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Abstract— This paper studies connectivity maintenance of studied also in the context of formation control. In [16],
_robotic_networks that communicate at (_Jlisc_rete times a}nd move connectivity-preserving motions between pairs of foriradi
in continuous space. We propose a distributed algorithm that = 516 generated. Control laws based on the Laplacian matrix

allows the robots to decide whether a desired collective motion f the int fi h desi din 18l t |
breaks connectivity. Our algorithm works under imperfect of the interconnection graph are designed in [8] to solve

information caused by delays in communication and the robots’ formation control problems while preserving connectivity
mobility. We analyze the correctness of our algorithm by Statement of contributionsin this paper, our approach
formulating it as a game against a hypothetical adversary who considers a measure of the connectivity of the interaction
choos_es system states consistent with observed_lnformatlon.gh graph based on its Laplacian matrix. The Laplacian matrix
technical approach combines tools from algebraic graph theory, . .
linear algebra, nonsmooth analysis, and systems and control. Of @ graph is an analog to the Laplacian operator over the
graph: its second smallest eigenvalug, determines many
|. INTRODUCTION connectivity properties of the graph. Given a pre-specified
Network connectivity is a critical issue in cooperative(arbitrary) lower threshold on,, and a proposed instanta-
robotics. In many applications, connectivity is needed imeous direction of physical motion, we set out to solve the
order to guarantee the successful completion of a desiréellowing problem: how can the robots cooperatively decide
coordination task. Examples include rendezvous at a pointich proposed motions can be taken without causing the
and distributed sensor fusion. In sensor fusion, disteithut measure of connectivity, to cross below the threshold? We
agreement protocols have convergence rates which dependasapose a coordination algorithm which solves this problem
the degree of connectivity of the underlying communicatiominder imperfect information caused by delays in communica-
network. Since connectivity is a global property, it is diffit  tion and the robots’ mobility, and has the added advantage of
to maintain it in a distributed manner. The objective of thigllowing for nonconvex mappings from inter-robot distance
paper is to develop a distributed approach to preservirlg edge weights. We provide correctness guarantees for the
network connectivity that allows for flexibility of indivigal — algorithm and simulate it with the underlying algorithms of
robot motions and, at the same time, does not impose a hea@pdom motion and trajectory following.
communication burden on the network operation. Notation: Throughout the papeR, R>, andR-,, denote
Literature review: We classify previous work on connec- the sets of real, non-negative real, and positive real nusnbe
tivity of robotic networks into two main categories. The fiirs respectivelyF(S) is the collection of finite subsets of a set
deals with how to design the network motion to maximizeS. When providing pseudo-code, we use- b to mean & is
some desired measure of connectivity under a given set a$signed a value df” R™*" is the set ofm x n matrices,
position constraints. In [1], convex optimization is used t and Synin) is the set of symmetria: x n matrices. The
solve this problem in the presence of convex constraints dfiobenius inner producof A, B € R™*" is

the strength of inter-agent links. A solution with noncanve m_ n
constraints is presented in [9]. [5] provides a distributed AeB = ZZAM‘BM-
algorithm when the strength of each link is a convex function i=1j=1

of inter-robot distance. Potential fields are used in [19] t@q, convenience. we introduce the “vectorizationic -
maximize algebraic connectivity. The second categorysdeagnxn ,_, pn® of é matrix defined byec(M )i = M; ;.
with a measure of the connectivity of the interaction graphyte that (vec(A))Tvec(B) — A o B. FinaIIZ;Jr\?ve denote

a connectivity threshold, and some coordination task. Ip _ (1,...,)T € R™ and0 = (0,...,0)T € R".
this category, algorithms are designed so that the robots’ =~ T
motions achieve the task subject to the value of the measure 1. PRELIMINARIES

of connectivity never crossing the threshold. A solution to
such a problem is proposed in [18]. This solution allows
for a general range of agent motions, but is not distribute@@Ph theory,
A distributed solution that makes agents with second-ord
dynamics maintain a fixed set of edges appears in [12]. [1
presents a distributed solution which allow for varying set We deal with undirected graphs. An undirected graph

of edges to be preserved. Connectivity problems have beéh = (V,&) consists of a vertex set’ and an edge set
€ C V x V of unordered pairs of vertexes, i.¢i,j) € £
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This section presents preliminary notions on algebraic
proximity graphs, and nonsmooth analysis.

Z—}r. The graph Laplacian and its spectrum



A(G) € Sym(n) and the Laplacian.(G) € Sym(n) are D. Nonsmooth analysis of algebraic connectivity

given by Here we specify our scalar measure of network connec-
S wi Q= tivity. Denote the (not necessarily distinct) eigenvaluds
AG)ij =wij, L(G) =7 M € Sym(n) by A\ (M) < \y(M) < -+ < A\ (M). We
Wi 177 denote byf,, : Symn) — R the function that maps/ to

When the specific graph is clear from the context, we simphy;(M). Given a proximity functionf : (R%)™ — Sym(n),
use A and L. We denote byA : Symn) — Sym(n) the

. . . d\n
linear map that transforms an adjacency mattionto the fieom=fx, 0 Ao [+ (RY)" —R. @
LaplacianL: We refer to fo_conn @s thealgebraic connectivity function.
A(A) = diag(A1) — A = L. _ Next, we analyze the smoothness proper_nes of t_he func-
tions f;_conn, for i € {1,...,n}. We are particularly inter-

Properties of the Laplacian matrix include [6]: the vectoested infs_conn

1 € R™ is an eigenvector with eigenval@ie L(G) is positive Lemma 2.2:Fori € {1,...,n},

semidefinite; andlim(ker(L(G))) is equal to the number | the functionf,, is globally Lipschitz with constant.
of connected components af. An undirected graph is , for a locally Lipschitz proximity functionf, the con-
_connectec_i if f';md only if the second s_malles_t eigenvalue of nectivity function f;_conn is also locally Lipschitz. e
its Laplacian is greater than zero. Adding weight to an edge The following result [10] specifies the gradient ff .

of a graph does not decrease any of the eigenvalues of itSThegrem 2.3:For i e {1,...,n}, the generalized direc-
Laplacian [17]. tional derivative (in the direction € Sym(n)) and the

B. Proximity graphs and proximity functions generalized gradient ofy, at M € Sym(n) are given by

We use proximity graphs as an abstraction of network fS(M;X) = max w! e X,
connectivity among spatially distributed robots. A proiim l {ves™ | Mu=Aiv}
graph is an association of a set of positions with a weighted Ofx,(M) = COpyesn | po=n, v {v0" }. .
graph. LetP = (py,...,p,) € (R%)" be a vector of: robot The next result is a consequence of (1) and the nonsmooth
positions, with each robot iiR?. Let G(n) be the set of chain rule [3, Theorem 2.3.10].

weighted graphs whose vertex sefid,...,n}}. Then, we Theorem 2.4:Given a continuously differentiable proxim-

have the following definition [7], [4]. ity function, f : (R*)" — Sym(n), we have atP € (R%)",
Definition 2.1: A proximity graphG : (RY)* — G(n) andL = A(f(P)),

associates t® € (R%)" a graph with vertex setl, ..., n}, _ T

edge set&;(P), where & : (RH)™ — {1,...,n} x Ofi—conn(P) € (vee(9x: (L))" (Vvee(L)). ¢

{1,...,n}, and weightsw; ; € Ry for all (3, j) € & (z). [1l. PROBLEM FORMULATION

A proximity graph must satisfy tha§(p, (1), -, Po(n)) IS Here, we describe our robotic network model and state the

isomorphic tog(gl;b- +»pp) for any n-permutations and  5p1em we address. Each robot has fully actuated firstrorde

(P 7]0@) € (R . ° gaynamics, and operates under a continuous-time control law
For a given proximity graph, we often use the associateg giscrete time intervals, each robot communicates wih it

proximity function (R?)" — Sym(n) that maps a tuple peighiors over some proximity graph and re-computes an
P < (RY)" to the adjacency matrid(G(P)) € Sym(n). We  jyiermnal state which is used by its control law. The reader is
are particularly interested in a class of prOX|m_|ty funoso referred to [2], [11] for a more detailed presentation.
defined by f(p1,....pn)i; = gwatlllpi — pill), With gwgi :  The problem we address here is that of deciding when a
R0 — R Fgr this paper we consider the_ added restr'Ct'onﬁroposed motion can be made while maintaining connectivity
that gwgt is C* and monotonically decreasing. of the robotic network. Each robot should be able to solve
C. Elements of nonsmooth analysis the following problem. _ _ _

It is possible to define a notion of gradient for locally. . Problem 3.1:Con3|_der robot with a desired motion spec-
Lipschitz functions [3]. Letf : R? — R be locally Lipschitz ified by the inputu;. G!ven bounded set$l;}je 1....ny\ (i}
atz € R For anyv € R the generalized directional such that each agent’s control inpuf, must belong tdJ;, a

derivative of f at = in the directionv, denotedf°(x;v), is time intervalto, to + 077, and[A_, 4] C R>0’ SPECT.RA.L
CONNECTIVITY DECISION PROBLEM consists of providing

£° (3 v) = limsup fly+to) = fy) a procedure which, for each network configuratirreturns
' y—a,t]0 t a value, fsare € R having fsare > 0 only if the following hold

The generalized directional derivative has the property dfF @l ¢ € [to,to +dT] and allu; € Uj, j € {1,...,n} \ 4,
always being well-defined, whereas the one-sided direation ¢ f2—conn(P(t)) & [A_, A4], or
derivative might not exist in some cases. Tgeneralized ¢ f5_con(P(t);[0,...,ul,...,0]") > 0.
gradient of f atz € X, denoteddf(x), is the subset whereP(t) is the network evolution starting fror® under
o T . control {u; } ;. °
O0f(z) ={§ € X|f*(z;v) = v forall vin X}. We a{ssjmelz that, initially, the algebraic connectivity
If fis C! atz, thendf(z) = {Vf(z)}. is larger than\;. During the network evolutionj, might



decrease below, . Our algorithm should guarantee that in Definition 4.4 GRAPH PICKING GAME): Given A, B €

such case)s never crosses below_. LAP(n) with A <, ap B, we pick Y € LAPL(n). Our
One can regard the solution to this problem as a buildingpponent then selects € [A, B].ap. We win if either of

block towards the solution of more complex problems inthe following conditions hold

volving connectivity. For instance, given a specific siggte o« f,,(L) & [\_,\,], or

which achieves a coordination task, one could envision the s f (L;Y) > 0. o

synthesis of a procedure that modifies the directions of Qur Ob]ectlve is to characterize the choidéghat ensure

motion specified by the strategy as little as possible whilthat GRAPH PICKING GAME is won. Any instantaneous

preserving network connectivity. For space reasons, we date of change of the Laplacian belongs to LAR) by

not deal with this problem here, and instead refer to [15]. Lemma 4.2.

IV. EIGENVALUE GAMES B. Bounds on matrices which wi@RAPH PICKING GAME

In this section we introduce the main components of our A direction that a robot can take in physical space induces
solution to the problem 3.1. In Section IV-A, we reformu-an instantaneous rate of change of the Laplacian matrix of
late SPECTRAL CONNECTIVITY DECISION PROBLEM as a the underlying communication graph of the network. Given
game, termed @APH PICKING GAME, which can be played out-of-date information on the state of the network, each
with out-of-date information on the state of the network andobot can produce bounds on the actual Laplacian of the
in Section IV-B we study the properties of its solutions. Irgraph. In this section we answer the following question:
Section IV-C we present a distributed procedure that allowgiven lower and upper boundd, B € LAP(n) on the
network agents to decide whether an intended motion wigplacian matrix of the communication graph and a range
GRAPH PICKING GAME. A final component of our solution Of possible instantaneous rates of change of the Laplacian
is a distributed information dissemination algorithm. matrix due to a proposed physical motion, can we guarantee

that the proposed motion will not decrease the second
A. GRAPH PICKING GAME smallest eigenvalue of the graph Laplacian? We do this by

We are interested in characterizing the rates of change afiswering the related question: given the informatioredist
Laplacian matrices arising from instantaneous robot metio above, and a range of “unsafe” eigenvalyes,, A ], can we
which solve $ECTRAL CONNECTIVITY DECISION PROB-  guarantee the proposed motion will not decrease the second
LEM. To do this, we reformulate this problem as a game ansinallest eigenvalue of the Laplacian matrix whenever the
study the properties of its solutions. said eigenvalue is outside of the range , A ;]?

Definition 4.1: MATRIX FORM OF THESPECTRAL CON- More formally, we bound the union of all possible gradi-
NECTIVITY DECISION PROBLEM): Given bounds on each ents of f,, evaluated afl. € [A, B].ap. Let L € [A, B]iap
edge weight of a graplr, A, ; < w; ; < B, ;, (i,j) € E, such thatfy,(L) € [A_,\;]. Note that for eachv € R"
find the set of matricest’ in {M € Sym(n)| M1 = 0} such thatL e (ww?) = f,(L) (i.e., ww® € df\,(L)), we
such that for eacly having f»,(L(G)) € [\_, 4], one has must havede (ww’) < X\, as a consequence of Lemma 4.3.

Ia, (L(G); M) > 0 for M € X. o We now proceed to bound the set of € R™ which
First, let us introduce notation used to discuss boundeshtisfy Ae (ww?) < X, and thus havevw” € 9f,,(L). Let
intervals on the space of graph Laplacian matrices. Let  {us,...,u,} be them eigenvectors ofd corresponding to

eigenvalues\; < A\, and let{um+1,...,u,} be then —m

LAP(n) = {M € Sym(n) | M1 = 0}, eigenvectors ofA corresponding to eigenvalues > .

LAP(n) = {M € LAP.(n)| M; ; <0 for all i # j}. Given m > m, define
Lemma 4.2:The directional derivative of any function ~ Ay — A2(4)

whose range is LAR) lies in LAPL(n). o ea(m) = M1 (A) — Aa(A)’
Consider the following partial order in LARn). ForA, B € -
LAP. (n), we write A < ap B iff A;; > B;, foralli # j “spanA(m) spar{ur, ..., ua},
{1,...n}. Likewise, A <_ap B if and only if A, ; > B; ; Ua(m) = {w € S™ | there existu € S™ N uspana (M)
forall i # j € {1,...n}. For A <.ap B, we define such thatw € B(u, e4(m))}.

[A, Bliap = {L € LAPL(n)| A <iap L <_ap B}. We pick Uy () to contain thew satisfying ww? €

Ofx, (L) for m > m. We show that this inclusion holds next.
Proposition 4.5:Let A,B € LAP(n), L € [A, B]Lap,
I ()S/\+,w€S7’,m2m If w ¢ Ua(m), then

Note thatA, B € LAP(n) and L € [A, B]iap imply L €
LAP(n). The following result provides more properties of
the matrices in the intervdld, B] ap.

ww! & ofy °
ITemma 4.3:Let A, B € LAP(n), L € [4, Bliap. Then, The bouritg |r)1duced by 4 () works for anym > m. Our
() fro(L) € [£r.(A), fr,(B)] idea is to check for all such, in the hope of finding one
(i) vo o L € [vv" o A;vv" o B] for v € R™. which verifies that our proposed motion is allowable.
We can now express the AMRIX FORM OF THE SPEC- The following result is a consequence of Theorem 2.4.
TRAL CONNECTIVITY DECISION PROBLEM in Defini- Corollary 4.6: Any instantaneous change in robot posi-

tion 4.1 as a game played against a graph-picking opponefibns, {u;},c(;.. )y which induces an instantaneous rate



of change of the Laplaciany’ € LAP_L(n), satisfying
Y e (uuT) > 0 for all u € Uu () for somem > m satisfies
f;—conn(lp; {Ui}ie{L,,,,n}) 2 0.

Given somem > m, we can conclude from Proposi-
tion 4.5 that anyM satisfying M e (ww?) > 0 for all
w € Ua(m) wins GRAPH PICKING GAME on A, B, \_, ..
To determine whether a givel satisfies this property, it is
sufficient to find the vecton € uspana () which minimizes
M e (uu) or equivalentlyu” Mu (and then tack a fudge
factor based om 4 (m) onto this minimum).

Let d be the dimension ofuspana (). Let M) €
R™ "™ pe a matrix whose column vectors are an orthonorm
basis ofugspana (). Any vector inuspana () NS™ can be
expressed as/,;)r for somez € S™ and anyz € S™
satisfiesM,, ) € uspana () NS™.

Proposition 4.7:Finding the vector: € uspana(m) N S™
which minimizes M o (uuT) is equivalent to finding the
vectorz € S* which minimizesz” M ;.\ MM, (2. This
corresonds to the smallest eigenvalue]\diﬂm)MMu(m). °

The next results provides a sufficient criterion to check i
a matrix is a winning solution to APH PICKING GAME.

Proposition 4.8: (1 ea(m)2)M (uwu®)  +
€4 (m)?min(min(eiggM)),0) > 0 for all u € ugpana (1)
only if M e (ww?) >0 for all w € Ux(m).

C. DIRECTION CHECKING ALGORITHM

We introduce DRECTION CHECKING ALGORITHM in
Table I. GivenA, B € LAP(n), and a lower boundX €
LAP4 (n) of the candidate instantaneous rate of change of tf
Laplacian matrix,Y € LAPL(n),Y > ap X, the algorithm
returns a valuégheck > 0 if it can verify that anyY > ap X
wins GRAPH PICKING GAME on A and B, and returns
Scheck < 0 otherwise.

The following result shows that IRECTION CHECKING
ALGORITHM is successful in determining if we winfa\pPH
PICKING GAME.

Theorem 4.9:DIRECTION CHECKING ALGORITHM re-
turns Scheck > 0 only when eachY havingY >1ap X

Name: DIRECTION CHECKING ALGORITHM

Goal: Let Y be the (unknown) instantaneous rate of
change of the Laplacian matrix of the commu-
nication graph of a robotic network. GiveX
(known) such that” — X is known to be positive
semidefinite, determine wheth&f can be proved
to win GRAPH PICKING GAME on A and B and
eigenvalue bounda_ and A4

Inputs: e MatricesA, B € LAP(n)

e Eigenvalue bounds_ < A} € R
e Lower bound,X € LAP4(n), on candidate
direction in matrix spaceY” € LAPL(n)

Outputs:  Scheck € R. Scheck > 0 means eacl” > ap X
wins GRAPH PICKING GAME on A,B and
P‘*v >‘+]

al

1: Let A\; <« min(A4, A2(B))

2: Let A «— max(A—, A2(A))

3:if A_ > Ay then

4:  return0

5: end if

6: Let Amin < min(eigg X))

7: Let mpmin < min{m | \,, € €iggA), A\ > A4}

8: Initialize Scheck < —1.

9: for all m € {mmin—1,...,n} do

f 10: if m < n then
11: Letea(i) — «/#ﬁ(fﬁ(m and ugpana (M) —
Spar(uj,j € {17 sy m})
12:  else
13: Letea(m) < 0
14: endif
15:  Letd « dim(uspana (7))
16:  LetM, () € R™*™ whose columns are orthogonal basis
of Uspana 8771)
17: LetS « (1 — ea(m)?) min(eigg M, ;X My () +
he € ()2 min(Amin, 0) /*Does currentrn verify X is
safe?/
18:  Let Scheck < max(S, Schec /*Does anym checked so
far verify X is safe?/
19: end for
20: returnScheck /*Does anym verify X is safe?/

TABLE |
DIRECTION CHECKING ALGORITHM.

In other words, a set of information SONSISTENTwith
an actual state of the world, 1) if the position of each robot,

satisfiesY e M > 0 for M € 0fy,(L) with L € [A, B]_ap-
o= €0h.(L) €[4 Bluap-e i, is within the range it could have reached by traveling with

D. Information dissemination of robot positions speeduvmax starting fromP; for time teyr — T; and 2) D; ;

In order to execute IRECTION CHECKING ALGORITHM,  Stores the distance betweeh and P;.
robots first need information about the past states of the We achieve the problem of providing each robot with
network to come up with reasonable bounds on the Laplaci@&®nsistent information via A.-TO-ALL BROADCAST AL-
matrix. Before specifying the protocol to disseminate info GORITHM: a randomized algorithm in which, for eacly €
mation about each node throughout the network, we firdtl,...,n} there is some finite probability will receive
address what it means for each node to hold informatioan update ory’s position at any given round. A formal
which is consistent with the real world. description of the algorithm can be found in [15]. A simple

Definition 4.10 (Consistency of stored network informatiggscription follows.
Let Pyun € R™™ "™ be the actual position of the robots at Under ALL-TO-ALL BROADCAST ALGORITHM, robots
time teur, and let vmax be a bound on the maximum Store a position estimate and a timestamp for each other
velocity of each individual robot. A tuple(P,T,D), robot. At each round, each robot transmits to its neighbors:
P € R™™ T € R*, D € R"™", is calledCONSISTENTwWith « Its own position, its UID, and the current time as a
Pruth at time teyy if the following hold: timestamp.

(i) Foric{1,...,n}, Pi € B(Pyuthi> (teurr — T})Umax)- « The position, UID and timestamp of a randomly se-

(i) Fori,j e {1,....,n}x{1,...,n}, |Pouni — Puutn;|| € lected robot.

[D;.; — vmax(teurr — T + teur — I), Di j + vmax(tcur —  FOr each timestamp and position it receives, it compares the

T; + teur — 1j)]. e timestamp with the stored one for the associated UID. If the




time is more recent, it replaces its entry for that UID. The gamléi '\S/'?T'ON;ESTALGOE'THM 5
timestamp allows us to bound the current position of any oat ch\)lgLEM FCTRAL LONNECTIVITY  DECISION
robot, given the robot's maximum velocity and the current  Inputs: e Current timetcurr € R

e Maximum velocity of any robotpmax

time. Because this algorithm is randomized, we discuss its « Maximum time between communication rounds,

expected performance.

oT . .
Theorem 4.11:For any robot;j the following holds: the * Proposed direction of motio;

e Eigenvalue bounda_ < Ay € R

expectation, for a randomly selected robiot; {1,...,n} of Persistent e 7' € R™, last recorded time information

teur— T never exceedén? +1)dT. Likewise, the expected data: e P € RYX™, last recorded position information
- ) 1] e D € R™* "™ inter-robot distances

maximum, over ali € {1,...,n} of teyr—T}" never exceeds e A, B € LAP(n)

n(nQ + 1)5T, ° e id € {1,...,n}, identifier of current robot

" : : : i Outputs: e fsafe € R such thatfsare > 0 if, for any time
Additionally the information stored by the network is con t & [teum toun + 6T), the instantaneous change in

sistent with the actual robot positions in the sense of Defi the Laplacian matrix due to motion in the direction
nition 4.10, as we state next. v wins GRAPH PICKING GAME at timet
Theorem 4.12:Assume each robot moves with velocity a 1. nitialize Xpper— 0
mostumax. At all times, each robot holds values ot P, D 2: Initialize Xjoyer < O
which arecoNSISTENT in the sense of Definition 4.10, with if for)?” i€{l,...,n}do ' (5, Paiv.0)
. . | id,i < — MINye B(P; . omax(t—T;+8T)) Gwgt\P> ~id; U,
the state of the network at timigy. ® /*(%?Tr;pute boundspgn (directi?)ﬁ matrix ) S I

X, . — max ) _T, " , Pid; v, 0
V. MOTION TESTALGORITHM Sopeld,i © 7 " HpEB(Py ma(t 7,+67)) (P> Pl v, 0)
upperq iq upper jg — -Xupperg ;

5
6
Here we synthesize a motion coordination algorithm that 7 Xiowerid,ic <= Xlowerid,ia — Xlowerid,i
solves the BECTRAL CONNECTIVITY DECISION PROB- o ‘f\”d formax()\ N
X X : . DAl — —, A2(A))
LEM. With the information provided by the 1A -TO-ALL 10: Ay — min(Ay, A2(B))
BROADCASTALGORITHM, the network can compute lower | 11:if A > X, then ) _ o
A € I__AP(n) f‘:md upperB ¢ I__AP.(n) bounds on th_e_ 12: i;}e#;nd?sgﬂl'lgtxgdagnr&p033|ble matrices with eigenvalues
Laplacian matrix of the communication graph. An explicit  13: end if
algorithm that does this is proposed in [15]. Combining ¢heg  14: fsate < DIRECTION ~ CHECKING  ALGORITHM
ingredients with the IRECTION CHECKING ALGORITHM 15: (rét’uﬁ;ga'?ge“k‘“*)
to verify winning solutions to @APH PICKING GAME, we
synthesize the MTION TEST ALGORITHM presented in
Table Il. The next result shows that this algorithm returns
a value of fsae > 0 only if the instantaneous change in
the Laplacian due to motion in direction wins GRAPH Theorem 5.3:Assumegy, is bounded andy,(0) = 0.
PICKING GAME. Then, for any configuration and any proposed direction of
Theorem 5.1:Assuming that each robot moves with ve-motion v for robot j, permitted underdeALIZED MOTION
locity at most vmax, MOTION TEST ALGORITHM solves TESTALGORITHM, there exists a time step;’, such that
SPECTRAL CONNECTIVITY DECISION PROBLEM. e when communication happens eveéfl time units, with high
The next result shows that solutions teESTRAL CON-  probability robot; is allowed to move in directiom. °
NECTIVITY DECISIONPROBLEM keep the algebraic connec-
tivity of the robotic network above the desired threshold. ) ) _ )
Corollary 5.2: If each robot runs an algorithm which Here, we present simulations of an algorithm synthesized
solves $ECTRAL CONNECTIVITY DECISION PROBLEM, USiNg MOTION TEST ALGORITHM. Assume we are given
and never takes an “unsafe” motion, tham never drops an underlying coordination algorithm that specifies a de-

TABLE Il
MOTION TESTALGORITHM.

B. Simulations

below \_ . e Sired network motion at each configuration. TheoMoN
] ] ) PROJECTIONALGORITHM evaluates MOTION TESTALGO-
A. Analysis under perfect information RITHM on directions in a range about the one specified by

We wish to show that MTION TEST ALGORITHM ex- the underlying law, and returns the closest direction among
hibits reasonable behavior 4" becomes small. To do so, those for which MbTION TESTALGORITHM returns “safe.”
we compare it to an idealized variant ofdflioN TESTAL-  Further details are presented in [15]. We have developed a
GORITHM under which each robot has perfect information.custom Java-based simulation platform for robotic netwprk
We let IDEALIZED MOTION TEST ALGORITHM be the which is available at [13]. This platform is a software imple
algorithm defined by executing ™ON TESTALGORITHM  mentation of the modeling framework for robotic networks
in continuous time, withi7" = 0, and with perfect informa- proposed in [11].
tion about the state of the network available to each robot. We simulated the MTION PROJECTION ALGORITHM
We expound on how this is an idealized variant obMoN  with the r-disk graph for the actual communication network,
TESTALGORITHM in the following result. and the nonconvex weight function
The next result shows that, &§" approaches zero, the B B .
{1—3(8 )2 4 (I3 iy < 5 < i,

Tmx —Tmn Tmx —"mn

1if (s > rmn) else0, otherwise

behavior of MOTION TESTALGORITHM approaches that of Gugt(s) =
IDEALIZED MOTION TEST ALGORITHM.



where rmy, rmn € R satisfy 0 < rmn < rmx < 7. Note that on the communication complexity required to compute the

the functiongyg: satisfies the conditions of Theorem 5.3. gradient of fo_conn. We also plan to study the relationship
We ran the simulation with two sets of underlying controbetween the rate of information transmission and the rate of

laws. In the first simulation, we specify random desiredobot motion in terms of the number of robots and the exact

motion for each agent, subject to a connectivity threshidtd. value of f>_conn Finally, we plan to combine the proposed
example of this execution is shown in Fig. 1. In the secondpproach with algorithms for deployment and exploration.

simulation, one robot attempts to follow a fixed trajectory
while the others move randomly subject to the constraint

ACKNOWLEDGMENTS

of maintaining connectivity. Here we bound the angle each NS reséarch was supported in part by NSF CAREER

robot can deviate from its target direction Byax ; = 0.2.
Fig. 2 shows a sample execution.

[1]
| (2]
. [3]
. [4]
(@ (b) [5]
Fig. 1. Execution of MbTION PROJECTIONALGORITHM with 18 robotic
agents. The underlying control law for each agent is randortiomoPlot [6]
(a) shows the paths taken by the robots and plot (b) showsvtiiation of
the algebraic connectivity. The threshold. is 6. [71
(8]
" [9]
. [10]
[11]
0 05 1 15 2 25 3 1;5 [12]
(@) (b)
Fig. 2. Execution of MOTION PROJECTIONALGORITHM with 4 robotic  [13]
agents. The underlying control law corresponds to one fetidiewing a
fixed trajectory and the remaining agents moving randomly. @pshows
the paths taken by the robots and plot (b) shows the evolutiothe  [14]
algebraic connectivity. The thresholdy is .4 for the randomly-moving
agents and5 for the leader agent.
VI. CONCLUSIONS AND FUTURE WORK (15]

We have studied the problem of connectivity maintenance
in robotic networks. In our approach, the edge weights of t
connectivity graph need not be convex functions of the inte
robot distances. We have proposed a distributed procedure
to synthesize motion constraints on the individual robotg’]
so that the algebraic connectivity of the network is abovgg
a threshold. This algorithm works even though individual
robots only have partial information about the networkestat
due to communication delays and network mobility. Wélg]
have shown that as the communication rate increases, the
performance of the proposed algorithm approaches the ideal
centralized solution to this problem. Future work will syud
the communication complexity of the proposed coordination
algorithm. We are interested in calculating lower bounds

6]
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