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Abstract— This paper studies robotic sensor networks perform-
ing coverage optimization tasks with area constraints. The
network coverage of the environment is a function of the
robot locations and the partition of the space. The area of
the region assigned to each robot is constrained to be a pre-
specified amount. We characterize the optimal configurations
as center generalized Voronoi configurations. The generalized
Voronoi partition depends on a set of weights, one per robot,
assigned to the network. We design a Jacobi iterative algorithm
to find the weight assignment whose corresponding generalized
Voronoi partition satisfies the area constraints. This algorithm
is distributed over the generalized Delaunay graph. We also
design the “move-to-center-and-compute-weight” coordination
algorithm that steers the robotic network towards the set of
center generalized Voronoi configurations while monotonically
optimizing coverage. Various simulations illustrate our results.

I. I NTRODUCTION

This paper studies a class of locational optimization problems
subject to area constraints. Our objective is to design dis-
tributed coordination algorithms for robotic sensor networks
that (i) guarantee optimal quality-of-service, i.e., optimize
the agent location and the partitioning of the environment,
and (ii) satisfy a desired set of constraints imposed on the
areas of the regions assigned to the agents.
Our study is motivated by applications in milling, mine
sweeping, and minimum servicing time problems. Consider
the following sample scenario. Given an environment of
interest, we represent the likelihood of a customer appearing
at specific locations by a density function. Ideally, one would
like to partition the environment into regions of the same
area and, at the same time, minimize the expected time
an agent has to travel to service a location. Initially, the
location of the customers might be unknown, and this can
be reflected in the density function. As agents move within
the environment, the density function can be updated in a
way that reflects both the location and the time required to
service the newly-discovered customers. It is our belief that
coordination algorithms that address these scenarios can be
designed building on the results presented in this paper.
Literature review: The discipline of facility location [1], [2]
studies locational optimization problems and looks at optimal
resource placement and optimal space partitioning. The no-
tion of Voronoi partition, or generalized versions of it, plays
an important role in locational optimization. The work [3]
considers centroidal Voronoi partitions, [4] considers power
diagrams, [5] considers additively-weighted Voronoi parti-
tions, and [6] considers multiplicatively-weighted Voronoi
partitions. From a computational geometric perspective, an
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important research issue is the design of efficient algorithms
that, given a fixed set of locations, compute partitions of the
space into regions of prescribed areas [4], [5], [6]. Among
these, the equitable case (i.e., all areas being equal) is of
special importance as it represents a balanced distribution of
the overall load. In the context of robotic sensor networks,
this work builds on [7], where distributed algorithms based
on centroidal Voronoi partitions are presented, and [8], where
limited-range interactions are considered. Voronoi partitions
are also employed in [9], [10], [11]. Other works on coverage
problems include [12], [13].
Statement of contributions:The contributions of the paper
pertain both the analysis of a broad class of constrained
locational optimization problems and the design of coor-
dination algorithms for robotic sensor networks. Regarding
analysis, we study the notion of generalized Voronoi partition
associated with a given performance function. We pay special
attention to the properties of the map that, given a fixed set
of agent locations, maps a set of weights to the areas of the
corresponding regions. We characterize the Jacobian of this
map as the Laplacian corresponding to a weighted version
of the generalized Delaunay graph induced by the Voronoi
partition. This characterization allows us to prove that, given
any network configuration and any performance function,
there exists a weight assignment that makes the regions of the
generalized Voronoi partition have a prescribed set of areas.
A second set of results deal with the analysis of the solutions
of the area-constrained locational optimization problems. We
show that the generalized Voronoi partition is optimal among
all partitions satisfying the area constraints. We also charac-
terize the critical points of the optimization problem as center
generalized Voronoi configurations. Regarding design, we
provide two distributed algorithms over the generalized De-
launay graph. We design the “move-to-center-and-compute-
weight” coordination algorithm to steer the network agents
towards the set of center Voronoi configurations. At the
same time, the evolution of the network under this algorithm
monotonically optimizes the coverage of the environment.
We also design a Jacobi iterative algorithm to solve the
problem of finding the weight assignment that makes the
generalized Voronoi partition satisfy the area constraints.
This algorithm is of interest by itself, as it constitutes an
efficient approach from a dynamical systems perspective to a
classical computational geometric problem. Because of space
constraints, all proofs are omitted.
Notation: We denote byint (U) the interior of a setU ⊂
R

n. Unless otherwise noted, vectors are always understood
as column vectors. Let1n = (1, . . . , 1)T ∈ R

n and 0n =
(0, . . . , 0)T ∈ R

n. Let {e1, . . . , en} denote the canonical
basis ofRn. We let diag (Rn) = {(a, . . . , a) ∈ R

n | a ∈



R}. Of special interest to us is the orthogonal decomposition
R

n = diag (Rn) ⊕ diag (Rn)
⊥, with associated projections

π1 : R
n → diag (Rn) andπ2 : R

n → diag (Rn)
⊥. Note that

π1(x) =
1

T
nx

n
1n, π2(x) = x − π1(x). (1)

The diagonal setdiag (Rn) is 1-dimensional, and hence
diag (Rn)

n−1 is (n − 1)-dimensional.

II. PRELIMINARIES

In this section we gather some preliminary notions on graph
theory and computational geometry.

A. Notions from graph theory

Here we present some basic graph-theoretic notions [14],
[15]. An (undirected) graph consists of a vertex setV and
of a setE of unordered pairs of vertices. Forv1, v2 ∈ V
distinct,(v1, v2) denotes an undirected edge betweenv1 and
v2. A path in a graph is an ordered sequence of vertices
such that any two consecutive vertices in the sequence are
an edge of the graph. A graph is connected if there exists a
path between any two vertices.
A weighted graph is a tripletG = (V,E,A) whereV andE
are a graph and whereA ∈ R

n×n
≥0 is a weighted adjacency

matrix with the following properties: fori, j ∈ {1, . . . , n},
the entryaij > 0 if (vi, vj) is an edge ofG, andaij = 0
otherwise. In other words, the scalarsaij , for all (vi, vj) ∈
E, are a set of weights for the edges ofG. The weighted
Laplacian is the matrix defined by

L = diag (A1n) − A.

The Laplacian matrix has several important properties:L
is symmetric, all eigenvalues are nonnegative, and0 is an
eigenvalue ofL with eigenvector1n. In addition, G is
connected if and only if rank(L) = n − 1.
A proximity graph [16], [8] is a generalization of the notion
of graph that captures the fact that, in some situations,
the edges of the graph change as the vertices move. More
formally, given a setP = {p1, . . . , pn} ⊂ R

d of n distinct
points, the proximity graphG at P, denoted byG(P), is an
undirected graph with vertex setP and with edge setEG(P).
A graph G can be interpreted as a proximity graph whose
edge set does not depend on the specific configurationP.

B. Generalized Voronoi partitions

Here we discuss the notion of Voronoi partition and some
generalizations following [17], [2]. LetQ be a convex set in
R

d. The Voronoi partitionV(P ) = {V1(P ), . . . , Vn(P )} of
Q associated toP = (p1, . . . , pn) ∈ Qn is defined by

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖}. (2)

The collectionV(P ) partitionsQ into sets whose interiors are
pairwise disjoint. Note that each Voronoi region is convex.
Let f : R → R be a strictly increasing func-
tion. The generalized Voronoi partitionV(P, ω; f) =

{V1(P, ω; f), . . . , Vn(P, ω; f)} of Q associated toP =
(p1, . . . , pn) ∈ Qn andω = (w1, . . . , wn) ∈ R

n is

Vi(P, ω; f) (3)

= {q ∈ Q | f(‖q − pi‖) − wi ≤ f(‖q − pj‖) − wj}.

In general, the generalized Voronoi regions are neither con-
vex nor star-shaped. The collectionV(P, ω; f) partitionsQ
into sets whose interiors are pairwise disjoint. Depending
on the selection of weights and agent locations,Vi(P, ω; f)
might be empty for somei. Indeed,Vi(P, ω; f) = ∅ if there
exist i, j ∈ {1, . . . , n} such that

wj − wi > f(‖pi − pj‖) − f(0). (4)

The generalized Voronoi partition induces thegeneralized
Delaunay proximity graphGV . The vertices ofGV are
{(p1, w1), . . . , (pn, wn)} and its edges are determined as
follows: (pi, wi) and (pj , wj) are neighbors if and only
if their respective Voronoi regions intersectVi(P, ω; f) ∩
Vj(P, ω; f) 6= ∅. We use the shorthand notation

∆ij(P, ω; f) = Vi(P, ω; f) ∩ Vj(P, ω; f),

for convenience. The graphGV is undirected and, if all
Voronoi regions are non-empty, it is connected.

Lemma II.1 (Properties of generalized Voronoi partition)
For f : R → R strictly increasing and locations
p1, . . . , pn ∈ Q, the generalized Voronoi partition(3) of Q is

(i) equal to the Voronoi partition(2) if w1 = · · · = wn;
(ii) invariant under weight translations ω =

(w1, . . . , wn) 7→ ω + a1n = (w1 + a, . . . , wn + a),
a ∈ R, i.e., for i ∈ {1, . . . , n},

Vi(P, ω + a1n; f) = Vi(P, ω; f);

(iii) monotonic in the set of weights, i.e.,
for any i ∈ {1, . . . , n} and any ω =
(w1, . . . , wi−1, wi, wi+1, . . . , wn), ω′ =
(w1, . . . , wi−1, w

′
i, wi+1, . . . , wn) ∈ R

n with w′
i ≥ wi,

Vi(P, ω; f) ⊆ Vi(P, ω′; f),

Vj(P, ω′; f) ⊆ Vj(P, ω; f), j 6= i.

The generalized Voronoi partition takes different forms de-
pending on the performance function. Examples include:
a) Quadratic performance:for f(x) = x2, the generalized
Voronoi partition is thepower diagram. The boundary of
Vi(P, ω; f) is composed of straight segments. For each
Voronoi neighborpj , there is a segment that belongs to the
bisector line betweenpi andpj , displaced towards eitherpj

or pi depending on whetherwi is larger thanwj . The Voronoi
regions are convex sets. Figure 1(a) shows an example.
b) Linear performance: for f(x) = x, the generalized
Voronoi partition is theadditively-weighted Voronoi parti-
tion. The boundary ofVi(P, ω; f) is composed of hyperbolic
segments. For each Voronoi neighborpj , there is a hyperbolic
segment of the hyperbola with focipi andpj , and semimajor
axis |wi −wj |. If wi > wj , then∆ij(P, ω; f) belongs to the
branch of the hyperbola closest topj , and if wi < wj , then



(a) (b)

Fig. 1. Power diagram (a) and additively weighted Voronoi partition (b)
defined by8 randomly deployed agents with randomly assigned weights.

∆ij(P, ω; f) belongs to the branch of the hyperbola closest
to pi. If wi = wj , then the hyperbola is just the bisector line
defined bypi and pj . The Voronoi regions are star-shaped
sets. Figure 1(b) shows an example.
c) Logarithmic performance:for f(x) = log x, the gen-
eralized Voronoi partition is themultiplicatively-weighted
Voronoi partition. The boundary ofVi(P, ω; f) is composed
of circular segments. For each Voronoi neighborpj , there is
a circular segment of the circle with center e2wi

e2wi−e
2wj

pj +
e
2wj

e
2wj −e2wi

pi and radius e
wi+wj

|e2wi−e
2wj |

‖pj − pi‖. If wi = wj ,
then the circle has infinite radius, i.e., is the bisector line
defined bypi and pj . The Voronoi regions are non-empty
and might contain holes. In general, they are neither convex
nor connected.

III. PROBLEM STATEMENT

This section presents the area-constrained locational opti-
mization problem. We start by briefly discussing the uncon-
strained optimization problem. Although the solution to this
problem is known, it serves as a useful introduction to the
problem of interest in this paper.
Let Q be a convex set inRd. Considern agents evolving in
Q with positionsp1, . . . , pn. Consider the function

H(p1, . . . , pn,W1, . . . ,Wn) =

n∑

i=1

∫

Wi

f(‖q − pi‖)φ(q)dq,

whereW1, . . . ,Wn is a partition of the environmentQ, f :
R → R is a strictly increasing function modeling sensing
performance, andφ : Q → R is a density function.

A. The 1-center problem

Consider the optimization ofH when there is only one agent
in the environment. The function takes the form

H1(p) =

∫

Q

f(‖q − p‖)φ(q)dq.

It is not difficult to see that iff strictly convex, thenH1 is
strictly convex, and the next result follows.

Lemma III.1 (Minimizer of H1 is geometric center ofQ)
For Q convex, there is a unique minimizer Cntr(Q) of H1.

Observe that the dependence of the minimizer ofH1 on the
set Q is continuous, i.e., small changes inQ induce small
changes in the optimal agent location Cntr(Q). If Q is not
convex, then the center might not be unique. However, the

continuous dependence of the minimizers ofH1 on Q still
holds. The minimizer depends on the performance function.
The following are some relevant cases:
d) Quadratic performance:for f(x) = x2, the gradient
of H1 is

∂H1

∂p
= 2

(
p

∫

Q

φ(q)dq −

∫

Q

qφ(q)dq
)
.

The minimizer ofH1 is the center of mass ofQ,

CM(Q) =

∫
Q

qφ(q)dq
∫

Q
φ(q)dq

.

e) Linear performance:for f(x) = x, the gradient ofH1 is

∂H1

∂p
=

∫

Q

p − q

‖p − q‖
φ(q)dq. (5)

The minimizer ofH1 is the unique point that makes (5)
vanish. In general, the minimizer does not have an analytic
expression. In the discrete version of this problem, the
minimizer is called the Weber or Fermat-Torricelli point [18].
f) Logarithmic performance:for f(x) = log x, the gradient
of H1 is

∂H1

∂p
=

∫

Q

p − q

‖p − q‖2
φ(q)dq. (6)

The minimizer ofH1 is the unique point that makes (6)
vanish. In general, it does not have an analytic expression.

B. The unconstrained locational optimization problem

Consider now the multicenter optimization problem where
we seek to minimize the value ofH among all possible agent
locations and all possible partitions ofQ,

minimizeH(p1, . . . , pn,W1, . . . ,Wn). (7)

If we fix the partitionW1, . . . ,Wn of Q, then the problem
of optimizingH consists of solvingn 1-center optimization
problems, one per individual agent. Therefore, Lemma III.1
implies that for fixedW1, . . . ,Wn, the optimal agent loca-
tions are Cntr(W1), . . . , Cntr(Wn), respectively.
Interestingly enough, for fixed agent locationsp1, . . . , pn ∈
Q, the optimal partition ofQ does not depend on the specific
performance function [3], [7]. In general, the optimal parti-
tion is the Voronoi partitionV(p1, . . . , pn) defined by (2).
Therefore, we have the following result.

Lemma III.2 (Critical points of H are center Voronoi
configurations) A solutionp∗1, . . . , p

∗
n,W ∗

1 , . . . ,W ∗
n of (7) is

a center Voronoi configuration ofQ, i.e., for i ∈ {1, . . . , n},

p∗i = Cntr(W ∗
i ), W ∗

i = Vi(P
∗).

C. The area-constrained locational optimization problem

Next, we consider an area-constrained multicenter optimiza-
tion problem. We seek to minimize the value ofH among
all possible agent locations and all possible partitions ofQ,
but with the constraint that the (generalized) area of each
region must be a pre-specified amount. Formally, afeasible



collection of areasis a set{a1, . . . , an} ⊂ R>0 satisfying∑n

i=1 ai =
∫

Q
φ(q)dq = areaφ(Q). We then set

minimizeH(p1, . . . , pn,W1, . . . ,Wn), (8a)

subject to
∫

Wi

φ(q)dq = ai, i ∈ {1, . . . , n}. (8b)

A case of particular interest is theequitable partitioncase,
when all areas are the same, i.e.,

ai =
1

n

∫

Q

φ(q)dq, i ∈ {1, . . . , n}.

IV. A NALYSIS OF AREA-CONSTRAINED LOCATIONAL

OPTIMIZATION

In this section, we characterize the optimal solution of (8).
For a fixed partitionW1, . . . ,Wn of Q, the optimal agent
locations depend on the performance function in the same
way as for the unconstrained optimization problem, cf. Sec-
tion III-B. The problem of optimizingH consists of solving
n 1-center optimization problems. Therefore, Lemma III.1
implies that for fixedW1, . . . ,Wn, the optimal agent loca-
tions are Cntr(W1), . . . , Cntr(Wn), respectively.
Given fixed agent locationsp1, . . . , pn ∈ Q, our objective is
to determine the optimal partition ofQ with respect toH. We
show that, unlike for the problem (7), the optimal partition
depends on the performance function. In order to do this, we
will find it useful to characterize the properties of the areas
of the generalized Voronoi regions. We discuss this next.

A. Weights-to-areas assignment

Here, we study the properties of the map that assigns to a set
of weights the corresponding set of areas of the generalized
Voronoi regions. Letp1, . . . , pn ∈ Q be fixed agent locations.
Consider the neighborhood ofdiag (Rn) defined by

U = {ω ∈ R
n | |wi − wj | ≤ f(‖pi − pj‖) − f(0)

for all i, j ∈ {1, . . . , n}}.

Theweights-to-areas mapM : U ⊂ R
n → R

n is defined by

M(ω) =
(∫

V1(P,ω;f)

φ(q)dq, . . . ,

∫

Vn(P,ω;f)

φ(q)dq
)
,

whereP = (p1, . . . , pn). Note that, ifω 6∈ U , then, according
to (4), at least there is one empty generalized Voronoi region.
We begin by establishing some important properties ofM.

Proposition IV.1 (Properties of the weights-to-areas map)
Let p1, . . . , pn ∈ Q. The mapM : U ⊂ R

n → R
n is

invariant under translations and its range belongs to the
(n − 1)-dimensional space{m ∈ R

n
≥0 | 1

T m = 1}.
Moreover, M is gradient, i.e., ∇F = −M, where
F : R

n → R is defined by

F (ω) =

n∑

j=1

∫

Vj(P,ω;f)

(
f(‖q − pj‖) − wj

)
φ(q)dq.

Using Proposition IV.1, one can derive various interesting
properties of the Jacobian ofM. We state them next.

Proposition IV.2 (The Jacobian of the weights-to-areas
map is the Laplacian of the weighted generalized Delau-
nay graph) Let p1, . . . , pn ∈ Q and let J(M) denote the
Jacobian matrix ofM : U ⊂ R

n → R
n. Then,

(i) J(M) is symmetric;
(ii) 1n is an eigenvector ofJ(M) with eigenvalue0;
(iii) The rank ofJ(M) on int (U) is n − 1.

Therefore, the Jacobian matrix ofM is the Laplacian of the
generalized Delaunay graph whose edges are weighted as

aij =
∂Mi

∂wj

,

if i and j are Delaunay neighbors, andaij = 0 otherwise.

SinceM is invariant under translations, cf. Proposition IV.1,
we define the equivalence relation∼ on R

n:
x ∼ y if and only if there exists(a, . . . , a) ∈
diag (Rn) such thatx = (a, . . . , a) + y.

Under this relation, anyω ∈ R
n and its projection onto

diag (Rn)
⊥ are related, since there exists(a, . . . , a) =

π1(ω) ∈ diag (Rn) such thatω = π1(ω)+π2(ω). Therefore,
we identify the quotient spaceRn/ ∼ with diag (Rn)

⊥ by
means of the linear projectionπ2.

ω 7→ π2(ω) = ω − π1(x). (9)

The equivalence relation∼ allows us to state a particularly
useful property ofM in an elegant way.

Corollary IV.3 Let p1, . . . , pn ∈ Q. The mapM : U ⊂
R

n → R
n induces a local diffeomorphism̃M : U/ ∼≡

R
n−1 → {m ∈ R

n
≥0 | 1T m = 1}.

We are now ready to establish that, given any network
configuration and any feasible collection of areas, there exists
a set of weights such that the associated generalized Voronoi
partition satisfies the area constraints.

Proposition IV.4 (Existence of weight assignment that
makes generalized Voronoi partition satisfy area con-
straints) Let p1, . . . , pn ∈ Q and let {a1, . . . , an} ⊂ R>0

be a feasible collection of areas. Then there exists a set of
weightsω = {w1, . . . , wn} ⊂ R such that

∫

Vi(P,ω;f)

φ(q)dq = ai, i ∈ {1, . . . , n}.

Proposition IV.4, together with Corollary IV.3, states that,
up to translations, the set of weightsω such thatM(ω) =
(a1, . . . , an) is locally unique, that is, there exists a neigh-
borhood ofω in R

n where no other set of weights (other
than those equivalent toω by translation) are mapped to
(a1, . . . , an) underM.

B. Optimality of the generalized Voronoi partition

Next, we show that, for fixed agent locations, the optimal
partition for the area-constrained locational optimization
problem (8) is the generalized Voronoi partition.

Proposition IV.5 (Generalized Voronoi partition is H-
optimal among all partitions that satisfy area constraints)



Let p1, . . . , pn ∈ Q be fixed agent locations and let
{a1, . . . , an} ⊂ R>0 be a feasible collection of areas. Let
ω ∈ R

n be such thatM(ω) = (a1, . . . , an). Then, the
generalized Voronoi partitionV(P, ω; f) optimizesH among
all partitions satisfying the area constraints(8b).

We are now ready to state the analogue result to Lemma III.2
for the area-constrained problem.

Corollary IV.6 (Critical points of H with area con-
straints are center generalized Voronoi partitions) A
solution p∗1, . . . , p

∗
n,W ∗

1 , . . . ,W ∗
n of (8) is a center gener-

alized Voronoi configuration ofQ, i.e., there exists a weight
assignmentω∗ ∈ R

n such that, fori ∈ {1, . . . , n},

p∗i = Cntr(W ∗
i ), W ∗

i = Vi(P
∗, ω∗; f).

V. A REA-CONSTRAINED LOCATIONAL OPTIMIZATION

VIA DISTRIBUTED COORDINATION

Here, we investigate distributed algorithmic solutions tothe
area-constrained locational optimization problem (8).

A. The “move-to-center-and-compute-weight” algorithm

Our strategy to solve (8) is to make each agent go to the
center of its own generalized Voronoi region while, at the
same time, the individual agent weights are tuned to satisfy
the area constraints. Let us formalize this approach.
For a feasible collection of areas{a1, . . . , an} ⊂ R>0,
Proposition IV.4 guarantees that there exists a mapA :
Qn → R

n, assigning agent locations to weights, that satisfies

M(A(p1, . . . , pn)) = (a1, . . . , an).

Moreover, the weight assignment can be selected so that
A is continuous. The “move-to-center-and-compute-weight”
algorithm is the discrete-time mapT : Qn → Qn defined by

T(p1, . . . , pn) (10)

= (Cntr(V1(P,A(P ); f)), . . . , Cntr(Vn(P,A(P ); f))).

The mapT is continuous becauseA is, the Voronoi parti-
tion (3) changes continuously with the agent locations, and
the solution to the 1-center problem changes continuously
with the set. ProvidedA is distributed over the generalized
Delaunay graph, i.e., agenti only needs to interact with its
neighbors in the graph to compute its weight, thenT is also
distributed over the generalized Delaunay graph.

Proposition V.1 (Asymptotic convergence of “move-to-
center-and-compute-weight” algorithm) The trajectories
of the discrete-time coordination algorithmT converge
asymptotically to the set of center generalized Voronoi con-
figurations ofQ, while monotonically decreasingH.

From Corollary IV.6, we know that the solutions of the
area-constrained locational optimization problem are gener-
alized center Voronoi configurations. Proposition V.1 guar-
antees that the “move-to-center-and-compute-weight” algo-
rithm steers the network towards this desirable set.

B. Jacobi iterative algorithm for weight assignment

In general, an explicit expression of the weight-assignment
map A is not available. Equivalently, it is not possible in
general to obtain an explicit expression for an inverse of the
map M. Our approach to this problem is to synthesize a
distributed Jacobi iterative algorithm that numerically finds
an appropriate weight assignment.
Given p1, . . . , pn ∈ Q and a feasible collection of areas
{a1, . . . , an} ⊂ R>0, defineg : R

n → R by

g(w1, . . . , wn) = M(w1, . . . , wn) − (a1, . . . , an).

From Proposition IV.1, we know thatg is the gradient vector
field corresponding to the functionG : R

n → R,

G(ω) = −F (ω) −
n∑

i=1

wiai.

We look for ω ∈ R
n such that

g(ω) = 0n. (11)

Alternatively, we look for a weight assignment that optimizes
the value ofG. There are multiple methods that can be used
to this end, see e.g., [19]. Here, we use the Jacobi algorithm

ωk+1 = ωk

− γ diag

(
∂g1

∂w1
(ωk), . . . ,

∂gn

∂wn

(ωk)

)−1

g(ωk), (12)

for k ≥ 0, where diag (v) ∈ R
n×n is the diagonal

matrix with the components of the vectorv ∈ R
n in the

diagonal. Here,γ > 0 is a parameter that can be chosen
to guarantee convergence. Note that the Jacobian ofg and
M are the same, that is,J(g) = J(M). Therefore, from
Proposition IV.2, we can state that the Jacobi algorithm is
distributed over the generalized Delaunay graph. In other
words, agenti only needs to interact with its neighbors in
the graph to compute theith entry of ωk+1 as prescribed
by (12). The following result states that the Jacobi algorithm
converges to a weight assignment that satisfies (11) and is a
consequence of [19, Section 3.2].

Proposition V.2 (Convergence of Jacobi algorithm to de-
sired weight assignment)For any initial condition ω0 ∈
R

n, there existsγ∗ such that if 0 < γ < γ∗, then the
sequence{ωk ∈ R

n | k ∈ Z≥0} generated by the Jacobi
algorithm (12) satisfieslimk→+∞ g(ωk) = 0.

C. Simulations

We present simulations of the Jacobi iterative algorithm (12)
in Figure 2 and of the “move-to-center-and-compute-weight”
algorithm (10) in Figure 3 for the linear performance
case,f(x) = x. Each algorithm has been implemented in
MathematicaR© as a main, centralized program that makes use
of a library of routines for the computation of generalized
Voronoi cells, line and area integrals, and geometric centers.
As previously noted, both algorithms are distributed over
the generalized Delaunay graph, i.e., each agent only needs
to interact with its neighbors in the graph to execute the
algorithms. On average, if all weights are similar, this means
that each agent interacts with six neighbors [2].
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Fig. 2. Two executions of the Jacobi iterative algorithm (12). The location
and initial weight assignment of the8 agents in the square[0, 4] × [0, 4]
is as in Figure 1(b), and the density is constant and equal to1. The Jacobi
algorithm is run withγ = .3. In the upper case, the target areas areai = 2,
i ∈ {1, . . . , 8}. In the lower case, the target areas areai = 1 if i is even,
andai = 3 if i is odd. (a) and (c) show the final additively weighted Voronoi
partitions obtained by the Jacobi algorithm in each case, whereas (b) and
(d) show the corresponding evolution of the areas during theexecution. In
both cases, after 40 iterations, the executions are very close to the solution.

(a) (b) (c)

Fig. 3. Execution of the “move-to-center-and-compute-weight” algo-
rithm (10). (a) shows the initial network configuration, (b)shows the evo-
lution of the algorithm, and (c) shows the final center generalized Voronoi
configuration attained after80 iterations ofT. All figures show the contour
plot of φ = 1 + 2 e−(x−3)2−(y−1)2 + 2 e−(x−2)2−(y−3)2 . The feasible
collection of areas that constrain the partition areai = areaφ(Q)/16 for
i even, andai = 3areaφ(Q)/16 for i odd.

VI. CONCLUSIONS

We have studied the area-constrained locational problem,
where a group of robots seeks to optimize an appropriate
notion of environmental coverage by partitioning the space
into regions that have a pre-specified area. We have char-
acterized the critical points of this optimization problem
as center generalized Voronoi configurations. We have also
designed a distributed coordination algorithm that steersthe
network towards this desirable set while at the same time
monotonically optimizing the aggregate objective function.
We have also obtained a distributed algorithm that, given
a network configuration and a feasible collection of areas,
computes a weight assignment whose associated generalized
Voronoi configuration satisfies the constraints.
Future work will explore the area-constrained locational

problem under limited-range interactions and time-dependent
density functions. Limited-range interactions occur naturally
in wireless sensor networks. Time-dependent density func-
tions can model changing conditions in the environment. We
are particularly interested in servicing problems where agents
need to spend a fixed amount of time taking care of locations
distributed throughout the environment.
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