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Abstract— This paper considers a network composed of Statement of contributiondMe consider a robotic network
robotic agents and static nodes performing spatial estimation of comprised of static nodes and mobile sensor agents. This
a dynamic physical process. The physical process is modeled asqmpination allows us to distribute the burden associated

a spatiotemporal random field with finite spatial correlation ith . icati d i Th .
range. We propose a distributed coordination algorithm to with sensing, communication, and computing. 1he environ-

optimize data acquisition across time. The robotic agents take Ment is partitioned into regions, and each static node is
measurements of the process and relay them to the static nodes. responsible of maintaining an approximation of the spatial
The static nodes collectively compute directions of maximum field on its region. The nodes are deployed so that their
descent of the estimation uncertainty, and relay them back to 4 munication topology is connected, and any robotic agent

the robotic agents. The technical approach combines tools from icate to at least d . . Th
geostatistics, parallel computing, and systems and control. We can communicate to at least one node at any given time. The

illustrate the soundness of the algorithm in simulation. robots are responsible for taking measurements of the field
and relaying them back to the nearest nodes.
|. INTRODUCTION The main contribution of this paper is the design of a

Problem statementThis paper considers a network ofdistributed coordination algorithm to optimally sample- dy
static nodes and robotic sensors taking sequential meaamic physical processes modeled as spatiotemporal random
surements of a dynamic physical process. We model tHields. As a criterion for optimality, we consider the spa-
underlying process as a spatiotemporal random field. Otiptemporal average of the kriging variance. This functiais
objective is to determine trajectories for the robots whicithe natural interpretation of an aggregate objective fonct
optimize data acquisition in order to best estimate the .fieldhat measures the uncertainty about the knowledge of the
This problem has applications in environmental monitoringandom field. Under the assumption of a finite correlation
oceanographic surveying, and atmospheric sampling. range in space, we provide an upper bound on the kriging

Literature review: Kriging [1], [2] is a standard geo- variance, which in turn induces an upper bound on our
statistical technique for estimating spatiotemporal mand objective function amenable to distributed optimizatidhe
fields. Given a set of point measurements, kriging producegatic nodes compute the gradient of the approximate agerag
a predictor of the field throughout the environment, alondriging variance and relay simple control vectors back ® th
with a measure of the associated uncertainty. Under certaipbots. This guarantees that the next measurements are take
conditions on the covariance, data taken far from the prediat positions which decrease the approximate overall uncer-
tion site have very little impact on the kriging predictoi.[3 tainty of the estimation. We do not pay attention to how the
When the spatiotemporal random field does not have a finigstimation is actually implemented, but focus on mininggin
covariance range, an approximation may be generated \fze uncertainty of the estimate so that data acquisition is
covariance tapering [4]. The optimal design literature, [5]optimized. Proofs are omitted and will appear elsewhere.

[6] deals with the problem of determining sets of locations Organization: Section Il introduces basic notation and
where data should be taken in order to optimize the resultirigols from constrained optimization and kriging estimatio
estimation. The work [7] examines the effect that adding anBection Il introduces the robotic network model and dstail
deleting measurement locations has on the kriging varianddéae overall network objective. The following two sections
and how this relates to optimal design. present important ingredients in the ulterior algorithreige.

The field of cooperative control for mobile sensor netSection IV specifies the regions of allowed motion for the
works has received much recent attention. [8] introduces pegobotic agents at each step, while Section V describes an
formance metrics for oceanographic surveys by autonomougper bound of the spatiotemporal average of the kriging
underwater vehicles. [9] considers a network of robotizariance. Section VI presents the distributed coordimatio
sensors with centralized control estimating a static figddnf algorithm that the robotic network executes to optimizeadat
measurements with both sensing and localization errof. [L@cquisition, along with some illustrative simulations.cSe
considers choosing the optimal sampling trajectories frotion VII contains our conclusions and ideas for future work.
a parameterized set of paths. In [11], [12] the focus is
on estimating deterministic fields when the measurements
taken by individual robots are uncorrelated. [13] discasse Let R, R.o, and R, denote the set of reals, positive

Il. PRELIMINARY NOTIONS

the tracking of level curves in a noisy scalar field. reals and nonnegative reals, respectively. Foe R? and
r € Ry, let B(p,r) be theclosed ballof radiusr centered
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by 0S the boundary of a sei. Thee-contractionof a setS, with meany, and § a zero-mean second-order stationary
with e > 0, isthe setS. = {¢ € S| d(¢q,05) > €}. Aconvex random process with a known covariance functiéh :
polytopeis the convex hull of a finite point set. For a boundedD, x D, — R that has dinite spatial ranger € R,

setS C ]Rd., we letCR(S) denote theircumradiusof S, that C ((s1,t1), (52,t2)) =0, if ||s2 — s1 > r.
is, the radius of the smallest-radidsphere enclosing. We
denote by (S) the collection of finite subsets df. We assume the datg, = y(h) = (Y (h1),...,Y(l))", are
We consider a compact and connected®et R?, d € N.  corrupted with errors,
Since we deal with a process which varies over time, let y (p,) = 7(h;) + ¢;, ¢ 9N (0,02),0.€R. (3)
D. = D x R denote the space of points ovBrand time.
The Voronoi partition V(s) = (Vi(s),...,V,.(s)) of D  The constant variance in measurement error models idéntica
generated by the points= (sy,...,s,) is defined by sensors. The covariance betwééth;) andY (h;) is written

Vi(s) ={a € D|llg—sil <llg—ssll, Vi # i}

EachV;(s) is called avoronoi cell Two pointss; ands; are
Voronoi neighborgf their Voronoi cells share a boundary.

C(hi, hj) + 02, ifi=j
Cov[Y (h;), Y (hy)] = v Te ’
ovl¥ (ha), ¥ (hy)] {C(hi,hj), otherwise
Let ¢ : D, x D! — R! denote the vector of covariances
A. Projected gradient descent betweenZ(h), h € D, andy, and letY : D! — R
Next, we describe the constrained optimization techniquéenote the covariance maitrix gf _
known as projected gradient descent [14] to iteratively find Kriging aims to minimize the error variance,
the minima of an objective functiof’ : R — Rx,. Let Q2 0*(Z(h); h) = Var [Z(h) — pred Z(h); k)],  (4)
denote a nonempty, closed, and convex subsit'afm € N. . :
Assume thatVF' is globally Lipschitz on{2. Let projg, : ?f thedpredlctor, pregZ(h)l,h), .OfMEZ Zt a Iocatlonh.e D.el
R™ — € denote the orthogonal projection onto the Qet rom data measured at locatio \S We are primarnly
concerned with estimation uncertainty, we omit explicit

projo(z) = arggzin [l —yl|. representation of the predictors themselves (see, e.doi2]
. Y _ o details). Assuming: is known, thesimple kriging predictor
Consider a sequender;} € €2, k € N, which satisfies sk (h; k), minimizes (4) among unbiased predictors of the
Tri1 = projg (xx — axVF(z1)), 71 € (1) form predZ(h); h) = S, ;Y (h;)+k. The error variance
where the step sizey;, is chosen according to the of Zsw(hs ) TS,
I INE 2 R _ Ts—1
SEARCH ALGORITHM described in Table |, evaluated at= osk(Z(h);h) = 07(h) —c"Ec. ®)
Lk Here o2 (h) = C(h, h) denotes the variance ¢f(h), while
cX " 'c represents the variance &g (h; h).
Name: LINE SEARCHALGORITHM Relaxing the assumption thatis known, consider a linear
Goal: Determine step size for algorithm (1) expansionu(h) = f(h)T3, where f = (f1,...,f,)T :
Iput: =~ @ €O D. — RP is known ands = (3 BT ¢ R
Assumes: 7,0 € (0,1), max stepamax € Rxo Fe ' . Ly Pp)
Output: a € Rso is unknown. Theuniversal kriging predictor Zyk (h; k),
- minimizes (4) among all unbiased predictors of the form
; roée;e:tmax pred Z(h); h) = 22:1 ;Y (h;), with error variance,
3. Tnew = Projq (z —aVF(z)) O'SK(Z(h), h) = O'%(h) — cT271c+
4 v= ng—xneWHQ—FF(zneW) — F(x T 1
5 if v 20 then (f . FTE_lc) (FTE—lF) (f _ FTE_lc) . (6)
6: a=ar
7 until v <0 where F denotes the matrix whoséh row is f(h;)7”.

Unless stated otherwise, the results make no distinction
TABLE | between simple and universal kriging. To simplify notation
LINE SEARCH ALGORITHM. we drop the subscript and ugeto denote both estimators,
With 6 > 0, the LINE SEARCHALGORITHM must terminate with associated variance?. Since o2 is invariant under
in finite time. Increasing decreases the number of iterationspermutations, we evaluate it at a set, instead of at a tuple.
The Armijo condition (stepr) ensures that the decrease inWe also denote by the estimate of the noisy measurement
F is commensurate with the magnitude of its gradient. A, identical toZ except in the extra constant temn.
sequence{x }%° , satisfying these requirements converges
in the Iimei{t as}llj: Lo to stationary points of* [14]. I1l. PROBLEM STATEMENT
A. Robotic sensor network model

Consider a groug Sy, ...,S,} of m € N static nodes
th limited communication radiusk € R+, deployed in

B. Estimation via Kriging interpolation
This section reviews the geostatistical kriging procedurﬁli
for estimating spatial processes, see e.g., [1], [2]. Warass a convex polytopeD c R? at positionsQ = (g1, - -, qm) €

that the random process is of the form D™, Assume that they are positioned so that each one can
Z(h) = p(h) + 6(h), he€ D, (2)  communicate with its Voronoi neighbors.



In addition to the static nodes, consider a groupV. VORONOI CONTRACTION FOR COLLISION AVOIDANCE

{R1,..., Ra} of n robotic sensor agents. The position of e pegin by specifying the region of allowed movement
roboti € {1,...,n} attimet € R is denoted by;(t) € D.  for the robotic agents. In addition to the maximum velocity
We assume that robots take measurements of the spatial figlgy the requirement of staying withi®, we impose a

at discrete instants of time i~,. Between measurementminimum distance requirement between robots. Beyond the

instants, each robot moves according to the discrete dpsampenefit of collision avoidance, this restriction ensureat th
pi(k+1) = pi(k) + ui(k), even under the assumption of zero sensor error, the kriging
error function is well-defined over the space of possible
where [Ju;]| < umax for some umax € Rxo. The commu-  configurations.
nication radius of the robotic agents is al& Each node Let w € R be a desired buffer width, assumed to be
needs to communicate with any robot which may be withigmall compared to the size . To ensure that the distance
covariance range of the points in its Voronoi region at thgetween two robots is never smaller thanwe introduce a
following timestep. To that end, we assume that contraction of the Voronoi diagram. Consider the locations
R> max {CR(Vi(Q))}+r + tmax (7) P =(p1,-...,pn) Of then robotic agents at thkth timestep.
ietL.m} Let 0¥ ¢ D such thatQ™ = (V;(P)).,/2 N B(ps, tma),
Assume that each robot can sense the positions of amere (V;(P)).,/» denotes thes-contraction ofV;(P). For
other robots within a distance Bfimax. At discrete timesteps, eachj # i € {1,...,n}, we haved(QEk), Qy“)) > w.
each robot communicates the measurement and locatiBatween timesteps andk + 1, we restrictR; to the region
to static nodes within communication range, along witth®) Figure 1 shows an example &? of this set.
the locations of any other sensed robots. The nodes aré
responsible for calculating control-specific informatiand
relaying it back to those robots within communication range
Our implementation does not require direct communication
between robots. We refer to this network model\as
B. The average kriging variance as objective function !
Our objective is to design a strategy to optimize the esti-
mation of Z. We encode this objective into the optimization
of an aggregate function that we describe next. Assume the
experiment has run fotmax € Z>( timesteps and a sequence Fig. 1. Regions{{*'}7_, (dashed) versus Voronoi partition (solid).
of measurements taken at time intervdls ..., kmax}, at
space-time locationd € (D?)*m are available. Consider a Let Q) = [[_, QZ(.’“) C (RYH™ denote the region of
kriging estimationz(h; h) made onD overT = [1,kmay. allowed movement of all robotic agents at timestep Z .

The average error variance 8fh; h) is Note thatQ(*) is closed, bounded, and convex.
A://UQ(Z(S £): ) ds d. V. APPROXIMATE AVERAGE KRIGING VARIANCE N
TJD Here we compute an upper bound on the average kriging

One would like to choose the measurement locations th¥&rfiance. We begin by providing a useful result that isclate
minimize A. Since measurements are taken sequentiallfff€ €ffect of a subset of measurements on the kriging
and each set is restricted to a region nearby the previoydriance. We need the following notat|oln for predicting
measurements, one cannot simply optimize of@f)+m, Y at vectors of locations: giverk; < D, and h, =
Additionally, kmax may not be known. (hat, - ham)T € DY, with g (hy) Nir(ha) = 0, let
Consider, instead, a greedy approach in which we use past §(hy; hi) = 921 = [§(ha1; h1), - .., §(ham; h1)]7,
measurements to choose the positions for the next ones. Let (.. = e
h(=F) ¢ (D) be the vector of measurement location and Ulhai ) =g = y(hz) —dlhai ).
time pairs for timesteps up tb. Let (P, k + 1) denote the Ve are ready to present an upper bound on the error variance.
space-time locations at spatial positiaBs= (p1,...,pn) €
D" and timek + 1. Let A®) : D" — R be defined as, Lemma V.1 (Upper bound on kriging variance) Let h =
(h1, h2) denote a full set of distinct measurement locations,
AR(P) = / / o? (Z(s,t);(h<§k>,(p,k+ 1))) dsdt.  With hy = (hy,... ) € D\ and hy = (hyy1,... hy) €
TJD D, with [ + m = n. Then,
The objective is to choose the set of measurement loca- » Py 2 . i _
tions P to maximally decreased(®). Unfortunately, the (Z(h); ) = Ul(Z(h)’hl) B COV[Z(h’th)’le]'
gradient of A*) cannot be computed in a distributed way Var([ya1] 7 Cov[gar, 2(h; h1)] < 0*(Z(h); ha),
by the static nodes because of the matrix inversions whigfin equality ifCov[Z(h), y(hs)] = 0 = Covly(hy), y(hs)].
depend on all measurement locations. Instead, our approach
is to construct an upper bound 14*) whose gradient is  Note thato?(Z(h); h,) corresponds to the error variance
distributed and design an algorithm to optimize it. of a predictor computed with the information at locatidns



Proposition V.2 (Spatial approximation for distributed For eachi € {1,...,n}, ViAj(P) may be computed
implementation) Define C&++1) : Z>o x D" — F(D.) by by nodej, and thusV;A*) (P) may be computed in a
CY<H (), P) = distributed way on the network of nodes. The next result

characterizes the global Lipschitznessvafi ().
{(s:) € (A9, (PR 4+ 1)) | d(s, V3(@) <7},
, , Proposition V.6 Under the assumptions of Proposition V.5,
i.e., the subset of measurement locations up to timel | 5ke the following additional assumptions,
which are correlated in space to the Voronoi cell of the stati . V., CovZ(pi, k+1), Z(s5, t2)] is globally Lipschitz on

nodej. Letfl;k) : D™ — R be defined by Q® for eachi e (,...,nk;

Ag.’“)(P) — / / o2 (Z(S’t);cs(ﬁk+1)(j’p)> ds dt. « in the universal kriging case, further assume that the
TJIV;(Q) partial derivatives%fj are globally Lipschitz orﬂgk).

ThenA® < 3 A, In addition, equality holds if, for Then the gradien.A*) is globally Lipschitz orf2*).

all j € {1,...,m}, the points in C&**V(j, P) are not

. R VI. OPTIMIZING INFORMATION RETRIEVAL VIA
correlated to other measurement locations outside it.

GRADIENT DESCENT

In this section, we design a coordination algorithm to
follow the gradient ofA(*). We consider a system in which
those Voronoi regiond’;(Q) for which d(p:, V,(Q)) < r. ](caach static n_ode is resp_on_sible for c_alculat_ing controlorsc

: (k) or the robotic agents within the region of influence. We use
Thus the requirement (7) ensures thatcan calculated;™.  yhe formulation of the approximate average error presented
As with 0%, we evaluateAgk) at a set, rather than a tuple. in Proposition V.2, and follow a projected gradient descent
building on Section Il. The current timestef, is held fixed
Remark V.4 (Universal kriging with too few measure- through the section and, to reduce notation, we leave off
ments) It should be noted here that in the universal kriginghe superindex which indicates timestep where unnecessary
case the functiod") is only well-defined if the number of P = (p1,...,p,) denotes the current positions of the robots.
measurement locations available to each node is greater tha = o ) )
or equal to the number of basis functions. In this paper wa- Distributed optimization of the approximate variance
assume that this holds at all times. . Ideally, at thekth timestep, we would like the robots
) i to move to the minimum ofP — A(P). Finding such
Our next step is to characterize th_e smoothness propertisyinimum over the whole region is a difficult problem.
of AW, Let us introduce some notation. FoE {1,...,n},  |nstead, we use a distributed version of the projected gradi
<k+1),. _ <k4+1)(; , descent algorithm, which is guaranteed to converge to a
CS(”' (. P) = CS Uy PYAApis b+ 1D} stationary point. For convenience, we define the following
Define the map<’; : {1,...,m} x D" x Dx T — R and notation. LetP; : R x D" — F(D) map a step size and a
Vi:{1l,...,m} xD— R by configuration to the set of next locations calculateddyy

Cij, P,s,t) = Cov[g((pi, k + 1), CS5(j, P)), Pj(a, P) = {projq, (p: +aViA(P)),

2((s.), €SSV, P, o ronch
oreach: s.t. d (p;, V; <r-+ +wy.

Vitj, P) = Varlg((pi, £ + 1), CS5HV (), ), 4P Q) <7 vt
whereg(h; h) = Y (h) —4(h; h) is a shorthand notation. For tet d{) :tR 9 ?n — R denote the total distance traveled
seDandt €T, letV,;C;(j, P, s,t) andV;V;(j, P) denote y robots entering’;(Q), i.e., _
the partial derivative of”; and V; with respect top;. Next,  d; (o, P) = Z | projg, (pi + oniA(P)) — il
we provide an expression for the gradient4f*). i€{1,...,n} such that

projg, (1071+04V7;A(P))€VJ(Q)

Globally, let P’ : R x D™ — D", P'(a, P) = projo(P +
aV.A(P)). Table Il describes a distributed version of the
LINE SEARCHALGORITHM With a starting position ofP € (.
The line search starts with a facte#,,x which scales the
smallest nonzero partial tamax, €nsuring all robots with

Remark V.3 (Ag.k) may be calculated with local informa-
tion only) The locationp; contributes only taA()(P) in

Proposition V.5 Assume that the covariance Bfis C' with
respect to the spatial position of its arguments. For ursegr
kriging, further assume thafy, ..., f, are C* with respect
to the spatial position of their arguments. Thet®) is C!
on Q*) and theith component of its gradient is

VAR (P) = Z V»fl(.k)(P) nonzero partial derivatives can move the maximum distance,
K3 7 ] ?
j=1
Umax
- (@) Cili P 5,1)* ds dt ViVi(j, P) Ormax = — : : . ®
m@Wm:”&@ " min{||VA(P)|[ [ ViA(P) £ 0}

Vi(j, P)?

2 C;(4, P,s,t)V;C;(j, P,s,t)dsdt .
_ foVj(Q) (J 5,1) G 5:t) ds Lemma VI.1 TheDISTRIBUTED LINE SEARCHALGORITHM IS

Vi(4, P) . equivalent to the.INE SEARCHALGORITHM With F' = A.




Name: DISTRIBUTED LINE SEARCH ALGORITHM B. Simulation results

ﬁgﬁl{. gnmf{)glﬁfatsi(t;p; 'ie(;?r gra(;:egl tedgsfean We performed simulations with the following parameters:

Assumes: (i) Connected network of static nodes m =5 static nodesp = 10 robotic agents, and the domain
(i) S; knows p;, ViA and Q; for each robot| D = {(0,.1), (2.5,.1), (3.45,1.6), (3.5,1.7), (3.45,1.8),
within communication range (2.7,2.2), (1,2.4), (0.2,1.3)}. We used the separable co-

(iii) Step sizer and tolerancé € (0,1) known a varian function fin 7 7 _
priori by all static nodes ariance function defined byCov[Z(s1,t1), Z(s2, t2)]

Output: Step sizep € R>o C’[ap(”sl — SQH, 0'4)Ctap(‘t1 — t2|, 95)7 where
-3 36 3%\ i
Initialization Crapl(0,7) = er ( —a T W) ifo <,
1: S1,...,Sm calculateamax cf. (8) via a consensus algorithm 0 otherwise
Forj € {1,...,m}, nodesS; executes concurrently This is a tapered exponential function belonging to thesclas
1 o= amax of covariance functions suggested in [4].

2: repeat ~ ~
3. calculatesd; (Pj(a, P)) — A;(P) andd; (e, P)?
4:  execute consensus algorithm to get the following:

We compared the performance of our algorithm against
two naive data collection strategies, using the actualameer
error varianceA*) as a metric. In the first, the robots
5 5 i = i ionless in an incenter Voronoi configuration
A(P'(a, P)) — A(P) = Y " A; (Pj(er, P)) — A;(P remained motion ) ’

(P(e P)) () ; i (P, 1)) 1(P) i.e., a configuration such that each robot is located at the
incenter of its own Voronoi cell. Next we tried a lawnmower

| P - P’(a,P)H2 = Zdj (o, P)? approach. We divided the environment vertically among the
j=1 robots, and had them march back and forth along horizontal
5 v=2|P—P(aP)+AP(a,P)) — AP) trajectories, avoiding the boundary of the region. Finaifg
6. if v> 0 then ran theDISTRIBUTED PROJECTEDGRADIENT DESCENTALGO-
7 a=ar rRiTHM from the same starting position as the lawnmower
8: until v <0 approach. Each experiment ran flaf.x = 20 steps. Agent
R, stopped transmitting measurements at time 3, while
TABLE Il Ry stopped at: = 5. Figure 2 shows the trajectory traveled
DISTRIBUTED L INE SEARCH ALGORITHM. by the gradient descent algorithm. Note that the two agents

We are ready to present our technique for a greedy
optimization algorithm. At timestej, the nodes follow a
gradient descent algorithm to define a sequence of configu-
rations, { P{}, v € N, such thatP] = P®*) and

P, = projq (PWT _ onfl(PWT)) . o € R,
where o is chosen via theDISTRIBUTED LINE SEARCH AL-
coriThM. When [A(P], ) — A(P})| = 0, the algorithm
terminates, and the nodes sef*+!) = P!.,. By the end
of this calculation, each node knows the identity of robotic
agents that belong to its Voronoi cell at timestep 1. Node
Sj transmitsp; (k + 1) to robot R;, which then moves to Fig. 2. Trajectory traced by the projected gradient desakgurithm. The

that location between timesteps. The overall gradiental®gsc squares represent the (static) positions of the no@eswith the region

algorithm is summarized in Table IIl. partitioned according ta/(Q). The triangles represent the locations at
which measurements were taken, the circles represent measiselnst

(not incorporated into the calculations).

Proposition VI.2 The DISTRIBUTED PROJECTED GRADIENT ) )
DESCENTALGORITHM is distributed over\'. Moreover, under Which stopped sending measurements ceased to move. The

the assumptions of Proposition V.6, any execution is suath trother agents avoided colliding with them, but filled in ardun
. the robots do not collide them due to the gradient. Figure 3 shows a plot of the

« at each timestep after the first, measurements are taken OrS ask increases froml 10 kma It can be seen that

at stationary configurations gf — A(’“)(P) overQ () e gradient algorithm has smaller error than either thiicsta
y 9 " configuration or the lawnmower-type approach.

Remark V1.3 (Robustness to agent failures)'he proposed VIl. CONCLUSIONS AND FUTURE WORK

algorithm is robust to agent failures. If an agent stops®@nd  We have considered a network composed of robotic sen-
pOSitiOﬂ information to the nodes, it ceases to receive Ne¥yrs and static nodes performing spatia| estimation ta8ks.

control vectors and remains in place. Meanwhile, the regfayve focused on the problem of optimizing data acquisition
of the network carries on its operation with the availablen order to better estimate a spatiotemporal random field.
resources and will eventually take measurements in thesarege have used the average error variance of the kriging
previously covered by the failing agents. * estimator as a metric for the design of optimal measurement



Name:

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

Goal: Find a local minimum ofA®) within Q).
Assumes: (i) Connected network of static computing nodes and mobile robotic seagiegts
(ii) Static nodes deployed ovéP such thatR > max;cq1,...,m} {CR(Vi(Q))} + 7 + tmax
(iii) Step sizer and tolerance valué € (0,1) known a priori by all nodes (iv) Some termination marker known to al
U nodes and robots which may be sent to mark the end of a gradienintiésop.
ses:

(i) Each node uses the temporary vectéts:, respectivelyPrext to hold the configuration at the current, respectively
next step of the gradient projection algorithm. For ease of expositioms&eglobal notation although; only calculates
and uses the parts of these vectors which correspond to agentstiguwighin communication range.

At time k € Z>, nodesS; executes:

Attime k € Z>o, robot R; executes:

1: setsSeon(i) = {55 | d(pi(k),V5(Q)) < r}

2: takes measurement at(k)

3: sends measurement and position to all nodesif7)

4: repeat 3

5. receives vectorWiA;k)(P““)) from all nodes in
Scov(’i) _

6: calculates sumv; A (P™)

7:  sendsV,;A® (P®) to all nodes inSeov(i)

8: until receives termination marker from any node

9: receives next locatiop; (k + 1)

10: moves top; (k + 1).

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

1 setsReov(j) = {Ri | d(pi(k), V;(Q)) < 1} )
2: collects measurements and locations from all robot&dg(;)
3: SetSPnex[ = P<k)
4: repeat B
5:  setsPur = Prea(j) and calculates-V.AY (Puy)
6: transmits vectorV¢A§k)(Pcur) to all robots inRcov(j)
7:  collects sumv; A®) (Py) from all robots inReov(5)
8 runs DSTRIBUTED LINE SEARCHALGORITHM at Py to geta
9.  setsPhext = Peur + av-{l(k) (Peur)
10:  calculates A(Prext) — A(Feur)| via consensus
11: Until |A(Pnex[) — A(Pcur)‘ =0
12: setsP*+Y) = Py
13: sends a termination marker to all robots currentiWi{Q)
14: conveysp;(k + 1) to robots that currently belong tg; (Q)
TABLE Il
wol et tea, R
* N 4., ..
98 v, S, [1]
* %
96 * - [2]
94 * (R [3]
92 e MR [4]
S
5 10 15 20
(5]
Fig. 3. Average errors up to thigh step of the static (triangle), lawnmower
(diamond), and gradient descent (star) approaches. (6]

trajectories of the robots. In our approach, mobile robotd7]
take measurements of the environment and static nodes are
responsible for collecting the measurements and computing)
locally optimal configurations for estimation. The design
of the overall coordination algorithm combines Voronoi
partitions, distributed projected gradient descent, aigirlg 9]
interpolation technique. We have compared in simulations
the performance of our approach against a static network
configuration and a lawnmower-based approach. [10]
Future work will focus on: the investigation of theoretical
guarantees on the accuracy of the approximatidf), and
on the performance and robustness to failure of the proposgd]
coordination algorithm; the development of statistically
sound techniques for the case when, in universal kriging, am,
particular node only has a small humber of measurements
available to it; and the quantification of the communication
requirements of the proposed approach. [
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