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This paper considers the deployment of a network of robotic agents with limited-range communication and

anisotropic sensing capabilities. We encode the environment coverage provided by the network by means of

an expected-value objective function. This function has a gradient which is not amenable to distributed com-

putation. We provide a constant-factor approximation of this measure via an alternative aggregate objective

function whose gradient is spatially distributed over the limited-range Delaunay proximity graph. We character-

ize the smoothness properties of the aggregate expected-value function and propose a distributed deployment

algorithm that enables the network to optimize it. Simulations illustrate the results.
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1 Introduction

Currently there is a large interest in the design of stable and decentralized control laws for

distributed motion coordination. In this paper, we focus on the deployment of a robotic network

where each agent is equipped with limited-range communication and sensing capabilities. The
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footprint of each sensor is a wedge-shaped region centered about each robot’s orientation with

an angular width less than or equal to π radians. We refer to these sensing capabilities as

anisotropic. Our objective is to design distributed coordination algorithms that optimize sensor

network coverage of a convex closed environment.

The literature on coordination tasks for robotic systems is becoming quite extensive. The de-

ployment problem considered here falls within the field of facility location Okabe et al. (2000), Du

et al. (1999), Drezner (1995), where one seeks to optimize the position of a collection of resources

in order to provide better quality-of-service. In particular, this paper builds on Cortés et al.

(2004), which provides an overview of coverage control for mobile networks, and Cortés et al.

(2005), which models systems with limited-range, omnidirectional interactions. Other works on

coverage problems include Howard et al. (2002), Hussein and Stipanovic̀ (2007), Arsie and Fraz-

zoli (2007), Kwok and Mart́ınez (2007). To our knowledge, coverage optimization and control

with limited-range, anisotropic sensory has not being studied in the literature. The sensor model

considered in this paper leads to interactions among agents which are not omnidirectional but

are rather defined along specific directions. The wedge-shaped sensor footprint poses nontrivial

challenges on the distributed optimization of the network coverage. Our technical approach uses

concepts and notions from computational geometry and geometric optimization, such as Voronoi

partitions Okabe et al. (2000), proximity graphs Jaromczyk and Toussaint (1992), and spatially

distributed maps Cortés et al. (2005).

The contributions of the paper are threefold. First, we define a novel proximity graph, termed

the limited-range wedge graph. We show that a node can compute its neighbors in the limited-

range wedge graph if it knows the position of its neighbors in the limited-range Delaunay graph.

We refer to this property by saying that the limited-range wedge graph is distributed over the

limited-range Delaunay graph. Second, we introduce the expected-value locational optimization

function to measure the network coverage of the environment. Motivated by the fact that the

gradient of this function is not amenable to distributed computation, we provide a constant-factor

approximation via an alternative aggregate expected-value objective function. Both objective
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functions incorporate the limited sensing capabilities of the network agents.

We characterize the smoothness properties of the aggregate expected-value function and show

that the limited-range wedge graph plays a key role in the computation of its gradient. As an

important consequence, we show that the gradient is spatially distributed over the limited-range

Delaunay graph, i.e., we show that each agent can compute its corresponding component of the

gradient only with information about the position of its neighbors in the limited-range Delaunay

graph. Third, we propose a distributed gradient ascent algorithm to optimize network coverage,

characterize its asymptotic convergence properties, and provide simulations to illustrate the

algorithm execution.

The organization of this paper is as follows. Section 2 presents useful concepts on Voronoi

partitions, proximity graphs, and spatially distributed maps. Section 3 introduces the expected-

value and aggregate expected-value functions, discusses a constant-factor approximation between

them, and analyzes their distributed character. Based on these results, Section 4 presents a

deployment algorithm spatially distributed over the limited-range Delaunay graph and illustrates

it in simulation. Section 5 gathers our conclusions and ideas for future work.

2 Preliminary developments

In this section we present various notational conventions and discuss notions from computational

geometry. Let R, R>0, and R≥0 be the set of real, positive real, and non-negative real numbers.

Let F(Rd) be the set of all finite pointsets in Rd. For x ∈ Rd, let xT denote the transpose of x.

Given a set S in Rd, let co(S) and int(S) be the convex hull and the interior of S, respectively.

The indicator function 1S : Rd → R of the set S is defined by 1S(q) = 1 if q ∈ S and 1S(q) = 0 if

q 6∈ S. For φ : Rd → R≥0 integrable, let areaφ(S) =
∫

S
φ(x)dx. Let B(x, r) denote the closed ball

centered at x with radius r, and arc(x, r) denote an arc segment of ∂B(x, r). Throughout the

paper, Q ⊂ R2 denotes a simple convex polygon. The diameter of Q is diam(Q) = maxq,p∈Q ‖q−
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p‖. Lastly, we define the unit vector uθ = [cos θ, sin θ]T and the counterclockwise rotation matrix

Rotθ =







cos θ − sin θ

sin θ cos θ






.

2.1 Voronoi partitions and boundary parametrizations

Voronoi partitions can be defined in arbitrary metric spaces, but here we restrict our attention

to the plane. The Voronoi partition generated by P = {p1, . . . , pn} ⊂ R2 is the collection

V(P) = (V1(P), . . . , Vn(P)) where,

Vi(P) = {q ∈ R
2 | ‖q − pi‖ ≤ ‖q − pj‖, for all pj ∈ P}.

Often, we use the notation Vi instead of Vi(P). Two robots i and j are Voronoi neighbors if

Vi ∩ Vj 6= ∅. The section of the boundary of Vi(P) that corresponds to the intersection with

Vj(P) is counterclockwise parametrized as

γij(t) =
pi + pj

2
+ t Rotπ

2
(pj − pi), t ∈ [ci, di], (1)

for some ci, di ∈ R. The corresponding outward unit normal vector is nij = pj−pi

‖pj−pi‖
, see Fig-

ure 1(b).

The Voronoi partition of an ordered set of possibly coincident points is not well-defined. To

deal with this situation, we introduce the immersion iF : (R2)n → F(R2) that maps P to the

pointset P containing the distinct points in P . The cardinality of P is determined by whether

P is an element of

Scoinc = {(p1, . . . , pn) ∈ (Rd)n | pi = pj for some i 6= j ∈ {1, . . . , n}}. (2)

For P ∈ Scoinc, we consider the Voronoi partition generated by P = iF(P ).
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Figure 1. (a) shows the wedge-shaped sensor footprint of an agent. (b) shows a random deployment of a robotic network,

with the associated Voronoi partition. The notation for the various parametrizations of the Voronoi cell boundary and wedge

sensing region are specified for p1. The parameters for the wedge are α = π
8

and r = 0.5. The shaded region in p5’s cell

represents a subset of p2’s viewing wedge which cannot be computed by p2 in a distributed way (see Section 3).

2.2 Limited-range anisotropic sensory

We model the robotic network so that each agent has limited-range anisotropic sensory. In other

words, each agent has a sensor whose footprint is a circular sector with finite radius. More

specifically, let P = (p1, . . . , pn) ∈ Qn be a tuple of points in Q, where pi is the position of

robot i, and let Θ = (θ1, . . . , θn) ∈ (S1)n be a tuple of angles, where θi is the orientation of

robot i. For P ∈ Qn and Θ ∈ (S1)n, we denote ((p1, θ1), . . . , (pn, θn)) ∈ (R2×S1)n by (P, Θ) with

a slight abuse of notation. We define the wedge-shaped sensory region wr,α(p, θ) as the sector of

a circle centered at p with radius r, orientation θ, and amplitude 2α, α ∈ (0, π
2 ], see Figure 1(a).

For brevity, we occasionally denote the region wr,α(pi, θi) of robot i by wi. Alternatively, the

region wr,α(p, θ) can be defined via its indicator function as

1wr,α(p,θ)(q) =



















1, if ‖q − p‖ ≤ r and arccos
( |(q−p)·(cos θ,sin θ)|

‖q−p‖

)

≤ α,

0, otherwise.

It is convenient to decompose the boundary ∂wr,α(p, θ) of the wedge into the union of two line

segments ∂w+, ∂w− and an arc segment arc(p, r). We consider the following counterclockwise
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parametrization of ∂wr,α(p, θ),

γ∂w−(t) = p + tuθ−α, t ∈ [0, r], (3a)

γarc(p,r)(t) = p + ruθ+t, t ∈ [−α, α], (3b)

γ∂w+(t) = p + (r − t)uθ+α, t ∈ [0, r]. (3c)

The corresponding outward normal vectors are

n∂w−(q) = Rot−π

2
uθ−α, q ∈ ∂w−, (4a)

narc(p,r)(q) =
q − p

‖q − p‖
, q ∈ arc(p, r), (4b)

n∂w+(q) = Rotπ

2
uθ+α, q ∈ ∂w+. (4c)

These parametrizations are illustrated in Figure 1(b).

2.3 Proximity graphs and spatially distributed maps

The notion of proximity graph is useful to model the changing interactions in a mobile network,

see Cortés et al. (2005), Jaromczyk and Toussaint (1992). A proximity graph function assigns

to a pointset a graph whose vertex set is the pointset, and whose edge set is determined by

the relative state of its vertices. Here we only consider proximity graphs defined for points

in X = R2 or X = R2 × S1. Let G(X) be the set of directed graphs whose vertex set is an

element of F(X). A proximity graph function G : F(X) → G(X) associates to V ∈ F(X) a graph

with vertex set V and edge set EG(V ), where EG : F(X) → F(X × X) has the property that

EG(V ) ⊆ V × V \ diag(V × V ). The following proximity graph functions are relevant to our

discussion:

(i) the r-disk graph P 7→ Gdisk(P, r) = (P, EGdisk
(P, r)), with

EGdisk
(P, r) = {(pi, pj) ∈ P × P \ diag(P × P) | ‖pi − pj‖ ≤ r} ;



September 15, 2008 19:40 International Journal of Control main

7

(ii) the Delaunay graph P 7→ GD(P) = (P, EGD
(P)), with

EGD
(P) = {pi, pj ∈ P × P \ diag(P × P) | Vi ∩ Vj 6= ∅};

(iii) the r-limited (or limited-range) Delaunay graph P 7→ GLD(P, r) = (P, EGLD
(P, r)), with

edges (pi, pj) ∈ P × P \ diag(P × P) if

(

Vi(P) ∩ B(pi,
r
2)

)

∩
(

Vj(P) ∩ B(pj ,
r
2)

)

6= ∅ ;

(iv) the (r, α)-limited (or limited-range) wedge graph (P, Θ) 7→ GLW(P, Θ) = (P, EGLW
(P, Θ)),

with edges ((pi, θi), (pj , θj)) ∈ (P, Θ) × (P, Θ) if

(

Vi(P) ∩ Vj(P)
)

∩ w r
2 ,α

(pi, θi) 6= ∅.

Figure 2 presents an illustration of these notions. Note that the orientation of the robots does

not affect the computation of the r-limited Delaunay graph. The r-limited Delaunay graph is

undirected, whereas the (r, α)-limited wedge graph is directed. Clearly it is possible for Vi ∩Vj ∩

wr,α(pi, θi) 6= ∅ and Vi ∩ Vj ∩ wr,α(pj , θj) = ∅ simultaneously, see for instance agents 1 and 3 in

Figure 1(b).

Figure 2. From left to right, Delaunay graph, r-disk graph, r-limited Delaunay graph, and (r, α)-limited wedge graph

corresponding to the configuration in Figure 1(b).

To each proximity graph function G, one can associate the set of neighbors map NG : F(X) →

F(X), defined by

NG,v(V ) = {q ∈ V | (v, q) ∈ EG(V ∪{v})}.

For a directed proximity graph G, q is an in-neighbor of v (or equivalently v is an out-neighbor

of q) if (q, v) ∈ EG(V ). To a vertex v, one can associate the set of in-neighbors and out-neighbors
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maps N in
G,v,N

out
G,v : F(X) → F(X) defined by

N in
G,v(V ) = {q ∈ V | (q, v) ∈ EG(V ∪ {v})},

N out
G,v (V ) = {q ∈ V | (v, q) ∈ EG(V ∪ {v})}.

Let G1 be a directed proximity graph and let G2 be an undirected proximity graph. Then, G1 is

spatially distributed over G2 if, for all V ∈ F(X) and all v ∈ V , N in
G1,v

(V ) = N in
G1,v

(NG2,v(V )) and

N out
G1,v

(V ) = N out
G1,v

(NG2,v(V )). Roughly speaking, this means that node v can compute its in- and

out-neighbors in the graph G1 only with the information about the position of its neighbors in

the graph G2. The following result establishes a useful property that will be instrumental later in

characterizing the distributed character of the gradient of the locational optimization functions

encoding the network coverage of the environment. For notational consistency, in the statement

of the result, GLD is considered to be defined on X = R2 × S1 (where agent orientations do not

play any role in determining the edge set).

Lemma 2.1: The (r, α)-limited wedge graph GLW is spatially distributed over the r-limited

Delaunay graph GLD.

Proof Note that Vi(P) ∩ Vj(P) ∩ w r

2
,α(pi, θi) 6= ∅ implies that B(pi,

r
2) ∩ {q ∈ R2 | ‖q − pi‖ =

‖q−pj‖} 6= ∅. The latter is equivalent to B(pj ,
r
2)∩{q ∈ R2 | ‖q−pi‖ = ‖q−pj‖} 6= ∅. Therefore,

N out
GLW,(pi,θi)

(P, Θ) = {(pj , θj) ∈ (P, Θ) | Vi(P) ∩ Vj(P) ∩ w r

2
,α(pi, θi) 6= ∅}

= {(pj , θj) ∈ NGLD,(pi,θi)(P, Θ) | Vi(P) ∩ Vj(P) ∩ w r

2
,α(pi, θi) 6= ∅}

= N out
GLW,(pi,θi)

(NGLD,(pi,θi)(P, Θ)),

A similar proof can be given for N in
GLW,(pi,θi)

(P, Θ). �

Functions which are spatially distributed over proximity graphs do not necessarily have to be

defined as graph functions. More generally, given a set Y and proximity graph function G, the

map T : Xn → Y n is spatially distributed over G if there exists maps T̃i : X × F(X) → Y n, for
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i ∈ {1, . . . , n} with the property that for all (v1, . . . , vn) ∈ Xn,

Ti(v1, . . . , vn) = T̃i(vi,NG,i(v1, . . . , vn)),

where Ti denoted the ith component of T . Thus, to compute the ith component of a spatially

distributed function, one needs only to know the state of the vertex vi and the state of its

neighbors on the graph G(V ). This generalization allows for objects like vector fields and set-

valued maps to be interpreted as spatially distributed over proximity graphs when defined in

the appropriate context.

3 Encoding network performance via locational optimization

We begin by introducing measures of the sensor coverage of the environment by the robotic

network.

3.1 Expected-value locational optimization functions

Let φ : Q → R≥0 be an integrable density function. This function can be thought of as a measure

of the probability of some event taking place over Q. Due to noise and interference, the sensor

performance of robot i degrades at point q in proportion to the distance ‖q − pi‖. Therefore,

we introduce a continuously differentiable, strictly positive, non-increasing performance function

f : R≥0 → R≥0 to measure this degradation: f(‖q − pi‖) provides a quantitative assessment of

sensor quality of the ith robot at point q ∈ Q. The results presented in the foregoing discussion

also hold for piecewise differentiable performance functions with finite jump discontinuities as

in Cortés et al. (2005). For the sake of simplicity, we restrict our presentation here to differen-

tiable performance functions.

Consider then the expected-value locational optimization function H : (Q × S1)n → R≥0,

H(P, Θ) =

∫

Q

max
i∈{1,...,n}

{

f(‖q − pi‖)1wr,α(pi,θi)(q)
}

φ(q)dq. (5)

This function provides an expected value of the sensor network performance. Hence, it is of
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interest to find maximizers of H. However, its gradient is in general not spatially distributed over

the limited-range Delaunay or limited-range wedge graphs. Figure 1(b) illustrates this assertion.

The portion shown in gray of p2’s sensing region is contained within p5’s Voronoi cell. Therefore,

the location of p5 affects how the value of H changes with respect to the position of p2. However,

since p2 has no information about the location of p5 (because p5 is not its neighbor in either the

limited-range wedge or limited-range Delaunay graphs), it cannot determine the rate of change

of H with respect to its position.

The approach we take is to provide an alternative objective function. For P ∈ Qn and q ∈ Q,

define argmin(P, q) = {p ∈ P | ‖q−p‖ = mini∈{1,...,n} ‖q−pi‖}. We define the aggregate expected-

value locational optimization function

Hagg(P, Θ) =

∫

Q

max
i∈{1,...,n}

{f(‖q − pi‖)} 1∪pj∈argmin(P,q) wr,α(pj , θj)
(q)φ(q)dq (6)

For P 6∈ Scoinc, the function Hagg can be rewritten as

Hagg(P, Θ) =
n

∑

i=1

∫

Vi(P )
f(‖q − pi‖)1wr,α(pi,θi)(q)φ(q)dq. (7)

The function Hagg sums the individual sensor performance of the robots within the intersection

of their respective sensing wedge and Voronoi cell. Note that the function is discontinuous at

coincident configurations. Let us show next that Hagg provides a good approximation of H on

suitable regions of the configuration space (Q × S1)n.

Proposition 3.1: Consider the expected-value and aggregate expected-value objective func-

tions, H and Hagg respectively. Then, for all (P, Θ) ∈ (Q × S1)n,

Hagg(P, Θ) ≤ H(P, Θ) ≤ Hagg(P, Θ) + ‖f‖∞ areaφ(Q),

where ‖f‖∞ = maxx∈[0,diam Q] |f(x)|. Additionally, for A ∈ (0, areaφ(Q)], define

ΣA = {(P, Θ) ∈ (Q × S1)n |
m

∑

j=1

areaφ(Vj(iF(P )) ∩ (
⋃

i s.t.
pi=zj

wr,α(pi, θi))) ≥ A},
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where recall iF(P ) = {z1, . . . , zm}. Then, for all (P, Θ) ∈ ΣA,

Hagg(P, Θ) ≤ H(P, Θ) ≤
(

1 +
‖f‖∞ areaφ(Q)

A f(diam(Q))

)

Hagg(P, Θ).

Proof The lower bounds in both approximations follow directly from the function definition

in (5) and (6). For P 6∈ Scoinc, we reason as follows. Using the fact that Q can be expressed as

the union of the Voronoi cells, we deduce

H(P, Θ) −Hagg(P, Θ)

≤
n

∑

i=1

∫

Vi

f(‖q − pi‖)
(

max
j∈{1,...,n}

{1wr,α(pj ,θj)(q)} − 1wr,α(pi,θi)(q)
)

φ(q)dq

=
n

∑

i=1

∫

Vi

f(‖q − pi‖)
(

1∪n
j=1wr,α(pj ,θj)(q) − 1wr,α(pi,θi)(q)

)

φ(q)dq.

The ith summand in the expression vanishes on wr,α(pi, θi). Therefore, we can obtain the upper

bound in the additive approximation from the above expression as

H(P, Θ) −Hagg(P, Θ) ≤
n

∑

i=1

∫

Vi∩Q\wr,α(pi,θi)
f(‖q − pi‖)φ(q)dq

≤ ‖f‖∞ areaφ(Q \ ∪n
i=1 wr,α(pi, θi)) ≤ ‖f‖∞ areaφ(Q).

A similar set of inequalities can be derived for P ∈ Scoinc. The upper bound in the constant-

factor approximation follows from the above upper bound and the fact that Hagg(P, Θ) ≥

f(diam(Q))
∑m

j=1 areaφ(Vj(iF(P )) ∩ (
⋃

i s.t.
pi=zj

wr,α(pi, θi))) ≥ A f(diam(Q)) on ΣA. �

From the proof of Proposition 3.1, one can see that the better the area coverage of Q pro-

vided by the regions {Vi ∩ wr,α(pi, θi)}
n
i=1, the better the approximation of H provided by Hagg

is. From (6), configurations with larger values of Hagg also induce good area coverage of Q.

Therefore, the maximization of Hagg naturally leads to regions of good approximations of H.

Remark 1 : For P ∈ Qn such that ‖zi − zj‖ > 2r, for all zi, zj ∈ iF(P ), the values of H and

Hagg coincide, i.e., H(P, Θ) = Hagg(P, Θ), for all Θ ∈ (S1)n. •



September 15, 2008 19:40 International Journal of Control main

12

3.2 Smoothness properties of the aggregate expected-value function

We next explore the smoothness properties of the function Hagg.

Theorem 3.2 : Given a density function φ and a performance function f , the function Hagg

is piecewise continuously differentiable. On Scoinc, Hagg is discontinuous. On int(Q)n \ Scoinc, it

is continuously differentiable and, for each i ∈ {1, . . . , n}, its gradient is given by

∂Hagg

∂pi

=

∫

Vi∩wi

∂

∂pi

f(‖q − pi‖)φ(q)dq (8a)

+

∫

Vi∩(∂w
+
i
∪∂w

−

i
)

f(‖q − pi‖)φ(q)n(q)dq +

∫

Vi∩wi∩∂B(pi,r)

f(‖q − pi‖)φ(q)n(q)dq

+

n
∑

j=1

j 6=i

(

∫

Vi∩Vj∩wi

f(‖q − pi‖)φ(q)
q − pi

‖pj − pi‖
dq −

∫

Vi∩Vj∩wj

f(‖q − pj‖)φ(q)
q − pi

‖pj − pi‖
dq

)

,

where n(q) denotes the unit outward normal vector at q, and

∂Hagg

∂θi

=
∑

s∈{+,−}

s

∫

V ∩∂ws
i

‖q − pi‖f(‖q − pi‖)φ(q)dq. (8b)

Proof For P ∈ int(Q)n \ Scoinc, consider the expression (7) of Hagg. Note that f(‖q − pi‖) is

continuously differentiable and for fixed (P, Θ), the maps q 7→ f(‖q−pi‖) and q 7→ ∂
∂P

f(‖q−pi‖)

are both measurable and integrable on Vi ∩ wr,α(pi, θi). Also note that since both the Voronoi

partition and the wedge are convex sets, their intersection is also convex. By (Cortés et al. 2005,

Proposition A.1), Hagg is continuously differentiable on (int(Q)n \ Scoinc) × (S1)n and, for each

i ∈ {1, . . . , n},

∂Hagg

∂pi
(P, Θ) =

∂

∂pi

n
∑

k=1

∫

Vk∩wk

f(‖q − pk‖)φ(q)dq (9)

=

∫

Vi∩wi

∂

∂pi
f(‖q − pk‖)φ(q)dq +

n
∑

k=1

∫

∂(Vk∩wk)
f(‖γ − pk‖)φ(γ)nT(γ)

∂γ

∂pi
dγ.

Next, we simplify the second term in the equation. The boundary ∂(Vk∩wr,α(pk, θk)) is composed

of a finite number of line segments and arcs, all of which have been parametrized in Section 2.1.

We first integrate over the wedge boundary Vk∩∂(wr,α(pk, θk)) = Vk∩(∂w+
k ∪∂w−

k )∪m
l=1arcl(pk, r),

see (3). This integral is nonzero only when k = i. Note that when there is a displacement in the
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position of pi, the motion of wr,α(pi, θi) (when projected along the appropriate normal vector)

is exactly the same as pi i.e., nT
(·)

∂γ(·)

∂pi
= n(·). Hence,

∫

Vi∩(∂w+
k ∪∂w−

k )∪m
l=1arc(pi,r))

f(‖q − pi‖)φ(q)nT
(·)

∂γ(·)

∂pi
dγ

=

∫

Vi∩(∂w+
i ∪∂w−

i )
f(‖q − pi‖)φ(q)n

∂w
(·)
i

dq +

m
∑

l=1

∫

arcl(pi,r)
f(‖q − pi‖)φ(q)nB(pi,r)

dq.

The remaining boundary segments that must be considered define the regions Vk ∩ Vj ∩

wr,α(pk, θk), for j ∈ {1, . . . , n}. To parametrize these boundaries, consider the map given in (1).

The derivative of this map with respect to pi is non-zero only for the regions Vi∩Vj ∩wr,α(pi, θi)

and Vj ∩Vi∩wr,α(pj , θj), i.e., when pj ∈ N in
GLW,(pi,θi)

(P, Θ) or pj ∈ N out
GLW,(pi,θi)

(P, Θ), respectively.

For both regions, we use the counterclockwise parametrization γij . When pj ∈ N in
GLW,(pi,θi)

(P, Θ)

we compute,

nT
ij

∂γij

∂pi
=

1

2
nT

ij +
t

‖pj − pi‖
Rotπ

2
(pj − pi)

=
1

2
nT

ij +
1

‖pj − pi‖
(γij −

pi + pj

2
) =

γij − pi

‖pj − pi‖
.

For pj ∈ N out
GLW,(pi,θi)

(P, Θ), a similar computation is made using the inward normal vector nji =

−nij . We place these formulations back into (9) to obtain the complete form of (8a).

Next, let us compute the partial derivative of Hagg with respect to θi by considering

the parametrizations given in (3). Since the boundary ∂(wr,α(pi, θi)) ∩ Vi contains the only

parametrization with a dependency on θi, we have

∂Hagg

∂θi
(P, Θ) =

∫

∂(wr,α(pi,θi))∩Vi

f(‖γ − pi‖)φ(γ)nT(γ)
∂γ

∂θi
dγ.

Notice that the normal vector nB(pi,r)
is orthogonal to

∂γarc(pi,r)

∂θi
. Hence, we only consider the line

segments ∂w+
i ∩ Vi and ∂w−

i ∩ Vi. For q ∈ ∂w+
i we compute,

nT
∂w+

i

∂γ∂w+
i

∂θi
= ‖γ∂w+

i
− pi‖.
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Hence,

∫

∂w+
i ∩Vi

f(‖γ∂w+
i
− pi‖)φ(γ∂w+

i
)n(γ∂w+

i
)T

∂γ∂w+
i

∂θi
dγ∂w+

i
=

∫

∂w+
i ∩Vi

‖q − pi‖f(‖q − pi‖)φ(q)dq.

A similar calculation for the integral over ∂w−
i ∩ Vi completes the proof. �

Remark 2 : Using extension by continuity, we redefine the domain where Hagg is continuously

differentiable to include the boundary of Q. •

Note that, according to (8), the gradient of Hagg depends only on the position and orientation

of pi as well as those of its in- and out-neighbors in the (r, α)-limited wedge graph GLW. Therefore,

the gradient of Hagg is spatially distributed over the undirected version of GLW. The following

result is then an immediate consequence of Theorem 3.2 and Lemma 2.1.

Corollary 3.3: On int(Q)n \ Scoinc, the gradient of Hagg is spatially distributed over GLD.

4 A coordination algorithm to optimize network performance

Here we present an algorithm to maximize the locational optimization function Hagg. We im-

plement our control law in continuous time and analyze its convergence properties. Assume the

robotic agents evolve according to

ṗi = ui, θ̇i = vi, i ∈ {1, . . . , n}.

We implement a gradient ascent of the locational optimization function Hagg. In other words,

for agents not co-located with any other agent, we set

ui =



















∂Hagg

∂pi
pi ∈ int(Q),

prQ(∂Hagg

∂pi
) pi ∈ ∂Q,

vi =
∂Hagg

∂θi
, (10a)

where prQ is the orthogonal projection onto Q of the gradient vector given in Theorem 3.2. For

agents co-located with other agents at the same point p and associated Voronoi cell V , we define

Si ⊂ {+,−} by specifying s ∈ Si if ∂ws
i is not contained in the wedge of another agent located
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at p. Then, we set

ui = 0, vi =
∑

s∈Si

s

∫

V ∩∂ws
i

‖q − pi‖f(‖q − pi‖)φ(q)dq. (10b)

We assume that the Voronoi partition is updated in continuous time. The vector field is

discontinuous, so we understand the solutions in the Krasovskii sense, see Krasovskĭı (1963),

Filippov (1988).

Theorem 4.1 : Given a density function φ and a performance function f , the control law on

(Q × S1)n defined by (10) has the following properties:

(i) the law is spatially distributed over the limited-range Delaunay graph GLD(P, 2r) and;

(ii) for each initial configuration (P0, Θ0) ∈ (Q × S1)n, the Krasovskii solution that exactly

satisfies (10) monotonically optimizes Hagg and asymptotically converges to the union of

Scoinc and the set of critical points of Hagg.

Proof Statement (i) follows from Corollary 3.3. Regarding statement (ii), consider the compact

domain (Q×S1)n. By the definition of (10), the domain is strongly invariant for the closed-loop

system, i.e., any trajectory starting in (Q × S1)n remains in the domain. Along any Krasovskii

solution of the system that exactly satisfies (10), we have outside Scoinc,

d

dt
Hagg(P (t), Θ(t)) =

n
∑

i=1

(∂Hagg

∂pi
ui +

∂Hagg

∂θi
vi

)

.

According to (10), d
dt
Hagg ≥ 0, and is only zero if the solution is at a critical point of Hagg

on the domain (Q × S1)n. Therefore, while the solution is outside Scoinc, the function Hagg

is monotonically optimized. If the solution does not reach Scoinc, then the application of the

LaSalle Invariance Principle with the function −Hagg, see e.g., Khalil (2002), guarantees that it

will reach the set of critical points of Hagg. Otherwise, the solution reaches Scoinc and stays in it

according to (10b). This concludes the proof. �

Remark 1 : One can also consider a similar control law for robotic agents with second-order

dynamics of the form p̈i = ui, θ̈i = vi, i ∈ {1, . . . , n}. For instance, while on int(Q), one can
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adapt the control law (10a) as

ui =
∂Hagg

∂pi
− k1ṗi, vi =

∂Hagg

∂θi
− k2θ̇i, (11)

where k1, k2 > 0. For agents co-located with other agents, one can adapt (10b) similarly. The

convergence of network trajectories that remain in (Q×S1)n can be established as in Theorem 4.1

via the Lyapunov function −Hagg +
∑n

i=1(‖ṗi‖
2 + θ̇2

i ). However, in general, the set (Q× S1)n is

not strongly invariant under (11). •

4.1 Simulations

To illustrate the performance of the network under the coordination algorithm (10), we present

some numerical simulations. The algorithm is implemented in MathematicaR© as a main program

running the simulation that makes use of a library of routines. The structure of this simulation

is loosely described by the following procedure: first, the intersection of the bounded Voronoi cell

Vi and the wedge wr,α(pi, θi), for i ∈ {1, . . . , n}, is computed. Next, the r-limited Delaunay and

(r, α)-limited wedge proximity graphs are constructed. Then, for each robot, information of its

in- and out- neighbors is collected and used to construct the various parametrizations necessary

for the gradient computation. Finally, the various surface and boundary integrals involved in

the gradient of the locational optimization function Hagg are computed using the MathematicaR©

numerical integration routine NIntegrate. The position and orientation of each robot are then

updated according to these results. Figure 3 illustrates an execution.

Figure 4 shows the evolution of the locational optimization functions H and Hagg for two

different executions of (10) with r = .35 and r = .5. As forecasted by our analysis, Hagg is

monotonically optimized. The fact that the evolution of H is monotonic too is in general not

guaranteed. With the appropriate network configuration, the area coverage of Q provided by

the regions {Vi ∩ wr,α(pi, θi)}
n
i=1 improves as the value of r increases. According to the proof of

Proposition 3.1, this implies that the approximation of H provided by Hagg improves. This fact

can be observed comparing the differences between the final values of the objective functions in
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(a) (b) (c)

Figure 3. Execution of the coordination algorithm (10) by 7 robots with sensory wedge radius r = 0.35 and α = π
4
. The

plot in (a) (resp. in (c)) illustrates the initial (resp. final) configuration after 5.5 centiseconds. The plot in (b) illustrates

the gradient ascent flow of the system, with the smaller dots representing the initial configuration and the larger dots

representing the final one. The performance function is f(x) = 2−x2 and the density function φ (represented by its contour

plot) is the sum of three Gaussian functions of the form 50 e−10((x−xcntr)
2+(y−ycntr)

2).

Figure 4(a) and (b).
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Figure 4. Evolution of the locational optimization functions H (solid) and Hagg (dashed) along the execution of (10) with

(a) r = 0.35 and (b) r = 0.5. The approximation of H provided by Hagg improves as the area coverage of Q provided by

the regions {Vi ∩ wr,α(pi, θi)}
n
i=1 improves.

5 Conclusions

We have introduced two locational optimization functions to measure the coverage of the en-

vironment provided by a group of robotic agents with limited-range anisotropic sensory. Based

on considerations about the distributed computation of the gradient information, we have se-

lected the aggregate expected-value function as our optimization criteria. We have characterized

the smoothness properties of this objective function, computed its gradient, and characterized

its spatially-distributed character. We have designed a continuous-time gradient ascent strat-

egy that is guaranteed to achieve optimal network deployment. Further research will include
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the characterization of the critical points of the objective function, the design and analysis of

discrete-time coordination algorithms, the consideration of general agent dynamics, the synthesis

of cooperative strategies to attain global optima of the aggregate objective function, and the

study of similar deployment problems in nonconvex environments.
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