames.
Each agent orients its own frame with an angle of 90 de-
grees with an error whose absolute value is bounded by
9 degrees. The desired formation is the one given by Fig-
ure 3(c). As forecasted by Proposition 6.3, the network
shape converges to a formation close to the desired one,
while the group of agents moves in the plane.

Under additional conditions on the interaction topology,
it is possible to state a slightly stronger result.

Corollary 6.4 Under the same assumptions of Proposi-
tion 6.3, further assume that G is regular. Then, for each
initial condition, there exists s ∈ R

d and W ∈ (Rd)n with

dist∞(W, Rgd(Z∗)) ≤ K̂ε (where K̂ only depends on the
graph and the desired formation) such that the evolution
of the coordination algorithm (10) converges to the line
{Z + a(1n ⊗ s) | a ∈ R}.
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Fig. 5. Execution of the algorithm (10) with h = .25 over
a relative sensing network in R

2 composed of 20 agents un-
der errors in the orientation of the agent frames. (a) initial
configuration, (b) evolution, and (c) final formation shape.

7 Conclusions and future work

We have proposed a distributed formation control strat-
egy for relative sensing networks. The algorithm design
combines ideas on stress majorization from scaling the-
ory with Jacobi overrelaxation algorithms from the the-
ory of distributed linear iterations. We have analyzed
the convergence properties of the proposed algorithm,
showing that, for any interaction topology with a glob-
ally reachable vertex, it globally stabilizes the desired
formation shape. We have established the algorithm ro-
bustness against complete failures, measurement errors
in the acquisition of the relative position of neighboring
agents, and errors in the initial computation of the com-
mon reference frame. Future work will include the design
of error-correcting algorithms that completely eliminate
any mismatch in the orientation of the agent frames and
the extension of the results to consider switching inter-
action topologies and individual agent dynamics.
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