
Distributed motion constraints for algebraic connectivity ofrobotic networks

Michael Schuresko and Jorge Cortés

Abstract— This paper studies connectivity maintenance of
robotic networks that communicate at discrete times and move
in continuous space. We propose a distributed algorithm that
allows the robots to decide whether a desired collective motion
breaks connectivity. Our algorithm works under imperfect
information caused by delays in communication and the robots’
mobility. We analyze the correctness of our algorithm by
formulating it as a game against a hypothetical adversary who
chooses system states consistent with observed information. The
technical approach combines tools from algebraic graph theory,
linear algebra, nonsmooth analysis, and systems and control.

I. I NTRODUCTION

Network connectivity is a critical issue in cooperative
robotics. In many applications, connectivity is needed in
order to guarantee the successful completion of a desired
coordination task. Examples include rendezvous at a point
and distributed sensor fusion. In sensor fusion, distributed
agreement protocols have convergence rates which depend on
the degree of connectivity of the underlying communication
network. Since connectivity is a global property, it is difficult
to maintain it in a distributed manner. The objective of this
paper is to develop a distributed approach to preserving
network connectivity that allows for flexibility of individual
robot motions and, at the same time, does not impose a heavy
communication burden on the network operation.

Literature review: We classify previous work on connec-
tivity of robotic networks into two main categories. The first
deals with how to design the network motion to maximize
some desired measure of connectivity under a given set of
position constraints. In [1], convex optimization is used to
solve this problem in the presence of convex constraints on
the strength of inter-agent links. A solution with nonconvex
constraints is presented in [9]. [5] provides a distributed
algorithm when the strength of each link is a convex function
of inter-robot distance. Potential fields are used in [19] to
maximize algebraic connectivity. The second category deals
with a measure of the connectivity of the interaction graph,
a connectivity threshold, and some coordination task. In
this category, algorithms are designed so that the robots’
motions achieve the task subject to the value of the measure
of connectivity never crossing the threshold. A solution to
such a problem is proposed in [18]. This solution allows
for a general range of agent motions, but is not distributed.
A distributed solution that makes agents with second-order
dynamics maintain a fixed set of edges appears in [12]. [14]
presents a distributed solution which allow for varying set
of edges to be preserved. Connectivity problems have been
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studied also in the context of formation control. In [16],
connectivity-preserving motions between pairs of formations
are generated. Control laws based on the Laplacian matrix
of the interconnection graph are designed in [8] to solve
formation control problems while preserving connectivity.

Statement of contributions:In this paper, our approach
considers a measure of the connectivity of the interaction
graph based on its Laplacian matrix. The Laplacian matrix
of a graph is an analog to the Laplacian operator over the
graph: its second smallest eigenvalue,λ2, determines many
connectivity properties of the graph. Given a pre-specified
(arbitrary) lower threshold onλ2, and a proposed instanta-
neous direction of physical motion, we set out to solve the
following problem: how can the robots cooperatively decide
which proposed motions can be taken without causing the
measure of connectivityλ2 to cross below the threshold? We
propose a coordination algorithm which solves this problem
under imperfect information caused by delays in communica-
tion and the robots’ mobility, and has the added advantage of
allowing for nonconvex mappings from inter-robot distance
to edge weights. We provide correctness guarantees for the
algorithm and simulate it with the underlying algorithms of
random motion and trajectory following.

Notation: Throughout the paper,R, R≥0, andR>0 denote
the sets of real, non-negative real, and positive real numbers,
respectively.F(S) is the collection of finite subsets of a set
S. When providing pseudo-code, we usea← b to mean “a is
assigned a value ofb.” R

m×n is the set ofm× n matrices,
and Sym(n) is the set of symmetricn × n matrices. The
Frobenius inner productof A,B ∈ R

m×n is

A •B =
m

∑

i=1

n
∑

j=1

Ai,jBi,j .

For convenience, we introduce the “vectorization”vec :
R

n×n 7→ R
n2

of a matrix defined byvec(M)in+j = Mi,j .
Note that (vec(A))T vec(B) = A • B. Finally, we denote
1 = (1, . . . , 1)T ∈ R

n and0 = (0, . . . , 0)T ∈ R
n.

II. PRELIMINARIES

This section presents preliminary notions on algebraic
graph theory, proximity graphs, and nonsmooth analysis.

A. The graph Laplacian and its spectrum

We deal with undirected graphs. An undirected graph
G = (V, E) consists of a vertex setV and an edge set
E ⊂ V × V of unordered pairs of vertexes, i.e.,(i, j) ∈ E
implies that(j, i) ∈ E . A weighted graph is a graph where
each edge(i, j) ∈ E has an associated weightwi,j ∈ R≥0.
For a weighted graphG = (V, E), the (weighted) adjacency



A(G) ∈ Sym(n) and the LaplacianL(G) ∈ Sym(n) are
given by

A(G)i,j = wi,j , L(G)i,j =

{

∑

k 6=i wi,k i = j,

−wi,j i 6= j.

When the specific graph is clear from the context, we simply
use A and L. We denote byΛ : Sym(n) → Sym(n) the
linear map that transforms an adjacency matrixA onto the
LaplacianL:

Λ(A) = diag(A1)−A = L.

Properties of the Laplacian matrix include [6]: the vector
1 ∈ R

n is an eigenvector with eigenvalue0; L(G) is positive
semidefinite; anddim(ker(L(G))) is equal to the number
of connected components ofG. An undirected graph is
connected if and only if the second smallest eigenvalue of
its Laplacian is greater than zero. Adding weight to an edge
of a graph does not decrease any of the eigenvalues of its
Laplacian [17].

B. Proximity graphs and proximity functions

We use proximity graphs as an abstraction of network
connectivity among spatially distributed robots. A proximity
graph is an association of a set of positions with a weighted
graph. LetP = (p1, . . . , pn) ∈ (Rd)n be a vector ofn robot
positions, with each robot inRd. Let G(n) be the set of
weighted graphs whose vertex set is{{1, . . . , n}}. Then, we
have the following definition [7], [4].

Definition 2.1: A proximity graphG : (Rd)n → G(n)
associates toP ∈ (Rd)n a graph with vertex set{1, . . . , n},
edge setEG(P), where EG : (Rd)n → {1, . . . , n} ×
{1, . . . , n}, and weightswi,j ∈ R>0 for all (i, j) ∈ EG(x).
A proximity graph must satisfy thatG(pσ(1), . . . , pσ(n)) is
isomorphic toG(p1, . . . , pn) for any n-permutationσ and
(p1, . . . , pn) ∈ (Rd)n. •

For a given proximity graph, we often use the associated
proximity function (Rd)n → Sym(n) that maps a tuple
P ∈ (Rd)n to the adjacency matrixA(G(P)) ∈ Sym(n). We
are particularly interested in a class of proximity functions
defined byf(p1, . . . , pn)i,j = gwgt(‖pi − pj‖), with gwgt :
R≥0 → R. For this paper we consider the added restrictions
that gwgt is C2 and monotonically decreasing.

C. Elements of nonsmooth analysis

It is possible to define a notion of gradient for locally
Lipschitz functions [3]. Letf : R

d → R be locally Lipschitz
at x ∈ R

d. For any v ∈ R
d, the generalized directional

derivative off at x in the directionv, denotedf◦(x; v), is

f◦(x; v) = lim sup
y→x,t↓0

f(y + tv)− f(y)

t
.

The generalized directional derivative has the property of
always being well-defined, whereas the one-sided directional
derivative might not exist in some cases. Thegeneralized
gradient off at x ∈ X, denoted∂f(x), is the subset

∂f(x) = {ξ ∈ X | f◦(x; v) ≥ ξT v for all v in X}.

If f is C1 at x, then∂f(x) = {∇f(x)}.

D. Nonsmooth analysis of algebraic connectivity

Here we specify our scalar measure of network connec-
tivity. Denote the (not necessarily distinct) eigenvaluesof
M ∈ Sym(n) by λ1(M) ≤ λ2(M) ≤ · · · ≤ λn(M). We
denote byfλi

: Sym(n) → R the function that mapsM to
λi(M). Given a proximity functionf : (Rd)n → Sym(n),

fi−conn = fλi
◦ Λ ◦ f : (Rd)n → R. (1)

We refer tof2−conn as thealgebraic connectivity function.
Next, we analyze the smoothness properties of the func-

tions fi−conn, for i ∈ {1, . . . , n}. We are particularly inter-
ested inf2−conn.

Lemma 2.2:For i ∈ {1, . . . , n},
• the functionfλi

is globally Lipschitz with constant1.
• for a locally Lipschitz proximity functionf , the con-

nectivity functionfi−conn is also locally Lipschitz. •
The following result [10] specifies the gradient offλi

.
Theorem 2.3:For i ∈ {1, . . . , n}, the generalized direc-

tional derivative (in the directionX ∈ Sym(n)) and the
generalized gradient offλi

at M ∈ Sym(n) are given by

f◦
λi

(M ;X) = max
{v∈Sn |Mv=λiv}

vvT •X,

∂fλi
(M) = co{v∈Sn |Mv=λiv}{vvT }. •

The next result is a consequence of (1) and the nonsmooth
chain rule [3, Theorem 2.3.10].

Theorem 2.4:Given a continuously differentiable proxim-
ity function, f : (Rd)n → Sym(n), we have atP ∈ (Rd)n,
andL = Λ(f(P)),

∂fi−conn(P) ⊆ (vec(∂fλi
(L)))T (∇vec(L)). •

III. PROBLEM FORMULATION

Here, we describe our robotic network model and state the
problem we address. Each robot has fully actuated first-order
dynamics, and operates under a continuous-time control law.
At discrete time intervals, each robot communicates with its
neighbors over some proximity graph and re-computes an
internal state which is used by its control law. The reader is
referred to [2], [11] for a more detailed presentation.

The problem we address here is that of deciding when a
proposed motion can be made while maintaining connectivity
of the robotic network. Each robot should be able to solve
the following problem.

Problem 3.1:Consider roboti with a desired motion spec-
ified by the inputui. Given bounded sets,{Uj}j∈{1,...,n}\{i},
such that each agent’s control input,uj must belong toUj , a
time interval[t0, t0 + δT ], and [λ−, λ+] ⊂ R>0, SPECTRAL

CONNECTIVITY DECISION PROBLEM consists of providing
a procedure which, for each network configurationP, returns
a value,fsafe∈ R havingfsafe≥ 0 only if the following hold
for all t ∈ [t0, t0 + δT ] and alluj ∈ Uj , j ∈ {1, . . . , n} \ i,

• f2−conn(P(t)) 6∈ [λ−, λ+], or
• f◦

2−conn(P(t);[0, . . . , uT
i , . . . ,0]T ) ≥ 0.

whereP(t) is the network evolution starting fromP under
control {ui}

n
i=1. •

We assume that, initially, the algebraic connectivityλ2

is larger thanλ+. During the network evolution,λ2 might



decrease belowλ+. Our algorithm should guarantee that in
such case,λ2 never crosses belowλ−.

One can regard the solution to this problem as a building
block towards the solution of more complex problems in-
volving connectivity. For instance, given a specific strategy
which achieves a coordination task, one could envision the
synthesis of a procedure that modifies the directions of
motion specified by the strategy as little as possible while
preserving network connectivity. For space reasons, we do
not deal with this problem here, and instead refer to [15].

IV. E IGENVALUE GAMES

In this section we introduce the main components of our
solution to the problem 3.1. In Section IV-A, we reformu-
late SPECTRAL CONNECTIVITY DECISION PROBLEM as a
game, termed GRAPH PICKING GAME, which can be played
with out-of-date information on the state of the network and
in Section IV-B we study the properties of its solutions. In
Section IV-C we present a distributed procedure that allows
network agents to decide whether an intended motion wins
GRAPH PICKING GAME. A final component of our solution
is a distributed information dissemination algorithm.

A. GRAPH PICKING GAME

We are interested in characterizing the rates of change of
Laplacian matrices arising from instantaneous robot motions
which solve SPECTRAL CONNECTIVITY DECISION PROB-
LEM. To do this, we reformulate this problem as a game and
study the properties of its solutions.

Definition 4.1: (MATRIX FORM OF THESPECTRALCON-
NECTIVITY DECISION PROBLEM): Given bounds on each
edge weight of a graphG, Ai,j ≤ wi,j ≤ Bi,j , (i, j) ∈ E,
find the set of matricesX in {M ∈ Sym(n) |M1 = 0}
such that for eachG havingfλ2

(L(G)) ∈ [λ−, λ+], one has
f◦

λ2
(L(G);M) ≥ 0 for M ∈ X . •

First, let us introduce notation used to discuss bounded
intervals on the space of graph Laplacian matrices. Let

LAP±(n) = {M ∈ Sym(n) |M1 = 0},

LAP(n) = {M ∈ LAP±(n) |Mi,j ≤ 0 for all i 6= j}.

Lemma 4.2:The directional derivative of any function
whose range is LAP(n) lies in LAP±(n). •
Consider the following partial order in LAP±(n). ForA,B ∈
LAP±(n), we writeA <LAP B iff Ai,j > Bi,j for all i 6= j ∈
{1, . . . n}. Likewise, A ≤LAP B if and only if Ai,j ≥ Bi,j

for all i 6= j ∈ {1, . . . n}. For A ≤LAP B, we define

[A,B]LAP = {L ∈ LAP±(n) |A ≤LAP L ≤LAP B}.

Note thatA,B ∈ LAP(n) and L ∈ [A,B]LAP imply L ∈
LAP(n). The following result provides more properties of
the matrices in the interval[A,B]LAP.

Lemma 4.3:Let A,B ∈ LAP(n), L ∈ [A,B]LAP. Then,
(i) fλ2

(L) ∈ [fλ2
(A), fλ2

(B)]
(ii) vvT • L ∈ [vvT •A, vvT •B] for v ∈ R

n.
We can now express the MATRIX FORM OF THE SPEC-

TRAL CONNECTIVITY DECISION PROBLEM in Defini-
tion 4.1 as a game played against a graph-picking opponent.

Definition 4.4 (GRAPH PICKING GAME): Given A,B ∈
LAP(n) with A ≤LAP B, we pick Y ∈ LAP±(n). Our
opponent then selectsL ∈ [A,B]LAP. We win if either of
the following conditions hold

• fλ2
(L) 6∈ [λ−, λ+], or

• f◦
λ2

(L;Y ) ≥ 0. •
Our objective is to characterize the choicesY that ensure

that GRAPH PICKING GAME is won. Any instantaneous
rate of change of the Laplacian belongs to LAP±(n) by
Lemma 4.2.

B. Bounds on matrices which winGRAPH PICKING GAME

A direction that a robot can take in physical space induces
an instantaneous rate of change of the Laplacian matrix of
the underlying communication graph of the network. Given
out-of-date information on the state of the network, each
robot can produce bounds on the actual Laplacian of the
graph. In this section we answer the following question:
given lower and upper boundsA,B ∈ LAP(n) on the
Laplacian matrix of the communication graph and a range
of possible instantaneous rates of change of the Laplacian
matrix due to a proposed physical motion, can we guarantee
that the proposed motion will not decrease the second
smallest eigenvalue of the graph Laplacian? We do this by
answering the related question: given the information listed
above, and a range of “unsafe” eigenvalues,[λ−, λ+], can we
guarantee the proposed motion will not decrease the second
smallest eigenvalue of the Laplacian matrix whenever the
said eigenvalue is outside of the range[λ−, λ+]?

More formally, we bound the union of all possible gradi-
ents offλ2

evaluated atL ∈ [A,B]LAP. Let L ∈ [A,B]LAP

such thatfλ2
(L) ∈ [λ−, λ+]. Note that for eachw ∈ R

n

such thatL • (wwT ) = fλ2
(L) (i.e., wwT ∈ ∂fλ2

(L)), we
must haveA•(wwT ) ≤ λ+ as a consequence of Lemma 4.3.

We now proceed to bound the set ofw ∈ R
n which

satisfyA•(wwT ) ≤ λ+ and thus havewwT ∈ ∂fλ2
(L). Let

{u1, . . . , um} be them eigenvectors ofA corresponding to
eigenvaluesλj ≤ λ+ and let{um+1, . . . , un} be then−m

eigenvectors ofA corresponding to eigenvaluesλj > λ+.
Given m̃ ≥ m, define

ǫA(m̃) =

√

λ+ − λ2(A)

λm̃+1(A)− λ2(A)
,

uspan-A(m̃) = span{u1, . . . , um̃},

UA(m̃) = {w ∈ S
n | there existsu ∈ S

n ∩ uspan-A(m̃)

such thatw ∈ B(u, ǫA(m̃))}.

We pick UA(m̃) to contain thew satisfying wwT ∈
∂fλ2

(L) for m̃ ≥ m. We show that this inclusion holds next.
Proposition 4.5:Let A,B ∈ LAP(n), L ∈ [A,B]LAP,

fλ2
(L) ≤ λ+, w ∈ S

n, m̃ ≥ m. If w 6∈ UA(m̃), then
wwT 6∈ ∂fλ2

(L). •
The bound induced byUA(m̃) works for anym̃ ≥ m. Our

idea is to check for all such̃m, in the hope of finding one
which verifies that our proposed motion is allowable.

The following result is a consequence of Theorem 2.4.
Corollary 4.6: Any instantaneous change in robot posi-

tions, {ui}i∈{1,...,n} which induces an instantaneous rate



of change of the Laplacian,Y ∈ LAP±(n), satisfying
Y • (uuT ) ≥ 0 for all u ∈ UA(m̃) for somem̃ ≥ m satisfies
f◦
2−conn(P; {ui}i∈{1,...,n}) ≥ 0. •
Given somem̃ ≥ m, we can conclude from Proposi-

tion 4.5 that anyM satisfying M • (wwT ) ≥ 0 for all
w ∈ UA(m̃) wins GRAPH PICKING GAME on A,B, λ−, λ+.
To determine whether a givenM satisfies this property, it is
sufficient to find the vectoru ∈ uspan-A(m̃) which minimizes
M • (uuT ) or equivalentlyuT Mu (and then tack a fudge
factor based onǫA(m̃) onto this minimum).

Let d be the dimension ofuspan-A(m̃). Let Mu(m̃) ∈
R

n×m̃ be a matrix whose column vectors are an orthonormal
basis ofuspan-A(m̃). Any vector inuspan-A(m̃) ∩ S

n can be
expressed asMu(m̃)x for somex ∈ S

m̃ and anyx ∈ S
m̃

satisfiesMu(m̃)x ∈ uspan-A(m̃) ∩ S
n.

Proposition 4.7:Finding the vectoru ∈ uspan-A(m̃) ∩ S
n

which minimizesM • (uuT ) is equivalent to finding the
vector x ∈ S

d which minimizesxT MT
u(m̃)MMu(m̃)x. This

corresonds to the smallest eigenvalue ofMT
u(m̃)MMu(m̃). •

The next results provides a sufficient criterion to check if
a matrix is a winning solution to GRAPH PICKING GAME.

Proposition 4.8: (1 − ǫA(m̃)2)M • (uuT ) +
ǫA(m̃)2min(min(eigs(M)), 0) ≥ 0 for all u ∈ uspan-A(m̃)
only if M • (wwT ) ≥ 0 for all w ∈ UA(m̃).

C. DIRECTION CHECKING ALGORITHM

We introduce DIRECTION CHECKING ALGORITHM in
Table I. GivenA,B ∈ LAP(n), and a lower bound,X ∈
LAP±(n) of the candidate instantaneous rate of change of the
Laplacian matrix,Y ∈ LAP±(n), Y ≥LAP X, the algorithm
returns a valueScheck≥ 0 if it can verify that anyY ≥LAP X

wins GRAPH PICKING GAME on A and B, and returns
Scheck < 0 otherwise.

The following result shows that DIRECTION CHECKING

ALGORITHM is successful in determining if we win GRAPH

PICKING GAME.
Theorem 4.9:DIRECTION CHECKING ALGORITHM re-

turns Scheck ≥ 0 only when eachY having Y ≥LAP X

satisfiesY •M ≥ 0 for M ∈ ∂fλ2
(L) with L ∈ [A,B]LAP.•

D. Information dissemination of robot positions

In order to execute DIRECTION CHECKING ALGORITHM,
robots first need information about the past states of the
network to come up with reasonable bounds on the Laplacian
matrix. Before specifying the protocol to disseminate infor-
mation about each node throughout the network, we first
address what it means for each node to hold information
which is consistent with the real world.

Definition 4.10 (Consistency of stored network information):
Let Ptruth ∈ R

n×n be the actual position of the robots at
time tcurr, and let vmax be a bound on the maximum
velocity of each individual robot. A tuple,(P, T,D),
P ∈ R

d×n, T ∈ R
n,D ∈ R

n×n, is calledCONSISTENTwith
Ptruth at time tcurr if the following hold:

(i) For i ∈ {1, . . . , n}, Pi ∈ B(Ptruthi, (tcurr− Ti)vmax).
(ii) For i, j ∈ {1, . . . , n}×{1, . . . , n}, ‖Ptruthi−Ptruthj‖ ∈

[Di,j − vmax(tcurr− Ti + tcurr− Tj),Di,j + vmax(tcurr−
Ti + tcurr− Tj)]. •

Name: DIRECTION CHECKING ALGORITHM
Goal: Let Y be the (unknown) instantaneous rate of

change of the Laplacian matrix of the commu-
nication graph of a robotic network. GivenX
(known) such thatY −X is known to be positive
semidefinite, determine whetherY can be proved
to win GRAPH PICKING GAME on A and B and
eigenvalue boundsλ− andλ+

Inputs: • MatricesA, B ∈ LAP(n)
• Eigenvalue boundsλ− ≤ λ+ ∈ R

• Lower bound,X ∈ LAP±(n), on candidate
direction in matrix space,Y ∈ LAP±(n)

Outputs: Scheck ∈ R. Scheck ≥ 0 means eachY ≥LAP X
wins GRAPH PICKING GAME on A, B and
[λ−, λ+]

1: Let λ+ ← min(λ+, λ2(B))
2: Let λ− ← max(λ−, λ2(A))
3: if λ− > λ+ then
4: return0
5: end if
6: Let λmin← min(eigs(X))
7: Let mmin← min{m |λm ∈ eigs(A), λm > λ+}
8: Initialize Scheck← −1.
9: for all m̃ ∈ {mmin − 1, . . . , n} do

10: if m̃ < n then

11: Let ǫA(m̃)←

r

λ+−λ2(A)

λm̃+1(A)−λ2(A)
anduspan-A(m̃)←

span(uj , j ∈ {1, . . . , m})
12: else
13: Let ǫA(m̃)← 0
14: end if
15: Let d← dim(uspan-A(m̃))
16: LetMu(m̃) ∈ Rn×m̃ whose columns are orthogonal basis

of uspan-A(m̃)
17: Let S ← (1 − ǫA(m)2) min(eigs(MT

u(m̃)
XMu(m̃))) +

ǫA(m̃)2 min(λmin, 0) /*Does currentm̃ verify X is
safe?*/

18: Let Scheck← max(S, Scheck) /*Does anym̃ checked so
far verify X is safe?*/

19: end for
20: returnScheck /*Does anym̃ verify X is safe?*/

TABLE I

DIRECTION CHECKING ALGORITHM.

In other words, a set of information isCONSISTENTwith
an actual state of the world, 1) if the position of each robot,
i, is within the range it could have reached by traveling with
speedvmax starting fromPi for time tcurr− Ti and 2)Di,j

stores the distance betweenPi andPj .
We achieve the problem of providing each robot with

consistent information via ALL -TO-ALL BROADCAST AL-
GORITHM: a randomized algorithm in which, for eachi, j ∈
{1, . . . , n} there is some finite probabilityi will receive
an update onj’s position at any given round. A formal
description of the algorithm can be found in [15]. A simple
description follows.

Under ALL -TO-ALL BROADCAST ALGORITHM, robots
store a position estimate and a timestamp for each other
robot. At each round, each robot transmits to its neighbors:

• Its own position, its UID, and the current time as a
timestamp.

• The position, UID and timestamp of a randomly se-
lected robot.

For each timestamp and position it receives, it compares the
timestamp with the stored one for the associated UID. If the



time is more recent, it replaces its entry for that UID. The
timestamp allows us to bound the current position of any
robot, given the robot’s maximum velocity and the current
time. Because this algorithm is randomized, we discuss its
expected performance.

Theorem 4.11:For any robotj the following holds: the
expectation, for a randomly selected robot,i ∈ {1, . . . , n} of
tcurr−T

[i]
j never exceeds(n2 +1)δT . Likewise, the expected

maximum, over alli ∈ {1, . . . , n} of tcurr−T
[i]
j never exceeds

n(n2 + 1)δT . •
Additionally the information stored by the network is con-
sistent with the actual robot positions in the sense of Defi-
nition 4.10, as we state next.

Theorem 4.12:Assume each robot moves with velocity at
mostvmax. At all times, each robot holds values ofT,P,D

which areCONSISTENT, in the sense of Definition 4.10, with
the state of the network at timetcurr. •

V. M OTION TEST ALGORITHM

Here we synthesize a motion coordination algorithm that
solves the SPECTRAL CONNECTIVITY DECISION PROB-
LEM. With the information provided by the ALL -TO-ALL

BROADCAST ALGORITHM, the network can compute lower
A ∈ LAP(n) and upperB ∈ LAP(n) bounds on the
Laplacian matrix of the communication graph. An explicit
algorithm that does this is proposed in [15]. Combining these
ingredients with the DIRECTION CHECKING ALGORITHM

to verify winning solutions to GRAPH PICKING GAME, we
synthesize the MOTION TEST ALGORITHM presented in
Table II. The next result shows that this algorithm returns
a value of fsafe ≥ 0 only if the instantaneous change in
the Laplacian due to motion in directionv wins GRAPH

PICKING GAME.
Theorem 5.1:Assuming that each robot moves with ve-

locity at most vmax, MOTION TEST ALGORITHM solves
SPECTRAL CONNECTIVITY DECISION PROBLEM. •

The next result shows that solutions to SPECTRAL CON-
NECTIVITY DECISIONPROBLEM keep the algebraic connec-
tivity of the robotic network above the desired threshold.

Corollary 5.2: If each robot runs an algorithm which
solves SPECTRAL CONNECTIVITY DECISION PROBLEM,
and never takes an “unsafe” motion, thenλ2 never drops
below λ−. •

A. Analysis under perfect information

We wish to show that MOTION TEST ALGORITHM ex-
hibits reasonable behavior asδT becomes small. To do so,
we compare it to an idealized variant of MOTION TEST AL-
GORITHM under which each robot has perfect information.

We let IDEALIZED MOTION TEST ALGORITHM be the
algorithm defined by executing MOTION TEST ALGORITHM

in continuous time, withδT = 0, and with perfect informa-
tion about the state of the network available to each robot.
We expound on how this is an idealized variant of MOTION

TEST ALGORITHM in the following result.
The next result shows that, asδT approaches zero, the

behavior of MOTION TEST ALGORITHM approaches that of
IDEALIZED MOTION TEST ALGORITHM.

Name: MOTION TEST ALGORITHM
Goal: Solve SPECTRAL CONNECTIVITY DECISION

PROBLEM.
Inputs: • Current timetcurr ∈ R

• Maximum velocity of any robot,vmax
• Maximum time between communication rounds,
δT
• Proposed direction of motion,v
• Eigenvalue boundsλ− ≤ λ+ ∈ R

Persistent • T ∈ Rn, last recorded time information
data: • P ∈ Rd×n, last recorded position information

• D ∈ Rn×n, inter-robot distances
• A, B ∈ LAP(n)
• id ∈ {1, . . . , n}, identifier of current robot

Outputs: • fsafe ∈ R such thatfsafe ≥ 0 if, for any time
t ∈ [tcurr, tcurr + δT ], the instantaneous change in
the Laplacian matrix due to motion in the direction
v wins GRAPH PICKING GAME at time t

1: Initialize Xupper← 0

2: Initialize Xlower← 0

3: for all i ∈ {1, . . . , n} do
4: Xlowerid,i ← −minp∈B(Pi,vmax(t−Ti+δT )) g′wgt(p,Pid; v,0)

/*Compute bounds on direction matrix*/
5: Xupperid,i

← −maxp∈B(Pi,vmax(t−Ti+δT )) g′wgt(p,Pid; v,0)
6: Xupperid,id ← Xupperid,id −Xupperid,i
7: Xlowerid,id ← Xlowerid,id −Xlowerid,i

8: end for
9: λ− ← max(λ−, λ2(A))

10: λ+ ← min(λ+, λ2(B))
11: if λ− ≥ λ+ then
12: return 0 /*There are no possible matrices with eigenvalues

in the disallowed range*/
13: end if
14: fsafe ← DIRECTION CHECKING ALGORITHM

(A, B, Xlower, λ−, λ+)
15: returnfsafe

TABLE II

MOTION TEST ALGORITHM.

Theorem 5.3:Assumeg′′wgt is bounded andg′wgt(0) = 0.
Then, for any configuration and any proposed direction of
motion v for robot j, permitted under IDEALIZED MOTION

TEST ALGORITHM, there exists a time step,δT , such that
when communication happens everyδT time units, with high
probability robotj is allowed to move in directionv. •

B. Simulations

Here, we present simulations of an algorithm synthesized
using MOTION TEST ALGORITHM. Assume we are given
an underlying coordination algorithm that specifies a de-
sired network motion at each configuration. The MOTION

PROJECTIONALGORITHM evaluates MOTION TEST ALGO-
RITHM on directions in a range about the one specified by
the underlying law, and returns the closest direction among
those for which MOTION TEST ALGORITHM returns “safe.”
Further details are presented in [15]. We have developed a
custom Java-based simulation platform for robotic networks,
which is available at [13]. This platform is a software imple-
mentation of the modeling framework for robotic networks
proposed in [11].

We simulated the MOTION PROJECTION ALGORITHM

with ther-disk graph for the actual communication network,
and the nonconvex weight function

gwgt(s) =

{

1− 3( s−rmn
rmx−rmn

)2 + 2( s−rmn
rmx−rmn

)3, rmn ≤ s ≤ rmx,

1 if (s > rmn) else0, otherwise,



wherermx, rmn ∈ R satisfy 0 < rmn < rmx < r. Note that
the functiongwgt satisfies the conditions of Theorem 5.3.

We ran the simulation with two sets of underlying control
laws. In the first simulation, we specify random desired
motion for each agent, subject to a connectivity threshold.An
example of this execution is shown in Fig. 1. In the second
simulation, one robot attempts to follow a fixed trajectory
while the others move randomly subject to the constraint
of maintaining connectivity. Here we bound the angle each
robot can deviate from its target direction byθmax−i = 0.2.
Fig. 2 shows a sample execution.
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Fig. 1. Execution of MOTION PROJECTIONALGORITHM with 18 robotic
agents. The underlying control law for each agent is random motion. Plot
(a) shows the paths taken by the robots and plot (b) shows the evolution of
the algebraic connectivity. The thresholdλ+ is 6.
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Fig. 2. Execution of MOTION PROJECTIONALGORITHM with 4 robotic
agents. The underlying control law corresponds to one leader following a
fixed trajectory and the remaining agents moving randomly. Plot(a) shows
the paths taken by the robots and plot (b) shows the evolutionof the
algebraic connectivity. The thresholdλ+ is .4 for the randomly-moving
agents and.5 for the leader agent.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the problem of connectivity maintenance
in robotic networks. In our approach, the edge weights of the
connectivity graph need not be convex functions of the inter-
robot distances. We have proposed a distributed procedure
to synthesize motion constraints on the individual robots
so that the algebraic connectivity of the network is above
a threshold. This algorithm works even though individual
robots only have partial information about the network state
due to communication delays and network mobility. We
have shown that as the communication rate increases, the
performance of the proposed algorithm approaches the ideal
centralized solution to this problem. Future work will study
the communication complexity of the proposed coordination
algorithm. We are interested in calculating lower bounds

on the communication complexity required to compute the
gradient off2−conn. We also plan to study the relationship
between the rate of information transmission and the rate of
robot motion in terms of the number of robots and the exact
value of f2−conn. Finally, we plan to combine the proposed
approach with algorithms for deployment and exploration.
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