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Abstract. This paper proposes a distributed coordination algorithm
for robotic sensor networks to detect boundaries that separate areas of
abrupt change of spatial phenomena. We consider an aggregate objec-
tive function, termed wombliness, that measures the change of the spa-
tial field along the closed polygonal curve defined by the location of the
sensors in the environment. We encode the network task as the opti-
mization of the wombliness and characterize the smoothness properties
of the objective function. In general, the complexity of the spatial phe-
nomena makes the gradient flow cause self-intersections in the polygonal
curve described by the network. Therefore, we design a distributed coor-
dination algorithm that allows for network splitting and merging while
guaranteeing the monotonic evolution of wombliness. The technical ap-
proach combines ideas from statistical estimation, dynamical systems,
and hybrid modeling and design.

1 Introduction

Consider a network of mobile sensors moving in an environment with the ob-
jective of finding regions where large changes occur in a spatial phenomena of
interest. Our aim is to design a distributed coordination algorithm that allows
the group of sensors to determine boundaries that separate the areas with large
differences in the spatial phenomena. The determination of such boundaries is
relevant in multiple applications of robotic networks, including oceanographic
surveys and weather forecasting. As an example, scientists are interested in de-
termining regions of abrupt change in temperature fields over regions of the
ocean, as they are related to upwelling and the food habits of fish.

The present work has connections with several scientific domains. In sta-
tistical estimation [1, 2], wombling boundaries are curves that delimit areas of
rapid change of some scientific phenomena of interest. Algorithms for detect-
ing these boundaries based on point-referenced data are widely used for various
applications, including biology [3], computational ecology [1], and medicine [4].
In computer vision [5, 6], image segmentation and edge detection problems are
encoded as optimization problems for a variety of objective functionals such as
alignment, contrast, and geodesic active contour. These optimization problems
are typically solved using PDE-based approaches that build on the variational
information about the functionals. Finally, this work uses classical modeling and
stabilization tools from hybrid systems theory [7–10] in the algorithm design.



The contributions of the paper are the following. We model the spatial phe-
nomena as a deterministic spatial field. The wombliness of a non self-intersecting,
closed curve is a measure of the alignment of the gradient of the spatial field
along the normal direction to the curve. We use the notion of wombliness as-
sociated to a closed polygonal curve to formulate the network objective as a
distributed optimization problem. We study the smoothness properties of the
wombliness measure and provide an explicit expression for its gradient and a
characterization of its critical points. If the network were to follow a gradient
ascent law to optimize wombliness, then situations may arise where the polyg-
onal curve described by the group of sensors becomes self-intersecting and the
ensuing flow ill-posed. To prevent this from happening, we combine our analysis
results with ideas from hybrid control design to synthesize a coordination al-
gorithm for distributed wombliness optimization. The algorithm introduces the
possibility of splitting and merging curves, and is guaranteed to monotonically
optimize the wombliness measure associated to the network. Several simulations
illustrate the results. For reasons of space, all proofs are omitted.

2 Preliminaries

Here, we gather some basic notions that will be frequently used along the paper.
Let us start with some notation. We let unit : R

2 → R
2 denote the map defined

by unit(x) = x/‖x‖ for x 6= 0 and unit(0) = 0. Given n ∈ Z>0 and i, j ≤ n, let
〈i, . . . , j〉 be the set defined by 〈i, . . . , j〉 = {i, . . . , j} if i ≤ j and 〈i, . . . , j〉 =
{i, . . . , n, 1, . . . , j} if i > j. Next, we introduce some useful geometric concepts.

2.1 Planar geometric notions

Given a vector v = (v1, v2) ∈ R
2, we denote by v⊥ = (v2,−v1) ∈ R

2 the vector
perpendicular to v to the right, i.e., the 90 degree clockwise rotation of v. Given
p 6= q ∈ R

2, let ]p, q[ and [p, q] denote, respectively, the open and closed segments
with end points p and q. We let [p, q[ denote the closed segment between p and q
with the end point q excluded. We let u[p,q] = unit(q− p) denote the unit vector

in the direction from p to q and n[p,q] = u⊥
[p,q] the unit normal vector to the

right. In coordinates, if p = (p1, p2) and q = (q1, q2), then

u[p,q] =
1

‖q − p‖
(q1 − p1, q2 − p2), n[p,q] =

1

‖q − p‖
(q2 − p2, p1 − q1).

We denote by Hout
[p,q] = {z ∈ R

2 | (z − p)T n[p,q] ≥ 0} the halfplane of points in

the positive direction of the normal vector with respect to the closed segment
[p, q]. Likewise, we denote H in

[p,q] = {z ∈ R
2 | (z − p)T n[p,q] ≤ 0}.

Given p ∈ R
2 and v ∈ R

2, we use the notation ray(p, v) = {z ∈ R
2 | z =

p+ tv, t ∈ R≥0}. The wedge wedge(p, (v1, n1), (v2, n2)) is the cone with vertex p
and axes ray(p, v1) and ray(p, v2). The interior of wedge(p, (v1, n1), (v2, n2)) is
the set of points towards which n1 points along ray(p, v1) and n2 points along
ray(p, v2), see Figure 1 for an illustration. For the wedge to be well-defined, the
normal vectors n1 and n2 need to specify the interior uniquely.
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Fig. 1. Wedge determined by
the point p and the pairs of
vectors (v1.n1) and (v2, n2).

A domain D ⊂ R
2 is an open and simply con-

nected set. Given q ∈ D, let TqD denote the set
of all vectors tangent to D with origin at q. For
q ∈ int (D), TqD is 2-dimensional and can be iden-
tified with R

2. However, for q ∈ ∂D, TqD is one-
dimensional and can be identified with R. Let TD
denote the collection ∪{TqD | q ∈ D} of all tan-
gent vectors to D. We let prTD : TDR

2 → TD
assign to each vector in R

2 with origin at q ∈ D
the orthogonal projection onto TqD. Any vector
v ∈ R

2 with origin in D has prTD(v) = v.

2.2 Curve parameterizations

A curve C in R
2 is the image of a map γ : [a, b] →

R
2. The map γ is called a parametrization of C.

We often identify a curve with its parametrization.
A curve C is self-intersecting if γ is not injective
on (a, b). A curve C is closed if γ(a) = γ(b). For
a closed curve C, we let nC = unit(γ̇)⊥ denote
the unit normal vector to C. A closed, not self-
intersecting curve C partitions R

2 into two disjoint open and connected sets,
InsideC and OutsideC , such that nC along C points outside InsideC and inside
OutsideC , respectively. The orientation of C affects the definition of nC and
InsideC , OutsideC , see Figure 2 for an illustration.
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Fig. 2. Closed curve oriented in a (a) counterclockwise and (b) clockwise fashion.

Given a curve C parametrized by a piecewise smooth map γ : [a, b] → C, the
line integral of a function f : C ⊂ R

2 → R over C is defined by
∫

C

f =

∫

C

f(q)dq =

∫ b

a

f(γ(t)) ‖γ̇(t)‖ dt, (1)

and it is independent of the selected parametrization.

3 Problem statement

Let Y : R
2 → R be a twice continuously differentiable function modeling a planar

spatial field. Consider a network of n mobile agents moving in a compact domain



D ⊂ R
2 with positions p1, . . . , pn. Our objective is to find regions in D where

large changes occur in the spatial field Y by determining their boundaries.
Let us start by defining a measure of how fast the field changes along a given

curve. Let C be a non self-intersecting curve in R
2 and define the wombliness or

alignment of C by

H(C) =

∫

C

〈∇Y, nC〉, (2)

see e.g., [11, 2]. The interpretation of the wombliness measure is as follows. At
each point of the curve, we look at how much Y is changing along the normal
direction to C (i.e., how much Y is “flowing through C”). The integral sums this
change throughout the curve. We are interested in using the robotic network to
find curves whose corresponding value of H is large.

For a closed non-self-intersecting curve, the wombling measure H can be
rewritten, using the Gauss Divergence Theorem [12], as

H(C) =

∫

C

〈∇Y, nC〉 =

∫

D

div∇Y =

∫

D

∆Y, (3)

where D is the set in R
2 whose boundary is C, and ∆Y = ∂2Y

∂x2 + ∂2Y
∂y2 denotes

the Laplacian of Y . It is interesting to observe that, in general, that the level
curves of the spatial field are not optimizers of H.

In general, the optimization of (2) is an infinite-dimensional problem. Our
approach here is to order counterclockwise the agents according to their unique
identifier, and consider the closed polygonal curve that result from joining the
positions of consecutive robots. In general, such curves may be self-intersecting.
Therefore, we restrict our attention to the subset Sc of Dn defined as follows. For
(p1, . . . , pn) ∈ Dn, let γcpc be the closed polygonal curve that results from the
concatenation of the straight segments [pi, pi+1], i ∈ {1, . . . , n − 1} and [pn, p1].
Then, we define the following open subset of Dn,

Sc = {(p1, . . . , pn) ∈ Dn | γcpc is non-self-intersecting}.

Define the function Hc : Sc → R by

Hc(p1, . . . , pn) = H(γcpc) =
n

∑

i=1

∫

[pi,pi+1]

〈∇Y, n[pi,pi+1]〉. (4)

The optimization of (4) is now a finite-dimensional problem. Note that Hc can
be expressed in terms of the polygon determined by the concatenated straight
segments. If P(p1, . . . , pn) denotes this polygon, then we have

Hc(p1, . . . , pn) =

∫

P(p1,...,pn)

∆Y. (5)

For reasons that will become clear in the following sections, we assume that, at
each network configuration, agent i ∈ {1, . . . , n} can measure the gradient ∇Y
and the Laplacian ∆Y along the segments [pi−1, pi] and [pi, pi+1].



4 Smoothness analysis of the wombliness measure

In this section, we analyze the smoothness properties of the wombliness measure,
provide explicit expressions for the gradient, and characterize the critical points.
We start by stating the expression of the partial derivative of Hc.

Proposition 1 (Gradient of Hc). The function Hc : Sc → R is continuously
differentiable. For each i ∈ {1, . . . , n}, the partial derivative of Hc with respect
to pi at (p1, . . . , pn) ∈ Sc is

∂Hc

∂pi

=
(

∫

[pi,pi+1]

‖pi+1 − q‖

‖pi+1 − pi‖
∆Y

)

n[pi,pi+1] +
(

∫

[pi−1,pi]

‖q − pi−1‖

‖pi − pi−1‖
∆Y

)

n[pi−1,pi].

The proposition above implies in particular that the gradient of Hc is dis-
tributed over the ring graph: in other words, an agent i only needs to know about
the location of its neighbors in the ring graph (agents i − 1 and i + 1) in order
to be able to compute ∂Hcpi.

Using Proposition 1, we can characterize the critical configurations of Hc.

Corollary 2 (Critical points of Hc). With a slight abuse of notation, let
Hc : Sc → R denote the extension by continuity of Hc to Sc. Let (p1, . . . , pn) ∈ Sc

be a critical configuration of Hc. Then, for i ∈ {1, . . . , n},

prTD

(∂Hc

∂pi

)

= 0.

Moreover, if (p1, . . . , pn) ∈ int (Dn) and no three consecutive agents are aligned,
this characterization can be alternatively described by, for i ∈ {1, . . . , n},

∫

[pi,pi+1]

‖pi+1 − q‖∆Y = 0,

∫

[pi,pi+1]

‖q − pi‖∆Y = 0. (6)

Remark 3 (Characterization of critical points of Hc). The characterization (6)
of the critical configurations of Hc in the interior of D has the following inter-
pretation. For each i ∈ {1, . . . , n}, define the map Gi : [pi, pi+1] → R by

z 7→ Gi(z) =

∫

[pi,z]

∆Y.

Note that G(pi) = 0 by definition. Moreover, after some manipulations, one can
show that equations (6) are equivalent to

Gi(pi+1) = 0,

∫

[pi,pi+1]

Gi(z)dz = 0. (7)

Using the fact that ∆Y = div(∇Y ), we can interpret the first equation in (7) as
follows: on a critical configuration, there is no net average change of the gradient
∇Y along the segment [pi, pi+1]. However, even if this condition holds true, ∇Y
might exhibit a preferred orientation with respect to [pi, pi+1]. It is precisely the
second equation in (7) that takes care of ensuring that there is no bias in the
orientation of ∇Y with respect to [pi, pi+1]. •



5 Distributed hybrid design for wombliness optimization

Our approach to find boundaries that delimit areas where the spatial field
changes abruptly consists of starting with an initial network configuration and
optimizing the magnitude of the wombliness of the closed polygonal boundary
defined by the network. To maximize Hc, we implement the distributed gradient
flow of this function, cf. Proposition 1, that is,

ṗi = sgn(Hc(P0)) prTD

(∂Hc

∂pi

)

, i ∈ {1, . . . , n}. (8)

However, in general, the set Sc is not invariant under (8). In other words,
evolutions under (8) of the closed polygonal curve γcpc defined by the points
p1, . . . , pn become self-intersecting. To address this problem, we propose the fol-
lowing switching design, which is inspired on the interplay between the geometry
of the polygonal curve γcpc and the value of the wombliness function Hc.

5.1 Curve self-intersection

Let γcpc be the closed polygonal curve defined by the segments {[pi, pi+1] | i ∈

{1, . . . , n − 1}} ∪ [pn, p1]. Assume (p1, . . . , pn) ∈ Sc, i.e., the curve γcpc is self-
intersecting. Note that when a self-intersection occurs, either Insideγcpc

becomes
disconnected or Outsideγcpc

becomes disconnected. We refer to these two cases
as inside and outside self-intersections, respectively. Figure 3 presents an illus-
tration. We further distinguish between whether the self-intersection occurs at
an open segment or at a point’s location.

Self-intersection at an open segment. For each i 6= j ∈ {1, . . . , n} such that
pi ∈]pj , pj+1[, define λ ∈ [0, 1) by pi = (1 − λ)pj + λpj+1 and consider

vi = (1 − λ)uj + λuj+1, uk = sgn(Hc(P )) prTD

(∂Hc

∂pk

)

,

where k ∈ {i, j, j + 1}. The guards depend upon the type of self-intersection.

Inside self-intersection. If the self-intersection is of inside type, it is because
the segment [pi, pi+1] belongs to H in

[pj ,pj+1]
and there exists the possibility of pi

crossing from H in
[pj ,pj+1]

to Hout
[pj ,pj+1]

, see Figure 3(a). The criterium to identify

if a transition is needed in the network configuration is as follows. If

(ui − vi)
T n[pj ,pj+1] ≤ 0,

then pi does not cross, and the curve stays in Sc. If

(ui − vi)
T n[pj ,pj+1] > 0,

then the curve will move into Dn \ Sc unless the self-intersection is resolved.
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Fig. 3. The curve γcpc defined by p1, . . . , pn is self-
intersecting at an open segment. (a) shows an in-
side self-intersection and (b) shows an outside self-
intersection. In both cases, γcpc can be decomposed
into two non-self-intersecting curves γ1

cpc and γ2
cpc.

Outside self-intersection. If
the self-intersection is of out-
side type, it is because the
segment [pi, pi+1] belongs to
Hout

[pj ,pj+1]
and there exists the

possibility of pi crossing from
Hout

[pj ,pj+1]
to H in

[pj ,pj+1]
, see

Figure 3(b). The criterium
to identify if a transition is
needed in the network config-
uration is as follows. If

(ui − vi)
T n[pj ,pj+1] ≥ 0,

then pi does not cross, and the
curve stays in Sc. If

(ui − vi)
T n[pj ,pj+1] < 0,

the curve will move into Dn \ Sc unless the self-intersection is resolved.
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Fig. 4. The curve γcpc defined by p1, . . . , pn is self-
intersecting at a point’s location. (a) shows an in-
side self-intersection and (b) shows an outside self-
intersection. In both cases, γcpc can be decomposed
into two non-self-intersecting curves γ1

cpc and γ2
cpc.

Self-intersection at a point.
For each i 6= j ∈ {1, . . . , n}
such that pi = pj , consider
the vectors

ui = sgn(Hc(P ))
∂Hc

∂pi

,

uj = sgn(Hc(P )) prTD

(∂Hc

∂pj

)

.

The guards depend upon the
type of self-intersection.

Inside self-intersection. If the
self-intersection is of inside
type, see Figure 4(a), define
the vectors

v1 =

{

u[pi−1,pi] if [pj−1, pj ] ⊂ H in
[pi−1,pi]

,

u[pj ,pj−1] if [pj−1, pj ] 6⊂ H in
[pi−1,pi]

,

v2 =

{

u[pi+1,pi] if [pj , pj+1] ⊂ H in
[pi,pi+1]

,

u[pj ,pj+1] if [pj , pj+1] 6⊂ H in
[pi,pi+1]

.

The criterium to identify if a transition is needed in the network configuration
is as follows. If

ui − uj ∈ wedge(pj , (v1, v
⊥
1 ), (v2,−v⊥

2 )),



then the relative motion of pi and pj is such that the curve stays in Sc. If

ui − uj 6∈ wedge(pj , (v1, v
⊥
1 ), (v2,−v⊥

2 )),

then the curve will move into Dn \ Sc unless the self-intersection is resolved.

Outside self-intersection. : If the self-intersection is of outside type, see Fig-
ure 4(b), define the vectors

v1 =

{

u[pj ,pj−1] if [pj−1, pj ] ⊂ H in
[pi−1,pi]

,

u[pi−1,pi] if [pj−1, pj ] 6⊂ H in
[pi−1,pi]

,

v2 =

{

u[pj ,pj+1] if [pj , pj+1] ⊂ H in
[pi,pi+1]

,

u[pi+1,pi] if [pj , pj+1] 6⊂ H in
[pi,pi+1]

.

The criterium to identify if a transition is needed in the network configuration
is as follows. If

ui − uj ∈ wedge(pj , (v1,−v⊥
1 ), (v2, v

⊥
2 )),

then the relative motion of pi and pj is such that the curve stays in Sc. If

ui − uj 6∈ wedge(pj , (v1,−v⊥
1 ), (v2, v

⊥
2 )),

then the curve will move into Dn \ Sc unless the self-intersection is resolved.

State transition. We have encountered above the need to deal with self-
intersections in γcpc to prevent it from stepping into Dn \ Sc. Next, we deal
with these situations. For simplicity, we begin by considering the case where
there is only one agent causing the self-intersection. If this is the case, then γcpc
can be decomposed into two polygonal curves γ1

cpc
and γ2

cpc
, see Figures 3 and 4.

The curve γ1
cpc

is defined by the concatenation of the segments {[pk, pk+1] | k ∈
〈i, . . . , j − 1〉} ∪ [pj , pi], if pi ∈]pj , pj+1[, and {[pk, pk+1] | k ∈ 〈i + 1, . . . , j −
1〉} ∪ [pj , pi+1], if pi = pj . The curve γ2

cpc
is defined in an analogous way as the

concatenation of the segments {[pk, pk+1] | k ∈ 〈j + 1, . . . , i − 1〉} ∪ [pi, pj+1],
if pi ∈]pj , pj+1[, and {[pk, pk+1] | k ∈ 〈j + 1, . . . , i − 1〉} ∪ [pi, pj+1], if pi =
pj . Observe that γ2

cpc
might not be oriented in a counterclockwise fashion.
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Fig. 5. Agent re-positioning. Agents in the curve
γ1
cpc get re-positioned onto the curve γ2

cpc.

Moreover, if we are dealing
with a self-intersection at an
open segment, i.e., pi belongs
to ]pj , pj+1[, note that pi ap-
pears in the definition of both
γ1
cpc

and γ2
cpc

. The wombliness

of γcpc is split between γ1
cpc

and γ2
cpc

according to

H(γcpc) = H(γ1
cpc

) + H(γ2
cpc

).

We are now ready to detail
the two possible outcomes if a
self-intersection occurs:



Agent re-positioning. If H(γ1
cpc

)

and H(γ2
cpc

) have different signs, we only keep the curve whose wombliness has
the same sign as γcpc. Without loss of generality, assume the curve we keep is
γ2
cpc

. Then, we re-position the agents in γ1
cpc

along the boundary of γ2
cpc

. This

process does not affect the value of the wombliness of γ2
cpc

, and can be made in
an arbitrary way. Note that the absolute value of the wombliness of the resulting
non-self-intersecting curve is strictly larger than the value of the wombliness of
the original self-intersecting curve γcpc. This transition is illustrated in Figure 5.

Curve splitting. If H(γ1
cpc

) and H(γ2
cpc

) have the same sign as H(γcpc), then
choosing only one curve would lead to a decrease in the value of the wombliness.
Therefore, we consider both. If the self-intersection occurs on an open segment,
we need to add one more agent to the network at the intersection location,
according to the definition of γ1

cpc
and γ2

cpc
above. After the split, each curve

evolves independently according to (8). This transition is illustrated in Figure 6.
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Fig. 6. Curve splitting. The curve γcpc is split into
γ1
cpc and γ2

cpc, and these curves evolve independently
afterwards.

If multiple self-intersections
occur at different locations,
then the state transitions cor-
responding to each one of
them can be executed si-
multaneously. If multiple self-
intersections occur at the
same location, then the curve
γcpc can be decomposed into 3
or more non self-intersecting
curves, and the state transi-
tion as described above can
be conveniently modified to
jointly consider the wombli-
ness of each individual curve.

5.2 Intersection between curves

As a result of the curve splitting transition described in Section 5.1, there might
be more than one curve moving in D. It is therefore conceivable that along
the ensuing evolution two of these curves intersect each other. Let us consider
this situation. For simplicity, we only treat the case where there are two curves
evolving in D. The case with more than two curves can be treated in an analogous
way. Let γα

cpc
be a closed polygonal curve determined by n1 agents at positions

Pα = (pα
1 , . . . , pα

n1
) and wombliness Hα

c (Pα) = H(γα
cpc

), and let γβ
cpc

be a closed

polygonal curve determined by n2 agents at positions P β = (pβ
1 , . . . , pβ

n2
) and

wombliness Hβ
c (P β) = H(γβ

cpc
). Note that the orientation of the curves is not

necessarily counterclockwise. When a intersection occurs between the two curves,
either Insideγα

cpc
∩ Inside

γ
β
cpc

is connected or Outsideγα
cpc

∩Outside
γ

β
cpc

is connected.



We refer to these two cases as inside and outside intersections, respectively.
Figure 7 presents an illustration of these notions.

We further distinguish between whether the intersection occurs at an open
segment or at a point’s location.

Intersection at an open segment. For each i ∈ {1, . . . , n1} such that pα
i ∈

]pβ
j , pβ

j+1[ for some j ∈ {1, . . . , n2}, define λ ∈ [0, 1) by pα
i = (1 − λ)pβ

j + λpβ
j+1

and consider the vectors

vi = (1 − λ)uj + λuj+1,

ui = sgn(Hα
c (Pα)) prTD

(∂Hα
c

∂pα
i

)

, uk = sgn(Hβ
c (P β)) prTD

(∂Hβ
c

∂pβ
k

)

,

where k ∈ {j, j + 1}. The guards depend upon the type of self-intersection.
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Fig. 7. The curves γα
cpc and γβ

cpc intersect at an
open segment. (a) shows an inside intersection and
(b) shows an outside intersection. In both cases, the
curves γα

cpc and γβ
cpc can be merged into a new self-

intersecting curve γcpc.

Inside intersection. If the in-
tersection is of inside type,
it is because the segment
[pα

i , pα
i+1] belongs to H in

[pβ
j

,p
β
j+1

]

and there exists the possi-
bility of pα

i crossing from
H in

[pβ
j

,p
β
j+1

]
to Hout

[pβ
j

,p
β
j+1

]
, see

Figure 7(a). The criterium
to identify if a transition is
needed in the network config-
uration is as follows. If

(ui − vi)
T n[pβ

j
,p

β
j+1

] ≤ 0,

then pα
i does not cross. If

(ui − vi)
T n[pβ

j
,p

β
j+1

] > 0,

then pα
i will cross unless the

intersection is resolved.

Outside intersection. If the intersection is of outside type, it is because the
segment [pα

i , pα
i+1] belongs to Hout

[pβ
j

,p
β
j+1

]
and there exists the possibility of pα

i

crossing from Hout
[pβ

j
,p

β
j+1

]
to H in

[pβ
j

,p
β
j+1

]
, see Figure 7(b). The criterium to identify

if a transition is needed in the network configuration is as follows. If

(ui − vi)
T n[pβ

j
,p

β
j+1

] ≥ 0,

then pα
i does not cross. If

(ui − vi)
T n[pβ

j
,p

β
j+1

] < 0,

then pα
i will cross unless the intersection is resolved.



Intersection at a point. For each i ∈ {1, . . . , n1} and j ∈ {1, . . . , n2} such

that pα
i = pβ

j , consider the vectors

ui = sgn(Hc(P
α)) prTD

(∂Hα
c

∂pα
i

)

, uj = sgn(Hc(P
β)) prTD

(∂Hβ
c

∂pβ
j

)

.

The guards depend upon the type of intersection.

Inside intersection. If the intersection is of inside type, see Figure 8(a), define

v1 =

{

u[pα
i−1

,pα
i
] if [pβ

j−1, p
β
j ] ⊂ H in

[pα
i−1

,pα
i
],

u[pβ
j

,p
β
j−1

] if [pβ
j−1, p

β
j ] 6⊂ H in

[pα
i−1

,pα
i
],

v2 =

{

u[pα
i+1

,pα
i
] if [pβ

j , pβ
j+1] ⊂ H in

[pα
i

,pα
i+1

],

u[pβ
j

,p
β
j+1

] if [pβ
j , pβ

j+1] 6⊂ H in
[pα

i
,pα

i+1
].

pi−1

pi+1

pj

pi

pj−1

pj+1

γ
1
cpc

γ
2
cpc

(a) inside

pj

pj−1

pj+1

pi

pi−1

pi+1 γ
1
cpc

γ
2
cpc

(b) outside

Fig. 8. The curves γα
cpc and γβ

cpc intersect at a
point’s location. (a) shows an inside intersection and
(b) shows an outside intersection. In both cases, the
curves γα

cpc and γβ
cpc can be merged into a new self-

intersecting curve γcpc.

The criterium to identify if a
transition is needed is as fol-
lows. If

ui − uj ∈

wedge(pβ
j , (v1, v

⊥
1 ), (v2,−v⊥

2 )),

then the relative motion of pα
i

and pβ
j is such that the curves

γα
cpc

and γβ
cpc

evolve without
“crossing each other.” If

ui − uj 6∈

wedge(pβ
j , (v1, v

⊥
1 ), (v2,−v⊥

2 )),

then the intersection needs to
be resolved.

Outside intersection. If the
intersection is of outside type, see Figure 8(b), define

v1 =

{

u[pβ
j

,p
β
j−1

] if [pβ
j−1, p

β
j ] ⊂ H in

[pα
i−1

,pα
i
],

u[pα
i−1

,pα
i
] if [pβ

j−1, p
β
j ] 6⊂ H in

[pα
i−1

,pα
i
],

v2 =

{

u[pβ
j

,p
β
j+1

] if [pβ
j , pβ

j+1] ⊂ H in
[pα

i
,pα

i+1
],

u[pα
i+1

,pα
i
] if [pβ

j , pβ
j+1] 6⊂ H in

[pα
i

,pα
i+1

].

The criterium to identify if a transition is needed is as follows. If

ui − uj ∈ wedge(pβ
j , (v1,−v⊥

1 ), (v2, v
⊥
2 )),



then the relative motion of pα
i and pβ

j is such that the curves γα
cpc

and γβ
cpc

evolve
without “crossing each other.” If

ui − uj 6∈ wedge(pβ
j , (v1,−v⊥

1 ), (v2, v
⊥
2 )),

then the intersection needs to be resolved.

State transition. We have encountered above the necessity to deal with inter-
sections between the curves γ1

cpc
and γ2

cpc
. For simplicity, we begin by considering

the case where there is only one agent causing the intersection. If this is the case,
then the two curves can be merged into a single one, see Figures 7 and 8. The
closed polygonal curve γcpc is defined by the concatenation of the segments

{[pα
k , pα

k+1] | k ∈ 〈i, . . . , i − 1〉} ∪ [pα
i , pβ

j+1]

∪ {[pβ
k , pβ

k+1] | k ∈ 〈j + 1, . . . , j − 1〉} ∪ [pβ
j , pα

i ],

if pα
i ∈]pβ

j , pβ
j+1[, and {[pα

k , pα
k+1] | k ∈ 〈i, . . . , i−1〉}∪{[pβ

k , pβ
k+1] | k ∈ 〈j, . . . , j−

1〉}, if pα
i = pβ

j . Observe that if we are dealing with a curve intersection at

an open segment, i.e., pα
i belongs to ]pβ

j , pβ
j+1[, then pα

i appears twice in the

definition of γcpc. The wombliness of γα
cpc

and γβ
cpc

is summed up according to

H(γcpc) = H(γα
cpc

) + H(γβ
cpc

).

We are now ready to detail the two possible outcomes of a curve intersection:

Agent re-positioning. If H(γα
cpc

) and H(γβ
cpc

) have different signs, we only keep
the curve whose wombliness is larger in absolute value. Without loss of generality,
assume the curve we keep is γ2

cpc
. Then, we re-position the agents in γ1

cpc
along

the boundary of γ2
cpc

. This process does not affect the value of the wombliness

of γ2
cpc

, and can be made in an arbitrary way. Note that the absolute value of
the wombliness of the resulting non-self-intersecting curve is strictly larger than
the value of the wombliness of γcpc.

Curve merging. If H(γα
cpc

) and H(γβ
cpc

) have the same sign, then choosing only
one curve would lead to a decrease in the value of the wombliness. Therefore,
we consider their merge into the curve γcpc. If the intersection occurs on an
open segment, we need to add one more agent to the network at the intersection
location, according to the definition of γcpc above. After the merge, the curve
γcpc evolves according to (8).

The case when multiple intersections occur at the same time can be dealt
with in a similar fashion to the discussion in Section 5.1.

5.3 Convergence analysis

We refer to the distributed hybrid control design described in Sections 5.1 and 5.2
as the wombling coordination algorithm. The next result follows from a simple
application of LaSalle’s Invariance principle [13].



Proposition 4. Any network trajectory evolving under the wombling coordina-
tion algorithm that does not undergo curve-splitting or curve-merging transitions
converges to a critical configuration of Hc while monotonically optimizing the to-
tal wombliness.

From Proposition 4, we can deduce the following result for network trajec-
tories that undergo curve-splitting and curve-merging transitions.

Corollary 5. A network trajectory that undergoes a finite number of curve-
splitting and curve-merging transitions monotonically optimizes the total wombli-
ness. Moreover, the subnetworks that result after these transitions have taken
place each converge to a critical configuration of Hc.

Remark 6. Note that no conditions are imposed in Corollary 5 on the number of
agent re-positioning transitions. A similar result could be established for network
trajectories that undergo an infinite number of curve-splitting and curve-merging
transitions but are non-Zeno executions of the hybrid system [7, 14]. •

Figures 9 and 10 present illustrations of the execution of the wombling coor-
dination algorithm. The domain in all plots is D = [−4, 4] × [−4, 4].

(a) (b) (c)

Fig. 9. Robotic network of 10 agents evolving under the wombling coordination al-
gorithm. (a) shows the initial configuration, (b) shows the robot trajectories, and (c)

shows the final configuration. The spatial field is Y (x1, x2) = 1.25e−(x1+.75)2−(x2−.2)2 +

1.75e−(x1−.75)2−(x2+.2)2 . The gradient flow (8) first triggers 1 outside self-intersection
and then 2 inside self-intersections. All transitions result in agent re-positionings.

6 Conclusions

We have proposed a distributed coordination algorithm for robotic sensor net-
works that seek to detect areas of abrupt change of a spatial phenomena of
interest. Our algorithm design has combined notions borrowed from statistical



(a) (b) (c)

Fig. 10. Robotic network of 10 agents evolving under the wombling coordination al-
gorithm. (a) shows the initial configuration, (b) shows the robot trajectories, and

(c) shows the final configuration. The spatial field is Y (x1, x2) = e−(x1+2)2−x2
2 +

1.25e−(x1−2)2−x2
2 . The gradient flow (8) first triggers an inside self-intersection that

results in a curve splitting. After this, each of the new curves undergoes an inside
self-intersection that result in agent re-positionings.

estimation and computer vision with tools from hybrid systems theory. The pro-
posed algorithm allows for network splitting and re-grouping, and is guaranteed
to monotonically increase the wombliness of the overall ensemble.

In order to make the proposed hybrid control design more amenable to im-
plementation in practical scenarios, future work will address two limitations of
the present approach. We need to move beyond the assumption that individual
agents have gradient and Laplacian information on the spatial field along their
immediate counterclockwise and clockwise boundary. When a curve merging or
splitting occurs, the addition of an agent to the network can be done in a number
of ways - e.g., individual agents might carry several smaller, lighter agents that
can be deployed if needed. However, we need to better understand the number of
switchings that can occur along the evolution, and provide conditions for their
finiteness. We also plan to extend the present approach to open polygonal curves
to detect “fronts” of abrupt change in the spatial phenomena.
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