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Abstract— This paper studies robotic sensor networks perform- — important research issue is the design of efficient algasth
ing coverage optimization tasks with area constraints. The that, given a fixed set of locations, compute partitions ef th
network coverage of the environment is a function of the space into regions of prescribed areas [4], [5], [6]. Among

robot locations and the partition of the space. The area of th th itabl . I bei ) is of
the region assigned to each robot is constrained to be a pre- ese, the equitable case (i.e., all areas being equal) is o

specified amount. We characterize the optimal configurations SPecial importance as it represents a balanced distribofio
as center generalized Voronoi configurations. The generalized the overall load. In the context of robotic sensor networks,

Voronoi partition depends on a set of weights, one per robot, this work builds on [7], where distributed algorithms based
assigned to the network. We design a Jacobi iterative algorithm on centroidal Voronoi partitions are presented, and [8Ereh

to find the weight assignment whose corresponding generalized limited int fi idered. i tiarti
Voronoi partition satisfies the area constraints. This algorithm imited-range Interactions are considered. Voronol pa

is distributed over the generalized Delaunay graph. We also are also employed in [9], [10], [11]. Other works on coverage
design the “move-to-center-and-compute-weight” coordinatia  problems include [12], [13].

algorithm that steers the robotic network towards the set of  Statement of contributionsThe contributions of the paper
center generalized Voronoi configurations while monotonically  hartain poth the analysis of a broad class of constrained
optimizing coverage. Various simulations illustrate our results. . S .

locational optimization problems and the design of coor-
dination algorithms for robotic sensor networks. Regaydin
analysis, we study the notion of generalized Voronoi partit
This paper studies a class of locational optimization @ots  associated with a given performance function. We pay specia
subject to area constraints. Our objective is to design digttention to the properties of the map that, given a fixed set
tributed coordination algorithms for robotic sensor nek®o of agent locations, maps a set of weights to the areas of the
that (i) guarantee optimal quality-of-service, i.e., apie  corresponding regions. We characterize the Jacobian ®f thi
the agent location and the partitioning of the environmentmap as the Laplacian corresponding to a weighted version
and (ii) satisfy a desired set of constraints imposed on thsf the generalized Delaunay graph induced by the Voronoi
areas of the regions assigned to the agents. partition. This characterization allows us to prove thateg
Our study is motivated by applications in milling, mineany network configuration and any performance function,
sweeping, and minimum servicing time problems. Considehere exists a weight assignment that makes the regiong of th
the following sample scenario. Given an environment ofieneralized Voronoi partition have a prescribed set ofsarea
interest, we represent the likelihood of a customer appgari A second set of results deal with the analysis of the solstion
at specific locations by a density function. Ideally, one ldou of the area-constrained locational optimization problevis
like to partition the environment into regions of the samehow that the generalized Voronoi partition is optimal amon
area and, at the same time, minimize the expected tim@l partitions satisfying the area constraints. We alsaatha
an agent has to travel to service a location. Initially, theerize the critical points of the optimization problem astee
location of the customers might be unknown, and this cageneralized Voronoi configurations. Regarding design, we
be reflected in the density function. As agents move withirovide two distributed algorithms over the generalized De
the environment, the density function can be updated injgunay graph. We design the “move-to-center-and-compute-
way that reflects both the location and the time required t@eight” coordination algorithm to steer the network agents
service the newly-discovered customers. It is our beliaf th towards the set of center Voronoi configurations. At the
coordination algorithms that address these scenarios €an dame time, the evolution of the network under this algorithm
designed building on the results presented in this paper. monotonically optimizes the coverage of the environment.
Literature review: The discipline of facility location [1], [2] We also design a Jacobi iterative algorithm to solve the
studies locational optimization problems and looks atropti  problem of finding the weight assignment that makes the
resource placement and optimal space partitioning. The ngeneralized Voronoi partition satisfy the area constsaint
tion of Voronoi partition, or generalized versions of itapé  This algorithm is of interest by itself, as it constitutes an
an important role in locational optimization. The work [3]efficient approach from a dynamical systems perspective to a
considers centroidal Voronoi partitions, [4] considersvpp  classical computational geometric problem. Because afespa
diagrams, [5] considers additively-weighted Voronoi part constraints, all proofs are omitted.
tions, and [6] considers multiplicatively-weighted Vomn Notation: We denote byint (U/) the interior of a sel/ C
partitions. From a computational geometric perspective, aR”. Unless otherwise noted, vectors are always understood

L ) as column vectors. Let,, = (1,...,1)7 € R* and0,, =
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cortes@icsd. edu basis of R". We letdiag (R") = {(a,...,a) € R" | a €
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R}. Of special interest to us is the orthogonal decompositiof\V; (P, w; f), ..., V,(P,w; f)} of @ associated toP =
R™ = diag (R") @ diag (R”)L, with associated projections (p1,...,p,) € Q™ andw = (wy, ..., w,) € R™ is

. n 3 n . n 3 n L
m : R” — diag (R™) andmy : R” — diag (R™)~. Note that Vi(P,w: f) 3)

1 ={ec Q[ f(lg—pill) —wi < flg —pjll) —w;}.

In general, the generalized Voronoi regions are neither con
The diagonal setdiag (R™) is 1-dimensional, and hence vex nor star-shaped. The collectioi{ P,w; f) partitions Q

17z
m(z) = %171, ma(z) = x — m (z).

diag (]R”)”’1 is (n — 1)-dimensional. into sets whose interiors are pairwise disjoint. Depending
on the selection of weights and agent locatioWig,P, w; f)
[l. PRELIMINARIES might be empty for someé Indeed,V;(P,w; f) = 0 if there
In this section we gather some preliminary notions on grap?lx's”’] € {1,--.,n} such that
theory and computational geometry. wi —w; > f(|lpi —p;ll) — £(0). 4)
A. Notions from graph theory The generalized Voronoi partition induces tgeneralized
Delaunay proximity graphG,. The vertices ofG, are

Here we present some basic graph-theoretic notions [14{](
[15]. An (undirected) graph consists of a vertex $gand ¢ ows: (pi,w;) and (p;,w;) are neighbors if and only

of a set of unordered pairs of vertices. Fof, vz € V' it their respective Voronoi regions intersett (P, w; f) N
distinct, (v1, v2) denotes an undirected edge betweerand V:(P,w; f) # 0. We use the shorthand notation

vy. A path in a graph is an ordered sequence of vertices = '’

such that any two consecutive vertices in the sequence are A (Pow; f) =Vi(Pw; f)NV;(P,w; f),
Egtﬁdgeiﬁéézea%;amé eegrtrizgls connected if there eXIStngr convenignce. The grapby i; _undirected and, if all
A weighted graph is a tripleti — (V. E, A) whereV and E Voronoi regions are non-empty, it is connected.

are a graph and wheré € RZ;" is a weighted adjacency
matrix with the following properties: foi,j € {1,...,n},
the entrya,;; > 0 if (v;,v;) is an edge ofG, anda;; = 0
otherwise. In other words, the scalarg, for all (v;,v;) € Pl

p1,w1), ..., (pn,w,)} and its edges are determined as

Lemma 1.1 (Properties of generalized Voronoi partition)
For f : R — R strictly increasing and locations
.,Pn € Q, the generalized Voronoi partitiof8) of ) is

E, are a set of weights for the edges @f The weighted () equal to the Voronoi partitio2) if wy = -+ = wy;

Laplacian is the matrix defined by (i) invariant under weight translations w =
(wy,...,wp) — w+al, = (w; +a,...,w, + a),

L = diag (A1,,) — A. a €R,ie, forie{l,...,n},

The Laplacian matrix has several important properties: Vi(P,w + aly; f) = Vi(P,w; f);

IS symmetric, all glgenyalues are nonnegauv_e_, rid an (i) monotonic in the set of weights, i.e,

eigenvalue of L with eigenvectorl,. In addition, G is .

. . for any ¢« € {1,...,n} and any w =

connected if and only if ranil) = n — 1. ;

(wl,...,wi_l,wi,wiﬂ,...,wn), w =

A proximity graph [16], [8] is a generalization of the notion

. o Wi, W Wi, . wy) € R™ with w! > w;,
of graph that captures the fact that, in some situations, (w1, Wi, W, Wi wn) € Withws = w
the edges of the graph change as the vertices move. More Vi(P,w; f) C Vi(P,w'; f),
formally, given a setP = {py,...,p,} C R¢ of n distinct Vi(P.w's f) CVi(Pws ), j#1i.

points, the proximity graply at P, denoted byG(P), is an

undirected graph with vertex setand with edge sefg(P). The generalized Voronoi partition takes different forms de

A graph G can be interpreted as a proximity graph whos@ending on the performance function. Examples include:

edge set does not depend on the specific configurdion a) Quadratic performancefor f(x) = 22, the generalized
\Voronoi partition is thepower diagram The boundary of

B. Generalized Voronoi partitions Vi(P,w; ) is composed of straight segments. For each

Here we discuss the notion of Voronoi partition and Somgoronoi neighborp;, there is a segment that belongs to the

generalizations following [17], [2]. Le®) be a convex set in isector Iine'betweepi andpq», displaced towards eith%.
R. The Voronoi partition V(P) = {Vi(P),...,V,.(P)} of or p; depending on whethey; is larger thanv;. The Voronoi

associated t&> = (p1,...,pn) € Q" is defined b regions are convex sets. Figure 1(a) shows an example.
@ (1 Pn) €Q y b) Linear performance:for f(z) = z, the generalized

Vi(P)={q€Q|llg—pill < lla—pl}- (2) Voronoi partition is theadditively-weighted Voronoi parti-

tion. The boundary o¥; (P, w; f) is composed of hyperbolic

The collectionV(P) partitions() into sets whose interiors are segments. For each Voronoi neighbor there is a hyperbolic
pairwise disjoint. Note that each Voronoi region is convex.segment of the hyperbola with fogj andp,, and semimajor
Let f : R — R be a strictly increasing func- axis|w; —w;|. If w; > w;, thenA;;(P,w; f) belongs to the
tion. The generalized Voronoi partitionV(P,w; f) =  branch of the hyperbola closest 9, and if w; < w;, then



continuous dependence of the minimizerstof on @ still
holds. The minimizer depends on the performance function.
The following are some relevant cases:

d) Quadratic performance:for f(z) = 2?2, the gradient

of H; is
OH;4
- = 2(p/ ¢(q)dq —/ q¢(Q)dq)-
9p Q Q
@) (b) The minimizer ofH; is the center of mass @,
Fig. 1. Power diagram (a) and additively weighted Voronaitiian (b)
defined by8 randomly deployed agents with randomly assigned weights. fQ Q¢(Q)dq

MO =T s
A;;(P,w; f) belongs to the branch of the hyperbola closest Q

to p;. If w; = w;, then the hyperbola is just the bisector lineg) Linear performancefor f(z) = z, the gradient ofH; is
defined byp; and p;. The Voronoi regions are star-shaped X

sets. Figure 1(b) shows an example. Oy _ / P4 , q)dgq. (5)

¢) Logarithmic performance:for f(x) = logx, the gen- Ip o llp =4l

eralize(_:l Vor.o.noi partition is themultiplicativgly—weighted The minimizer of H, is the unique point that makes (5)
Voronoi partition The boundary oV;(P, w; f) is composed \anish. In general, the minimizer does not have an analytic
of circular segments. For each Voronoi neighporthere is  gxpression. In the discrete version of this problem, the
a circular segment of the circle with centef.“—-p; +  minimizer is called the Weber or Fermat-Torricelli poin8[1
——-pi and radiuse;::%‘;{wupj —pill- Fw; =w;, D Loggrithmic performancefor f(z) = log x, the gradient
then the circle has infinite radius, i.e., is the bisectoe lin®f M1 is

621Uj

defined byp; and p;. The Voronoi regions are non-empty OH p—q
- - i = ¢(q)dq. (6)
and might contain holes. In general, they are neither convex ap o llp— 4|2
nor connected. o . } .
The minimizer of H; is the unique point that makes (6)
[1l. PROBLEM STATEMENT vanish. In general, it does not have an analytic expression.

This section presents the area-constrained locational opé
mization problem. We start by briefly discussing the uncon--
strained optimization problem. Although the solution testh Consider now the multicenter optimization problem where
problem is known, it serves as a useful introduction to thee seek to minimize the value & among all possible agent
problem of interest in this paper. locations and all possible partitions &,

Let Q be a convex set iiR?. Considern agents evolving in
@ with positionsp, ..., p,. Consider the function

The unconstrained locational optimization problem

minimize H(p1, ..., P, Wi, ..., Wh). @)

n If we fix the partitionWy, ..., W, of @, then the problem
H(p1y- ooy, Wiy o, Wy) = Z/ fUlg — pil)¢(q)dg,  of optimizing H consists of solving: 1-center optimization
i=17Wi problems, one per individual agent. Therefore, Lemma l1l.1

whereW,, ..., W, is a partition of the environmer®, f: implies that for fixediV,,..., W, the optimal agent loca-
R — R is a strictly increasing function modeling sensingfions are Cnitis), ... Cntr(W, ), respectively.
performance, and : Q — R is a density function. Interestingly enough, for fixed agent locatiops . .., pn €
@, the optimal partition of) does not depend on the specific
A. The 1-center problem performance function [3], [7]. In general, the optimal part
Consider the optimization df when there is only one agent tion is the Voronoi partitionV(p, ..., p,) defined by (2).
in the environment. The function takes the form Therefore, we have the following result.
Hi(p) =/ f(llg = pl)o(g)dg. Lemma Ill.2 (Critical points of H are center Voronoi
Q configurations) A solutionp?, ..., p%, W, ..., W of (7)is
It is not difficult to see that iff strictly convex, therf{; is a center Voronoi configuration @, i.e., fori € {1,...,n},

strictly convex, and the next result follows.
pi = Cntr(W7), W} =V;(P").
Lemma .1 (Minimizer of H; is geometric center ofQ)

. . S C. The area-constrained locational optimization problem
For @ convex, there is a unique minimizer Cifr) of H;. P P

Next, we consider an area-constrained multicenter optimiz
Observe that the dependence of the minimizet{gfon the tion problem. We seek to minimize the value &f among
set ) is continuous, i.e., small changes @ induce small all possible agent locations and all possible partitiong)of
changes in the optimal agent location Qaty. If @ is not but with the constraint that the (generalized) area of each
convex, then the center might not be unique. However, thegion must be a pre-specified amount. Formalljgeasible



collection of areass a set{a,...,a,} C R, satisfying Proposition V.2 (The Jacobian of the weights-to-areas

S ai= fQ ¢(q)dq = areas (Q). We then set map is the Laplacian of the weighted generalized Delau-
o nay graph) Let py,...,p, € Q and let J(M) denote the
minimize H(p1,....pn, Wi,..., W), (8a)  Jacobian matrix ofM : U ¢ R™ — R”. Then,

biect t dg=a; i€ {1, .n} b (i) J(M) is symmetric;
subjec O/Wi 9(a)dg = ai, T € {L,....n} (8b) (i) 1, is an eigenvector off (M) with eigenvalued;

(iii) The rank ofJ(M) onint (U) is n — 1.
Therefore, the Jacobian matrix d¥ is the Laplacian of the
generalized Delaunay graph whose edges are weighted as

A case of particular interest is thexjuitable partitioncase,
when all areas are the same, i.e.,

1 .
ai=*/ o(a)dg, ie€{l,....n}. o OM
n Q a” o 8wj ’
IV. ANALYSIS OF AREA-CONSTRAINED LOCATIONAL if i and j are Delaunay neighbors, and;; = 0 otherwise.

OPTIMIZATION

In this section, we characterize the optimal solution of (8)\?/2%%%5&?2}’2&?\552252t::lr;i ?:ZE%?]SRg Proposition V.1,

For a fixed partitionWy,..., W, of @, the optimal agent ) : s

locations depend on the performance function in the same ¢ ~ ¥ if and only if there exists(a,....a) €

way as for the unconstrained optimization problem, cf. Sec-  diag (R") such thatr = (a,...,a) +y.

tion I1-B. The problem of optimizing consists of solving Under thf relation, anys € R™ and its projection onto
n 1-center optimization problems. Therefore, Lemma III.diag (R")™ are related, since there exists,...,a) =
implies that for fixedWy, ..., W, the optimal agent loca- 71(w) € diag (R") such thatv = 7 (w) + 2 (w). Ther(ifore,
tions are CnifiV,),...,Cntr(W,,), respectively. we identify the quotient spack™/ ~ with diag (R")™ by
Given fixed agent locationg,, . .., p, € Q, our objective is Mmeans of the linear projectiom,.

to determine the optimal partition 6§ with respect td+. We
show that, unlike for the problem (7), the optimal partition
depends on the performance function. In order to do this, wehe equivalence relation allows us to state a particularly
will find it useful to characterize the properties of the areauseful property ofM in an elegant way.

of the generalized Voronoi regions. We discuss this next.
Corollary IV.3 Let pi,...,p, € Q. The mapM : U C

A. Weights-to-areas assignment R™ — R™ induces a local diffeomorphissM : U/ ~=
n—1 n T _

Here, we study the properties of the map that assigns to a &t —{meRL [1Tim =1}

of weights the corresponding set of areas of the generaliz§ge sre now ready to establish that, given any network

w i mo(w) = w — m (). 9

Voronoi regions. Lepy, ..., p, € Q be”fixed agentlocations. configuration and any feasible collection of areas, theigt®x
Consider the neighborhood dfag (R") defined by a set of weights such that the associated generalized \lorono
n artition satisfies the area constraints.
U={weR"||w; —w;| < f(llpi —psll) - £(0) P
foralli,j € {1,....n}}. Proposition V.4 (Existence of weight assignment that

makes generalized Voronoi partition satisfy area con-
straints) Let py,...,p, € @Q and let{ay,...,a,} C Ryg

be a feasible collection of areas. Then there exists a set of
= dq, ... d .
M(w) (/\/1(Pw,f)¢(q) G 7/‘/'71(P,w;f)¢(Q) q)7 WelghtSw = {U}l, .o ,wn} CR such that

Theweights-to-areas map1 : U € R™ — R” is defined by

whereP = (p1,...,pn). Note that, ifw ¢ U, then, according / d(q)dg = a;, ic€{l,...,n}
to (4), at least there is one empty generalized Voronoi regio Vi (Pw;f)

We begin by establishing some important properties\of Proposition 1V.4, together with Corollary V.3, states ttha
up to translations, the set of weightssuch thatM(w) =
Proposition 1V.1 (Properties of the weights-to-areas map) (q,,...,a,) is locally unique, that is, there exists a neigh-
Let p1,...,pn € Q. The mapM : U C R"™ — R" is  borhood ofw in R™ where no other set of weights (other
invariant under translations and its range belongs to thehan those equivalent t@ by translation) are mapped to

(n — 1)-dimensional space{m € R%, | 1T'm = 1}. (a1,...,a,) underM.
Moreover, M is gradient, i.e.,, VF = —M, where o , , iy
F:R" - R is defined by B. Optimality of the generalized Voronoi partition
N Next, we show that, for fixed agent locations, the optimal
Flw) = — ) — ws da. partition for the area-constrained locational optimiaati
@) ;/w(p7w;f) (£(la = p3l) = w5)@(a)da problem (8) is the generalized Voronoi partition.

Using Proposition 1V.1, one can derive various interestingroposition IV.5 (Generalized Voronoi partition is H-
properties of the Jacobian d¥1. We state them next. optimal among all partitions that satisfy area constraintg



Let p1,...,pp, € @Q be fixed agent locations and let B. Jacobi iterative algorithm for weight assignment

{ai,...,an} C R0 be a feasible collection of areas. Let|n general, an explicit expression of the weight-assigrimen
w € R" be such thatM(w) = (a1,...,an). Then, the map 4 is not available. Equivalently, it is not possible in
generalized Voronoi partitio’(P, w; f) optimizesi{ among  general to obtain an explicit expression for an inverse ef th
all partitions satisfying the area constrain(gb). map M. Our approach to this problem is to synthesize a
jstributed Jacobi iterative algorithm that numericallydf
appropriate weight assignment.

Given p1,...,p, € @ and a feasible collection of areas
{ai,...,a,} C Rsq, defineg : R” — R by

We are now ready to state the analogue result to Lemma Il
for the area-constrained problem.

Corollary IV.6 (Critical points of H with area con-
straints are center generalized Voronoi partitions) A glwi,. .y wn) = M(wi, oy wp) = (an,. 5 ap).
solution pf,...,p:, Wi, ..., Wy of (8) is a center gener- From Proposition V.1, we know thatis the gradient vector
alized Voronoi configuration of), i.e., there exists a weight field corresponding to the functiofd : R® — R,
assignmento* € R™ such that, fori € {1,...,n}, n

pl =Cntr(W}), W; =V, (P*,w*f). Gw) = —F(w) ;wlal'

(3

V. AREA-CONSTRAINED LOCATIONAL OPTIMIZATION We look forw € R™ such that
VIA DISTRIBUTED COORDINATION g(w) = 0,. (11)
Here, we investigate distributed algorithmic solutionghte  Alternatively, we look for a weight assignment that optiesz
area-constrained locational optimization problem (8). the value ofG. There are multiple methods that can be used

) . to this end, see e.g., [19]. Here, we use the Jacobi algorithm
A. The “move-to-center-and-compute-weight” algorithm

Our strategy to solve (8) is to make each agent go to the “k+1 = Wk

center of its own generalized Voronoi region while, at the di g Ogn, -t 12
same time, the individual agent weights are tuned to satisfy VAR Gy (i), ow,, (wi) | glwr), (12)
the area constraints. Let us formalize this approach. . . .

X ) > nxn
For a feasible collection of areafu,...,a,} C Rsg, for k > 0, where diag(v) € R is the diagonal

. ' matrix with the components of the vector € R™ in the
Proposition V.4 guarantees that there exists a map diagonal. Herey > (r))is a parameter that can be chosen

Q™ — R™, assigning agent locations to weights, that satisfiet% guarantee convergence. Note that the Jacobiag arid

M(A(p1,- .. pn)) = (a1, ..., an). M are the same, that isl(g) = J(M). Therefore, from
Proposition 1V.2, we can state that the Jacobi algorithm is
Moreover, the weight assignment can be selected so thdistributed over the generalized Delaunay graph. In other
A is continuous. The “move-to-center-and-compute-weightivords, agent only needs to interact with its neighbors in
algorithm is the discrete-time map: Q" — Q" defined by the graph to compute thé&h entry of w,,; as prescribed
by (12). The following result states that the Jacobi aldponit
T(p1, .- pn) (10) converges to a weight assignment that satisfies (11) and is a
= (Cntr(VA (P, A(P); [)), . ...Cntr(V,,(P, A(P); f)))- consequence of [19, Section 3.2].

The mapT is continuous becausd is, the Voronoi parti- proposition V.2 (Convergence of Jacobi algorithm to de-
tion (3) changes continuously with the agent locations, angred weight assignment)For any initial conditionw, €
the solution to the 1-center problem changes continuousiy~  there existsy, such that if0 < v < ~,, then the
with the set. Provided4 is distributed over the generalized sequence{w; € R" | k € Z>(} generated by the Jacobi
Delaunay graph, i.e., agentonly needs to interact with its g|gorithm (12) satisfieslimy_. ;0 g(wi) = 0.
neighbors in the graph to compute its weight, thiérs also . ]
distributed over the generalized Delaunay graph. C. Simulations

We present simulations of the Jacobi iterative algorith) (1

Proposition V.1 (Asymptot|c Convergence of “move-to- in Figure 2 and Of the “mOVe'tO'Center-and-compute-Wéight
center-and-compute-weight” algorithm) The trajectories algorithm (10) in Figure 3 for the linear performance
of the discrete-time coordination algorithrii converge case,f(z) = z. Each algorithm has been implemented in
asymptotically to the set of center generalized Voronoi cofMathematic& as a main, centralized program that makes use

figurations of@Q, while monotonically decreasirty. of a library of routines for the computation of generalized
Voronoi cells, line and area integrals, and geometric gente

From Corollary 1V.6, we know that the solutions of theAs previously noted, both algorithms are distributed over
area-constrained locational optimization problem areegen the generalized Delaunay graph, i.e., each agent only needs
alized center Voronoi configurations. Proposition V.1 guaro interact with its neighbors in the graph to execute the
antees that the “move-to-center-and-compute-weightd-alg algorithms. On average, if all weights are similar, this nwea
rithm steers the network towards this desirable set. that each agent interacts with six neighbors [2].



problem under limited-range interactions and time-depand
density functions. Limited-range interactions occur naity

in wireless sensor networks. Time-dependent density func-
tions can model changing conditions in the environment. We
are particularly interested in servicing problems wherenag
need to spend a fixed amount of time taking care of locations

510 15 20 25 30 35 40

(b)
s (1]
. [2]
I (3]
(©) (d)
Fig. 2. Two executions of the Jacobi iterative algorithm)(Ihe location [4]
and initial weight assignment of th® agents in the squar®, 4] x [0, 4]
is as in Figure 1(b), and the density is constant and equél Tthe Jacobi 5]
algorithm is run withy = .3. In the upper case, the target areasagre- 2,
i € {1,...,8}. In the lower case, the target areas afe= 1 if ¢ is even,
anda; = 3if 7 is odd. (a) and (c) show the final additively weighted Voronoi 6]
partitions obtained by the Jacobi algorithm in each casereds (b) and
(d) show the corresponding evolution of the areas duringettezution. In
both cases, after 40 iterations, the executions are vesedimthe solution. 7]
(8]
[9]
[10]
(b)
[11]

Fig. 3. Execution of the “move-to-center-and-compute-weigigo-
rithm (10). (a) shows the initial network configuration, @)ows the evo-
lution of the algorithm, and (c) shows the final center gernezdl Voronoi
configuration attained afte0 iterations ofT'. All figures show the contour [12]
plot of ¢ = 1+ 2e~(==3)’=(=1? L 9¢=(==2)"=(¥=3)% The feasible
collection of areas that constrain the partition afe= areay(Q)/16 for

i even, andy; = 3areaq(Q)/16 for ¢ odd.

VI. CONCLUSIONS [l
We have studied the area-constrained locational problem,
where a group of robots seeks to optimize an appropriatt#
notion of environmental coverage by partitioning the spacs
into regions that have a pre-specified area. We have char-
acterized the critical points of this optimization problen16]
as center generalized Voronoi configurations. We have also
designed a distributed coordination algorithm that stéegs [17]
network towards this desirable set while at the same time
monotonically optimizing the aggregate objective funatio
We have also obtained a distributed algorithm that, given
a network configuration and a feasible collection of area$!®l
computes a weight assignment whose associated generalized
Voronoi configuration satisfies the constraints.

Future work will explore the area-constrained locational

distributed throughout the environment.
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