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Abstract— This paper considers a network composed of
robotic agents and static nodes performing spatial estimation of
a dynamic physical process. The physical process is modeled as
a spatiotemporal random field with finite spatial correlation
range. We propose a distributed coordination algorithm to
optimize data acquisition across time. The robotic agents take
measurements of the process and relay them to the static nodes.
The static nodes collectively compute directions of maximum
descent of the estimation uncertainty, and relay them back to
the robotic agents. The technical approach combines tools from
geostatistics, parallel computing, and systems and control. We
illustrate the soundness of the algorithm in simulation.

I. I NTRODUCTION

Problem statement:This paper considers a network of
static nodes and robotic sensors taking sequential mea-
surements of a dynamic physical process. We model the
underlying process as a spatiotemporal random field. Our
objective is to determine trajectories for the robots which
optimize data acquisition in order to best estimate the field.
This problem has applications in environmental monitoring,
oceanographic surveying, and atmospheric sampling.

Literature review: Kriging [1], [2] is a standard geo-
statistical technique for estimating spatiotemporal random
fields. Given a set of point measurements, kriging produces
a predictor of the field throughout the environment, along
with a measure of the associated uncertainty. Under certain
conditions on the covariance, data taken far from the predic-
tion site have very little impact on the kriging predictor [3].
When the spatiotemporal random field does not have a finite
covariance range, an approximation may be generated via
covariance tapering [4]. The optimal design literature [5],
[6] deals with the problem of determining sets of locations
where data should be taken in order to optimize the resulting
estimation. The work [7] examines the effect that adding and
deleting measurement locations has on the kriging variance,
and how this relates to optimal design.

The field of cooperative control for mobile sensor net-
works has received much recent attention. [8] introduces per-
formance metrics for oceanographic surveys by autonomous
underwater vehicles. [9] considers a network of robotic
sensors with centralized control estimating a static field from
measurements with both sensing and localization error. [10]
considers choosing the optimal sampling trajectories from
a parameterized set of paths. In [11], [12] the focus is
on estimating deterministic fields when the measurements
taken by individual robots are uncorrelated. [13] discusses
the tracking of level curves in a noisy scalar field.
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Statement of contributions:We consider a robotic network
comprised of static nodes and mobile sensor agents. This
combination allows us to distribute the burden associated
with sensing, communication, and computing. The environ-
ment is partitioned into regions, and each static node is
responsible of maintaining an approximation of the spatial
field on its region. The nodes are deployed so that their
communication topology is connected, and any robotic agent
can communicate to at least one node at any given time. The
robots are responsible for taking measurements of the field
and relaying them back to the nearest nodes.

The main contribution of this paper is the design of a
distributed coordination algorithm to optimally sample dy-
namic physical processes modeled as spatiotemporal random
fields. As a criterion for optimality, we consider the spa-
tiotemporal average of the kriging variance. This functionhas
the natural interpretation of an aggregate objective function
that measures the uncertainty about the knowledge of the
random field. Under the assumption of a finite correlation
range in space, we provide an upper bound on the kriging
variance, which in turn induces an upper bound on our
objective function amenable to distributed optimization.The
static nodes compute the gradient of the approximate average
kriging variance and relay simple control vectors back to the
robots. This guarantees that the next measurements are taken
at positions which decrease the approximate overall uncer-
tainty of the estimation. We do not pay attention to how the
estimation is actually implemented, but focus on minimizing
the uncertainty of the estimate so that data acquisition is
optimized. Proofs are omitted and will appear elsewhere.

Organization: Section II introduces basic notation and
tools from constrained optimization and kriging estimation.
Section III introduces the robotic network model and details
the overall network objective. The following two sections
present important ingredients in the ulterior algorithm design.
Section IV specifies the regions of allowed motion for the
robotic agents at each step, while Section V describes an
upper bound of the spatiotemporal average of the kriging
variance. Section VI presents the distributed coordination
algorithm that the robotic network executes to optimize data
acquisition, along with some illustrative simulations. Sec-
tion VII contains our conclusions and ideas for future work.

II. PRELIMINARY NOTIONS

Let R, R>0, and R≥0 denote the set of reals, positive
reals and nonnegative reals, respectively. Forp ∈ R

d and
r ∈ R>0, let B(p, r) be theclosed ballof radiusr centered
at p. Given two vectorsu = (u1, . . . , ua)T , a ∈ Z>0,
and v = (v1, . . . , vb)

T , b ∈ Z>0, we denote by(u, v) its
concatenation(u, v) = (u1, . . . , ua, v1, . . . , vb)

T . We denote



by ∂S the boundary of a setS. Theǫ-contractionof a setS,
with ǫ > 0, is the setSǫ = {q ∈ S | d(q, ∂S) ≥ ǫ}. A convex
polytopeis the convex hull of a finite point set. For a bounded
setS ⊂ R

d, we letCR(S) denote thecircumradiusof S, that
is, the radius of the smallest-radiusd-sphere enclosingS. We
denote byF(S) the collection of finite subsets ofS.

We consider a compact and connected setD ⊂ R
d, d ∈ N.

Since we deal with a process which varies over time, let
De = D × R denote the space of points overD and time.

The Voronoi partition V(s) = (V1(s), . . . , Vn(s)) of D
generated by the pointss = (s1, . . . , sn) is defined by

Vi(s) = {q ∈ D | ‖q − si‖ ≤ ‖q − sj‖, ∀j 6= i} .

EachVi(s) is called aVoronoi cell. Two pointssi andsj are
Voronoi neighborsif their Voronoi cells share a boundary.

A. Projected gradient descent

Next, we describe the constrained optimization technique
known as projected gradient descent [14] to iteratively find
the minima of an objective functionF : R

m → R≥0. Let Ω
denote a nonempty, closed, and convex subset ofR

m, m ∈ N.
Assume that∇F is globally Lipschitz onΩ. Let projΩ :
R

m → Ω denote the orthogonal projection onto the setΩ,

projΩ(x) = argmin
y∈Ω

‖x − y‖.

Consider a sequence{xk} ∈ Ω, k ∈ N, which satisfies

xk+1 = projΩ (xk − ak∇F (xk)) , x1 ∈ Ω, (1)

where the step size,ak, is chosen according to theL INE

SEARCH ALGORITHM described in Table I, evaluated atx =
xk.

Name: L INE SEARCH ALGORITHM
Goal: Determine step size for algorithm (1)
Input: x ∈ Ω
Assumes: τ, θ ∈ (0, 1), max stepαmax ∈ R>0

Output: α ∈ R≥0

1: α = αmax

2: repeat
3: xnew = projΩ (x − α∇F (x))
4: ν = θ

α
‖x − xnew‖

2 + F (xnew) − F (x)
5: if ν > 0 then
6: α = ατ
7: until ν ≤ 0

TABLE I

L INE SEARCH ALGORITHM.

With θ > 0, the L INE SEARCH ALGORITHM must terminate
in finite time. Increasingθ decreases the number of iterations.
The Armijo condition (step7) ensures that the decrease in
F is commensurate with the magnitude of its gradient. A
sequence{xk}∞k=1 satisfying these requirements converges
in the limit ask → ∞ to stationary points ofF [14].

B. Estimation via Kriging interpolation

This section reviews the geostatistical kriging procedure
for estimating spatial processes, see e.g., [1], [2]. We assume
that the random processZ is of the form

Z(h) = µ(h) + δ(h), h ∈ De, (2)

with mean µ, and δ a zero-mean second-order stationary
random process with a known covariance functionC :
De ×De → R≥0 that has afinite spatial ranger ∈ R>0,

C ((s1, t1), (s2, t2)) = 0, if ‖s2 − s1‖ > r.

We assume the data,y = y(h) = (Y (h1), . . . , Y (hl))
T , are

corrupted with errors,

Y (hi) = Z(hi) + ǫi, ǫi
iid
∼ N

(

0, σ2
ǫ

)

, σǫ ∈ R. (3)

The constant variance in measurement error models identical
sensors. The covariance betweenY (hi) andY (hj) is written

Cov[Y (hi), Y (hj)] =

{

C(hi, hj) + σ2
ǫ , if i = j,

C(hi, hj), otherwise.

Let c : De × Dl
e → R

l denote the vector of covariances
betweenZ(h), h ∈ De and y, and let Σ : Dl

e → R
l×l

denote the covariance matrix ofy.
Kriging aims to minimize the error variance,

σ2(Z(h);h) = Var [Z(h) − pred(Z(h);h)] , (4)

of the predictor, pred(Z(h);h), of Z at a locationh ∈ De

from data measured at locationsh. As we are primarily
concerned with estimation uncertainty, we omit explicit
representation of the predictors themselves (see, e.g. [2]for
details). Assumingµ is known, thesimple kriging predictor,
ẑSK(h;h), minimizes (4) among unbiased predictors of the
form pred(Z(h);h) =

∑l
i=1 αiY (hi)+k. The error variance

of ẑSK(h;h) is,

σ2
SK(Z(h);h) = σ2

Z(h) − cT
Σ

−1c. (5)

Hereσ2
Z(h) = C(h, h) denotes the variance ofZ(h), while

cΣ−1c represents the variance ofẑSK(h;h).
Relaxing the assumption thatµ is known, consider a linear

expansionµ(h) = f(h)T β, where f = (f1, . . . , fp)
T :

De → R
p is known and β = (β1, . . . , βp)

T ∈ R
p

is unknown. Theuniversal kriging predictor, ẑUK(h;h),
minimizes (4) among all unbiased predictors of the form
pred(Z(h);h) =

∑l
i=1 αiY (hi), with error variance,

σ2
UK(Z(h);h) = σ2

Z(h) − cT
Σ

−1c+
(

f − F T
Σ

−1c
)T(

F T
Σ

−1F
)−1(

f − F T
Σ

−1c
)

, (6)

where F denotes the matrix whoseith row is f(hi)
T .

Unless stated otherwise, the results make no distinction
between simple and universal kriging. To simplify notation,
we drop the subscript and usêz to denote both estimators,
with associated varianceσ2. Since σ2 is invariant under
permutations, we evaluate it at a set, instead of at a tuple.
We also denote bŷy the estimate of the noisy measurement
Y , identical toẑ except in the extra constant termσ2

ǫ .

III. PROBLEM STATEMENT

A. Robotic sensor network model

Consider a group{S1, . . . , Sm} of m ∈ N static nodes
with limited communication radius,R ∈ R>0, deployed in
a convex polytopeD ⊂ R

d at positionsQ = (q1, . . . , qm) ∈
Dm. Assume that they are positioned so that each one can
communicate with its Voronoi neighbors.



In addition to the static nodes, consider a group
{R1, . . . , Rn} of n robotic sensor agents. The position of
robot i ∈ {1, . . . , n} at time t ∈ R is denoted bypi(t) ∈ D.
We assume that robots take measurements of the spatial field
at discrete instants of time inZ≥0. Between measurement
instants, each robot moves according to the discrete dynamics

pi(k + 1) = pi(k) + ui(k),

where ‖ui‖ ≤ umax for someumax ∈ R>0. The commu-
nication radius of the robotic agents is alsoR. Each node
needs to communicate with any robot which may be within
covariance range of the points in its Voronoi region at the
following timestep. To that end, we assume that

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + r + umax. (7)

Assume that each robot can sense the positions of any
other robots within a distance of2umax. At discrete timesteps,
each robot communicates the measurement and location
to static nodes within communication range, along with
the locations of any other sensed robots. The nodes are
responsible for calculating control-specific informationand
relaying it back to those robots within communication range.
Our implementation does not require direct communication
between robots. We refer to this network model asN .

B. The average kriging variance as objective function

Our objective is to design a strategy to optimize the esti-
mation ofZ. We encode this objective into the optimization
of an aggregate function that we describe next. Assume the
experiment has run forkmax ∈ Z≥0 timesteps and a sequence
of measurements taken at time intervals{1, . . . , kmax}, at
space-time locationsh ∈ (Dn

e )kmax are available. Consider a
kriging estimationẑ(h;h) made onD over T = [1, kmax].
The average error variance ofẑ(h;h) is

A =

∫

T

∫

D

σ2(Z(s, t);h) ds dt.

One would like to choose the measurement locations that
minimize A. Since measurements are taken sequentially,
and each set is restricted to a region nearby the previous
measurements, one cannot simply optimize over(Dn

e )kmax.
Additionally, kmax may not be known.

Consider, instead, a greedy approach in which we use past
measurements to choose the positions for the next ones. Let
h(≤k) ∈ (Dn

e )k be the vector of measurement location and
time pairs for timesteps up tok. Let (P, k + 1) denote the
space-time locations at spatial positionsP = (p1, . . . , pn) ∈
Dn and timek + 1. Let A(k) : Dn → R be defined as,

A(k)(P ) =

∫

T

∫

D

σ2
(

Z(s, t); (h(≤k), (P, k + 1))
)

ds dt.

The objective is to choose the set of measurement loca-
tions P to maximally decreaseA(k). Unfortunately, the
gradient ofA(k) cannot be computed in a distributed way
by the static nodes because of the matrix inversions which
depend on all measurement locations. Instead, our approach
is to construct an upper bound toA(k) whose gradient is
distributed and design an algorithm to optimize it.

IV. V ORONOI CONTRACTION FOR COLLISION AVOIDANCE

We begin by specifying the region of allowed movement
for the robotic agents. In addition to the maximum velocity
and the requirement of staying withinD, we impose a
minimum distance requirement between robots. Beyond the
benefit of collision avoidance, this restriction ensures that
even under the assumption of zero sensor error, the kriging
error function is well-defined over the space of possible
configurations.

Let ω ∈ R≥0 be a desired buffer width, assumed to be
small compared to the size ofD. To ensure that the distance
between two robots is never smaller thanω, we introduce a
contraction of the Voronoi diagram. Consider the locations
P = (p1, . . . , pn) of then robotic agents at thekth timestep.
Let Ω

(k)
i ⊂ D such thatΩ(k)

i = (Vi(P ))ω/2 ∩B(pi, umax),
where(Vi(P ))ω/2 denotes theω

2 -contraction ofVi(P ). For

each j 6= i ∈ {1, . . . , n}, we haved(Ω
(k)
i ,Ω

(k)
j ) ≥ ω.

Between timestepsk andk + 1, we restrictRi to the region
Ω

(k)
i . Figure 1 shows an example inR2 of this set.

ω

2
Ω1

p1

p2

p3

Fig. 1. Regions{Ω(k)
i }n

i=1 (dashed) versus Voronoi partition (solid).

Let Ω(k) =
∏n

i=1 Ω
(k)
i ⊂ (Rd)n denote the region of

allowed movement of all robotic agents at timestepk ∈ Z≥0.
Note thatΩ(k) is closed, bounded, and convex.

V. A PPROXIMATE AVERAGE KRIGING VARIANCE

Here we compute an upper bound on the average kriging
variance. We begin by providing a useful result that isolates
the effect of a subset of measurements on the kriging
variance. We need the following notation for predicting
Y at vectors of locations: givenh1 ∈ Dl

e and h2 =
(h21, . . . , h2m)T ∈ Dm

e , with iF(h1)∩ iF(h2) = ∅, let

ŷ(h2;h1) = ŷ21 = [ŷ(h21;h1), . . . , ŷ(h2m;h1)]
T ,

ȳ(h2;h1) = ȳ21 = y(h2) − ŷ(h2;h1).

We are ready to present an upper bound on the error variance.

Lemma V.1 (Upper bound on kriging variance) Let h =
(h1,h2) denote a full set of distinct measurement locations,
with h1 = (h1, . . . , hl) ∈ Dl

e and h2 = (hl+1, . . . , hn) ∈
Dm

e , with l + m = n. Then,

σ2(Z(h);h) = σ2(Z(h);h1) − Cov[z̄(h;h1), ȳ21]·

·Var[ȳ21]
−1Cov[ȳ21, z̄(h;h1)] ≤ σ2(Z(h);h1),

with equality ifCov[Z(h), y(h2)] = 0 = Cov[y(h1), y(h2)].

Note thatσ2(Z(h);h1) corresponds to the error variance
of a predictor computed with the information at locationsh1.



Proposition V.2 (Spatial approximation for distributed
implementation) Define CS(≤k+1) : Z≥0×Dn → F(De) by

CS(≤k+1)(j, P ) =
{

(s, t) ∈ iF

(

h(≤k), (P, k + 1)
)

| d(s, Vj(Q)) ≤ r
}

,

i.e., the subset of measurement locations up to timek + 1
which are correlated in space to the Voronoi cell of the static
nodej. Let Ã(k)

j : Dn → R be defined by

Ã
(k)
j (P ) =

∫

T

∫

Vj(Q)

σ2
(

Z(s, t); CS(≤k+1)(j, P )
)

ds dt.

ThenA(k) ≤
∑m

j=1 Ã
(k)
j . In addition, equality holds if, for

all j ∈ {1, . . . ,m}, the points in CS(≤k+1)(j, P ) are not
correlated to other measurement locations outside it.

Remark V.3 (Ã(k)
j may be calculated with local informa-

tion only) The locationpi contributes only toÃ(k)(P ) in
those Voronoi regionsVj(Q) for which d(pi, Vj(Q)) ≤ r.
Thus the requirement (7) ensures thatSj can calculateÃ(k)

j .

As with σ2, we evaluateÃ(k)
j at a set, rather than a tuple.•

Remark V.4 (Universal kriging with too few measure-
ments) It should be noted here that in the universal kriging
case the functionÃ(k)

j is only well-defined if the number of
measurement locations available to each node is greater than
or equal to the number of basis functions. In this paper we
assume that this holds at all times. •

Our next step is to characterize the smoothness properties
of Ã(k). Let us introduce some notation. Fori ∈ {1, . . . , n},

CS(≤k+1)
−i (j, P ) = CS(≤k+1)(j, P ) \ {(pi, k + 1)}.

Define the mapsCi : {1, . . . ,m} × Dn × D × T → R and
Vi : {1, . . . ,m} × D → R by

Ci(j, P, s, t) = Cov[ȳ((pi, k + 1), CS(≤k+1)
−i (j, P )),

z̄((s, t), CS(≤k+1)
−i (j, P ))],

Vi(j, P ) = Var[ȳ((pi, k + 1), CS(≤k+1)
−i (j, P ))],

whereȳ(h;h) = Y (h)− ŷ(h;h) is a shorthand notation. For
s ∈ D andt ∈ T , let ∇iCi(j, P, s, t) and∇iVi(j, P ) denote
the partial derivative ofCi andVi with respect topi. Next,
we provide an expression for the gradient ofÃ(k).

Proposition V.5 Assume that the covariance ofZ is C1 with
respect to the spatial position of its arguments. For universal
kriging, further assume thatf1, . . . , fp are C1 with respect
to the spatial position of their arguments. TheñA(k) is C1

on Ω(k) and theith component of its gradient is

∇iÃ
(k)(P ) =

m
∑

j=1

∇iÃ
(k)
j (P ),

∇iÃ
(k)
j (P ) =

∫

T

∫

Vj(Q)
Ci(j, P, s, t)2 ds dt∇iVi(j, P )

Vi(j, P )2

−
2
∫

T

∫

Vj(Q)
Ci(j, P, s, t)∇iCi(j, P, s, t) ds dt

Vi(j, P )
.

For eachi ∈ {1, . . . , n}, ∇iÃj(P ) may be computed
by node j, and thus∇iÃ

(k)(P ) may be computed in a
distributed way on the network of nodes. The next result
characterizes the global Lipschitzness of∇Ã(k).

Proposition V.6 Under the assumptions of Proposition V.5,
make the following additional assumptions,

• ∇i Cov[Z(pi, k +1), Z(s2, t2)] is globally Lipschitz on
Ω

(k)
i for eachi ∈ {1, . . . , n};

• in the universal kriging case, further assume that the
partial derivatives ∂

∂sfj are globally Lipschitz onΩ(k)
i .

Then the gradient∇Ã(k) is globally Lipschitz onΩ(k).

VI. OPTIMIZING INFORMATION RETRIEVAL VIA

GRADIENT DESCENT

In this section, we design a coordination algorithm to
follow the gradient ofÃ(k). We consider a system in which
each static node is responsible for calculating control vectors
for the robotic agents within the region of influence. We use
the formulation of the approximate average error presented
in Proposition V.2, and follow a projected gradient descent
building on Section II. The current timestep,k, is held fixed
through the section and, to reduce notation, we leave off
the superindex which indicates timestep where unnecessary.
P = (p1, . . . , pn) denotes the current positions of the robots.

A. Distributed optimization of the approximate variance

Ideally, at thekth timestep, we would like the robots
to move to the minimum ofP 7→ Ã(P ). Finding such
a minimum over the whole region is a difficult problem.
Instead, we use a distributed version of the projected gradient
descent algorithm, which is guaranteed to converge to a
stationary point. For convenience, we define the following
notation. LetP ′

j : R × Dn → F(D) map a step size and a
configuration to the set of next locations calculated bySj ,

P ′
j(α, P ) =

{

projΩi

(

pi + α∇iÃ(P )
)

,

foreachi s.t. d (pi, Vj(Q)) ≤ r + umax + ω
}

.

Let dj : R × Dn → R≥0 denote the total distance traveled
by robots enteringVj(Q), i.e.,

dj (α, P ) =
∑

i∈{1,...,n} such that
proj

Ωi
(pi+α∇iÃ(P ))∈Vj(Q)

‖projΩi

(

pi + α∇iÃ(P )
)

− pi‖
2.

Globally, let P ′ : R × Dn → Dn, P ′(α, P ) = projΩ(P +
α∇Ã(P )). Table II describes a distributed version of the
L INE SEARCH ALGORITHM with a starting position ofP ∈ Ω.
The line search starts with a factorαmax which scales the
smallest nonzero partial toumax, ensuring all robots with
nonzero partial derivatives can move the maximum distance,

αmax =
umax

min{‖∇iÃ(P )‖ |∇iÃ(P ) 6= 0}
. (8)

Lemma VI.1 TheDISTRIBUTED L INE SEARCH ALGORITHM is
equivalent to theL INE SEARCH ALGORITHM with F = Ã.



Name: DISTRIBUTED L INE SEARCH ALGORITHM

Goal: Compute step size for gradient descent ofÃ
Input: Configuration,P = (p1, . . . , pn) ∈ Dn

Assumes: (i) Connected network of static nodes
(ii) Sj knows pi, ∇iÃ and Ωi for each robot
within communication range
(iii) Step sizeτ and toleranceθ ∈ (0, 1) known a
priori by all static nodes

Output: Step size,α ∈ R≥0

Initialization
1: S1, . . . , Sm calculateαmax, cf. (8) via a consensus algorithm

For j ∈ {1, . . . , m}, nodeSj executes concurrently

1: α = αmax

2: repeat
3: calculatesÃj

`

P ′
j(α, P )

´

− Ãj(P ) anddj (α, P )2

4: execute consensus algorithm to get the following:

Ã(P ′(α, P )) − Ã(P ) =

m
X

j=1

Ãj

`

P
′
j(α, P )

´

− Ãj(P )

‚

‚P − P
′(α, P )

‚

‚

2
=

m
X

j=1

dj (α, P )2

5: ν = θ
α
‖P − P ′(α, P )‖ + Ã(P ′(α, P )) − Ã(P )

6: if ν > 0 then
7: α = ατ

8: until ν ≤ 0

TABLE II

DISTRIBUTED L INE SEARCH ALGORITHM.

We are ready to present our technique for a greedy
optimization algorithm. At timestepk, the nodes follow a
gradient descent algorithm to define a sequence of configu-
rations,{P †

γ}, γ ∈ N, such thatP †
1 = P (k) and

P
†
γ+1 = projΩ

(

P †
γ − α∇Ã(P †

γ )
)

, α ∈ R≥0,

where α is chosen via theDISTRIBUTED L INE SEARCH AL-
GORITHM. When |Ã(P †

γ+1) − Ã(P †
γ )| = 0, the algorithm

terminates, and the nodes setP (k+1) = P
†
γ+1. By the end

of this calculation, each node knows the identity of robotic
agents that belong to its Voronoi cell at timestepk+1. Node
Sj transmitspi(k + 1) to robot Ri, which then moves to
that location between timesteps. The overall gradient descent
algorithm is summarized in Table III.

Proposition VI.2 The DISTRIBUTED PROJECTED GRADIENT

DESCENTALGORITHM is distributed overN . Moreover, under
the assumptions of Proposition V.6, any execution is such that

• the robots do not collide,
• at each timestep after the first, measurements are taken

at stationary configurations ofP 7→ Ã(k)(P ) overΩ(k).

Remark VI.3 (Robustness to agent failures)The proposed
algorithm is robust to agent failures. If an agent stops sending
position information to the nodes, it ceases to receive new
control vectors and remains in place. Meanwhile, the rest
of the network carries on its operation with the available
resources and will eventually take measurements in the areas
previously covered by the failing agents. •

B. Simulation results

We performed simulations with the following parameters:
m = 5 static nodes,n = 10 robotic agents, and the domain
D = {(0, .1), (2.5, .1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8),
(2.7, 2.2), (1, 2.4), (0.2, 1.3)}. We used the separable co-
variance function defined byCov[Z(s1, t1), Z(s2, t2)] =
Ctap(‖s1 − s2‖, 0.4)Ctap(|t1 − t2|, 9.5), where

Ctap(δ, r) =

{

e−
δ
r

(

1 − 3δ
2r + δ3

2r3

)

if δ ≤ r,

0 otherwise.

This is a tapered exponential function belonging to the class
of covariance functions suggested in [4].

We compared the performance of our algorithm against
two naive data collection strategies, using the actual average
error varianceA(k) as a metric. In the first, the robots
remained motionless in an incenter Voronoi configuration,
i.e., a configuration such that each robot is located at the
incenter of its own Voronoi cell. Next we tried a lawnmower
approach. We divided the environment vertically among the
robots, and had them march back and forth along horizontal
trajectories, avoiding the boundary of the region. Finally, we
ran theDISTRIBUTED PROJECTEDGRADIENT DESCENTALGO-
RITHM from the same starting position as the lawnmower
approach. Each experiment ran forkmax = 20 steps. Agent
R2 stopped transmitting measurements at timek = 3, while
R7 stopped atk = 5. Figure 2 shows the trajectory traveled
by the gradient descent algorithm. Note that the two agents

Fig. 2. Trajectory traced by the projected gradient descentalgorithm. The
squares represent the (static) positions of the nodes,Q, with the region
partitioned according toV(Q). The triangles represent the locations at
which measurements were taken, the circles represent measurements lost
(not incorporated into the calculations).

which stopped sending measurements ceased to move. The
other agents avoided colliding with them, but filled in around
them due to the gradient. Figure 3 shows a plot of the
errors ask increases from1 to kmax. It can be seen that
the gradient algorithm has smaller error than either the static
configuration or the lawnmower-type approach.

VII. C ONCLUSIONS AND FUTURE WORK

We have considered a network composed of robotic sen-
sors and static nodes performing spatial estimation tasks.We
have focused on the problem of optimizing data acquisition
in order to better estimate a spatiotemporal random field.
We have used the average error variance of the kriging
estimator as a metric for the design of optimal measurement



Name: DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

Goal: Find a local minimum ofÃ(k) within Ω(k).
Assumes: (i) Connected network of static computing nodes and mobile robotic sensingagents

(ii) Static nodes deployed overD such thatR ≥ maxi∈{1,...,m} {CR(Vi(Q))} + r + umax

(iii) Step sizeτ and tolerance valueθ ∈ (0, 1) known a priori by all nodes (iv) Some termination marker known to all
nodes and robots which may be sent to mark the end of a gradient descent loop.

Uses: (i) Each node uses the temporary vectorsPcur, respectivelyPnext to hold the configuration at the current, respectively
next step of the gradient projection algorithm. For ease of exposition, weuse global notation althoughSj only calculates
and uses the parts of these vectors which correspond to agents currently within communication range.

At time k ∈ Z≥0, nodeSj executes:
1: setsRcov(j) = {Ri | d(pi(k), Vj(Q)) ≤ r}
2: collects measurements and locations from all robots inRcov(j)
3: setsPnext = P (k)

4: repeat
5: setsPcur = Pnext(j) and calculates−∇Ã

(k)
j (Pcur)

6: transmits vector∇iÃ
(k)
j (Pcur) to all robots inRcov(j)

7: collects sum∇iÃ
(k)(Pcur) from all robots inRcov(j)

8: runs DISTRIBUTED L INE SEARCH ALGORITHM at Pcur to getα
9: setsPnext = Pcur + α∇Ã(k)(Pcur)

10: calculates|Ã(Pnext) − Ã(Pcur)| via consensus
11: until |Ã(Pnext) − Ã(Pcur)| = 0
12: setsP (k+1) = Pnext

13: sends a termination marker to all robots currently inVj(Q)
14: conveyspi(k + 1) to robots that currently belong toVj(Q)

At time k ∈ Z≥0, robotRi executes:
1: setsScov(i) = {Sj | d(pi(k), Vj(Q)) ≤ r}
2: takes measurement atpi(k)
3: sends measurement and position to all nodes inScov(i)
4: repeat
5: receives vectors∇iÃ

(k)
j (P (k)) from all nodes in

Scov(i)
6: calculates sum∇iÃ

(k)(P (k))
7: sends∇iÃ

(k)(P (k)) to all nodes inScov(i)
8: until receives termination marker from any node
9: receives next locationpi(k + 1)

10: moves topi(k + 1).

TABLE III

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

5 10 15 20

92

94
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98

100

Fig. 3. Average errors up to thekth step of the static (triangle), lawnmower
(diamond), and gradient descent (star) approaches.

trajectories of the robots. In our approach, mobile robots
take measurements of the environment and static nodes are
responsible for collecting the measurements and computing
locally optimal configurations for estimation. The design
of the overall coordination algorithm combines Voronoi
partitions, distributed projected gradient descent, and kriging
interpolation technique. We have compared in simulations
the performance of our approach against a static network
configuration and a lawnmower-based approach.

Future work will focus on: the investigation of theoretical
guarantees on the accuracy of the approximation,Ã(k), and
on the performance and robustness to failure of the proposed
coordination algorithm; the development of statistically-
sound techniques for the case when, in universal kriging, any
particular node only has a small number of measurements
available to it; and the quantification of the communication
requirements of the proposed approach.
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