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Abstract— In this paper we present an algorithm for merging
visual maps in a robot network. Along the operation, each
robot observes the environment and builds and maintains its
local map. Simultaneously, the robots communicate and build
a global map of the environment. The communication between
the robots is limited, and, at every time instant, each robot can
only exchange data with its neighboring robots. We provide a
distributed solution to the problem which does not rely on any
particular communication topology and is robust to changes in
the topology. Each robot computes and tracks the global map
based on local interactions with its neighbors. Our contribution
is the extension of distributed sensor fusion ideas to the problem
of dynamic map merging. Under mild connectivity conditions
on the communication graph, this algorithm asymptotically
converges to the global map. The real experiments have been
carried out with visual information, which is of special interest
in robotics.

I. INTRODUCTION

Perception tasks have been long studied in the fields of
localization, map building and exploration. Many existent
solutions for single robot systems have been extended to
multi robot scenarios under centralized schemes, full com-
munication between the robots, or broadcasting methods.
Particle filters have been generalized to multi-robot sys-
tems [1] assuming that the robots broadcast their controls
and their observations. The Constrained Local Submap Filter
has been extended to the multi-robot case [2] assuming
that each robot builds a local submap and broadcasts it, or
transmits it to a central agent. Methods based on graph maps
of laser scans [3], [4] make each robot build a new node and
broadcast it. The same solution could be applied for many
existing submap approaches [5], [6].

However, in multi robot scenarios, distributed approaches
are more interesting since they explicitly consider uncom-
plete communication graphs, switching topologies, link fail-
ures, and limited bandwidth. These considerations are be-
coming popular in cooperative localization [7]. They have
motivated an intensive research in distributed implemen-
tations of the Kalman Filter. Those methods rely on the
information form (IF) of the Kalman filter, which is more
suitable for decentralized operation. Measurement updates
in IF are additive, and therefore, information coming from
different sensors can be fused in any order and any time.
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While optimal solutions exist for complete communication
networks [8], for general communication schemes [9], [10]
the delayed data problem leads to an approximate KF estima-
tor. This problem appears when the nodes execute the state
prediction without having incorporated all the measurements
taken at the current step. As a result, their estimates become
suboptimal and give rise to disagreement. A solution that
reduces this disagreement has been presented [11] and its
convergence has been proved in the absence of observation
and system noises. However, this solution does not consider
system inputs, which usually model odometry measurements
in general robotic applications. Therefore, it does not solve
its associated delayed data problem.

Distributed estimation is problematic due to the delayed
data problem associated to the state prediction. However,
applications that exclusively use the measurement update
can be easily distributed using IF [12]. We propose a map
merging solution where the information received from other
robots is introduced into the global map estimates, but
not into the local maps. Each robot updates its local map
with measurements exclusively acquired by itself. Our map
merging solution does not produce the same results than
a centralized estimator compiling all measurements from
all the robots. Since each robot has a lower amount of
information available during its operation, the maps may
be less precise than the obtained by the centralized system.
However, it allows the robots explore on their own and merge
their maps in a distributed fashion. In our solution, the local
maps of the robots are expressed in IF form, and they are
fused in an additive fashion. However, instead of simply
sum them [13], we build on ideas from dynamic consensus
algorithms [14], [15] to provide a distributed map merging
algorithm.

In this paper we do not discuss initial correspondence
or map alignment problems. We assume that the maps
are aligned during the initial step using a closed form
solution [16]. Other approaches that compute relative poses
between the robots could be used for that [17]. We do not
discuss data association as well. This problem consists of
matching equal features in different maps. The widely used
joint compatibility branch and bound JCBB [18] or visual
appearance methods [19] can be used.

We present a dynamic version of our previous work in
distributed map merging [20], where the robots performed
the exploration of the environment, and only at the end of it,
they ran a static consensus algorithm to merge their maps.
Consequently, during the exploration, the robots did not have
or incorporate any information from other agents. This paper



instead is a proposal to dynamically merge the information
online, i.e., at the same time that they are performing the
exploration. This is much more realistic, because as the
robots move, they acquire more information and incorporate
it into their maps. However, this on-the-fly fusion is more
difficult and computationally demanding.

Due to space limitations all proofs of Section III are
omitted. They will appear elsewhere.

II. PRELIMINARIES

We consider a team of n ∈ N robots with limited commu-
nication capabilities. Let G = (R, E) be the undirected com-
munication graph. The nodes are the robots, R = {1, . . . , n}.
If two robots i, j can exchange information, then there is an
edge between them, (i, j) ∈ E . Let Ni be the set of neighbors
of robot i, Ni = {j | (i, j) ∈ E}. Along this paper, we will
use 1 ∈ Rn for a column vector with all entries equal to 1.
We let Π be the matrix Π = I − 11T

n .
Our averaging algorithm is a discrete version of the

Proportional Integral (PI) estimator in [14]. Let us consider
that each node i ∈ {1, . . . , n} has an input ui ∈ R and
variables xi(t) ∈ R, wi(t) ∈ R and it executes the PI
algorithm

ẋi(t) = −γxi(t)−
∑
j∈Ni

aij [xi(t)− xj(t)]

+
∑
j 6=i

bji [wi(t)− wj(t)] + γui,

ẇi(t) = −
∑
j∈Ni

bij [xi(t)− xj(t)] , (1)

where γ > 0 is a global estimator parameter, and aij , bij

are the estimator gains so that, if j /∈ Ni, then aij = 0,
bij = 0. Let us consider simultaneously all the inputs
and variables at the n nodes, u ∈ Rn = (u1, . . . , un)T ,
x ∈ Rn = (x1, . . . , xn)T , w ∈ Rn = (w1, . . . , wn)T . Let
ex(t) ∈ Rn be the error vector

ex(t) = x(t)− 11T

n
u. (2)

Let WP = [aij ], WI = [bij ] be respectively the propor-
tional and the integral weights matrices, and LP , LI their
associated Laplacians, LP = diag(WP 1) − WP , LI =
diag(WI1)−WI . If each node i ∈ {1, . . . , n} executes the
PI algorithm with γ, LP and LI so that

rank(LI) = n− 1, (3a)

ε ∈ R is such that Π(LP + LT
P )Π � 2εΠ, (3b)

γ > 0 is chosen such that γ + ε > 0, (3c)

then, for any input u and any initial states x(0),w(0), the
error vector ex(t) tends to 0 exponentially as t → ∞ [14,
Theorem 5].

As weight matrices WP , WI , we use the Metropolis
weights. Along this paper, we will use W ∈ Rn×n = [wij ]

for the Metropolis weights matrix [21]

wij =
{ 1

1+max{|Ni|,|Nj |} if j ∈ Ni,

0 if j /∈ Ni, j 6= i,

wii = 1−
∑
j∈Ni

wij , (4)

for i, j ∈ R, j 6= i, where |Ni|, |Nj | are the number of
neighbors of nodes i, j. We will use LW ∈ Rn×n for its
associated Laplacian, LW = diag(W1)−W = I −W . The
Metropolis weights are widely used in consensus algorithms.
They are convenient for distributed applications, since they
can be computed by every robot based on local information.
W is symmetric and doubly stochastic W = WT , W1 = 1,
1T W = 1T . It has an eigenvalue at 1, and all its other
eigenvalues λ(W ) ∈ (−1, 1). Its associated Laplacian LW

is symmetric and positive semidefinite [22, Theorem 1.37]. It
has an eigenvalue at 0, and all the others λ(LW ) ∈ (0, 2). For
any connected communication graph, LW satisfies (3a). It
also satisfies (3b) for ε = 0 taking into account that Π(LW +
LT

W )Π = 2LW since LW is symmetric, and that LW is
positive semidefinite. Then, condition (3c) reduces to γ > 0.

III. AVERAGING ALGORITHM IN
DISCRETE-TIME

The averaging algorithm in discrete time, using the
Metropolis weights, is[

x(t + 1)
w(t + 1)

]
= A

[
x(t)
w(t)

]
+Bu,

A = I + h

[
−γI − LW LW

−LW 0

]
, B =

[
hγI
0

]
, (5)

where h > 0 is the step size. Next, we derive the conditions
on γ and h to ensure the convergence of (5). Along this
section, we will use the notation λ(A) for an eigenvalue of
a matrix A, and v(A) for its associated eigenvector. We will
use λ?, λ2 for respectively the maximum and the second-
smallest eigenvalues of LW .

The discrete-time system converges if A has a single
eigenvalue at 1, and the other eigenvalues have modulus
strictly less than 1.

Proposition 3.1: Let us consider that G is connected. If
the step size h and the parameter γ satisfy

hγ < 2, (6a)
γ ≥ 2λ? − λ2, (6b)
h(γ + λ?) < 2, (6c)

then all the eigenvalues of A are real. Besides, one of them
is equal to 1, and all the others have modulus strictly less
than one.

Theorem 3.2: Let LW be the Laplacian of the Metropolis
weights W of a fixed, connected graph. Let h > 0, γ > 0
be as in Proposition 3.1. Then, for any input u ∈ Rn and
any initial states x(0) ∈ Rn, w(0) ∈ Rn, the states x(t) ∈
Rn, w(t) ∈ Rn of the consensus algorithm (5) converge



exponentially to

x∗ = lim
t→∞

(x(t)) =
11T

n
u,

w∗ = lim
t→∞

(w(t)) =
11T

n
w(0)− γΠ(LW +

11T

n
)−1Πu, (7)

as t → ∞. Moreover, the error vector exw(t) =
[x(t)T ,w(t)T ]T − [(x∗)T , (w∗)T ]T after t iterations satisfies

||exw(t)||2 ≤
√

2n β |λmax(A)|t ||exw(0)||2, (8)

where

β =
8γ√

(γ + λ?)2 − (2λ?)2
, (9)

exw(0) is the initial error, and |λmax(A)| is the second
eigenvalue of A with maximum absolute value.

In particular, the selection of γ = 4, and h = 0.33
satisfies Proposition 3.1 for any connected communication
graph, since the eigenvalues of LW satisfy 0 < λ2 ≤ λ? < 2.

IV. DYNAMIC MAP MERGING
In this section, we explain how the dynamic consensus

algorithm presented in the previous section is used for
merging visual stochastic maps. We consider n ∈ N robots
that explore an environment. There are m ∈ N features
whose true positions θ ∈ R2m are unknown. Every feature
has associated a unique identifier. The identifiers of all the
features are stored in the identification vector Iθ ∈ Nm. Up
to step k ∈ N, each robot i ∈ {1, . . . , n}, has observed mk

i

of them, with mk
i ≤ m, whose identities are Ik

θi
∈ Nmk

i .
Robot i estimates the feature positions and its own pose
(position and orientation) based on its own observations. It
builds a local map with mean x̂k

i ∈ R2mk
i and covariance

Σk
i ∈ R2mk

i×2mk
i . The n local maps are expressed in a

common reference frame. Each robot i has communication
capabilities to exchange information with its neighbors Ni.
The goal is that the robots compute and track the global
merged map.
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Fig. 1. Dynamic map merging. Robots construct a local map using the
observations taken along K map update steps. Between any two map update
steps, they execute l consensus iterations to compute the global map. Then,
they use these global map estimates as an initial solution for the consensus
iterations in the next step.

In our dynamic map merging approach (Fig.1), the robots
locally build their maps. At some instants, the map update
steps k = 1, . . . ,K, each robot i transforms its local map
into the inputs

uk
Pi

= (Hk
i )T (Σk

i )−1Hk
i , uk

qi
= (Hk

i )T (Σk
i )−1x̂k

i . (10)

Those inputs are the local maps in IF form. The observation
matrix Hk

i ∈ R2mi×2m is a permutation of an identity
matrix with additional zero-columns. It relates the features
Ik
θi

locally observed by robot i and the features observed
by all the robots Iθ. It also relates the n last local robot
poses with its global representation. Each robot i initializes
its consensus states with its last estates at k − 1,

xk
Pi

(0) = xk−1
Pi

(l), xk
qi

(0) = xk−1
qi

(l),

wk
Pi

(0) = wk−1
Pi

(l), wk
qi

(0) = wk−1
qi

(l). (11)

For k = 1, it initializes its consensus estates to zero,

x1
Pi

(0) = w1
Pi

(0) = 0, x1
qi

(0) = w1
qi

(0) = 0. (12)

since it has no previous information. Then, each robot i
runs l iterations of the consensus algorithm (5) to com-
pute the global map up to k. Notice that this algorithm
was presented in the previous section for scalar vari-
ables ui, xi(t), wi(t) ∈ R. Its extension to the multi-
dimensional variables uk

Pi
,xk

Pi
(t),wk

Pi
(t) ∈ Rm×m, and

uk
qi

,xk
qi

(t),wk
qi

(t) ∈ Rm simply consists of executing
multiple copies of (5) on each of the entries. While the
robots execute (5) to compute the global map up to k,
simultaneously they locally take measurements and update
their local maps. This new information introduced into their
local maps will not be propagated until the next step k + 1.
They continue this process until the last map update step K.
At this last step, they run the remaining L − lK consensus
iterations, where L is the total number of iterations.

Here we consider a fixed number of consensus iterations l
per step. We do not specify the number of SLAM iterations
between map update steps k and k + 1. Using this strategy,
if a map update step starts, and a robot is not ready for
transmitting its updated local map, it can act as if it was
disconnected from the communication network. For simplic-
ity, along this section we present the algorithm equations
assuming that the nodes know the observation matrices Hk

i

before starting the consensus iterations. However, in the
implemented algorithm, the robots incrementally discover
Iθ in the information received from their neighbors. This
procedure relies on the expansion and arrangement of the
consensus states xk

Pi
, wk

Pi
, xk

qi
, wk

qi
. The version discovering

Iθ provides the same results than the algorithm based on
known observation matrices Hk

i , see [20] for a detailed
discussion in the static case.

Later we will compare the results of our algorithm with the
global merged map that would be computed by a centralized
system up to step k. Let θ̂k

c be its mean and Σk
c its covariance

matrix. Let uk
Pi

, uk
qi

be the local maps in IF form at step k,
for i ∈ {1, . . . , n}, defined in (10). If all these maps were
available to a centralized system, the maximum likelihood
global merged map would be [21]

θ̂k
c =

 n∑
j=1

uk
Pj

−1  n∑
j=1

uk
qj

 , Σk
c =

 n∑
j=1

uk
Pj

−1

.

(13)



A. Convergence with a finite number K of map update steps

Suppose that the robots perform a finite number K of map
update steps. In this last step K, each robot i initializes its
consensus filter using its previous estimates

xK
Pi

(0) = xK−1
Pi

(l), xK
qi

(0) = xK−1
qi

(l),

wK
Pi

(0) = wK−1
Pi

(l), wK
qi

(0) = wK−1
qi

(l). (14)

and runs the consensus algorithm (5). Then, as we saw in the
previous sections, the states at each robot i asymptotically
converge to the average of the inputs at step K

lim
t→∞

xK
Pi

(t) =
1
n

n∑
j=1

(HK
j )T (ΣK

j )−1HK
j ,

lim
t→∞

xK
qi

(t) =
1
n

n∑
j=1

(HK
j )T (ΣK

j )−1x̂K
j . (15)

For each robot i ∈ {1, . . . , n}, k = 1, 2, . . . , t = 0, 1, . . . , we
define θ̂k

i (t) = [xk
Pi

(t)]−1xk
qi

(t), and Σk
θ̂i

(t) = 1
n [xk

Pi
(t)]−1.

For the last step K, all the θ̂K
i (t) and ΣK

θ̂i
(t) asymptotically

converge to

lim
t→∞

θ̂K
i (t) = θ̂K

c , lim
t→∞

ΣK
θ̂i

(t) = ΣK
c . (16)

The mean and covariances are the same that would be
obtained by a centralized IF for merging the local maps up
to time K (13).

The convergence of the consensus iterations
for step K is guaranteed for any initial state
xK

Pi
(0),xK

qi
(0),wK

Pi
(0),wK

qi
(0). In particular, it is guarantied

for the initialization (14). Initial states (14) which are closer
to the merged map than a no informative initialization (12)
will produce a faster convergence.

B. Convergence with infinite map update steps

Now, let us suppose that the robots perform infinite map
update steps, executing l consensus iterations between any
two steps k, k + 1. We use a simplified notation x̂(τ), Σ(τ)
for the local map and covariance of a robot i, up to the
SLAM step τ . These steps do not necessary coincide with
the map update steps we used along this document. The map
contains the last robot pose x̂v(τ) and the M feature position
p̂1(τ), . . . , p̂M (τ)T estimates,

x̂(τ) =
[
x̂v(τ)T , p̂1(τ)T , . . . , p̂M (τ)T

]T
,

Σ(τ) =
[

Σvv(τ) Σvm(τ)
ΣT

vm(τ) Σmm(τ)

]
, (17)

where Σvv(τ) is the covariance matrix associated with the
robot pose, Σmm(τ) is associated with the features, and
Σvm(τ) is the cross covariance of the robot pose and
features.

As more observations are made, the feature estimates of
the local map converge [23]. Its covariance Σmm reaches
a lower bound. However, the problematic part is the robot
pose. If it continues moving around the environment, its pose
estimate will vary. The covariances Σvv , Σvm will vary due
to the noise associated to the robot motion. Then, every new

step k, the robots will execute a new consensus. They will
be tracking the robot poses.

C. Properties of the temporal global map estimates

An interesting property of this map merging algorithm is
that the temporal global maps θ̂k

i (t) estimated at each robot
i, are unbiased estimates of the true feature positions θ,

E
[
θ̂k

i (t)
]

= E
[
(xk

Pi
(t))−1xk

qi
(t)

]
= θ. (18)

The temporal values of xk
Pi

(t), xk
qi

(t), that evolve according
to (5), can be alternatively expressed as a function of the
inputs u1

Pj
, . . . ,uk

Pj
, u1

qj
, . . . ,uk

qj
, (10), and the initial states

x1
Pj

(0), w1
Pj

(0), x1
qj

(0), w1
qj

(0), for j ∈ {1, . . . , n}. When
the initial states are zero (12), xk

Pi
(t), xk

qi
(t) are

xk
Pi

(t) =
k−1∑
s=1

n∑
j=1

Ωk−(s+1),t,l
ij us

Pj
+

n∑
j=1

Φt−1
ij uk

Pj
,

xk
qi

(t) =
k−1∑
s=1

n∑
j=1

Ωk−(s+1),t,l
ij us

qj
+

n∑
j=1

Φt−1
ij uk

qj
, (19)

where Φt
ij ,Ω

k,t,l
ij are the elements at the i row and j column

of the matrices Φt,Ωk,t,l ∈ R2n×n,

Φt =
[
At + At−1 + · · ·+ A1 + I

]
B,

Ωk,t,l = At+klΦl−1, (20)

and the matrices A, B are (5). The local map x̂k
j at each

robot j are an estimate of the positions of the features θ,

x̂k
j = Hk

j θ + vk
j , (21)

where the noises vk
j have zero mean and covariance Σk

j .
Therefore, the inputs uk

qj
are

uk
qj

= (Hk
j )T (Σk

j )−1x̂k
j

= (Hk
j )T (Σk

j )−1Hk
j θ + (Hk

j )T (Σk
j )−1vk

j . (22)

Then, θ̂k
i (t) = (xk

Pi
(t))−1xk

qi
(t) is

θ̂k
i (t) = θ + (xk

Pi
(t))−1{

k−1X
s=1

nX
j=1

Ω
k−(s+1),t,l
ij (Hs

j )T (Σs
j)
−1vs

j

+

nX
j=1

Φt−1
ij (Hk

j )T (Σk
j )−1vk

j }. (23)

Since the noises vk
j have zero mean for all k = 1, 2, . . . ,

j ∈ {1, . . . , n}, the expected value of θ̂k
i (t) is θ. As a

result, the robots do not need to wait for any specific number
of iterations of the map merging algorithm. Instead, they
can make decisions on their temporal global map estimates
whenever they need it.



V. EXPERIMENTS

In order to analyze the behavior of the map merging
method in real situations, we have carried out experiments
using real data. We use a data set [24] with bearing informa-
tion obtained with vision (Sony EVI-371DG). We select 9
subsections of the whole path for the operation of 9 different
robots. The robots run a total of K = 5 map update steps.
Between consecutive map update steps k, k + 1, each robot
performs 20 steps of a bearing-only SLAM algorithm [25].
We display in different colors the 9 local maps for the map
update steps k = 1, and k = 2. (Fig. 2). The robots execute
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Fig. 2. Local maps of the 9 robots used for the update steps k = 1 (a) and
k = 2 (b). They have been obtained after, respectively, 20 and 40 SLAM
steps. They are expressed in a common reference frame. As it can be seen,
in k = 2 the feature estimates have been updated. In addition, the robots
have introduced new features into their local maps.

a total of L = 1000 consensus iterations. We experiment
with 3 different configurations. In the first one, the robots
execute all the consensus iterations after the last map update
step, l = 0. This is equivalent to a static map merging. In the
second case, we use l = 1

4 (L/K), and in the last one, we use
an equal number of iterations per step l = (L/K). The best
results are obtained with the first configuration l = 0, since
the robots only need to agree on the last map k = K. In
the second case, l = 1

4 (L/K), the robots employ their first
50 iterations on reaching consensus on the first map k = 1.
Then, every 50 iterations, the input maps change again. They
start to reach consensus on the map k = K after the iteration
200. And after that, they converge very fast to the global map.

In the last configuration, l = (L/K), the robots use more
consensus iterations than in l = 1

4 (L/K) for the maps at
k = 1, 2, . . . , 4. Their estimates of these temporal maps are
better. However, the robots start to estimate the last map k =
K after iteration 800. After the L iterations, the global maps
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Fig. 3. Estimation errors at robot 1 along the L consensus iterations.
(a) ||θ̂k

i (t) − θ̂k
c ||, (b) ||Tr(Σk

θ̂i
(t)) − Tr

`
Σk

c (t)
´
||. The configuration

l = 0 (black solid line) employs all the iterations in reaching consensus on
the last map k = 5. In the configuration l = 1

4
(L/K) (blue dashed line),

every 50 iterations the local maps change (blue squares). The robots start the
consensus on the last map after the iteration 200. In the last configuration
l = (L/K) (red dash-dotted line), the map update steps start every 200
iterations (red squares). The consensus on the last map begins at iteration
800.

θ̂K
i (L), ΣK

θi
(L), computed by the dynamic map merging

algorithm, are very close to the global map θ̂K
c , ΣK

c (13)
that would be obtained by a centralized system (Fig.4 b).
We show the global map at robot 1, for the l = 1

4 (L/K)
configuration (Fig.4 a), which is very similar to the maps
computed by the other robots. Similar results have been
obtained using the other configurations.

VI. CONCLUSIONS

In this paper, we have presented an algorithm for dynam-
ically merging visual maps in a robot network with limited
communications. It correctly propagates the new information
added by the robots to their local maps. We have shown
that, with the proposed strategy, the robots correctly track the
global map. They finally obtain the last global map, which
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(a) Global map estimated by robot 1
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(b) Global map computed by a centralized system

Fig. 4. Global map estimated by robot i = 1 at the last consensus iteration,
θ̂K
i (L), ΣK

θ̂i
(L), for the configuration l = 1

4
(L/K) (a), and global map

that would be obtained by a centralized system, θ̂K
c ,ΣK

c (b). We display in
different colors the sections that correspond to different initial local maps.

contains the last updated information at all the robots. This
algorithm is extremely interesting for the robots, since they
have an estimation of the global map during their operation.
However, the performance of the algorithm is very sensitive
to the parameter l, the number of consensus iterations per
map update step. Although it is asymptotically correct for
any value of l, the error reduction speed is quite different for
the tested configurations. Thus, in the cases where the robots
can obtain the global map after the exploration, a static map
merging strategy is preferred. As future work, we will study
the convergence speed of the averaging algorithm. We will
use this speed for analyzing the precision of the global map
estimates for the intermediate map update steps.
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