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Abstract— This paper considers robotic sensor networks per-
forming spatial estimation tasks. We model a physical process of
interest as a spatiotemporal random field with mean unknown
and covariance known up to a scaling parameter. We design
a distributed coordination algorithm for an heterogeneous net-
work composed of mobile agents that take point measurements
of the field and static nodes that fuse the information received
from the agents and compute directions of maximum descent
of the estimation uncertainty. The technical approach builds on
a novel reformulation of Bayesian sequential field estimation,
and combines tools from distributed linear iterations, nonlinear
programming, and spatial statistics.

I. I NTRODUCTION

Networks of environmental sensors are playing an increas-
ingly important role in scientific studies of the ocean, rivers,
and the atmosphere. Envisioned tasks include pollutant detec-
tion, fire monitoring, and mapping of ocean currents. Mobile
sensing robots can improve the efficiency of data collection,
adapt to changes in the environment, and provide a robust
response to sensor failures. Complex statistical techniques
come into play in the analysis of environmental processes.
Consequently, the operation of robotic sensors must be
driven by statistically-aware algorithms that make the most
of the network capabilities for data collection and fusion.
At the same time, such algorithms need to be distributed
and scalable to make robotic networks capable of operating
in an autonomous and robust fashion. The combination
of these two objectives, complex statistical modeling and
distributed coordination, presents grand technical challenges:
traditional statistical modeling and inference assume full
availability of all measurements and central computation.
While the availability of data at a central location is certainly
a desirable property, the paradigm for motion coordination
builds on partial, fragmented information. This work is a step
forward in bridging the gap between sophisticated statistical
modeling and distributed motion coordination.

Literature review: Complex statistical techniques allow a
detailed account of uncertainty in modeling physical phe-
noma. Of particular relevance to this work are [1], [2],
regarding statistical models, and [3], [4], regarding the ap-
plication of optimal design techniques to Bayesian models.
Under certain conditions on the covariance structure, data
taken far from the prediction site have very little impact
on the predictor [5]. When the random field does not have
a covariance structure with finite spatial correlation, an
approximation which does may be generated via covariance
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tapering [6]. Optimal design [7], [8] addresses the problem
of choosing sample locations which optimize estimation.

In cooperative control, various works consider mobile
sensor networks performing spatial estimation tasks. [9]
introduces performance metrics for oceanographic surveysby
autonomous underwater vehicles. [10] chooses optimal sam-
pling trajectories from a parameterized set of paths. In [11],
[12], [13] the focus is on estimating deterministic fields with
random measurement noise. When the physical process is
not as well understood, or accurate deterministic models
require high dimensional parameter spaces, random field
models can be a useful alternative. In previous work [14],
we have considered the estimation of random fields with
known covariance. In this paper, we focus on the additional
complexity in the algorithm design caused by unknown
parameters in the field covariance.

Statement of contributions:We begin with a widely ac-
cepted Bayesian model for the prediction of a spatiotemporal
random field with mean unknown and covariance known
up to a scaling parameter. The predictive variance of this
model can be written as a scaled product of two components,
one corresponding to uncertainty about the covariance of the
field, the other corresponding to uncertainty of the prediction
conditional on the covariance. Our first contribution is the
development of a novel procedure for distributed calculation
of the first component sequentially as new measurements
arrive. We also introduce an upper bound for the second com-
ponent which can be calculated in a distributed way. These
two results allow us to identify an objective function for
gathering data which minimizes uncertainty in the resulting
estimation. Our second contribution is the characterization of
the smoothness properties of the objective function and the
computation of its gradient. Using consensus and distributed
Jacobi overrelaxation algorithms, we show how the objective
function and its gradient can be computed in a distributed
way across a network composed of robotic agents and static
nodes. Our third contribution is the design of a coordination
algorithm based on projected gradient descent which guar-
antees one-step-ahead locally optimal data collection.

II. PRELIMINARY NOTIONS

Let R, R>0, andR≥0 denote the set of reals, positive reals
and nonnegative reals, respectively. Forp ∈ R

d and r ∈
R>0, let B(p, r) be theclosed ballof radiusr centered atp.
Given u = (u1, . . . , ua)T , a ∈ Z>0, andv = (v1, . . . , vb)

T ,
b ∈ Z>0, we denote by(u, v) the concatenation(u, v) =
(u1, . . . , ua, v1, . . . , vb)

T . We denote by∂S the boundary of
a setS. The ǫ-contraction of a setS, with ǫ > 0, is the
set Sǫ = {q ∈ S | d(q, ∂S) ≥ ǫ}. A convex polytopeis the
convex hull of a finite point set. For a bounded setS ⊂



R
d, we let CR(S) denote thecircumradiusof S, that is,

the radius of the smallest-radiusd-sphere enclosingS. We
denote byF(S) the collection of finite subsets ofS.

We consider a convex polytopeD ⊂ R
d, d ∈ N. Let

De = D × R denote the space of points overD and
time. TheVoronoi partitionV(s) = (V1(s), . . . , Vn(s)) of D
generated by the pointss = (s1, . . . , sn) is defined by
Vi(s) = {q ∈ D | ‖q − si‖ ≤ ‖q − sj‖, ∀j 6= i}. EachVi(s)
is called aVoronoi cell. Two pointssi and sj are Voronoi
neighborsif their Voronoi cells share a boundary.

A. Bayesian modeling of space-time processes

Let Z denote a random space-time process taking values
on De. Let y = (y1, . . . , ym)T ∈ R

m be m ∈ N mea-
surements taken fromZ at corresponding locationsx =
(x1, . . . , xm)T ∈ Dm

e , with xi = (si, ti), i ∈ {1, . . . ,m}.
Given these data, various models allow for prediction ofZ
at any point inDe, with associated uncertainty.

In a Bayesian setting, the prediction takes the form of a
distribution, called the posterior predictive [15]. If thefield
is modeled as a Gaussian process with known covariance,
the posterior predictive mean corresponds to theBest Linear
Unbiased Predictor, and its variance corresponds to the
mean-squared prediction error. If the covariance of the field
is not known, however, few analytical results exist which
take the full uncertainty into account. The model we present
here [2] allows for uncertainty in the covariance process and
still produces an analytical posterior predictive distribution.

We assume that the measurements are distributed as

y ∼ Nm

(

F
T β, σ2

K
)

. (1)

Hereβ ∈ R
p is a vector of unknown regression parameters,

σ2 ∈ R>0 is the unknown variance parameter, andK is a
correlation matrix whosei, jth element isKij = Cor[yi, yj ].
We assume a finite correlation range in space,r ∈ R, such
that if ‖si − sj‖ ≥ r, then Kij = Kji = 0. The matrix
F ∈ R

p×m is determined by a set ofp ∈ N known basis
functions fi : De → R evaluated at the locationsx. We
assume conjugate prior distributions for the parameters,

β|σ2
∼ Np

(

β0, σ
2
K0

)

(2a)

σ2
∼ Γ−1

(ν

2
,
qν

2

)

. (2b)

Here β0 ∈ R
p, K0 ∈ R

p×p, and q, ν ∈ R>0 are constants,
known astuning parametersfor the model, andΓ−1(a, b)
denotes the inverse gamma distribution with shape parameter
a and scale parameterb (see, e.g. [16]).

Proposition II.1 (Posterior predictive distribution [2])
Under the Bayesian model(1), the posterior predictive at
location x0 ∈ De is a shifted Students t distribution (see,
e.g. [16]) with γ = ν + m + 1 degrees of freedom and

variance,Var[Z|y, x] =
ϕ(y,x)

γ φ(x0;x), where,

φ(x0;x) = Cor[Z,Z] − k
T
K

−1
k + ξT

0

(

K
−1
0 + E

)−1
ξ0

ξ0 = f(x0) − FK
−1

k

ϕ(y, x) = qν +
1

2

(

y − F
T β̂

)T

K
−1

(

y − F
T β̂

)

+

+
1

2

(

β̂ − β0

)T
(

K0 + E−1
)−1

(

β̂ − β0

)

,

with β̂ = E−1
FK

−1y, E = FK
−1

F
T , andk = Cor[y, Z].

III. PROBLEM STATEMENT

Here we introduce the model for the group of robotic
agents and static nodes, and detail the overall objective.

A. Robotic sensor network model

Consider a group{S1, . . . , Sm} of m ∈ N static nodes
at locationsQ = (q1, . . . , qm) ∈ Dm. Assume that each
node has a limited communication radius,R ∈ R>0, and
that they are positioned so that each one can communicate
with its Voronoi neighbors. In addition to the static nodes,
consider a group{R1, . . . , Rn} of n robotic sensor agents.
The position of roboti ∈ {1, . . . , n} at timet ∈ R is denoted
by pi(t) ∈ D. The robots take point samples of the spatial
field at discrete instants of time inZ≥0. Between sample
instants, each robot moves according to the discrete dynamics

pi(k + 1) = pi(k) + ui(k),

where‖ui‖ ≤ umax for someumax ∈ R>0. The communica-
tion radius of the robotic agents is alsoR. Each node will
need to be able to communicate with any robot which may
be within covariance range of the points in its Voronoi region
at the following timestep. To that end, we assume that

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + r + umax. (3)

The robots can sense the positions of other robots within a
distance of2umax. At discrete timesteps, each robot com-
municates the sample and location to static nodes within
communication range, along with the locations of any other
sensed robots. The nodes then compute control vectors,
and relay them back to robots within communication range.
The implementation does not require direct communication
between robots. We refer to this network model asN .

To avoid agent collision, we further restrict the motion of
the robotic agents as follows. Consider the locationsP (k) =
(p1(k), . . . , pn(k))T . Between timestepk and timestepk+1,
robot i moves within the region,Ω(k)

i ⊂ D defined by,

Ω
(k)
i = (Vi(P

(k)))ω/2 ∩B(pi(k), umax),

where (Vi(P
(k)))ω/2 denotes the ω/2-contraction of

Vi(P
(k)). This requirement combines the restriction imposed

by umax with a minimum distance requirement such that any
two robots are always at leastω away from each other [14].
Let Ω(k) =

∏n
i=1 Ω

(k)
i ⊂ Dn denote the region of allowed

movement of all the robotic agents at timestepk ∈ N.



B. The average variance as objective function

For predictions over a region in space and time, the
average variance is a natural measure of uncertainty, corre-
sponding to A-optimality. We consider the average over the
spatiotemporal region of the posterior predictive variance,

A =
1

γ
ϕ(y, x)

∫

D

∫

T

φ((y0, t0);x) dt0 dy0. (4)

Here,y ∈ R
kmax is a sequence of samples taken at discrete

times {1, . . . , kmax}, kmax ∈ Z>0, at space-time locations
x ∈ (Dn

e )
kmax. T = [1, kmax] is the time interval of interest.

One would like to choose the sample locations that min-
imize A. Since samples are taken sequentially, with each
new set restricted to a region nearby the previous, and since
ϕ(y, x) depends on the actual values of the samples, one
cannot simply optimize over(Dn

e )kmax a priori.
Consider, instead, a greedy approach in which we use

past samples to choose the positions for the next ones. At
each timestep we choose the next locations to minimize
the average posterior variance of the predictor given the
data known so far. In Section IV, we develop a sequential
formulation of the average posterior predictive variance and
discuss its amenability to distributed implementation over N .

IV. D ISTRIBUTED CRITERION FOR ADAPTIVE DESIGN

In this section we develop an optimality criterion to
maximally reduce the average predictive variance at each
timestep. First we reformulate the posterior predictive vari-
ance to allow for estimation based on previous sample values.
Given centralized computing capabilities, this equation can
be used to perform sequential optimal design, but is not
amenable to distributed computation. We therefore provide
an upper bound whose computation is distributed overN .

A. Sequential formulation ofϕ

At timestep k, assume that samples,y
s

∈ R
nk have

already been taken at locationsxs ∈ Dnk
e . We are interested

in choosingunsampledlocations,xu ∈ Dn
e at which to take

the next samples,y
u
∈ R

n. Let y = (yT
u
, yT

s
)T ∈ R

n(k+1)

denote the full set of samples at timestepk + 1, at locations
x = (xT

u , xT
s )T ∈ D

n(k+1)
e . Let Ks denote the correlation

matrix of the vectory
s
, and let Kus = K

T
su denote the

matrix whose(i, j)th element is the correlation betweenyu:i

andys:j . Once all samples have been taken, the average pos-
terior predictive variance is given by Equation (4). However,
ϕ(y, x) cannot be calculated until the new samples are taken.
Our approach is to use the generalized least squares estimate,
and compute the induced errors in the approximation.

Proposition IV.1 Let ŷ
LS

= KusK
−1
s y

s
be the generalized

least squares estimate ofy
u

based on samplesy
s
, and let

yLS = y
u
− ŷ

LS
. Then we can write,

ϕ(y, x) = ϕ̂(y
s
, xs, xu) + ϕ̃(y, x)yLS,

whereβ̃ = E−1
FsK

−1
s y

s
and ϕ̂(y

s
, xs, xu) = ϕ̂ is

ϕ̂ = qν + yT
s
K

−1
s y

s
−

1

2
β̃T Eβ̃

+
1

2

(

β̃ − β0

)T
(

K0 + E−1
)−1

(

β̃ − β0

)

.

In Proposition IV.1, the function̂ϕ, which does not depend
on the new data, signifies the change in uncertainty aboutσ2

which may be predicted by assuming the generalized least
squares estimatêy

LS
. On the other hand, the quantitỹϕyLS

denotes the extra uncertainty induced by having made that
prediction, once the datay

u
have been measured.

Using Proposition IV.1, we can rewrite the one-step ahead
average prediction variance as follows. Letϕ̂(k) : Ω(k) → R

map the location of the next set of measurements to the value
of ϕ̂ at timestepk. Let φ(k) : De×Ω(k) → R map predictive
location and unsampled locations to the conditional variance
at timestepk. Let γ(k) = ν + n ∗ (k + 1) + 1, and let
(P, k+1) denote the space-time locations at spatial positions
P = (p1, . . . , pn) ∈ Dn and timek + 1. To optimize the
average posterior predictive variance at thek +1st timestep,
we chooseP to minimizeA(k) : Dn → R defined by

A(k)(P ) =
ϕ̂(k)(P )

γ(k)

∫

D

∫

T

φ(k) ((s, t);P )) dt ds. (5)

In Section V we will show howϕ̂(k) can be calculated in a
distributed way byN . However, due to dependence on the
quantityk

T
K

−1
k, the conditional variance,φ(k), can not. In

the next section, we detail an upper bound forφ(k), which
may be computed locally by each node.

B. Upper bound of the average posterior predictive variance

In [14], we established that the conditional variance can
be upper bounded using only a subset of the measurements.
Using this result,A(k) can be upper bounded as follows.

Proposition IV.2 (Spatial approximation for distributed
implementation) Let φ

(k)
j : De × Ω(k) → R denote the

value of φ(k) as calculated with only those measurements
correlated toVj(Q). Let Ã(k)

j : Dn → R be defined by

Ã
(k)
j (P ) =

ϕ̂(k)(P )

γ(k)

∫

Vj(Q)

∫

T

φ
(k)
j ((s, t), P ) dt ds.

ThenA(k) ≤ Ã(k) =
∑m

j=1 Ã
(k)
j . In addition, equality holds

if, for all j ∈ {1, . . . ,m}, the samples not used in calculation
of φ

(k)
j are uncorrelated to those which are.

We refer to Ã(k) as the aggregate average prediction
variance. Unlike A(k), the functionÃ(k) may be computed
in a distributed manner overN .

C. Smoothness of the aggregate average prediction variance

Next, we characterize the smoothness properties ofÃ(k).
For simplicity, let∇i denote ∂

∂pi
. Given matrix,A, we denote

by ∇iA the component-wise partial derivative ofA. Assume
the orderingx = ((P, k + 1), xs) ∈ (De)

n∗(k+1), so that
the ith row and column ofK, e.g., with i ≤ n, are the
correlations between(pi, k + 1) andx.

Lemma IV.3 Assume thatf1, . . . , fp and the covariance
of Z are C1 with respect to the spatial position of their
arguments. Then the mapP 7→ φ

(k)
j (x0, P ) is C1 on Ω(k)

and theith component of its gradient is



∇iφ
(k)
j = −2kT

K
−1∇ik + k

T
K

−1∇iKK
−1

k−

− ξT
0

(

K
−1
0 + E

)−1
∇iE

(

K
−1
0 + E

)−1
ξ0+

+ 2ξT
0

(

K
−1
0 + E

)−1
∇iξ0, where

∇iξ0 = −∇iFK
−1

k − FK
−1∇ik + FK

−1∇iKK
−1

k

∇iE = ∇iFK
−1

F
T+ FK

−1∇iF
T − FK

−1∇iKK
−1

F,

where the matrices are built with a location vector comprised
of an ordering of the samples correlated toVj(Q).

These matrix partial derivatives have some sparsity
structure which is worth noting. The matrix∇iF ∈
R

p×n(k+1) is nonzero only in columni. The matrix∇iK ∈
R

n(k+1)×n(k+1) is nonzero only in row and columni.
Additionally, due to the finite correlation range, only those el-
ements corresponding to correlation with other measurement
locationsx = (s, t) which satisfy‖pi − s‖ ≤ r are nonzero.

Lemma IV.4 Under the assumptions of Lemma IV.3, as-
sume, in addition, that the partial derivatives off1, . . . , fp

and the covariance ofZ are C1 with respect to the
spatial position of their arguments. Then the mapP 7→
∇iφ

(k)
j (x0, P ) is globally Lipschitz onΩ(k).

Note that the value ofϕ̂(k)(P ) depends onP only
through the matrixE, whose partial derivative is given in
Lemma IV.3. This leads us to the following continuity results.

Lemma IV.5 Under the assumptions of Lemma IV.3,ϕ̂(k)

is C1 on Ω(k) and the ith component of its gradient is
∇iϕ̂

(k)(P ) =
∑m

j=1 ∇iϕ̂
(k)
j (P ), where,

∇iϕ̂
(k)
j (P ) =

1

2
ΨT ∇iE Ψ, and

Ψ = E−1
(

K0 + E−1
)−1

(

K0Eβ̃ + β0

)

.

Additionally, under the assumptions of Lemma IV.4,∇iϕ̂
(k)

is globally Lipschitz onΩ(k).

We are finally ready to state the smoothness properties of
Ã(k) and provide an explicit expression for its gradient.

Proposition IV.6 Under the assumptions of Lemma IV.3,
Ã(k) is C1 on Ω(k) and theith component of its gradient is

∇iÃ
(k)(P ) =

ϕ̂(k)(P )

γ(k)

∫

Vj(Q)

∫

T

∇iφ
(k)
j ((s, t), P ) dt ds+

+
∇iϕ̂

(k)(P )

γ(k)

∫

Vj(Q)

∫

T

φ
(k)
j ((s, t), P )) dt ds.

Additionally, under the assumptions of Lemma IV.4,Ã(k) is
globally Lipschitz onΩ(k).

V. D ISTRIBUTED COMPUTATION OF AGGREGATE

AVERAGE PREDICTION VARIANCE AND ITS GRADIENT

In this section, we substantiate our assertion that the
aggregate average prediction variance and its gradient are
distributed over the networkN . SinceV(Q) is a partition
of the physical space, we may partition all sample locations

by region. Thus for each(s, t) ∈ iF(x), there is exactly
one j ∈ {1, . . . ,m} such thats ∈ Vj(Q). In order for
the network to calculateÃ(k) and its gradient atP , it is
sufficient forSj to computeÃ(k)

j and∇iÃ
(k)
j for each robot

in Vj(Q). ThenÃ(k) may be calculated via discrete time av-
erage consensus [17], while∇iÃ

(k) may be calculated from
information local toRi. From Propositions IV.2 and IV.6,
it can be seen that calculation of̃A(k)

j and∇iÃ
(k)
j requires

only local information and the values of̂ϕ(k) and∇iϕ̂
(k).

Next we use consensus and the distributed JOR algo-
rithm [18] to calculateϕ̂(k) and its gradient. LetR(1:k)

in :
N → F(N) map the index of the node to the set of indices
of samples whose spatial position lies inside its Voronoi cell,

R
(1:k)
in (j) = {i ∈ {1, . . . , nk} | xs:i = (s, t) ands ∈ Vj(Q)} .

With a slight abuse of notation, defineR(1:k+1)
in (j, P ) to

be the equivalent set of indices into the full vector of
measurement locations,x, given future locationsP .

Our next result illustrates the parts ofϕ̂(k) which do not
include the locationsP . We use the notation coli(M) to
denote theith column of the matrixM .

Proposition V.1 Assume thatSj for each j ∈ {1, . . . ,m}

knowsxi, yi for eachi ∈ R
(1:k)
in (j). Afterp+1 executions of

the JOR algorithm and2 subsequent consensus algorithms,
Sj has access to,

#1: elementi of K
−1
s y

s
∈ R, i ∈ R

(1:k)
in (j) via JOR;

#2: coli
(

FsK
−1
s

)

∈ R
p, i ∈ R

(1:k)
in (j) via JOR;

#3: FsK
−1
s y

s
∈ R

p via consensus;
#4: yT

s
K

−1
s y

s
∈ R

p via consensus;

Next, we describe calculations which may be done at each
step of a gradient descent algorithm at locationsP .

Proposition V.2 Given P ∈ Ω(k), assume thatSj for each
j ∈ {1, . . . ,m} knowsxi for each i ∈ R

(1:k+1)
in (j, P ) and

the results of Proposition V.1. Afterp executions of JOR, and
p2 of consensus,Sj has access to,

#5: coli
(

FK
−1

)

∈ R
p, i ∈ R

(1:k+1)
in (j, P ) via JOR;

#6: E ∈ R
p×p via consensus;

After these computations,Sj can calculate β̃ and ∇iE,
and subsequentlŷϕ(k) and ∇iϕ̂

(k) at P for each robot in
{i ∈ {1, . . . , n} | pi ∈ Vj(Q)}.

VI. D ISTRIBUTED OPTIMIZATION OF THE AGGREGATE

AVERAGE PREDICTIVE VARIANCE

Here we outline a distributed version of the projected
gradient descent algorithm (see, e.g. [19]), which is guaran-
teed to converge to a stationary point ofÃ(k) on Ω(k). For
convenience, letP ′

j : R × Dn → F(D) map a step size and
configuration to the set of next locations calculated bySj ,

P ′
j(α, P ) =

{

projΩi

(

pi + α∇iÃ(P )
)

,

foreachi s.t. d (pi, Vj(Q)) ≤ r + umax + ω
}

.



Let dj : R × Dn → R≥0 denote the total distance traveled
by robots enteringVj(Q), i.e.,

dj (α, P ) =
∑

i∈{1,...,n} such that
proj

Ωi
(pi+α∇iÃ(P ))∈Vj(Q)

‖projΩi

(

pi + α∇iÃ(P )
)

− pi‖
2.

Globally, let P ′ : R × Dn → Dn, P ′(α, P ) = projΩ(P +
α∇Ã(P )). Table I describes a distributed line search with
a starting position ofP ∈ Ω. The line search starts with a
factorαmax which scales the smallest nonzero partial toumax,
ensuring all robots with nonzero partial derivatives can move
the maximum distance,

αmax =
umax

min{‖∇iÃ(P )‖ |∇iÃ(P ) 6= 0}
. (6)

Name: DISTRIBUTED L INE SEARCH ALGORITHM

Goal: Compute step size for gradient descent ofÃ(k)

Input: Configuration,P = (p1, . . . , pn) ∈ Dn

Assumes: (i) Connected network of static nodes
(ii) Sj knows pi, Ã

(k)
j (P ), ∇iÃ

(k)(P ) and Ωi

for each robot within communication range
(iii) Sj knows items#3 and #4 from Proposi-
tion V.1, andγ(k)

(iv) Shrinkage factorτ and toleranceθ ∈ (0, 1)
known a priori by all static nodes

Output: Step sizeτ ∈ R.

Initialization
1: S1, . . . , Sm calculateαmax, cf. (6) via a consensus algorithm

For j ∈ {1, . . . , m}, nodeSj executes concurrently

1: α = αmax

2: repeat
3: calculatesdj (α, P )2

4: calculatesϕ̂(k)
`

P ′
j(α, P )

´

according to Proposition V.2
5: calculatesÃ(k)

j

`

P ′
j(α, P )

´

6: execute consensus algorithm to calculate the following:

Ã(k) `

P
′(α, P )

´

=

m
X

j=1

Ã
(k)
j

`

P
′
j(α, P )

´

‚

‚P − P
′(α, P )

‚

‚

2
=

m
X

j=1

dj (α, P )2

7: ν = θ
α
‖P − P ′(α, P )‖

2
+ Ã(k)(P ′(α, P )) − Ã(k)(P )

8: if ν > 0 then
9: α = ατ

10: until ν ≤ 0

TABLE I

DISTRIBUTED L INE SEARCH ALGORITHM.

We are ready to present our technique for a greedy
optimization algorithm. At timestepk, the nodes follow a
gradient descent algorithm to define a sequence of configu-
rations,{P †

l }, l ∈ N, such thatP †
1 is P (k) ∈ Dn, the vector

of current spatial locations of the robotic agents and

P †
l+1 = projΩ

(

P †
l − α∇Ã(P †

l )
)

, α ∈ R≥0,

whereα is chosen via DISTRIBUTED L INE SEARCH ALGO-
RITHM. When |Ã(k)(P †

l+1) − Ã(k)(P †
l )| = 0, the algorithm

terminates, and the nodes setP (k+1) = P †
l+1. By the end

of this calculation, each node knows the identity of robotic

agents in its Voronoi cell at timestepk+1. NodeSj transmits
pi(k + 1) to robot Ri, which then moves to the location
between timesteps. The overall algorithm is in Table II.

Proposition VI.1 The DISTRIBUTED PROJECTEDGRADI-
ENT DESCENT ALGORITHM is distributed over the net-
work N . Moreover, under the assumptions of Lemma IV.4,
any execution is such that the robots do not collide and,
at each timestep after the first, measurements are taken at
stationary configurations ofP 7→ Ã(k)(P ) over Ω(k).

The proposed algorithm is robust to agent failures. If an
agent stops sending position updates, it ceases to receive new
control vectors. The rest of the network continues operating
with the available resources and will eventually sample the
areas previously covered by the failing agents.

A. Simulations

We show here an implementation of the DISTRIBUTED

PROJECTED GRADIENT DESCENT ALGORITHM with the
following parameters: m = 5 static nodes, n = 20
robotic agents, and the convex polygonD with ver-
tices {(0, .1), (2.5, .1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8),
(2.7, 2.2), (1, 2.4), (0.2, 1.3)}. We used the separable co-
variance function defined byCov[Z(s1, t1), Z(s2, t2)] =
Ctrunc(‖s1 − s2‖, 0.3)Ctrunc(|t1 − t2|, 3.5), where

Ctrunc(δ, r) =

{

e−15( δ
r )

2

if δ ≤ r,

0 otherwise.

While the covariance function is notC1 everywhere, the
difference lies within the error margin of the simulation.
We useω = 0.02 and umax = 0.3. The values of our
hyperparameters wereν = 0.1, q = 2, β0 = 0, andK0 = I.
We simulated the sampled data by drawing random variables
from the distributionN(β0, σ

2
0Ku), whereσ2

0 = qν
ν−2 , the

prior mean ofσ, and Ku is the correlation matrix ofy
u
.

For the mean regression functionsfi, we usedf(x, y, t) =
(1, x, y)T . To illustrate the robustness to failure,R2 ceased
communications after timestep2, and R5 after timestep4.
Figure 1 shows the trajectories taken by the robots. This

(a) (b)
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Fig. 1. (a) Trajectories of all robots, (b) two representative robot trajectories
and (c) evolution of the objective function. The filled squares represent the
(static) positions of the nodes, and the filled triangles show the starting
positions of the robots. The X’s represent the positions of the two robots
who dropped communication.

example is representative of cases for which the data samples
lie within a reasonable range of the predictive model. In
the cases where the samples do not match the model, the
surface ofÃ(k) is relatively flat, signifying that the amount of
information to be gained is not significantly different whether
the agents move or not. As information is a model-dependant



Name: DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

Goal: Find a local minimum ofÃ(k) within Ω(k).
Assumes: (i) Connected network of static computing nodes and mobile robotic sensingagents

(ii) Static nodes deployed overD such thatR ≥ maxi∈{1,...,m} {CR(Vi(Q))} + r + umax, robotic agents in initial
configurationP (1) ∈ Dn

(iii) Line search shrinkage factorτ and tolerance valueθ ∈ (0, 1) known a priori by all nodes
(iv) A termination marker known to all nodes and robots which may be sent to mark the end of a gradient descent loop.

Uses: (i) Each node uses the temporary vectorsPcur, respectivelyPnext to hold the configuration at the current, respectively
next step of the gradient projection algorithm. For ease of exposition, weuse global notation althoughSj only calculates
and uses the parts of these vectors which correspond to agents currently within communication range.

At time k ∈ Z≥0, nodeSj executes:
1: setsRcov(j) = {Ri | d(pi(k), Vj(Q)) ≤ r}
2: collects initial samples and locations fromRi for eachi ∈ Rcov(j).
3: computes firstÃ(k)

j

`

P (k)
´

and thenÃ(k)
`

P (k)
´

via consensus
4: setsPnext = P (k)

5: repeat
6: setsPcur = Pnext(j) and calculates−∇Ã

(k)
j (Pcur)

7: transmits vector∇iÃ
(k)
j (Pcur) to all robots inRcov(j)

8: collects sum∇iÃ
(k)(Pcur) from all robots inRcov(j)

9: runs DISTRIBUTED L INE SEARCH ALGORITHM at Pcur to getα
10: setsPnext = Pcur + α∇Ã(k)(Pcur)
11: calculates|Ã(k)(Pnext) − Ã(k)(Pcur)| from known quantities
12: until |Ã(k)(Pnext) − Ã(k)(Pcur)| = 0
13: setsP (k+1) = Pnext and sends next position to robots inVj(Q)

At time k ∈ Z≥0, robotRi executes:
1: takes measurement atpi(k)
2: setsScov(i) = {Sj | d(pi(k), Vj(Q)) ≤ r}
3: sends measurement and position to all nodes inScov(i)
4: repeat
5: receives∇iÃ

(k)
j (P (k)) from nodes inScov(i)

6: calculates sum∇iÃ
(k)(P (k))

7: sends∇iÃ
(k)(P (k)) to all nodes inScov(i)

8: until receives termination marker from any node
9: receives next locationpi(k + 1)

10: moves topi(k + 1).

TABLE II

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

quantity, this is not surprising. Furthermore, if the modelis
too far off, the approximationϕ ≈ ϕ̂ is very bad.

VII. C ONCLUSIONS AND FUTURE WORK

We have considered a network of static computing nodes
and mobile robotic sensing platforms taking measurements
of a time-varying random process with covariance known up
to a scaling parameter. We have used a Bayesian approach,
treating the field as a spatiotemporal Gaussian random pro-
cess, and developed a novel iterative approach to calculating
the variance of the posterior predictive distribution. Using
this sequential formulation, we have developed a projected
gradient descent algorithm which is distributed over the
network of nodes and robots. Future work will focus on theo-
retical guarantees on the accuracy of the approximationÃ(k)

and on the robustness to failure of the proposed coordination
algorithm, the quantification of the communication require-
ments of the proposed strategy, and software implementation
of the approach in several illustrative scenarios.
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