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Abstract— _ _ _ maps taking into account the proposed improvements of
This paper describes a strategy to select optimal motions other robots, giving rise to an improvement of the global
of multi robot systems equipped with cameras in such a 5, This problem is close to works on optimization of robot

way that they can successively improve the observation of .
the environment. We present a solution designed for omni- locations, see [1], [2], [3], ocoverage problems [4], [5],

directional cameras, although the results can be extended to Where the objective is to optimally place a group of robots
conventional cameras. The key idea is the selection of a finite in an environment of interest to achieve maximum coverage.
set of candidate next positions for every robot within their local  Specifically, it is highly related taexploration guided by
landmark-based stochastic maps. In this way, the function cost information and active sensing.

measuring the perception improvement when a robot moves M f th isti uti f lorati d acti
to a new position can be easily evaluated on the finite set of any of the existing sofutions ior exploration and active

candidate positions. Then, the robots in the team can coordinate Se€nsing are based on occupancy grid maps. Here, frontier
based on these small pieces of information. The proposed cells dividing between already explored and unknown sec-

strategy is designed to be integrated with a map merging tions can be easily detected. Then, robots can evaluate a
algorithm where robots fuse their maps to get a more precise ..« fnction on this small subset of destinations and make

knowledge of the environment. The interest of the proposed decisi fi Il i f inf i ith th
strategy for uncertainty reduction is that it is suitable for visual ecisions propagating small pieces of information wi €

sensing, allows an efficient information exchange, presents a low Other robots. Some examples of these approach are [6], [7],
computational cost and makes the robot coordination easier.  [8] for the single robot case and [9] for multi robot systems.

Keywords: Multi-robot applications. Perception. RobotHowever, the exploration problem turns out to be more
coordination. Autonomous exploration. Coverage control. complicated for landmark-based maps, since the number of
candidate destinations is infinite.
) . INTRODUCTION ) An alternative to the use of sets of candidate next positions
The interest of having groups of robots working coope global optimization methods [10], [11], [12], where
eratively has rapidly increased. There are many advantages,ots search for the best position to reduce the whole map
in the use of multi-robot systems. Many tasks can not bgncertainty. Every robot makes decisions based on itswurre
carried out by robots working alone and the robustnesgcy| estimate of the global map and propagates its observa-
of the global set is higher when working in coordinationyjons to the other nodes so that they can update their maps.
One interesting task that can be better achieved using@ese approaches offer weak robot coordination, which is
robotic team is the perception of the environment. Here, the-hieved via an efficient information exchange between the
robots in the network are equipped with sensors and theyois. In order to achieve a proper coordination, evergtrob
usually communicate their observations to the other teajj the team must have an up to date global map estimate
members to acquire a better knowledge of the scene. In thgsgrore deciding its motion. Otherwise, different robotsyma
scenario; it would be ir}teresting to make the _best motiong,q exploring exactly the same regions. In addition, many
to optimize the perception of the scene. In this paper, Wsr these solutions use gradient methods to find minima on
approach the problem of guiding a robotic team to positionge cost function. Gradient algorithms are computatignall
where the environment is better observed for the case t'@?pensive since the gradient must be reevaluated at every

robots are equipped with vision sensors. Robots combise th.étep. Besides, they may find local minima, and the step size
information and build a local landmark-based stochastip M&ydjustment is complicated.

of the environment. Robots in the team have communication Exploration and active sensing solutions may also be

capabilities to exchange their local maps and build a globg}ided between one step decisions and path planning meth-
representation of the environment. However, the constmict o4s Most of the previously mentioned works are one step
of this global map may require long communication ang,,nroaches, where robots compute the reduction of the cost
computation times. Therefore, it would be interesting thanction considering exclusively the next robot motion.-Ap
the robots could make decisions based on their local dafgoaches based on path planning or trajectory optimization
and small pieces of |nformat|on_ recelve_d from the othe[“13], [14] use a larger time horizon and consider the cost
nodes. We will focus on strategies that improve the 10c&|,nction for multiple successive robot motions. Although
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J. Cortes is with the Department of Mechanical and Aerospaug-E . . . . .
neering, University of California San Diego, 9500 Gilman Dg Jolla, which is close to a frontier eXplorat'on in the sense that we
California, 92093-0411 , US&or t es@icsd. edu are able to select a finite set of destinations for every robot



Associated to these positions, we are able to compute a sebrdinates from the world frame reference into the robot
of cost values that can be sent to other robots in the teagy (k) frame:

with the future aim of negotiating their next motions. This

solution presents multiple appealing features due to its lo

computation complexity, and to the fact that the robots do — &y cos by — Uk Sin 0y
not need to wait for having a good global map estimate. ox,.(k) = T sin @y, — 7, cos Oy, ) (2)
Instead, they can negotiate on small pieces of information, —0,,

ensuring that the resulting global map will be improved.
Besides, it presents the benefit that it is based on well known
probabilistic formulation as well as results from the visio The operatorp is the composition of two location vectors. It
literature. Along this paper, we will describe how Wamtage  returns a location vector that transforms coordinates detw
locations are selected, we will define the cost function, wehe reference frames, (k) andx,. Then, the expression for
will provide a general overview of the robotic coordination the relative transformatios} , between the robot pose at
and we will show in experiments how this strategy effectivel time £ and the goal pose &t + 1 is:
leads to the improvement of the global map.

This paper is organized as follows. Section Il explains how

the robots can compute a prediction of the expected map (zg — &) cos 95 + (yg — Jk) sin 9@
resulting of placing the robot into a vantage location in the Xfy1 = | —(zy — 24) sin + (yg — i) cos O | . (3)
environment and sensing the scene. In Section Il we explain 0y — 0y

how robots compute these vantage locations for observing
features in the map. Then, in Section IV we present the
strategy for improved perception, explaining both the glob B. EKF Prediction
and individual cost function to be minimized. Finally, in

Section V we show the performance of the strategy via

. . The prediction step of the localization and mappin
simulation. b P ppIng

algorithm givesx(k + 1) = x(k + 1lk) = (X.(k +
Il. EXPECTED MAPS FOR THE VANTAGE DT, 2k +1),51(k+ 1), Zpn(k + 1), Gm(k +1))" and
LOCATIONS covarianceP (k + 1|k) based on the previous sta&é¢k) and

Every robot in the team has a local map estimate of th pvarianceP (k) and th? odome_try measur_ememgﬂ ~
odom Yodoms Bodom ) With covariance matrixP ,4o,,. The

environment. When the robots move to a new location an i :

take new measurements of the environment, its map estimaﬂgome”y mgasurementskH are given .by (3), and thg
may be improved, exhibiting a higher precision. Along this orr?etry nmszl ISI mode(ljled as" tlhree mldgpendentd noises
section, we will explain how to compute the expected ma t ; perpein (Iicu ar 2‘” o pf;“a eh trans atlonls{ 2” drota-
resulting of moving the robot to a candidate destination. We> " + edom = d1ag (03, 0y,07), whereo, = K,d an
apply the same algorithm used by the robot to build th8y — K,d are proportional to the transation distance=
current map. It is a SLAM $Smultaneous Localization and

\/(ch — )% + (yg — k).
Map Building) algorithm for bearing only data based on an The equations used to predict the new state are

EKF (Extended Kalman Filter). We compute the expected
map using the same measurement and odometry models, and _

A~ k .
assuming that: %, (k) @kxk-H
o The measurements are exactly the expected bearings xlgki
from the new robot pose to the features, %(k+1) — o 7
« The odometry estimate is exactly the new robot pose. : (4)
Let %, (k) = (i1, 41 0:) be the robot pose at time xmgllz;
andx(k) = (&, (k)T, @1(k), 91(k), - -, 2m(K), Gm (k)" the L Ym 1
£(01) = (R (1) 21(0), G2 (K)o () o () Ptk — TP0a 3 T,

local map estimate at timé, with associated covariance
P(k). Let x, = (z,4,74,0,)" be the goal vantage location

where the robot plans to move to. where the operators is the composition of the location

A. Relative Motion Computation vectorsg, (k) andxj, |

The relative translation and rotatiodf, , betweenz, (k)

andx, can be computed as: . 5 .5
Tk + Todom €08 Ok — Yodom Sin Oy,

ir(k) 2] XZJrl = gk + Todom sin O, + Yodom COS O ;

. . . 9k + eodom

where the operatog is the inverse location vector. When (5)
applied tox,.(k), it returns a location vector that transformsandJ,, J- are the Jacobians of the prediction operation rela-

xfy = (O%:(k) ®xy, ()



tive to, respectively, the map and the odometry measuremetdken equal to the predicted measurements, thenh and
the innovationv is zero. Therefore the state vector does not

J = ‘]6 (I) ] , changex(k+1) = x(k+1). The matrixR is the covariance
Fo. of the observation noise and is equabtfl, whereo, is the
Jy = ‘]5 } , standard deviation of the sensor noise.
i 1 0 —Zodom sin ék — Yodom COS ék E. Remarks
o= 8 (1) Todom €08 O 1_ Yodom S0 0) | » Once we have computed the final map estimate, the matrix
- o s P(k + 1|k + 1) will be used to compute the cost value
. cosf  —sinby 0 described in Section IV. From equations (1)-(11) we can
2 = sinfy  cosby 0 conclude that the robot orientation has no effect on theimatr
0 0 1 P(k + 1|k + 1). The value of this matrix only depends on

(6)

the new robot positioriz,, y,), the previous magk(k), its
covarianceP(k), and the odometry and observation noise
modelsP 4., andR.

C. Measurement Prediction

For every feature with coordinates (k + 1) = (z;,v;)
in the map, the expected measurement of the angle of the ||, SEl ECTION OF VANTAGE LOCATIONS
feature with respect to the robot that should be obtained fro
the current robot posg&, (k + 1) = (Tx11, Urr1,0611)7 is
computed as:

hi(Zp(k +1),%;(k+ 1)) =
— (@i =Fpt1) $in Ok 1+ (Yi —Fr1) €08 Oy )
(2i=Tk11) cos Ok 1 +(Yi—Yrt1) sin Ok g1

In order to manage a finite set of candidate next positions
for every robot, we adopt @ne feature improvement strategy.
Every robot in the team will attempt to improve, at least, the
observation of one of the landmarks. As a side effect, the
observations of other landmarks are also improved. We define

Th bi f this ob . del relati h every vantage location as the optimal position for obserain
. e Jacobian of this observation model relative to the me\Bndmark, which is computed as the robot position where the

()

arctan (

IS: observation of the landmark produces a higher uncertainty
H; = % 0---0 % 0---0 } ., reduction. In [15] authors discuss uncertainty minimizati
oh, Oh; oh, oh, within the EKF framework. They show that the minimization
9%, (k+1) %1 OYky1 k41 } ’ of the map uncertaint® is highly related to the maximiza-
% = g? % } , tion of the covariance of the innovatidh In addition, they
' (8) show that if the system is driven to the optimal position to
where obtain maximum information gain, it results in numerically
on, Uit —us unstable update steps for the EKF. In particular, they show
agﬁfl (i‘kJrl_ﬂ%c)iTiy;kJrl—yi)Z’ that the system becomes more unstable as the robc_)t moves
i (fﬂrmi)zﬂgk;hyi)z, closer to a landmark. To derive the vantage locations to
Bék; = — 1, (9) oObserve the Iandmarksf, we will analyze the robot locations
dhy _ Ukt1—Yi that lead to the maximization .
o @1 =2 (T —v)™ For a single landmark, the covariance of the innovation
dyi T G 2) A @ —v) S; is computed as, see (11):

Combining the information from all the features in the map,

matricesh andH are constructed as

S; = HP(k + 1|k)H] + o2. (12)

hy H, If we takeP (k+1|k) = I and apply (8), (9), we can express
h=| : |, H=| : (10) 5@ 9
B H, Si=ltoi+ s (13)

D. EKF Update

The final map estimat&(k + 1) = x(k + 1|k + 1) and

covarianceP (k + 1|k + 1) are obtained as

wherer = /(zx11 — )2 + (yr+1 — vi)? is the distance
between the robot pose and the landmark. As it can be
observed, the maximization d¢f; is equivalent to the mini-
mization ofr. Now we introduce into the study the landmark

%(k+1) = %(k+1)+Kv : W
' : tak
Plk+1k+1) = (I-KHP(k+1[k), covariance. We take
v :z—h,| o (11) I\Poo [0
K = P(k+1|/k)HTS™ Pk B »
' +1k)=1| 0 0|, 14
S = HP(k+1/k)HT + R, ( %) 0 P, (14)
0| 0 | I

where v is theinnovation, S in the innovation covariance
and K is the Kalman gain. z is the vector with all the and expressP,, = kP,,, with & > 1. This models an
measurements of the features. Since the observations areertainty ellipse with its mayor axis perpendicular te th



y-axis. For robot poses at a constant distancer, ., =
rcosa, yrr1 = rsina, the value ofS; is:

Si:1+U§+T+(k‘—l)

xrx

r2

cos?(a),  (15)

Computing the first and the second derivative $f the
critical points of S; area = 0+ nm,n € Z anda =
5 +nm,n € Z. Besides we have that

9%S; P, P
o2 2(k —1)—=(1 — 2cos*()).

T
7“2
Sincek > 1, S; reaches a maximum far = 0 +nm,n € Z

(16)

A. Aggregate Objective Function

We define our global cost functioi to measure the
best contributions for the estimate of every feature. We
compile the individual costs associated the most precise
feature estimates among the robots:

F(x1,-++,%,) = »_min fi;(x;)), (18)
=1 "

wherex; is the next position of the robatat timek + 1, for

i€ {l,...,n} and f;; is the individual cost for the feature

j in the local map of the robat when the next position of

and a minimum fora = % + nw,n € Z. Then we can the rObOt_Z IS X;. _

conclude thatS; is maximized when the distance between EVETY individual cost functionf;; measures the uncer-
the robot and the feature is minimized, and that for constafftinty of the sub-matrix withifP; associated to the featuje
distancesS; is maximized when the landmark is observed! N€re €xist many metrics for measuring the uncertainty in

from a position in a line perpendicular to its mayor axis® covariance matri® = [p;;], 4,5 € 1{1,...,m} matrix.
However, minimizingr may lead to a situation where the In [17] authors compare metrics based on its determinant,

robot lays within the landmark covariance region. Thesgigenvalues and trace, concluding that both of them per-
situations are problematic since the predicted measuremdffmed properly. Here, we select the Trace (the sum of its

cannot be correctly modelled by a gaussian, and instead, #&gonal elements) TP) = 3,7, p;; due to the interesting
robot approaches the landmark position, this distribution property that it allows the decomposition of the cost fumtti
more similar to a uniform distribution. into the individual contributions of the features. Notitet

To avoid this situation, we compute the optimal positior{f we nameP the covariance matrix of a map (referring to

for the feature observation as a point in a line perpendicul@nlY the feature estimates) adl;; the submatrix with the

to the mayor axis of its covariance ellipse which passe¥ovariance of featurg, then
through its center, and at a distance from the center so that m
the anglen that passes from the extreme points of the ellipse Tr(P) = > Tr(Py;).
is less thanZ. Notice that using this restriction, we prevent J=1

the robot from Iying inside the eIIipge even in the worst Cas@herefore, if we namé;(x;) the covariance matrix associ-
where the ellipse is a circle, see Fig.1. ated to the map in robatwhen it moves to the locatior;,

computed as explained in Section Il, and we ndRgx;));
the 2 x 2 sub-matrix associated to the featyrehe individual

Our approach is based on the idea that, if a landma@oStfi; 1S
is observed by one of the robots with high precision, the
whole team will benefit of this information. As we mentioned Srat
before, this strategy for improved perception is designe%’ ey
to be integrated with a map merging algorithm [16] where [n the previous sections we have described how a robot can
robots fuse their local maps into a global map. This proceg®mpute the optimal position for observing a landmark, and
may be executed at every time instant, not necessarily whilee procedure for predicting the resulting map when we place
they are deciding their motions. the robot in this position. We have also presented the global

Givenn independent local maps characterized by a mediPst function to be minimized together with the individual
x; and a covariance matriR; = P;(k + 1|k + 1) for i €  COSt funcFions asspci_ated to Fhe features. In this seati@n,
{1,...,n}, the maximum-likelihood estimate, ;. for the will explain how this mform_atlon can be used to coordinate
global map and its associated covariance majx,;,; are the robqt team in order to improve the global knowledge of
the environment.

The proposed strategy for motion coordination consists of
an iterative algorithm where, at every time step, the team of
(17) robot performs next actions:

where A; are some observations matrices to allow the robo®ptimal position for feature observation: Every robot ¢

to observe only a portion of the total amount of features. = computes the best position for observing fkideatures
From this expression, we can see that feature estimates with with higher covariances in its local map, whéte< m;
smaller covariances greatly influence their estimates én th  for i € {1,...,n} is adjusted depending on the perfor-

(19)

IV. STRATEGY FOR IMPROVED PERCEPTION

fij(x:)) = Tr([Pi(xi)l5)- (20)

_ —1 _
Xglobal (X, AT P AY) . S AT P,

Poovar = (O AT P71 A,

global map. Therefore, a precise estimate of a feature can mance requirements. As a result, robat {1,...,n},
be obtained if, at least, one robot has observed it with high obtains K next position candidates which we express
precision. asx},--- ,xX.
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Fig. 1. Optimal positions for feature observation We display the optimal positions for observing a featuredor 90, 70, 50 degrees, and fofa) an
ellipse, and(b) a circle. As it can be seen, the optimal position remains oeitié uncertainty ellipse associated to the feature as lsng<a 7.

TABLE |

. motions for the team, the robots move to these new
PREDICTED COSTS FOR THE CANDIDATE NEXT MOTIONS FOR ROBOIl

positions, they observe the environment and update their
feat 1 EE featm local maps.
x; | fa(x)) o fim(x)) The reader may notice that we have not considered the
; : : map merging within the strategy. This is due to the fact that,
x| fuxf) o fimx5) as we mentioned before, it can be executed in parallel, or
even after the robots finish the exploration.

V. RESULTS
In order to show the performance of the algorithm, a

TABLE I
GLOBAL COST FOR A SPECIFIC SELECTION OF NEXT ROBOT POSES

- feat 1 featm simulation has been carried out where a team composed
*1 faGel) e fime) by three robots explore an obstacle-free environment. They
: : : estimate their motions based on odometry information and
X 1 (327 Frm (X2 sense the environment using an omnidirectional camera that
min | min; fir (<) - ming fim(x;) provides bearing to the landmarks. In the experiments we use

an observation noise, = 1 degree and an odometry noise
o, = 0.01d, o, = 0.01d, 09 = 2.5 degrees. The translation

Map prediction: For all the candidate next positionsnoise is proportional to the travelled distande and the

x},---,xK, roboti computes the predicted map androtation noise is not really used in the algorithm since, as
evaluates the local cost functigfy; (x!) for all the fea- we mentioned before, for omnidirectional devices, the tobo
tures,l € {1,.... K}, je{l,...,m},i€{l,...,n}. orientation does not affect the perception improvement. In

If an estimate of the featurg cannot be found in the this simulation, the robots process the odometry data amd th
local map of roboti, then we setf;;(x}) = oo for all measurements to construct their local maps using a SLAM
l e {1,...,K}. Every roboti can construct a table with algorithm for bearing-only data, see [18] for a detailed
the values off;; (see Table I). description. We initialize every local map with two robot
Minimization of the global cost: Given a selected combi- poses to recover the position of some of the landmarks in the
nation of next robot poses’,--- ,x!r, its associated map. Their initial maps can be seen in Fig. 2(a). We display
global cost is computed aE;.”zlmini fij(x,i.i)). This in black the ground-truth information, using points for the
is equivalent to sum the values in the last romir() landmark positions, lines for the robot motions, and triasg

in Table 1l. The best robot-vantage location assignmerfor the robot poses. The maps and trajectories estimated by
is the one minimizing the global cogt (see equation the robots are shown in different colors.

(18)). Every robot can compute this value, based on the At every step, the robots compute their candidate next
information received from the other robots, and on itpositions, and evaluate the cost function at these vantage
own data. This is a classical task-assignment problepoints. In the experiments, we simulate a perfect robot
where there aréd{" possible combinations, and one ofcoordination and we provide each robot with its best robot-
them produces the best cost. This kind of problemeandidate destination assignment. In Fig. 2(a,c,d) wdalisp
have been long studied and there exist multiple efficierthese selected motions and the resulting local maps for
suboptimal methods. We plan to study these methods guccessive steps. In Fig. 2(b,d,e) we show their associated
the future in order to select one that performs efficientlglobal map computed by (17).

for this situation. In Fig. 2(a) we show the initial local maps of the robots.

Motion and observation Once we have decided the bestSince they have been constructed using two close robot



poses, their landmark estimates present high uncertainti@lgorithm. Other interesting extensions are in the line of
Its associated global map can be found at Fig. 2(b). In thisonsidering restricted robot motions, and environmentk wi
example, we can see the behavior we explained along thebstacles.

paper. If a feature has been observed by multiple robots, and
at least one of them has estimated it with high precision,
its estimate in the global map presents a small uncertainty.
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Robot 3 (red) has a better estimate, although still unaertai
and the estimate at Robot 2 (green) is very precise. After
merging their maps, the final estimate fér16 is very
precise. Therefore, it is desirable that the robots move tgi]
reduce the uncertainties of features which have not been
precisely estimated by none of the robots, instead of reduci
their local uncertainties. 2]
In Fig. 2(c) we can observe the decisions made by the pro-
posed algorithm and their effects on the global map Fig..2(d)[3
The robots in the team move to positions that optimize the
global knowledge, and as a result, the global map (h) present4]
a high improvement. They do not exclusively try to reduce
their local uncertainties, but instead take care of feature
uncovered by the team members. See for instance Robot [3]
(blue). Its worse feature estimates in its previous locap ma
(Fig. 2(a)), blue, areg"6 and F'16. He will consider moving [6]
to positions where both of them present a reduction on their
uncertainties. However, exchanging the information wiié t
other robots, it realizes that one of the team members qlreaom
possess a precise estimate for6, and therefore it moves to
a extremely bad conditioned pose for the observatiof 1, (8]
but well conditioned to observe other features. Besides, we
can see that the robots tend to move to different regions in
the environment, improving the coverage of all the featuresl(®l
In Fig. 2(e-f) we show the next step of the algorithm, where
again the robots move to improve the scene perception. Singg;
this global map has reached a high precision, next itersition

of the algorithm add no significant improvements. [11]

VI. CONCLUSIONS

Along this paper we have proposed a motion control strat-
egy for improved perception of a scene capable of efficientlg}
managing landmark-based maps. This strategy is designed to
be integrated in a multi robot system, where robots use a mé&g]
merging algorithm to fuse their maps and get a more precise
knowledge of the environment. The described strategy is
capable of selecting a finite set of candidate motions to tH&4l
robots, and computing its associated cost in the form of the
individual contributions of every feature. Thereforestobst [15
presents a space complexity linear on the map size. This
information can be used by the team members to negotiate
their next motions, presenting the benefit that robots dgg;
not need to wait for having a good global map estimate
when they coordinate. In the experiments, we have seen that
this approach offers good results in terms of the reduction
of both the uncertainties in the local and global mapg17]
Future extensions of this work are in the line of designing
distributed coordination strategies for the robots, s tiney
can negotiate on the information provided by the described
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Fig. 2. Strategy for improved perception. We display some steps of the strategy for improved percepBtatk dots are the ground-truth landmark
positions. Local map estimates from different robots are slabim a different color. Figures at the right show the maximukelihood associated to the
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global map.(c) Maps for robotsl,2,3 after the first execution of the algorithrifd) Global map for (c)(e) Maps for robotsl,2,3 after the second execution
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