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Abstract— This paper considers robotic sensor networks per- tapering [6]. Optimal design [7], [8] addresses the problem
forming spatial estimation tasks. We model a physical process of of choosing sample locations which optimize estimation.
interest as a spatiotemporal random field with mean unknown In cooperative control, various works consider mobile

and covariance known up to a scaling parameter. We design work f . tial timati task 9
a distributed coordination algorithm for an heterogeneous net- sensor networks performing spatial estimation tasks. [9]

work composed of mobile agents that take point measurements introduces performance metrics for oceanographic sutvgys

of the field and static nodes that fuse the information received autonomous underwater vehicles. [10] chooses optimal sam-
from the agents and compute directions of maximum descent pling trajectories from a parameterized set of paths. If,[11
of the estimation uncertainty. The technical approach builds on [12], [13] the focus is on estimating deterministic fieldstwi

a novel reformulation of Bayesian sequential field estimation, d t noi When th hvsical .
and combines tools from distributed linear iterations, nonlinear ~ f@NdoM Mmeasurement noise. en the physical process 1S

programming, and spatial statistics. not as well understood, or accurate deterministic models
require high dimensional parameter spaces, random field
. INTRODUCTION models can be a useful alternative. In previous work [14],

. ) ] we have considered the estimation of random fields with
~ Networks of environmental sensors are playing an increagnown covariance. In this paper, we focus on the additional
ingly important role in scientific studies of the ocean, r&/¢  complexity in the algorithm design caused by unknown
and the atmosphere. Envisioned tasks include pollutaeteet harameters in the field covariance.
tion, fire monitoring, and mapping of ocean currents. Mobile giaiement of contributionsiVe begin with a widely ac-

sensing robots can improve the efficiency of data collectionepted Bayesian model for the prediction of a spatiotempora
adapt to changes in the environment, and provide a robysf,qom field with mean unknown and covariance known
response to sensor failures. Complex statistical teclesiqu,, 1 4 scaling parameter. The predictive variance of this
come into play in the analysis of environmental processeg,ode| can be written as a scaled product of two components,
Consequently, the operation of robotic sensors must Rge corresponding to uncertainty about the covarianceeof th
driven by statistically-aware algorithms that make the mog;e|q the other corresponding to uncertainty of the préafict

of the network capabilities for data collection and fusiongqngitional on the covariance. Our first contribution is the
At the same time, such algorithms need to be distributegbyelopment of a novel procedure for distributed calcotati
and scalable to make robotic networks capable of operating the first component sequentially as new measurements
in an autonomous and robust fashion. The combinatiofyrjye we also introduce an upper bound for the second com-
of these two objectives, complex statistical modeling andonent which can be calculated in a distributed way. These
distributed coordination, presents grand technical engs: o results allow us to identify an objective function for
traditional statistical modeling and inference assume fubathering data which minimizes uncertainty in the resgltin

availability of all measurements and central computatiorhgtimation. Our second contribution is the charactepadi
While the availability of data at a central location is ceM@i e smoothness properties of the objective function and the
a desirable property, the paradigm for motion coordinatiogympytation of its gradient. Using consensus and disetbut
builds on partial, fragmented information. This work is@pst  j5c0bj overrelaxation algorithms, we show how the objectiv
forward in bridging the gap between sophisticated sta8sti fnction and its gradient can be computed in a distributed
modeling and distributed motion coordination. way across a network composed of robotic agents and static
Literature review: Complex statistical techniques allow anpgdes. Our third contribution is the design of a coordinatio
detailed account of uncertainty in modeling physical pheyjgorithm based on projected gradient descent which guar-

noma. Of particular relevance to this work are [1], [2].antees one-step-ahead locally optimal data collection.
regarding statistical models, and [3], [4], regarding tipe a

plication of optimal design techniques to Bayesian models. Il. PRELIMINARY NOTIONS
Under certain conditions on the covariance structure, dataletR, R-,, andR>, denote the set of reals, positive reals

taken far from the prediction site have very little impactand nonnegative reals, respectively. Fore R? and r €
on the predictor [5]. When the random field does not havg_,, let B(p, ) be theclosed ballof radiusr centered ap.
a covariance structure with finite spatial correlation, aGiven v = (u1,...,uq)T, a € Zso, andv = (vy, ..., )7,
approximation which does may be generated via covariangec 7., we denote by(u,v) the concatenatiorfu,v) =
(U1, ... Uq,v1,...,vp) 7. We denote by)S the boundary of
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R?, we let CR(S) denote thecircumradiusof S, that is, variance,Var[Z|y,z] =
the radius of the smallest-radiussphere enclosing. We

“0(%’@ ¢(xo; ), where,

denote byF(S) the collection of finite subsets df. p(zosz) = ConZ, Z] - kTK 'k + ¢ (Ky' + E)f1 &
We consider a convex polytopP C R¢, d € N. Let ¢ = f(zo) — FK 'k
D. = D x R denote the space of points ové& and

T .
time. TheVoronoi partitionV(s) = (Vi(s), ..., Va(s)) of D oy, z) = qu+ % (g - FT6> K! (y — FT6> +
generated by the points = (s1,...,s,) is defined by

n 1/ T =1 /4
Vi(s) = {g € D | |la — i < lla — s, Vi # i}. EachVi(s) +5(8-m) Ko+E)(B-50).
is called aVoronoi cell Two pointss; and s; are Voronoi
neighborsif their Voronoi cells share a boundary. with 3 = E-'FK~'y, E = FK-'F”, andk = Cory, Z].

IIl. PROBLEM STATEMENT

A. Bayesian modeling of space-time processes ) )
Here we introduce the model for the group of robotic

Let Z denote a random space-time process taking valuégents and static nodes, and detail the overall objective.
onD.. Lety = (y1,---,ym)T € R™ bem € N mea-
surements taken fron¥ at corresponding locations = A. Robotic sensor network model
(@1, wm)" € DF, with z; = (si,t), i € {1,...,m}. Consider a groug(Sy, ..., S,,} of m € N static nodes
Given the_se .data, various quels allow fqr predictionZof 4 locationsQ = (qi,...,qn) € D™. Assume that each
at any point inD., with associated uncertainty. node has a limited communication radiug, € R-,, and

In a Bayesian setting, the prediction takes the form of ¢hat they are positioned so that each one can communicate
distribution, called the posterior predictive [15]. If tield with its Voronoi neighbors. In addition to the static nodes,
is modeled as a Gaussian process with known covarianagnsider a grougR;, ..., R,} of n robotic sensor agents.
the posterior predictive mean corresponds toBbst Linear The position of robot € {1,...,n} attimet € R is denoted
Unbiased Predictar and its variance corresponds to thepy p,(t) € D. The robots take point samples of the spatial
mean-squared prediction error. If the covariance of thel fiefield at discrete instants of time ifi~,. Between sample

is not known, however, few analytical results exist whichnstants, each robot moves according to the discrete dyisami
take the full uncertainty into account. The model we present

here [2] allows for uncertainty in the covariance process an pi(k +1) = pi(k) + ui(k),
still produces an analytical posterior predictive digitibn.

o where ||u;|| < umax fOr someumax € R~o. The communica-
We assume that the measurements are distributed as

tion radius of the robotic agents is algt Each node will
need to be able to communicate with any robot which may

T 2
y~Nm (F 8,0 K) : () be within covariance range of the points in its Voronoi regio
at the following timestep. To that end, we assume that
Here g € R? is a vector of unknown regression parameters, R> CR(V,
. . . i +7r+ . 3
0% € Ry is the unknown variance parameter, akdis a - ie{??.}fm}{ (Vi(@))} + 7+ umax )

correlation matrix whose, jth element isK,; = Cotfy;, y;]. . -
We assume a finite correlation range in space, R, such The robots can sense the positions of other robots within a

that if [|s; — s;|| > 7, thenK;; = K;; = 0. The matrix distance of2umax. At discrete timesteps, each robot com-

F € RP*™ is determined by "\ set qufle N known basis Municates the sample and location to static nodes within

functions f; : D. — R evaluated at the locations. We communication range, along with the locations of any other
(2 € 2.

assume conjugate prior distributions for the parameters, SEnsed robots. The nodes then compute control vectors,
and relay them back to robots within communication range.

Blo? ~ N, (ﬁo,OQKo) (2a) The implementation does not r_equire direct communication
) v between robots. We refer to this network modelMs
o ~T (5, ?) : (2b) To avoid agent collision, we further restrict the motion of

the robotic agents as follows. Consider the locati&h® =
Here f, € R?, K, € RP*?, andq,v € Ro, are constants, (pl(k)‘, e ,p,,,(k:)_)T_. Between tim%itep and timestepl:+1,
known astuning parametersor the model, and’~'(a,5) OPOt7 moves within the region(2;™” C D defined by,
denotes the inverse gamma distribution with shape paramete QZ(,/C) — (Vi(p(k)))w/z N B(pi(k), umax),
a and scale parametér(see, e.g. [16]).

where (Vi(P(k)))w/g denotes the w/2-contraction of

V;(P*)). This requirement combines the restriction imposed
Proposition 11.1 (Posterior predictive distribution [2]) by umax With a minimum distance requirement such that any
Under the Bayesian modél), the posterior predictive at two robots are always at leastaway from each other [14].
location z, € D, is a shifted Students t distribution (see,Let Q%) = I, ng) C D™ denote the region of allowed
e.g. [16]) withy = v + m + 1 degrees of freedom and movement of all the robotic agents at timesteg N.



B. The average variance as objective function In Proposition 1V.1, the functiogp, which does not depend

For predictions over a region in space and time, th@n.the new data, sig_nifies the chang_e in uncertainty abdut
average variance is a natural measure of uncertainty,-corihich may be predicted by assuming the generalized least
sponding to A-optimality. We consider the average over thgquares estimatg .. On the other hand, the quantifsy, s
spatiotemporal region of the posterior predictive varggnc denotes the extra uncertainty induced by having made that

1 prediction, once the dat@u have been measured.
A= —gp(y,g)/ / d((yo,to); z) dto dyo. 4) Using Proposition 1V.1, we can rewrite the one-step ahead
T - JoJr average prediction variance as follows. gt) : Q%) — R
Here,y € R*m is a sequence of samples taken at discret@ap the location of the next set of measurements to the value
times {1, ..., kmax}, kmax € Zso, at space-time locations of ¢ at timestepk. Let () : D, x Q) — R map predictive
T e (D;})’“W, T = [1, kmay is the time interval of interest. location and unsampled locations to the conditional vagan

One would like to choose the sample locations that mirat timestepk. Let v*) = v + n % (k + 1) + 1, and let
imize A. Since samples are taken sequentially, with eact, k+1) denote the space-time locations at spatial positions
new set restricted to a region nearby the previous, and sinée= (p1,...,p,) € D™ and timek + 1. To optimize the
©(y,z) depends on the actual values of the samples, omerage posterior predictive variance at the 1st timestep,
Caﬁnot S|mp|y Optimize Ove(ng)kmax a priori_ we chooseP to minimizeA(k) : D" — R defined by

Consider, instead, a greedy approach in which we use >R (P
past samples to choose the positions for the next ones. At ® p)= QO,Y(IS) ) /D/Tqb(k) ((s,2); P)) dtds.  (5)
each timestep we choose the next locations to minimize
the average posterior variance of the predictor given th8 Section V we will show how*) can be calculated in a
data known so far. In Section IV, we develop a sequentidlistributed way by\. However, due to dependence on the
formulation of the average posterior predictive variannd a quantityk” Kk, the conditional variances*), can not. In

discuss its amenability to distributed implementationrove ~ the next section, we detail an upper bound f&F), which
may be computed locally by each node.

IV. DISTRIBUTED CRITERION FOR ADAPTIVE DESIGN
In this section we develop an optimality criterion toB. Upper bound of the average posterior predictive variance

maximally reduce the average predictive variance at each|n [14], we established that the conditional variance can
timestep. First we reformulate the posterior predictive-va pe upper bounded using only a subset of the measurements.

ance to allow for estimation based on previous sample valuagsing this result,4A(*) can be upper bounded as follows.
Given centralized computing capabilities, this equatian c

be used to perform sequential optimal design, but is N, qsition 1v.2 (Spatial approximation for distributed
amenable to distributed computation. We therefore prov'qﬁﬁplementation) Let )« D, x Q% — R denote the
an upper bound whose computation is distributed over value of (¥ as calculjated with only those measurements

A. Sequential formulation ap correlated toV;(Q). Let fly“) : D" — R be defined by

At timestep k, assume that samplegf,S € R™ have »E)(p
already been taken at locations € D**. We are interested A§'k) P) = @7(15) ) / / ¢§'k> ((s,1), P) dtds.
in choosingunsampledocations,z,, € DI at which to take vi(@JT
the next samplegy € R™. Lety = (y”,y")" € R**H) Thengt) < 40 = 3 flg»k). In addition, equality holds
denote the full set of fagnples at timestep 1, at locations i forall j  {1,...,m}, the samples not used in calculation
z = (27,277 € D"V, Let K, denote the correlation of ¢ are uncorrelated to those which are.
matrix of the vectory , and letK,; = KZ, denote the !
matrix whose(7, j)th element is the correlation betwegn,; We refer to A*) as theaggregate average prediction
andys.;. Once all samples have been taken, the average pegriance Unlike A*), the function.A*) may be computed
terior predictive variance is given by Equation (4). Howeve in a distributed manner ovey'.
©(y, z) cannot be calculated until the new samples are taken.
Our approach is to use the generalized least squares estim&. Smoothness of the aggregate average prediction variance

and compute the induced errors in the approximation. Next, we characterize the smoothness propertied t.

. ) . . For simplicity, letV; denotea%_. Given matrix,A, we denote
Proposition IV.1 Lety ¢ = K, ,K; 'y _be the generalized 1 . 4 the component-wise partial derivative 4f Assume
least squares estimate @1; based on samplegs, and let  he orderingz = (P& + 1),z,) € (D.)™*+1), so that

Us =Y, — U g Then we can write, the ith row and column ofK, e.g., withi < n, are the

oy, z) = @y, 2, z,) + P(¥: 2)Ys, correlations betweefyp;, k + 1) and z.

where3 = E'F. K 'y _and Py, z,,z,) =@ is

. e s Lemma IV.3 Assume thatfi,..., f, and the covariance
_ Tyr—1, _ 1AT Ly--+5Jp
p=qu+y Ky, 2’6 Ep of Z are C! with respect to thza)spatial position of their
I r RN arguments. Then the map — ¢\*)(zo, P) is C! on Q)
(8- Ko+ E! ( - ) 9 : X g, 0
*3 (ﬁ ﬂo) Ko+ E70) (5~ b and theith component of its gradient is



Vi¢§k) = 2kTK'Vk + kK'K'V,KK 'k~ by region. Thus for eaclis,t) € ir(z), there is exactly
_ -1 _ -1 onej € {1,...,m} such thats € V; In order for
—& (Ko +E) VB (Ky' +E) o+ the rjmetwo{rk to caliulateét(’“) and its g(rgc)jmnt al, it is
+2¢ (Ko' + E)_1 Vio, where sufficient for S; to ComputeAj andV; A ) for each robot
Viéo= -V, FK 'k —-FK~'V,k+ FK 'V, KK 'k in V;(Q). Then.A®*) may be calculated V|a discrete time av-
V.E = V,FK-'F+ FK-'V,F” - FK-!V,KK-'F, €rage consensus [17], whitg; A®) may be calculated from
information local toR;. From Proposmons IV2 and V.6,
where the matrices are built with a location vector comptise it can be seen that calculation _gh‘(k andV; A requires

of an ordering of the samples correlated ¥9(Q). only local information and the values gfh) andvlga(’“).

These matrix partial derivatives have some sparsity NeXt We use consensus and the distributed JOR algo-

structure which is worth noting. The matrix/;F ¢ fithm [18] to calculate ) and its gradient. Letr,™ :
RP*7(k+1) is nonzero only in column. The matrixV;K € N — F(N) map the index of the node to the set of indices

R (k+D)xn(k+1) js nonzero only in row and columr of samples whose spatial position lies inside its Vorondlj ce

Additionally, due to the finite correlation range, only tbas- R k)( )={i€{l,...,nk} | 2; = (s,t) ands € V;(Q)}.
ements corresponding to correlation with other measuremen '
locationsz = (s, t) which satisfy||p; — s|| < r are nonzero. With a slight abuse of notation, defing\\**")(j, P) to

be the equivalent set of indices into the full vector of
Lemma IV.4 Under the assumptions of Lemma IV.3, asmeasurement locations, given future locationsP.
sume, in addition, that the partial derivatives §f, ..., f, Our next result illustrates the parts ¢f*) which do not
and the covariance ofZ are C' with respect to the include the locations. We use the notation cgl\/) to
spatial position of their arguments. Then the m&—  denote theth column of the matrix)/.
Viqf)y“) (zo, P) is globally Lipschitz orQ2(¥).
Proposition V.1 Assume thatS; for eachj € {1,...,m}
knowsz;, y; for eachi Ri(nl:k)(j). After p+1 executions of
the JOR algorithm an@ subsequent consensus algorithms,
S; has access to,

Note that the value ofp*)(P) depends onP only
through the matrix®/, whose partial derivative is given in
Lemma IV.3. This leads us to the following continuity result

Lemma IV.5 Under the assumptions of Lemma V@)  #1: elementi of K;'y €R,ic R () via JOR;
is C' on Q*) and theith component of its gradient is #2: col; (F Ko ) ERP, ic R( k)( i) via JOR;

~(k
Vi (P) =" —1 Vz@j '(P), where, #3: F,K;'y < RP via consensus;
vM;k)( )= §¢,T V,E ¥, and #a: yTKy 1y € R? via consensus;
U= E (K + Eq)—l (KOEB 4 ﬁo) _ Next, we describe calculations which may be done at each
step of a gradient descent algorithm at locatiéhs

Additionally, under the assumptions of Lemma I\ ()

is globally Lipschitz orf2(*), Proposition V.2 Given P € Q*), assume thats; for each
{1,...,m} knowsz; for eachi ¢ R k+1)(],P) and
results of Proposition V.1. Aft@rexecuhons of JOR, and
p? of consensus$; has access to,

1 k+1 . .
Proposition IV.6 Under the assumptions of Lemma IV.3#5: col; (FK™) € R, i€ Ry (), P) via JOR;
A®) is 1 on Q®) and theith component of its gradient is #6: E € RP*? via consensus; i
< After these computations; can calculate and V;E,
= P) and subsequently®) and V;¢(*) at P for each robot in
v A® (p) = 2P / / VoM ((s,t),P) dtds+ & :
BV =0 Lo Jp Vi (80 F) (ic{L,....n} |y € V,(Q)).

~(k
+ W()(P/ / ") ((s,1), P)) dt ds. VI. DISTRIBUTED OPTIMIZATION OF THE AGGREGATE
Vi(Q) AVERAGE PREDICTIVE VARIANCE

We are finally ready to state the smoothness properties f?'re
A®) and provide an explicit expression for its gradient.

Additionally, under the assumptions of Lemma IVM4*) is Here we outline a distributed version of the projected
globally Lipschitz or2(*). gradient descent algorithm (see, e.g. [19]), which is guara
teed to converge to a stationary point.4f*) on Q(*), For
V. DISTRIBUTED COMPUTATION OF AGGREGATE convenience, leP; : R x D" — F(D) map a step size and

AVERAGE PREDICTION VARIANCE AND ITS GRADIENT configuration to the set of next locations calculatedyy
In this section, we substantiate our assertion that the ) -
aggregate average prediction variance and its gradient arel’j (@, P) = {prOJQi (pi +aViA(P)> J
distributed over the network/. Smc_gV(Q) is a partmon foreachi s.t. d (p;, V;(Q)) < r+umax+w}-
of the physical space, we may partition all sample locations



Letd; : R x D" — Ry( denote the total distance traveledagents in its Voronoi cell at timestép-1. NodeS; transmits

by robots entering/; (@), i.e.,
dj(a,P)= > llprojg, (pi +aViA(P)) - pil®

i€{1,...,n} such that
projg, (pi+aViA(P))eV;(Q)

pi(k + 1) to robot R;, which then moves to the location
between timesteps. The overall algorithm is in Table II.

Proposition VI.1 The DISTRIBUTED PROJECTED GRADI-
ENT DESCENT ALGORITHM is distributed over the net-

Globally, let P’ : R x D" — D", P'(a, P) = projo(P +  work A/. Moreover, under the assumptions of Lemma IV.4,
aV.A(P)). Table | describes a distributed line search Withyny execution is such that the robots do not collide and,
a starting position of? € €. The line search starts with a 4; each timestep after the first, measurements are taken at

factor amax Which scales the smallest nonzero partiadi{Qy,

ensuring all robots with nonzero partial derivatives carveno

the maximum distance,
Umax

min{[|V;A(P)|| ViA(P) # 0}

(6)

Omax =

Name: DISTRIBUTED LINE SEARCH ALGORITHM
Goal: Compute step size for gradient descent4f”
Input: Configuration,P = (p1,...,pn) € D"
Assumes: (i) Connected network of static nodes
(i) S; knowsp;, A% (P), v, AR (P) and
for each robot within communication range
(iii) S; knows items#3 and#4 from Proposi-
tion V.1, andy(*®
(iv) Shrinkage factorr and tolerance < (0, 1)
known a priori by all static nodes
Output: Step sizer € R.
Initialization
1: S4,...,Sn, calculateamax, Cf. (6) via a consensus algorithm
Forj € {1,...,m}, nodesS; executes concurrently
1. o = max
2: repeat

3: calculatesd; ga, P)?

calculatesp*) (Pj(«, P)) according to Proposition V.2
calculatesA'™) (P}(a, P))
execute consensus algorithm to calculate the following:

o a A

1O (o) = S A 0 )

|P — P'(a, P)|* = Zdj (o, P)?

7. v="2|P—P(a,P)’+AY(P(a, P)) - AP (P)
8: if v > 0then

9: o = QaT

10: until » <0

TABLE |
DISTRIBUTED LINE SEARCH ALGORITHM.

stationary configurations oP — A*)(P) over Q).

The proposed algorithm is robust to agent failures. If an
agent stops sending position updates, it ceases to re@ive n
control vectors. The rest of the network continues opegatin
with the available resources and will eventually sample the
areas previously covered by the failing agents.

A. Simulations

We show here an implementation of thaSDRIBUTED
PROJECTED GRADIENT DESCENT ALGORITHM with the
following parameters: m 5 static nodes,n = 20
robotic agents, and the convex polygd? with ver-
tices {(0,.1), (2.5,.1), (3.45,1.6), (3.5,1.7), (3.45,1.8),
(2.7,2.2), (1,2.4), (0.2,1.3)}. We used the separable co-
variance function defined b¥ov[Z(s1,t1), Z(s2,t2)] =
Ctrunc(||s1 — s21],0.3)Crunc([t1 — 2|, 3.5), where

—15(%)2 if § <
Ctrunc(5; 7’) = {e o= T.’
0 otherwise

While the covariance function is naf' everywhere, the
difference lies within the error margin of the simulation.
We usew = 0.02 and umax = 0.3. The values of our
hyperparameters wete= 0.1, ¢ = 2, 5o = 0, andK, = I.

We simulated the sampled data by drawing random variables
from the distributionN (3, 05K, ), whereoj = -2, the
prior mean ofo, and K, is the correlation matrix of; .

For the mean regression functioris we usedf(z,y,t)
(1,z,y)T. To illustrate the robustness to failurB, ceased
communications after timestely and R after timestepd.
Figure 1 shows the trajectories taken by the robots. This

(b)

() (c)

We are ready to present our technique for a greedy

optimization algorithm. At timestej, the nodes follow a

gradient descent algorithm to define a sequence of config?sf‘f

rations,{P,'}, | € N, such thatP] is P*) € D", the vector
of current spatial locations of the robotic agents and

PZT—H = projq (PlT — onfl(PlT)) , @ € R>o,
wherea is chosen via DSTRIBUTED LINE SEARCHALGO-
RITHM. When |A®) (Pf ) — A® (P = 0, the algorithm
terminates, and the nodes set**!) = P . By the end

Fig. 1. (a) Trajectories of all robots, (b) two representatobot trajectories

d (c) evolution of the objective function. The filled sqemrepresent the

atic) positions of the nodes, and the filled triangleswsthioe starting
positions of the robots. The X’s represent the positionshef tivo robots

who dropped communication.

example is representative of cases for which the data sample
lie within a reasonable range of the predictive model. In
the cases where the samples do not match the model, the
surface ofA*) is relatively flat, signifying that the amount of
information to be gained is not significantly different wihet

of this calculation, each node knows the identity of robotithe agents move or not. As information is a model-dependant



Name:

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

Goal: Find a local minimum of4®) within Q).
Assumes: (i) Connected network of static computing nodes and mobile robotic seagiegts

(i) Static nodes deployed oveéD such thatR > max;eq,...,

configurationP*) e D"

(iii) Line search shrinkage factar and tolerance valué € (0, 1) known a priori by all nodes

(iv) A termination marker known to all nodes and robots which may bé temark the end of a gradient descent loo
Uses: (i) Each node uses the temporary vectdts, respectivelyPrex: to hold the configuration at the current, respective

next step of the gradient projection algorithm. For ease of expositiomseelobal notation although; only calculates
and uses the parts of these vectors which correspond to agentstiguwighin communication range.

m} {CR(Vi(Q))} + 7 + umax, robotic agents in initial

<~

At time k € Z>o, nodesS; executes:
1 setsReov(j) = {Ri | d(pi(k), V;(Q)) <7}
: collects initial samples and locations froRy for eachi € Reov(7).
: computes firstd"” (P*)) and thenA™ (P")) via consensus
. setsPrext = P
repeat
sets Pour = Prex(j) and calculates- VA (Peur)
transmits vectoi/; A'" (Puy) to all robots inReov(5)
collects sumv; A®) (P.) from all robots in Reov(5)
runs DSTRIBUTED LINE SEARCH ALGORITHM at P t0 geta
sets Prext = FPeur + QVA(IC) (Pcur)
calculates A (Prex) — A® (Peyr)| from known quantities
- until A% (Prex) — A® ()| = 0
. setsP*+1) = P, and sends next position to robots i (Q)

©O N Ok W

[N
W N RO

Attime k € Z>o, robot R; executes:
1: takes measurement pt(k)

2: setsSeov(i) = {55 | d(pi(k),V;(Q)) <r}

3: sends measurement and position to all nodesdf(7)
4: repeat }

5:  receivesV; A" (P") from nodes inScov(i)

6: calculates sunv; A (P™)

7. sendsV; A® (P™) to all nodes inScov(i)

8: until receives termination marker from any node
9: receives next locatiop; (k + 1)

10: moves top;(k + 1).

TABLE I

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

guantity, this is not surprising. Furthermore, if the mouel
too far off, the approximatiorp =~ ¢ is very bad.

(4]

[5]
VII. CONCLUSIONS AND FUTURE WORK

We have considered a network of static computing nodegs]
and mobile robotic sensing platforms taking measurements
of a time-varying random process with covariance known ug’
to a scaling parameter. We have used a Bayesian approacIQ],
treating the field as a spatiotemporal Gaussian random pro-
cess, and developed a novel iterative approach to caleglati
the variance of the posterior predictive distribution. ngsi [
this sequential formulation, we have developed a projected
gradient descent algorithm which is distributed over the
network of nodes and robots. Future work will focus on theol0]
retical guarantees on the accuracy of the approximatidi
and on the robustness to failure of the proposed coordimatio
algorithm, the quantification of the communication require[11]
ments of the proposed strategy, and software implementatio
of the approach in several illustrative scenarios. [12]
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