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Coverage optimization and spatial load

balancing by robotic sensor networks
Jorge Cortés

Abstract

This paper studies robotic sensor networks performing static coverage optimization with area

constraints. Given a density function describing the probability of events and a performance function

measuring the cost to service a location, the objective is to position sensors in the environment so as

to minimize the expected servicing cost. Moreover, because of load balancing considerations, the area

of the region assigned to each robot is constrained to be a pre-specified amount. We characterize the

optimal configurations as center generalized Voronoi configurations. The generalized Voronoi partition

depends on a set of weights, one per robot, assigned to the network. We design a Jacobi iterative

algorithm to find the weight assignment whose corresponding generalized Voronoi partition satisfies the

area constraints. This algorithm is distributed over the generalized Delaunay graph. We also design the

“move-to-center-and-compute-weight” strategy to steer the robotic network towards the set of center

generalized Voronoi configurations while monotonically optimizing coverage.

I. INTRODUCTION

This paper studies a class of coverage optimization problems subject to area constraints. Our

objective is to position a robotic sensor network in an environment Q so that any location is

as close as possible to at least one agent in case an event that needs servicing happens. The

probability of events is determined by a density function φ : Q → R and the cost of moving

from one point p to another q to service the event is given by f(‖p− q‖), where f : R → R is

a strictly increasing function. To allow for the possibility of agents with different capabilities,

we further require that the areas of the regions assigned to the agents satisfy a desired set of

constraints. This type of coverage problems finds applications in servicing, spatial estimation,

and optimal resource allocation.
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Literature review: Facility location [1], [2] studies locational optimization problems and looks

at optimal resource placement and optimal space partitioning. The notion of Voronoi partition,

or generalized versions of it, plays an important role in facility location. The work [3] considers

centroidal Voronoi partitions, [4] considers power diagrams, [5] considers additively-weighted

Voronoi partitions, and [6] considers multiplicatively-weighted Voronoi partitions. From a com-

putational geometric perspective, an important research issue is the design of efficient algorithms

that, given a fixed set of locations, compute partitions of the space into regions of prescribed

areas [4], [5], [6]. Among these, the equitable case is of special importance as it represents a

balanced distribution of the overall load, see e.g. [7]. In the context of robotic sensor networks,

this work builds on [8], where distributed algorithms based on centroidal Voronoi partitions are

presented, and [9], where limited-range interactions are considered. Voronoi partitions are also

employed in [10], [11], [12]. Other works on deployment coverage problems include [13], [14].

Finally, we note that the locational optimization problem considered here is a static coverage

problem, in contrast to dynamic coverage problems, e.g., [15], [16], [17] and references therein,

that seek to visit or continuously sense all points in the environment. In coverage path planning

problems [15], [16], a robot equipped with a limited footprint sensor has to visit all points in

the environment. In [17], [18], a group of mobile sensors seeks to dynamically survey a given

search domain providing a certain preset level of coverage.

Statement of contributions: The contributions pertain both the analysis of a broad class of

constrained locational optimization problems and the design of coordination algorithms for

robotic sensor networks. Regarding analysis, we study the notion of generalized Voronoi partition

associated with an increasing function. We study the map that, given fixed agent locations, maps

a set of weights to the areas of the corresponding regions. We characterize the Jacobian of this

map as the Laplacian matrix of a weighted version of the generalized Delaunay graph induced by

the Voronoi partition. This characterization allows us to show that, given a network configuration

and a performance function, there exist weights that make the regions of the generalized Voronoi

partition have a prescribed set of areas. A second set of results deal with the analysis of the

solutions of the area-constrained locational optimization problem. We show that the generalized

Voronoi partition is optimal among all partitions satisfying the area constraints and characterize

the critical points of the optimization problem as center generalized Voronoi configurations.

Regarding design, we provide two distributed algorithms over the generalized Delaunay graph.

We design the “move-to-center-and-compute-weight” algorithm to steer the robotic network

towards the solutions of the optimization problem while monotonically optimizing coverage.
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We also design a Jacobi algorithm to find the weight assignment that makes the generalized

Voronoi partition satisfy the area constraints. The latter is an efficient solution to a classical

computational geometric problem with applications to load balancing and space partitioning.

Notation: Let 1n = (1, . . . , 1)T ∈ Rn and 0n = (0, . . . , 0)T ∈ Rn. We let diag (Rn) =

{(a, . . . , a) ∈ Rn | a ∈ R}. We consider the orthogonal decomposition Rn = diag (Rn) ⊕
diag (Rn)⊥, with projections π1 : Rn → diag (Rn) and π2 : Rn → diag (Rn)⊥. Note that

π1(x) =
1T

nx

n
1n, π2(x) = x− π1(x). (1)

The diagonal set diag (Rn) is 1-dimensional, and hence diag (Rn)n−1 is (n− 1)-dimensional.

II. PRELIMINARIES

A. Notions from graph theory

Here we present some basic graph-theoretic notions [19], [20]. An (undirected) graph consists

of a vertex set V and of a set E of unordered pairs of vertices. For v1, v2 ∈ V distinct, (v1, v2)

denotes an undirected edge between v1 and v2. A path in a graph is an ordered sequence of

vertices such that any two consecutive vertices in the sequence are an edge of the graph. A

graph is connected if there exists a path between any two vertices.

A weighted graph is a triplet G = (V , E , A) where V and E are a graph and where A ∈ Rn×n
≥0

is a weighted adjacency matrix such that, for i, j ∈ {1, . . . , n}, the entry aij > 0 if (vi, vj)

is an edge of G, and aij = 0 otherwise. The weighted Laplacian is the matrix defined by

L = diag (A1n)−A. The Laplacian is symmetric, its eigenvalues are all nonnegative, and 0 is an

eigenvalue of L with eigenvector 1n. In addition, G is connected if and only if rank (L) = n−1.

A proximity graph [21], [9] is a generalization of the notion of graph that captures the fact

that, in some situations, the edges of the graph change as the vertices move. More formally,

given a set P = {p1, . . . , pn} ⊂ Rd of n distinct points, the proximity graph G at P , denoted

by G(P), is an undirected graph with vertex set P and with edge set EG(P). A graph G can be

interpreted as a proximity graph whose edge set does not depend on the configuration P .

B. Generalized Voronoi partitions

Here we discuss the notion of (generalized) Voronoi partition [22], [2]. Let Q ⊂ Rd be convex.

The Voronoi partition V(P ) = {V1(P ), . . . , Vn(P )} of Q associated to P = (p1, . . . , pn) ∈ Qn is

Vi(P ) = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖}. (2)
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The collection V(P ) partitions Q into convex sets whose interiors are pairwise disjoint. The

Voronoi partition defines the Delaunay graph with vertices {p1, . . . , pn}. pi and pj are neighbors

if and only if Vi(P )∩Vj(P ) 6= ∅. This graph is undirected and connected. For f : R → R strictly

increasing, the generalized Voronoi partition V(P, ω; f) = {V1(P, ω; f), . . . , Vn(P, ω; f)} of Q

associated to P =(p1, . . . , pn) ∈ Qn, ω=(w1, . . . , wn) ∈ Rn is

Vi(P, ω; f) = {q ∈ Q | f(‖q − pi‖)− wi ≤ f(‖q − pj‖)− wj}. (3)

In general, the generalized Voronoi regions are neither convex nor star-shaped. The collection

V(P, ω; f) partitions Q into sets whose interiors are pairwise disjoint. One can interpret the

weight wi as a measure of the strength of the position pi. In general, the larger wi is with respect

to the weights of its neighbors, the larger the Voronoi region of pi is. In fact, depending on the

selection of weights and agent locations, Vi(P, ω; f) might be empty for some i. Specifically,

Vi(P, ω; f) = ∅ if there exist i, j ∈ {1, . . . , n} such that

wj − wi > f(‖pi − pj‖)− f(0). (4)

Lemma II.1 (Properties of generalized Voronoi partition) For f : R → R strictly increasing

and locations p1, . . . , pn ∈ Q, the generalized Voronoi partition (3) of Q is

(i) equal to the Voronoi partition (2) if w1 = · · · = wn;

(ii) invariant under weight translations ω = (w1, . . . , wn) 7→ ω+α1n = (w1 +α, . . . , wn +α),

α ∈ R, i.e., Vi(P, ω + α1n; f) = Vi(P, ω; f), for i ∈ {1, . . . , n};

(iii) monotonic in the set of weights, i.e., for any i ∈ {1, . . . , n} and any ω = (w1, . . . , wi−1,

wi, wi+1, . . . , wn), ω′ = (w1, . . . , wi−1, w
′
i, wi+1, . . . , wn) ∈ Rn with w′

i ≥ wi,

Vi(P, ω; f) ⊆ Vi(P, ω′; f), Vj(P, ω′; f) ⊆ Vj(P, ω; f), j 6= i.

The generalized Voronoi partition takes different forms depending on the performance function:

a) Quadratic performance: for f(x) = x2, the partition is the power diagram. The Voronoi

regions are convex sets whose boundary is composed of straight segments, see Figure 1(a).

b) Linear performance: for f(x) = x, the partition is the additively-weighted Voronoi

partition. The Voronoi regions are star-shaped sets whose boundary is composed of hyperbolic

segments, see Figure 1(b).

c) Logarithmic performance: for f(x) = log x, the partition is the multiplicatively-weighted

Voronoi partition. The Voronoi regions are non-empty and might contain holes. In general, they

are neither convex nor connected and their boundary is composed of circular segments.
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(a) (b)

Fig. 1. Power diagram (a) and additively weighted Voronoi partition (b) defined by 8 agents with randomly assigned weights.

The generalized Voronoi partition defines the generalized Delaunay graph GV with vertices

{(p1, w1), . . . , (pn, wn)}. (pi, wi) and (pj, wj) are neighbors if and only if ∆ij(P, ω; f) = Vi(P, ω; f)∩
Vj(P, ω; f) 6= ∅. GV is undirected and, if all Voronoi regions are non-empty, it is connected.

Remark II.2 (Computation of the Delaunay graph) In general, there exist configurations for

which two neighbors in the generalized Delaunay graph can be arbitrarily far from each other.

Given a specific configuration, distributed procedures exist [23] to compute the minimum radius

r so that the Delaunay neighbors can be computed with information of other agents within

distance r. Such procedures are not extensible to the generalized Delaunay graph unless additional

assumptions are required on the difference among the weights. •

III. PROBLEM STATEMENT

This section presents the area-constrained locational optimization problem. We start by briefly

discussing the unconstrained optimization problem. Although the solution to this problem is

known, it serves as a useful introduction to the problem of interest in this paper.

Let Q ⊂ Rd be convex. Consider n agents evolving in Q with positions p1, . . . , pn and define

H(p1, . . . , pn, W1, . . . ,Wn) =
n∑

i=1

∫
Wi

f(‖q − pi‖)φ(q)dq,

where W1, . . . ,Wn is a partition of Q, f : R → R is a strictly increasing function, and φ : Q →
R is a density function. φ(q) can be understood as a measure of the probability of an event

happening at q ∈ Q, while f(‖p− q‖) can be understood as the cost of moving from p to q to

service the event. H represents an aggregate measure of the network performance when agent i

is in charge of region Wi, i ∈ {1, . . . , n}. Intuitively, the lower the value of H is, the better the

network deployment and the space partitioning are.
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A. The 1-center problem

Consider the optimization of H when there is only one agent. The function takes the form

H1(p) =

∫
Q

f(‖q − p‖)φ(q)dq.

If f is strictly convex, then H1 is strictly convex, and the next result follows.

Lemma III.1 (Minimizer of H1 is geometric center of Q) For Q convex, there is a unique

minimizer Cntr(Q) of H1.

Observe that the dependence of the minimizer of H1 on the set Q is continuous, i.e., small

changes in Q induce small changes in the optimal agent location Cntr(Q). If Q is not convex,

then the center might not be unique. However, the continuous dependence of the minimizers of

H1 on Q still holds. The minimizer depends on the performance function.

B. The unconstrained locational optimization problem

Consider now the multicenter optimization problem where we seek to minimize H among all

agent locations and all partitions of Q,

minimize H(p1, . . . , pn, W1, . . . ,Wn). (5)

If we fix the partition W1, . . . ,Wn of Q, then the problem of optimizing H consists of solving

n 1-center optimization problems, one per individual agent. Therefore, Lemma III.1 implies that

for fixed W1, . . . ,Wn, the optimal agent locations are Cntr(W1), . . . , Cntr(Wn), respectively.

Interestingly enough, for fixed agent locations p1, . . . , pn ∈ Q, the optimal partition of Q does

not depend on the specific performance function [3], [8]. In general, the optimal partition is the

Voronoi partition V(p1, . . . , pn) defined by (2). Therefore, we have the following result.

Lemma III.2 (Critical points of H) A solution p∗1, . . . , p
∗
n, W ∗

1 , . . . ,W ∗
n of (5) is a center

Voronoi configuration of Q, i.e., for all i ∈ {1, . . . , n}, p∗i = Cntr(W ∗
i ), W ∗

i = Vi(P
∗).

C. The area-constrained locational optimization problem

We consider an area-constrained multicenter optimization problem. We seek to minimize H
among all agent locations and all partitions of Q, with the constraint that the area of each region

must be a pre-specified amount. The constraints are motivated by the desire to balance the load

June 18, 2009 DRAFT



7

across the network according to the agent capabilities. Formally, a feasible collection of areas

{a1, . . . , an} ⊂ R>0 satisfies
∑n

i=1 ai =
∫

Q
φ(q)dq = areaφ(Q). We set

minimize H(p1, . . . , pn, W1, . . . ,Wn), (6a)

subject to
∫

Wi

φ(q)dq = ai, i ∈ {1, . . . , n}. (6b)

The equitable partition case, ai = 1
n

∫
Q

φ(q)dq, for i ∈ {1, . . . , n}, is of particular interest.

Our next objective is to provide a similar result to Lemma III.2 for the constrained problem (6).

IV. ANALYSIS OF THE WEIGHTS-TO-AREAS ASSIGNMENT OF THE VORONOI PARTITION

In this section, we study the properties of the map that assigns to a set of weights the

corresponding set of areas of the generalized Voronoi regions. This analysis will be key in

the characterization of the optimal solution of (6).

Let p1, . . . , pn ∈ Q be fixed agent locations. Consider the neighborhood of diag (Rn) defined

by U = {ω ∈ Rn | |wi − wj| ≤ f(‖pi − pj‖) − f(0) for all i, j ∈ {1, . . . , n}}. The weights-to-

areas map M : U ⊂ Rn → Rn is

M(ω) =
( ∫

V1(P,ω;f)

φ(q)dq, . . . ,

∫
Vn(P,ω;f)

φ(q)dq
)
,

where P = (p1, . . . , pn). Note that, if ω 6∈ U , then, according to (4), at least there is one empty

generalized Voronoi region. We begin by establishing some important properties of M.

Proposition IV.1 (Properties of the weights-to-areas map) Let p1, . . . , pn ∈ Q. The map M :

U ⊂ Rn → Rn is invariant under translations and its range belongs to the (n− 1)-dimensional

space {m ∈ Rn
≥0 | 1T m = 1}. Moreover, M is gradient, i.e., ∇F = −M, where F : Rn → R,

F (ω) =
n∑

j=1

∫
Vj(P,ω;f)

(
f(‖q − pj‖)− wj

)
φ(q)dq.

Proof: The fact that M is invariant under translations follows from noting that the general-

ized Voronoi regions are also invariant under translations, cf. Lemma II.1(ii). On the other hand,

since the Voronoi regions form a partition of Q, the sum of the areas is constant and equals

areaφ(Q). Hence, the range of M belongs to the (n−1)-dimensional space {m ∈ Rn
≥0 | 1T m =

1}. Furthermore, if ω belongs to the interior of U , then M(ω) ∈ Rn
>0. Using the generalized

conservation-of-mass law established in [9, Proposition A.1], we compute

∂F

∂wi

= −
∫

Vi(P,ω;f)

φ(q)dq +
n∑

j=1

∫
∂Vj(P,ω;f)

(
f(‖q − pj‖)− wj

)
nj

∂q

∂wi

φ(q)dq.
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We show that the second term vanishes. For j = i, we have∫
∂Vi(P,ω;f)

(
f(‖q − pi‖)− wi

)
ni

∂q

∂wi

φ(q)dq =
n∑

j=1

∫
∆ij(P,ω;f)

(
f(‖q − pi‖)− wi

)
ni

∂q

∂wi

φ(q)dq,

while for j 6= i, we have∫
∂Vj(P,ω;f)

(
f(‖q − pj‖)− wj

)
nj

∂q

∂wi

φ(q)dq =

∫
∆ij(P,ω;f)

(
f(‖q − pj‖)− wj

)
nj

∂q

∂wi

φ(q)dq.

Since f(‖q − pi‖)− wi = f(‖q − pj‖)− wj and ni = −nj on ∆ij(P, ω; f), we deduce that

n∑
j=1

∫
∂Vj(P,ω;f)

(
f(‖q − pj‖)− wj

)
nj

∂q

∂wi

φ(q)dq =

∑
j 6=i

∫
∆ij(P,ω;f)

(
f(‖q − pi‖)− wi

)
(ni + nj)

∂q

∂wi

φ(q)dq = 0,

and therefore ∂F
∂wi

= −
∫

Vi(P,ω;f)
φ(q)dq = −Mi(ω), as claimed.

Using Proposition IV.1, one can derive various interesting properties of the Jacobian of M.

Proposition IV.2 (The Jacobian of the weights-to-areas map is the Laplacian of the weighted
generalized Delaunay graph) Let p1, . . . , pn ∈ Q and let J(M) denote the Jacobian matrix of

M : U ⊂ Rn → Rn. Then,

(i) J(M) is symmetric;

(ii) 1n is an eigenvector of J(M) with eigenvalue 0;

(iii) The rank of J(M) on the interior of U is n− 1.

Therefore, the Jacobian matrix of M is the Laplacian of the generalized Delaunay graph whose

edges are weighted as aij = ∂Mi

∂wj
, if i and j are Delaunay neighbors, and aij = 0 otherwise.

Proof: Fact (i) follows from M being gradient, cf. Proposition IV.1. Fact (ii) follows from

noting that the range of M is in {m ∈ Rn
≥0 | 1T m = 1}, and hence, 1T

nJ(M) = 0n. Since J(M)

is symmetric, this implies that 1n is also a right eigenvector with eigenvalue 0. To show (iii),

note that the monotonic properties of the Voronoi partition, cf. Lemma II.1(iii), imply, for i ∈
{1, . . . , n} and (w1, . . . , wi−1, wi, wi+1, . . . , wn), (w1, . . . , wi−1, w

′
i, wi+1, . . . , wn) with w′

i ≥ wi,

Mi(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn) ≥Mi(w1, . . . , wi−1, wi, wi+1, . . . , wn),

Mj(w1, . . . , wi−1, w
′
i, wi+1, . . . , wn) ≤Mj(w1, . . . , wi−1, wi, wi+1, . . . , wn), j 6= i.

The definition of partial derivative implies that the entries in J(M) satisfy
∂Mi

∂wi

≥ 0,
∂Mi

∂wj

≤ 0, j 6= i,
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and the inequalities are strict on the interior of U . This observation, together with (i) and (ii),

imply that, when evaluated at ω in the interior of U , the Jacobian is the Laplacian matrix of a

weighted generalized Delaunay graph. Since the graph is connected, rank J(M) = n− 1.

Since M is invariant under translations, cf. Proposition IV.1, define the equivalence relation ∼
on Rn: x ∼ y if and only if there exists (a, . . . , a) ∈ diag (Rn) such that x = (a, . . . , a)+y. Any

ω ∈ Rn and its projection onto diag (Rn)⊥ are related under ∼, since there exists (a, . . . , a) =

π1(ω) ∈ diag (Rn) such that ω = π1(ω) + π2(ω). Therefore, we identify the quotient space

Rn/ ∼ with diag (Rn)⊥ by means of the linear projection π2.

ω 7→ π2(ω) = ω − π1(x). (7)

The relation ∼ allows us to state a particularly useful property of M in an elegant way.

Corollary IV.3 Let p1, . . . , pn ∈ Q. The map M : U ⊂ Rn → Rn induces a local diffeomor-

phism M̃ : U/ ∼≡ Rn−1 → {m ∈ Rn
≥0 | 1T m = 1}.

We are now ready to establish that, given a network configuration and a feasible collection

of areas, there exist weights such that the generalized Voronoi partition satisfies the constraints.

Proposition IV.4 (Existence of weight assignment that makes generalized Voronoi partition
satisfy area constraints) Let p1, . . . , pn ∈ Q and let {a1, . . . , an} ⊂ R>0 be a feasible collection

of areas. Then there exists a set of weights ω = {w1, . . . , wn} ⊂ R such that∫
Vi(P,ω;f)

φ(q)dq = ai, i ∈ {1, . . . , n}.

Proof: Consider the function from U to R defined by

ω 7→ 1

2
‖M(ω)− (a1, . . . , an)‖2. (8)

This function is continuous and invariant under translations, and therefore, induces a continuous

function from U/ ∼ to R. Next, we show that U/ ∼ is compact. Note that U/ ∼ is closed because

U is. To show that U/ ∼ is bounded, take K > 0 large enough so that f(‖pi−pj‖)−f(0) ≤ K,

for all i, j ∈ {1, . . . , n}. Under (7), any element of U/ ∼ is of the form ω−π1(ω), with ω ∈ U .

Now, we bound the ith component of ω − π1(ω) by

|(ω − π1(ω))i| = | 1
n

n∑
j=1

(wi − wj)| ≤
1

n

n∑
j=1

|wi − wj| ≤ K,

using the fact that ω ∈ U . Therefore, we deduce that U/ ∼ is contained in the closed ball

B(0, K
√

n), and hence is bounded.
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Using that U/ ∼ is compact and the function (8) is continuous and invariant under ∼, we

deduce that there exists a minimizer ω∗ of the function. We want to show that the value of the

minimum is 0. When evaluated at ω∗, we have

0 =
∂

∂wi |ω=ω∗

(1

2
‖M(w1, . . . , wn)− (a1, . . . , an)‖2

)
=

n∑
k=1

(
Mk(ω∗)− ak

)∂Mk

∂wi

,

for i ∈ {1, . . . , n}. Equivalently, we can express this set of equalities as (M(ω∗)−(a1, . . . , an))J(M) =

0n. Because 1T
nJ(M) = 0n and rank J(M) = n− 1, we deduce M(ω∗)− (a1, . . . , an) = α1n

for some α ∈ R. Finally, 0 = 1T
n (M(ω∗) − (a1, . . . , an)) = αn, and therefore we conclude

α = 0, i.e., M(ω∗) = (a1, . . . , an).

Proposition IV.4, together with Corollary IV.3, states that, up to translations, the set of weights

ω such that M(ω) = (a1, . . . , an) is locally unique, that is, there exists a neighborhood of ω in

Rn where no other set of weights (other than those equivalent to ω by translation) are mapped

to (a1, . . . , an) under M.

A. Jacobi iterative algorithm for weight assignment

The existence result in Proposition IV.4 leads naturally to the question of how to determine

the set of weights that make the generalized Voronoi partition satisfy the constraints. Given a

network configuration, in general it is not possible to obtain an analytic expression for the map

that assigns to a feasible collection of areas the corresponding distribution of weights (i.e., an

inverse of M). Our approach then is to synthesize a distributed Jacobi algorithm that numerically

finds an appropriate weight assignment. Given p1, . . . , pn ∈ Q and a feasible collection of areas

{a1, . . . , an} ⊂ R>0, define g : Rn → Rn by g(w1, . . . , wn) = M(w1, . . . , wn) − (a1, . . . , an).

From Proposition IV.1, we know that g is the gradient vector field corresponding to the function

F : Rn → R, F(ω) = −F (ω)−
∑n

i=1 wiai. We look for ω ∈ U such that

∇F(ω) = g(ω) = 0n. (9)

Alternatively, we look for a weight assignment that optimizes the value of F . There are multiple

methods that can be used to this end, see e.g., [26]. Here, we use the Jacobi algorithm

ωk+1 = ωk − γ diag

(
∂g1

∂w1

(ωk), . . . ,
∂gn

∂wn

(ωk)

)−1

g(ωk), (10)

for k ≥ 0, where diag (v) ∈ Rn×n is the diagonal matrix with the components of the vector

v ∈ Rn in the diagonal. Here, γ > 0 is a parameter that can be chosen to guarantee convergence.

Note that the Jacobian of g and M are the same, that is, J(g) = J(M). Therefore, given
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Proposition IV.2, the Jacobi algorithm is distributed over the generalized Delaunay graph. In

other words, agent i only needs to interact with its neighbors in the graph to compute the ith

entry of ωk+1 as prescribed by (10). The following result is a consequence of [26, Section 3.2].

Proposition IV.5 (Convergence of Jacobi algorithm to desired weight assignment) Given

p1, . . . , pn ∈ Q and a feasible collection of areas {a1, . . . , an} ⊂ R>0, let ω0 in the interior of

U . Consider the level set L = {ω ∈ U | F(ω) ≤ F(ω0)} of F , and define

A = min
i∈{1,...,n}

min
ω∈L

∂gi

∂wi

(ω) > 0, B = max
i∈{1,...,n}

max
ω∈L

∂gi

∂wi

> 0.

Then, for 0 < γ < A/B, the sequence {ωk ∈ Rn | k ∈ Z≥0} generated by the Jacobi

algorithm (10) satisfies limk→+∞ g(ωk) = 0.

Proof: Using that F is invariant under translations, it is not difficult to show that A and B

are well-defined and positive. Additionally, the algorithm (10) is symmetric under translations,

i.e., the sequence generated starting from ω0 + α1n is equal to {ωk + α1n ∈ Rn | k ∈ Z≥0}.

This observation allows us to perform the convergence analysis invoking the compact set U/ ∼.

For convenience, we denote by F̃ the function induced by F on Rn/ ∼. The convergence of

the Jacobi algorithm can be established as a consequence of the following facts. Since F̃ is

continuous, it is bounded from below on the compact set U ∼, and so is F . The level sets of

F are mapped under the equivalence relation ∼ onto the bounded level sets of F̃ . The gradient

∇F = g is globally Lipschitz on each level set with a Lipschitz constant K that can be upper

bounded as follows. Using the mean value theorem for vector-valued functions [27], we get

‖g(ω1)− g(ω2)‖2 ≤ sup
t∈[0,1]

‖J(g)(tω1 + (1− t)ω2)‖2 ‖ω1 − ω2‖2 ≤ sup
ω∈U

‖J(g)(ω)‖2 ‖ω1 − ω2‖2.

Additionally, since J(g) = J(M) can be interpreted as the Laplacian of a weighted version of

the generalized Delaunay graph, we can use [28] to upper bound the 2-norm of J(g) as follows

‖J(g)(ω)‖2 ≤ max
i,j Delaunay neighbors

{ ∂gi

∂wi

(ω) +
∂gj

∂wj

(ω)
}
≤ 2 max

i∈{1,...,n}

∂gi

∂wi

(ω).

Therefore, on L, we take K = 2B. According to [26, Section 3.2], these properties guarantee

that, if 0 < γ < 2A/K, the evolution of (10) from ω0 remains in L and is convergent.

Figure 2 presents a simulation of the Jacobi algorithm (10) for the linear performance case.

Remark IV.6 (Explicit expressions of the Jacobian of the weights-to-areas map) For each per-

formance function, we can get explicit expressions for J(g). We omit the details for space rea-
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Fig. 2. Execution of the Jacobi algorithm (10). The location and initial weight assignment of the 8 agents in the square

[0, 4]× [0, 4] is as in Figure 1(b), and the density is constant and equal to 1. The algorithm is run with γ = .3. The target areas

are ai = 2, i ∈ {1, . . . , 8}. (a) shows the final additively weighted Voronoi partition obtained by the algorithm and (b) shows

the corresponding evolution of the areas during the execution. After 40 iterations, the executions are very close to the solution.

sons, but note that they can be obtained with the conservation-of-mass law [9, Proposition A.1] as

∂gi

∂wj

=

∫
∂Vi

φ ni
∂q

∂wj

dq =

∫
∆ij

φ ni
∂q

∂wj

dq,

where ni(q) is the unit outward normal to Vi at q ∈ ∂Vi, and substituting an appropriate

parametrization of the boundary of the generalized Voronoi region. •

Remark IV.7 (Dynamic density functions) Dynamic density functions may arise because of

external (e.g., changes in environmental conditions) or internal (e.g., evolving conditions in

the power reserves of individual agents) network factors. The dynamic evolution of φ causes

changes in the area constraints and makes (9) a time-dependent equation. A natural question is

to identify conditions that guarantee that the Jacobi algorithm (10) can cope with the dynamic

evolution of φ to find a suitable weight assignment. Since the Jacobi algorithm has a linear

root-convergence factor [29], one can deduce that convergence is guaranteed if changes in φ

occur between increasingly longer time instants. •

V. ANALYSIS AND DESIGN FOR AREA-CONSTRAINED LOCATIONAL OPTIMIZATION

Here, we build on the results of the previous sections to characterize the optimal configurations

of (6) and design a distributed coordination algorithm that steers the network toward them.

A. The optimal configurations are the center generalized Voronoi configurations

For a fixed partition W1, . . . ,Wn of Q, the problem of optimizing H consists of solving n 1-

center optimization problems (as for the unconstrained optimization problem, cf. Section III-B).
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Therefore, Lemma III.1 implies that for fixed W1, . . . ,Wn, the optimal agent locations are

Cntr(W1), . . . , Cntr(Wn), respectively.

Given fixed agent locations p1, . . . , pn ∈ Q, we show next that the optimal partition of Q for

the problem (6) is the generalized Voronoi partition. Observe that, unlike for the problem (5),

the optimal partition depends on the performance function.

Proposition V.1 (Generalized Voronoi partition is H-optimal among all partitions that
satisfy area constraints) Let p1, . . . , pn ∈ Q be fixed agent locations and let {a1, . . . , an} ⊂ R>0

be a feasible collection of areas. Let ω ∈ Rn be such that M(ω) = (a1, . . . , an). Then, the

Voronoi partition V(P, ω; f) optimizesH among all partitions satisfying the area constraints (6b).

Proof: Given any partition W1, . . . ,Wn of Q satisfying (6b), consider the sum
n∑

i=1

∫
Wi

(
f(‖q − pi‖)− wi

)
φ(q)dq.

The definition (3) guarantees that the expression is minimized when the partition W1, . . . ,Wn

is the generalized Voronoi partition. On the other hand, this sum can be decomposed as
n∑

i=1

∫
Wi

(
f(‖q − pi‖)− wi

)
φ(q)dq =

n∑
i=1

∫
Wi

f(‖q − pi‖)φ(q)dq −
n∑

i=1

wi

∫
Wi

φ(q)dq

= H(p1, . . . , pn, W1, . . . ,Wn)−
n∑

i=1

wiai.

The result follows by noting that the last term is constant for any partition satisfying (6b).

We are now ready to state the analogue result to Lemma III.2 for the area-constrained problem.

Corollary V.2 (Critical points of H with area constraints) A solution p∗1, . . . , p
∗
n, W

∗
1 , . . . ,W ∗

n

of (6) is a center generalized Voronoi configuration of Q, i.e., there exists a weight assignment

ω∗ ∈ Rn such that, for all i ∈ {1, . . . , n}, p∗i = Cntr(W ∗
i ), W ∗

i = Vi(P
∗, ω∗; f).

B. Distributed design: the “move-to-center-and-compute-weight” algorithm

Here, we investigate algorithmic solutions to the constrained locational optimization prob-

lem (6). Our strategy is to make each agent go to the center of its generalized Voronoi region

while, at the same time, have the individual weights tuned to satisfy the constraints.

For a feasible collection of areas {a1, . . . , an} ⊂ R>0, Proposition IV.4 guarantees that there

exists a map A : Qn → Rn, assigning agent locations to weights, that satisfies

M(A(p1, . . . , pn)) = (a1, . . . , an).
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Moreover, the weight assignment can be selected so that A is continuous. The “move-to-center-

and-compute-weight” algorithm is the discrete-time map T : Qn → Qn defined by

T(p1, . . . , pn) = (Cntr(V1(P,A(P ); f)), . . . , Cntr(Vn(P,A(P ); f))). (11)

The map T is continuous because A is, the Voronoi partition (3) changes continuously with

the agent locations, and the solution to the 1-center problem changes continuously with the set.

Provided A is distributed over the generalized Delaunay graph, i.e., agent i only needs to interact

with its neighbors in the graph to compute its weight, then T is distributed too.

Proposition V.3 (Asymptotic convergence of “move-to-center-and-compute-weight” algo-
rithm) The trajectories of the discrete-time coordination algorithm T converge asymptotically

to the set of center generalized Voronoi configurations of Q, while monotonically decreasing H.

Proof: We prove the result using the discrete-time LaSalle Invariance Principle [30]. The set

Qn is compact and invariant for the discrete-time dynamics defined by T. Consider the function

HV (p1, . . . , pn) = H(p1, . . . , pn, V1(f,A(P )), . . . , Vn(f,A(P ))).

Let us show that the trajectories of T monotonically decrease the value of HV . First, note that

H(p1, . . . , pn, V1(f,A(P )), . . . , Vn(f,A(P )))

≥ H(Cntr(V1(f,A(P ))), . . . , Cntr(Vn(f,A(P ))), V1(f,A(P )), . . . , Vn(f,A(P ))),

because for a fixed partition of Q, the center positions of the individual regions optimize the

value of H, according to Lemma III.1. Second, note that

H(Cntr(V1(f,A(P ))), . . . , Cntr(Vn(f,A(P ))), V1(f,A(P )), . . . , Vn(f,A(P )))

≥ H(Cntr(V1(f,A(P ))), . . . , Cntr(Vn(f,A(P ))), V1(f,A(T(P ))), . . . , Vn(f,A(T(P )))) = HV (T(P )),

because for fixed agent locations, the Voronoi partition (3) is optimal for H among all partitions

that verify the area constraints (6b), according to Proposition V.1. Therefore, the trajectories

of T monotonically decrease the value of HV . Moreover, HV (P ) = HV (T(P )) if and only if

T(P ) = P , i.e., each agent sits at the center of its own Voronoi region. The application of the

discrete-time LaSalle Invariance Principle now guarantees that the trajectories of T converge

to the largest invariant set contained in Z = {P ∈ Qn | HV (P ) = HV (T(P ))}. The above

discussion implies that Z is the set of center generalized Voronoi configurations.

Figure 3 presents a simulation of the algorithm (11) for the linear performance case.
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(a) (b) (c)

Fig. 3. Execution of the “move-to-center-and-compute-weight” algorithm (11). (a) shows the initial network configuration, (b)

shows the evolution of the algorithm, and (c) shows the final center generalized Voronoi configuration attained after 80 iterations

of T. All figures show the contour plot of φ = 1 + 2 e−(x−3)2−(y−1)2 + 2 e−(x−2)2−(y−3)2 . The feasible collection of areas

that constrain the partition are ai = areaφ(Q)/16 for i even, and ai = 3areaφ(Q)/16 for i odd.

Remark V.4 (Distributed properties of T) As noted in Remark II.2, two neighbors in the

generalized Delaunay graph might be arbitrarily far form each other. However, given the contin-

uous dependence of the generalized Voronoi partition on the agents’ locations and weights and

assuming no agent losses or arrivals, one can deduce that changes in the neighboring relationships

along the execution of T occur because 2-hop neighbors become 1-hop neighbors or vice versa.

This observation highlights the fact that, in general, agents do not need to know the location of

every other agent in the network in order to execute T. •

Remark V.5 (Alternative specification of the feasible collection of areas) A feasible collec-

tion of areas can always be specified as follows: given {α1, . . . , αn} ⊂ [0, 1] with
∑n

i=1 αi = 1,

one defines ai = αi areaφ(Q), for i ∈ {1, . . . , n}. The number αi represents then the percentage

of the total area tasked to agent i. This formulation eliminates the need to pre-specify a feasible

collection of areas at the expense of assuming that each agent knows the total weighted area of

the environment. Since this area is the sum of the weighted area of the region of each agent,

it can be computed using several distributed techniques, e.g., consensus algorithms [24]. If the

environment or the density function (and hence the total area) are changing with time, one can

instead use dynamic consensus algorithms, e.g., [25] and references therein, to track its evolution

during the exection of T. •

VI. CONCLUSIONS

We have studied a class of area-constrained locational problem where a group of robots seeks

to optimize a notion of environmental coverage by partitioning the space into regions that have a
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pre-specified area. We have characterized the critical points of this optimization problem as center

generalized Voronoi configurations. We have designed two distributed coordination algorithms.

Given a network configuration and a feasible collection of areas, the first algorithm computes a

weight assignment whose associated generalized Voronoi configuration satisfies the constraints.

The second algorithm steers the network towards the set of center Voronoi configurations.

Future work will explore the area-constrained locational problem under limited-range agent

interactions and time-dependent density functions. We are interested in balancing the load in

servicing problems, where agents discover previously unknown customer locations as they move

through the environment. The location and required servicing time can be modeled as changes

in a density function that is being learned during the algorithm execution. We also plan to

incorporate annealing techniques in the design for finding global optima and investigate the

trade-offs between the optimality of the partition in terms of the objective function H and the

optimality of the shape of individual regions for the motion and sensing capabilities of the agents.
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