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Abstract 
Effective therapy of complex diseases requires control of highly non-linear complex 

networks that remain incompletely characterized. In particular, drug intervention can be seen as 
control of cellular network activity. Identification of control parameters presents an extreme 
challenge due to the combinatorial explosion of control possibilities in combination therapy and to 
the incomplete knowledge of the systems biology of cells.  

In this review paper we describe the main current and proposed approaches to the 
design of combinatorial therapies, including the empirical methods used now by clinicians and 
alternative approaches suggested recently by several authors. New approaches for designing 
combinations arising from systems biology are described. We discuss in special detail the design 
of algorithms that identify optimal control parameters in cellular networks based on a quantitative 
characterization of control landscapes, maximizing utilization of incomplete knowledge of the 
state and structure of intracellular networks. The use of new technology for high-throughput 
measurements is key to these new approaches to combination therapy and essential for the 
characterization of control landscapes and implementation of the algorithms.  

Combinatorial optimization in medical therapy is also compared with the combinatorial 
optimization of engineering and materials science and similarities and differences are delineated. 
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Combinatorial Biological Control is a growing field that is benefiting from advances in 
systems biology, targeted therapeutics, and high-throughput biological measurement 
technologies as well as from new and established approaches from mathematics, physics and 
engineering. 

The study of Combinatorial Therapies is the fastest expanding sub-discipline within this 
field, though therapeutic applications are not the only uses of the new principles and methods that 
are being discovered. Combinatorial approaches can also be used to optimize the survival and 
differentiation of cells in vitro, in synthetic genomics, to delay aging, and to improve physiological 
performance. Additionally, work in this field can help elucidate the strategies nature uses for 
combinatorial control and optimization at different scales, from evolution to organismal function. 
While until recently combinatorial therapies were based on largely empirical methods, new 
insights are arising from systems biology and from the integration of several biological and non-
biological disciplines and are providing the prospect of more rational approaches to the therapy of 
complex diseases. 

In this review, we describe the state of the art of combinatorial optimization of medical 
therapy, starting with relevant contributions from systems biology. We then compare it with more 
established techniques of systematic optimization in engineering and material sciences.  

 

1. Biological robustness 
The problem of controlling a biological system is complicated by the presence of active 

mechanisms to maintain function (whether homeostatic or dynamic, e.g. oscillations, 
differentiation) under the influence of environmental perturbations. This robustness is a desirable 
property of many complex systems that has been studied extensively for engineered systems and 
more recently applied to biological systems. Kitano [1] provided a mathematical framework to 
define and understand biological robustness that takes into account the maintenance of function 
for all possible perturbations, the probability of occurrence for each perturbation, and the limited 
resources available. Kitano also suggested that robustness is conserved for similar biological 
systems, meaning that under resource constraints there is some tradeoff in improving robustness 
to certain perturbations while becoming increasingly fragile to others [1]. Stelling et. al. [2] agreed 
with this conjecture, and a similar result was also a consequence of the theory of Highly 
Optimized Tolerance (HOT) for complex designed systems [3, 4]. The HOT theory assumes that 
the final products of biological evolution have similar robustness properties to designed systems 
in engineering. 

Biological robustness has also been analyzed using concepts and tools from Information 
Theory, since a fundamental quality of living organisms is the storage and transmission of 
information passed down through evolution. In the specific example of gene regulatory networks, 
the amount of information stored in a gene can be explicitly quantified by calculating the entropy 
[5] of the statistical distribution of the gene expression level (seen as a random variable) [6]. This 
approach makes it possible to define input/output relationships between genes and to quantify 
their information exchange using Shannon’s mutual information [5]. It has recently been pointed 
out that biological networks, in order to optimize the crucial tradeoff between robustness and 
sensitivity [7], must have maximal mutual information exchange between nodes [8]. This suggests 
that natural selection has acted in cells, neural systems, and other tissues so as to maximize the 
information transfer between signaling and receiving nodes across their networks.  

Following this information theory approach, Kitano [1] also suggested the concept of 
controlling biological systems by applying the general principle of spread spectrum 
communication [9], in which selectivity and tolerance to noise is achieved by spreading the signal 
through many channels or nodes in a network. In the case of drug design, this approach suggests 
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that efficient and highly-selective therapies could be obtained combining a large number of low-
dose compounds. This is supported by numerical studies showing that multiple weak hits can 
affect a regulatory network more efficiently than a complete inactivation of selected nodes [10]. 

The consequence of biological robustness in terms of our attempt to control these systems is that 
specific targets for robustness and fragility must be understood in order to circumvent the intrinsic 
tendency of biological systems to maintain function (whether in the normal or diseased state) 
under external influences [1]. Theoretical and applied examples of distributed robustness and 
redundancy in the face of cascading failure support the idea that biological networks are robust to 
single interventions [11-14]. Therefore, multiple drugs will be needed to address robust disease 
states. 

2. Challenges in combination therapies 
It is indeed becoming increasingly evident to the clinician treating a complex disease or to 

the scientist studying a complex biological network that accurate control is more likely to be 
achieved by using multiple interventions. Since therapeutic molecules are increasing in specificity 
(as in the case of targeted drugs), and since our knowledge of the complexity of biological 
networks is advancing, it is becoming more feasible to consider drugs not as remedies for specific 
disorders but rather as a kit of molecular tools that can be combined for specific therapeutic 
purposes. Additionally, as we do when evaluating the health effects of natural products (for 
example, red wine or green tea), it may be acceptable to consider a novel large combination of 
compounds as a whole rather than studying all its components separately. 

Because drug effects are dose-dependent, several doses need to be studied and, when 
therapeutic interventions on multiple targets are necessary, the number of possible combinations 
rises very quickly (this problem is often referred to as combinatorial explosion). For example, if we 
were to study all combinations of 6 out of 100 compounds (including partial combinations 
containing only some of these compounds) at 3 different doses we would have  

 

Σ6
j=1 Binomial(100,j)*3j = 8.9*1011  

 

possibilities. This example suggests that the problem will require a qualitatively new approach 
rather than more efficient screening technology alone. Many cancer chemotherapy regimens are 
composed of 6 or more drugs from a pool of more than 100 clinically used anticancer 
compounds.  

The following quotation from the final chapter of a recent textbook on the Biology of 
Cancer [15] by Robert Weinberg illustrates the growing awareness of this problem and of new 
opportunities for its solution: 

“Traditionally, new drugs have been evaluated as single agents during pre-clinical 
development and Phase I clinical trials. This practice contrasts with the growing belief of 
cancer researchers that most monotherapies are unlikely to yield curative treatments and 
that, with rare exceptions, truly successful clinical outcomes will depend on the use of 
combinations of anti-cancer drugs.  … At present, the choice of drugs to be used singly or 
in combinations is inspired by biological intuition or poorly performed guesses. 
Increasingly over the coming decade, strategies for organizing multi-drug treatment 
protocols will be influenced by our rapidly evolving understanding of the design of the 
signaling circuitry within human cells and by molecular diagnostics that tell us how 
certain signaling pathways have been perturbed in some tumors and not in others.” 
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A similar view on the limitations of the traditional approach to drug combination has been offered 
by Sridar Ramaswamy in a recent Commentary in The New England Journal of Medicine [16]. 
Other reviews stressing the need for a more systematic approach to combination therapy have 
been published by Dancey and Chen [17], Hopkins [18] and Zimmerman et. al. [19]. A recent 
editorial [20], commenting on the disappointing results of a clinical trial of combination therapy for 
colorectal cancer [21], suggested that combining the new targeted therapies might be even more 
challenging than combining cytotoxic chemotherapies, because of subtle interactions in 
intracellular signaling. 

3. Combinatorial optimization in medical therapy 
In the following sections we describe the main classes of strategies for designing drug 
combinations (or closely related approaches) presented in the literature. 

Class A – Non-systematic 
In this class we include the traditional heuristic approaches of trial and error, also called 

the “empirical” method in the literature [17, 22]. We do not mean that these approaches are non-
scientific: on the contrary, many clinical trials of drug combinations are very rigorous and clearly 
useful [20, 21]. A common assumption in this class is that only drugs that are effective individually 
should be used as part of a drug combination [23]. This assumption might be related to FDA 
requirements, which however now seem to be evolving [15]. Because clinical trials are very 
expensive and many are sponsored by drug companies, it has been pointed out that commercial 
factors play a role in the choice of which combinations are tested [24]. The FDA regulates which 
individual drugs can be prescribed but individual physicians are free to use their clinical judgment 
when prescribing them in combination. We do not assume that a systematic approach would be 
necessarily be superior, but randomized, double blind, prospective trials could compare the 
efficacy of specific systematic approaches with physician choices. Improving the evaluation of the 
efficacy of medical therapy is one of the measures suggested for reducing inefficiencies in health 
care expenditures [25]. 

 

Figure 1   

Figure 1: The empirical method. This approach is non-systematic, instead designing 
combinations based on the clinical experience of doctors, knowledge of biological mechanisms, 
and practical constraints in the design of clinical trials. 

 

Class B – Brute force (exhaustive enumeration) 
This approach has been called “brute force” to indicate that all combinations up to a certain size 
are tested [19, 26]. Because of the mentioned rapid combinatorial explosion this means that only 
combinations of a smalI size can be studied. A “brute force algorithm” is a technical definition for 
an algorithm that performs an exhaustive search. It does however require a considerable amount 
of judgment to decide which set of drugs to test and which biological assay to use.  

 

Figure 2   

Figure 2: The brute force approach. “Brute force” is a term meaning exhaustive testing of all 
possible combinations. High-throughput screening technology allows the testing of pairs of drugs 
over a range of doses, but combinatorial explosion usually prevents exhaustive measurement of 
combinations of more than 2 drugs except when exploring combinations from very limited sets of 
compounds. 
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Most studies in the literature only study pairs of drugs, and it would be very difficult to 
extend this approach to larger combinations unless the set of candidate compounds to be used is 
small. Greco [27] reviews the traditional literature on drug combinations and drug synergy, which 
was mainly developed to study interactions of two drugs. Te Dorsthorst [28] presents a recent 
application of this approach applied to the study of antifungal agents. A more systematic 
approach is suggested by Borisy et. al. [29] using high-throughput screening in several different 
biological systems and measuring hundreds of thousands of pair-wise drug interactions. 

The main idea underlying this approach is that unexpected therapeutic activities, not predictable 
from single drug studies, might manifest themselves when multiple drugs are used, and this 
seems to be the case, see e.g. [20, 21, 29]. 

 

Class C – Statistical association 
Statistical models can be built based on correlations between drugs and phenotype 

outputs. These models do not rely on an explicit characterization of the biological networks but 
treat the system as a black box. By predicting phenotype outputs in response to new sets of drug 
inputs and assuming simple, usually linear, relationships, these statistical models can aid in the 
design of drug combinations.  

 

Figure 3   

Figure 3: Statistical association models. This approach attempts to design combinations based on 
the desired phenotype and linear combinations of input/output relationships of single drugs. 

 

Lamb et. al. [30] compiled a database of gene expression profiles in response to single 
drugs. The “Connectivity Map” allows new gene expression profiles to be matched to patterns in 
the database so that the best set of single drugs can be found. Although the database can be 
used to connect related small molecules, using data from a limited number of cell lines and 
compounds, no attempt has been made to use the resource to design new combinations. Janes 
et. al. [31] used partial least-squares regression to develop a statistical model linking a signature 
of apoptosis markers to an array of activity metrics in 19 signaling proteins, when activated by 
different combinations of cytokines. They were able to use the model to mathematically reduce a 
complex input/output relationship down to the simplest set of control inputs sufficient to produce 
any possible output response.  This “canonical basis set” of cytokine inputs can be applied in 
linear combinations to control the apoptosis response. 

Taking advantage of the large-scale screen of drug responsiveness in the NCI-60 panel 
of cancer cell lines, as well as microarray data for each cell line, Potti et. al. [32] derived gene 
expression signatures to classify cell lines on the basis of sensitivity to various 
chemotherapeutics. These expression signatures could predict drug sensitivity in cell lines as well 
as in patients in clinical trials. When individual expression signatures were combined to produce a 
chemosensitivity signature for a specific drug combination (TFAC – paclitaxel, 5-FU, adriamycin, 
and cyclophosphamide), these genes produced a statistically significant distinction between 
responders and non-responders in a retrospective analysis of clinical trials for combination 
efficacy [32]. 

It is very hard for pure statistical correlations to capture the non-linearity, complexity and 
variability of biological networks, but mechanistic network models  are still incomplete and the 
parameters are often not well known, making the statistical approach a useful tool especially 
when dealing with large omic datasets. 
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Class D – Explicit model-based methods 
In this class, biological measurements (either obtained by the authors or derived from the 

literature) are used to build explicit models of the target biological network for the optimization of 
drug combinations using simulations. Any control system implicitly assumes a model of the 
system being controlled [33], but in an explicit model there is a direct correspondence between 
the elements of the model and reality. 

 

Figure 4   

Figure 4: Model-based approach to designing combinations. Explicit models of biochemical 
interactions, usually fitted to measured biological data (including genome-wide or “omic” data 
such as microarrays), are used to predict optimal combinations via simulation. 

 

Araujo et. al. [34] used a medium-size system of ordinary differential equations to model 
a handful of combinations on the EGFR network and found synergistic interventions. Calzolari et. 
al. [35] developed a model of the apoptosis network and identified general strategies and 
potential targets for combined drug interventions to obtain selective cell death. Yang et. al. [36] 
modeled the arachidonic acid metabolic network, related to inflammation, with a 2-step simulated 
annealing approach to optimize (1) drug candidates and (2) levels of intervention for multiple 
targets. Hua and Palsson [37] is one example of a large body of work on control and analysis of 
metabolic networks using genome-scale constraint based approaches. They predict and design 
gene knockouts to optimize metabolite production. 

Tvieto and Lines [38] took advantage of well established mechanistic models of cardiac 
myocyte electrophysiology [39] to perform an in silico search for combinations of ion-channel 
targets that minimized the effects of ischemia on action potential morphology [38]. They 
confirmed that the optimal combination therapy reduced the pro-arrhythmic consequences of 
regional ischemia in a spatially coupled model of myocardial tissue. The method made use of the 
well known Nelder-Mead optimization method [40] to find an optimal "drug vector" describing the 
fractional inhibition or agonism of six channel conductances. The optimization minimized a 
distance function that measured time integrals of squared differences in membrane potentials and 
current densities between treated and untreated normal cells, and between treated ischemic cells 
and normal cells. 

Some authors have the opposite but related aim of using drug combinations to build 
network models. The focus is on system analysis rather than on system control. Lehar et. al. [41] 
used response surfaces of pair-wise combinations to predict network motifs surrounding the drug 
targets. The shape of a simulated dose response surface can distinguish parallel and serial 
conformations, branching, feedback, etc. in a generic computational abstraction of a metabolic 
network. They then tested the method on the well-known sterol metabolism pathway in yeast, 
noting that the response surfaces of drug pairs correctly predicted the topology of the pathway. 
The method can be generalized to higher-order combinations as well. 

Nelander et. al. [42] built a nonlinear multiple-input, multiple-output network model using 
experimentally measured drug pair inputs and phospho-protein outputs in MCF7 breast cancer 
cells. They applied Monte Carlo methods to optimize the choice of network connectivity, and a 
gradient descent technique to optimize parameters and interaction weights. As opposed to the 
response surface method of Lehar et. al. [41], this method produces globally parameterized 
computational models ready for simulations.  

This class is likely to be an essential component of a successful approach to the 
optimization of drug combinations but we should not forget that we do not have the luxury of 
having a specific drug to modulate each node of a network. Targeted therapies are only available 
for a minority of proteins, and they normally have off-target effects, some of which are not known.  
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It is also possible to envisage that explicit network models and statistical associations could be 
combined, as it has been done in other fields of systems biology, for example in the use of 
microarrays and protein interaction networks for tumor classification [43]. The statistical approach 
could either be used to define the parameters of the model or directly to suggest combinations. 
We are not dedicating a separate section or figure to this class because we have not found direct 
examples in the field of combinatorial therapy. It is too early to exclude that these types of 
approaches might emerge, but if this class were to remain empty or scarcely populated it might 
be useful to consider the reasons. 

 

Class E – Model-free biological search algorithm 
This class describes biological search algorithms, where the search is not conducted in 

silico but directly using biological measurements from in vitro or in vivo systems. These methods 
can be stochastic, for example using Monte Carlo or evolutionary algorithms, or non-stochastic. 

 

Figure 5   

Figure 5: Biological search algorithm. In this model-free approach to combination design, drugs 
are iteratively combined and measured, in effect searching through the vast space of possibilities.  

 

Wong et. al. [44] developed a closed-loop control algorithm, using a microfluidic platform 
to implement an iterative stochastic search (Gur Game algorithm) for optimal drug combinations. 
The algorithm efficiently discovered potent combinations for inhibiting virus infection of fibroblasts, 
and was able to regulate NFκB levels by discovering optimal cytokine levels. Sun et. al. [45] 
extend this work by using the Gur Game algorithm followed by the Differential Evolution 
algorithm, a type of genetic algorithm that can be used for parallel search. 

 

Figure 6   

Figure 6: Using the biological search algorithm (“Stack Sequential – Top Down” or SS-TD) to 
optimize combinations for cancer cell selectivity.  The colors indicate the selectivity of the drug 
interventions and the aim is to find treatments with high selectivity for one of the cell lines. This 
desired selectivity is shown as dark blue. The red shades are partially selective for the other cell 
line. Iterations of the algorithm apply different sizes of combinations, starting with individual drugs. 
A statistically significant enrichment of the desired selective combinations (dark blue) is shown.  

Adapted from [46] with permission. 

 

Calzolari et. al. [46] used non-stochastic algorithms derived from one used in digital 
decoding, the stack sequential algorithm, to perform biological searches for drug combinations, 
both in vivo (using fruit flies) and in vitro (using cell lines – see Figure 6). This approach is a first 
example of application of information theory concepts and techniques to the control of biological 
systems.  

 

Figure 7   

Figure 7: Diagram of the iterative search framework. At each iteration, a high-throughput assay 
measures cellular (or organism) phenotype in response to a drug combination, which is fed into 
the algorithm. The algorithm then generates new candidate combinations to test based on the 
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previous results. Conceptually, this is equivalent to a search through the phenotype landscape in 
the space of possible drugs and doses. 

 

Further progress within this class would benefit from the availability of a corpus of fully 
factorial (exhaustive) drug combination datasets that could be used to compare algorithms and to 
develop new ones. A detailed statistical analysis of these fully factorial datasets could help in 
testing and evaluating the efficiency of different optimal drug combination search strategies. This 
type of analysis can be carried out by characterizing the general properties of the control 
landscape of a given biological system (Figure 7).  

 The notion of landscape represents a very useful concept, commonly used in the analysis 
of many complex systems encountered in physics, biology, computer science, and engineering 
[47]. The analysis of the general properties of a landscape is of interest in the context of 
optimization problems since it provides hints on the type of optimization algorithms that are more 
likely to succeed (Figure 8). For instance, in the control of molecular systems by laser pulses, 
different choices of parameters lead often to equivalent outcomes. This is reflected in the fact that 
in these systems optimal solutions lie in high-dimensional continuous surfaces of the control 
landscape [48]. In such types of landscapes, which can be visualized as having plateau regions in 
the control space, an efficient optimization algorithm needs to “jump” between the different 
plateaux. This can be better achieved using stochastic algorithms, for example genetic algorithms 
(see below: Combinatorial optimization in engineering). 

 

Figure 8   

Figure 8: Scheme of different types of landscapes. The structure of the control landscape can 
inform the choice of the search strategy. Left: Rugged, found e.g. in spin glasses as a result of 
competition between ferromagnetic and anti-ferromagnetic interactions. Center: Funnel, found 
e.g. in protein folding fitness landscapes. Right: Robust, found e.g. in quantum control problems 
in which often control parameters give perfect control or no control at all.  

 

Class F – Model plus biological search algorithm (integration of C, D, and F) 
Calzolari et. al. [46] discussed the motivation for this class and describe in detail 

algorithms that can be used to integrate biological search with statistical association and explicit 
model approaches. What characterizes this class is the combination of the experimental search 
of class E with in silico models (class C, class D or both).  

 

Figure 9   

Figure 9: Modeling approaches integrated with experimental search. A more systematic approach 
could integrate information from statistical and explicit models. Model-based predictions of 
effective perturbations can be combined with closed-loop iterative experimental search to refine 
the drug combination. 

 

The algorithms described by Calzolari et. al. [46] (see Figure 10 of that paper) can 
include the results of in silico models within the ranking used to guide the steps of the 
experimental search. They therefore do not simply combine the outputs of separate approaches 
but integrate them fully. 

This class of strategies for combinatorial therapy could also utilize the vast amounts of 
genomic data originating from personalized medicine efforts. Sequencing individual genomes at 
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an affordable cost might soon be possible.   Personalized combinatorial therapy might therefore 
be based both on the individual genome (and other omic data) and on an experimental search (as 
in class E) using the individual’s own cells. 

As for class E, it would be desirable to obtain a corpus of fully factorial (exhaustive) drug 
combination datasets and corresponding omic data that could be used to develop strategies of 
this type.  

Combinatorial optimization in engineering 
The solution to many engineering problems incorporate ideas that can be traced back to 

combinatorial research, where the individual elements to be combined change greatly among 
different applications. Examples include the selection of waiting time combinations at airport 
gates in order to minimize air traffic congestion [49], the combined tuning of the parameters of 
several controllers (each one contributing to a desired objective) in supply chain management 
[50], the optimization of engine parameters such as intake, exhaust, and spark timings according 
to operating conditions to improve fuel consumption [51], or the adjustment of ion-intensity model 
parameters in magnetospheric image processing [52]. 

Exhaustive enumeration (as in class B) is a trivial but very general problem-solving 
technique in combinatorial optimization that consists of systematically enumerating all possible 
configurations in searching for the optimal solution. Because of combinatorial explosion the 
method is only suitable for low-dimensional problems. 

 In computational science and engineering, when a reliable model of the problem is 
available (as in class D), the search for optimal combinations of the individual components can be 
carried out with a variety of optimization methods. For example, in convex optimization, a known 
and convex objective function is to be optimized over a convex domain. For convex functions, any 
local minimum is also global. Also, the set of all minima is convex. Finally, if the function is strictly 
convex, then there exists at most one minimum. Powerful methods exist to obtain global 
optimizers in this case. These include interior-point methods, subgradient methods, elliposoid 
methods, and duality. Numerous problems that are not convex in their original variables can be 
transformed into convex form after a suitable change of variables, and are therefore amenable to 
convex optimization techniques [53]. 

 In stochastic optimization, good models are often not available, or we do not have an 
analytical expression for the objective function that we wish to optimize, or the evaluation of this 
function is costly or only possible through experimentation.  In such cases, methods that do not 
depend on direct gradient information or exact measurements become very useful.  Recently, 
there has been an increasing interest in recursive stochastic optimization methods that are based 
on noisy measurements of the objective function to be optimized, rather than on direct 
measurements of its gradient. These algorithms have the advantage of not requiring detailed 
modeling information describing the relationship between the parameters to be optimized and the 
objective function. The establishment of rigorous theoretical guarantees on the convergence 
properties of these algorithms is a subject of current research. Overall, gradient-free stochastic 
optimization methods have similar convergence properties as gradient-based stochastic 
algorithms. Although the theoretical asymptotic characterization states that gradient-free methods 
typically require a larger number of iterations until convergence, they offer great computational 
savings in the number of function evaluations required step and are more robust to noise and 
model uncertainty. A method that seems particularly well suited for combination therapy (in class 
F) is the "simultaneous perturbation stochastic approximation (SPSA)" [54]. The SPSA is based 
on approximating the gradient of the objective function using only two (possibly noisy) 
measurements, regardless of the dimension of the optimization problem. This feature allows for a 
significant decrease in the implementation cost in high-dimensional optimization problems. The 
applications of SPSA include model-free control [55], simulation-based optimization, and image 
processing. The global convergence properties of SPSA have been recently studied in [56].   

 Strategies inspired by evolution are potentially useful in class E. Evolution strategies use 
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mechanisms inspired by biological evolution such as mutations, crossovers, and selection. 
Examples include genetic algorithms, particle swarm optimization, and ant colony optimization. In 
an evolutionary algorithm, candidate solutions play the role of individuals in a population. At each 
iteration, the fitness of every individual is evaluated.  Multiple individuals are stochastically 
selected from the current population based on their fitness and modified according to the 
biological mechanisms mentioned above to form a new population. The new population is then 
used in the next iteration of the algorithm. The implementation of these algorithms therefore 
requires two basic elements: a representation of the solution domain and a fitness function to 
evaluate potential solutions.  The fitness function is determined by the objective function of the 
optimization problem. In general, no convergence guarantees are available for these methods. 

 Simulated annealing simulates the cooling process of a physical system. Starting at a 
very high temperature, a series of temperature decreases is performed. At each temperature 
step, the state of the system evolves according to some transition probabilities chosen according 
to the physical problem. The idea is that, at high temperatures, movements that result in 
temporary increases of the objective function are more likely to happen, while as the temperature 
approaches zero, disappear in favor of a steepest descent motion.  If the cooling of the procedure 
is performed slowly enough, then, with high probability, the global optimum of the optimization 
problem is achieved [57]. 

Search algorithms potentially belonging to class E are typically used in engineering within 
a model of the system, rather than experimentally in the real system. Research in materials is a 
distinct exception to this observation, as we discuss below. 

An analogy with class F can be found in robotics and artificial intelligence. Explicit models 
of reality are not sufficient for robots to manage a complex environment [58]. An alternative 
approach that started from simpler stimulus-response algorithms was more successful and was 
later integrated with the older models in hybrid architectures [58]. This process is similar to the 
evolution of the nervous system which is based on stimulus-response mechanisms of increasing 
complexity in lower invertebrates, integrated (but not replaced) by representations of reality within 
the brain of higher organisms. Compare Figure 9 for class F with Figure 1 of [59].  

Combinatorial optimization in materials research 
Modern combinatorial materials research is considered to have commenced in 1995 [60] 

leading to a rapidly expanding literature that according to a recent estimate is over 10,000 
publications [61]. Experimental methods have been developed for combinatorial screening of a 
wide range materials systems [60-62], including: catalysts [61]; thin polymer films [61, 63]; ternary 
inorganic compounds [60]; and polymers for biomedical applications [64].  High throughput cell 
based assays with over 1000 units [65] have been used to assess the effect of polymers on 
cellular response [64-66]. There is a strong industrial impetus for these developments and 
national centers of excellence in combinatorial materials research, including the NIST center for 
combinatorial methods (NCMC), and the Combinatorial Sciences and Materials Informatics 
Collaboratory (CoSMIC) at Iowa State, have been established. Very large combinatorial arrays 
have been fabricated, particularly in the area of inorganic films where screens containing 
thousands of different stoichiometries have been reported [60].  

Most combinatorial materials experiments operate in a cycle where the early experiments 
generate interesting regions of parameter space, while later experiments focus more closely on 
leads generated in previous cycles [61, 62, 67, 68]. Lead identification has also been enhanced 
by using statistical indicators based on prior knowledge and by incorporating theoretical insights. 
Use of prior knowledge through quantitative structure-property (QSPR), structure-activity (QSAR) 
or composition-activity (QCAR) relations profits from machine learning procedures and through 
use of artificial neural nets [61].  Optimization methods, such as Monte Carlo and genetic 
algorithms, have been used to assist in the choice of promising leads and hybrid methods 
incorporating prior knowledge through machine learning and optimization methods are emerging 
(see Figure 8 of ref. [61]). The methodologies used in combinatorial materials research have a 
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great deal in common with those used in searches for drug combinations, and the cross-
fertilization of these areas is promising.  

In some cases theoretical models are sufficiently accurate that a purely computational 
approach to combinatorial materials design is feasible, as illustrated by use of density functional 
or quantum chemistry methods with optimization methods to predict new compounds or 
chemicals with desired properties; for example semiconductors with desired band gaps [69], new 
stable alloys consisting of four elements [70], and molecules with optimized properties [71]. De 
novo computational methods for designing individual drugs are also developing rapidly [72]. 

Approaches to combinatorial materials research can be classified according to the 
categories used in this review, ranging from more empirical and brute force experimental 
approaches [60, 64] (as in classes A and B), to the use of statistical association methods [68] (as 
in class C), methods based on explicit models [69-71] (as in class D), the use of search 
algorithms based on the experimental data [61] and often using data mining methods [61, 62] (as 
in class E).  Recent approaches strive toward combining all these methods in meaningful ways 
[61, 73] (as in class F). 

Future developments 
As described in Steil et. al. [74] and in Weinzimer et. al. [75], it is possible to dynamically 

control in vivo, with real time feedback, the effect in humans of a single drug (in this case insulin). 
In the engineering literature the word control is usually used in this dynamical sense. The 
previously cited biological references have the more limited aim of optimizing drug combinations 
to be applied at a single time point. This class of feedback controlled in vivo algorithms, which 
would most likely include all previously described approaches and probably others, seems to us 
one of the possible future developments of combinatorial biological control using drugs. The 
success with a single drug shows that this expectation is not unrealistic. 

The choice of a clinically relevant biological output, to be optimized in the cells or in the 
organisms, is also a difficult problem that is shared by scientists working on individual drugs. Not 
only can we expect increased knowledge from omic data to help translate from experimental 
systems to patients, but the emergence of adaptive designs in clinical trials might also allow these 
to be structured as search algorithms [76]. 

A more systematic approach is also needed for choosing the subset of drugs within which 
to search for optimal combinations. Systems biology can probably assist this choice, especially 
for the increasing number of targeted therapies available [77, 78], where a more precise 
correspondence between drug and biological target can be established.  

 

We have described many possible algorithms for efficiently searching the space of 
possible drug combinations, and this supports the need for a corpus of fully factorial drug 
combination datasets (landscapes) that could be used by interested scientists to test and 
compare different algorithmic alternatives. Beside the drug combinations and the biological 
outputs the datasets should also contain omic profiles (as genomics, microarray, proteomics and 
metabolomics) to specify the state of the model variables, at least for the individual drugs and for 
the main maxima in the landscape.  

Fundamental experimental and theoretical understanding of the morphology of the control 
landscape will assist in developing improved algorithms to direct combinatorial therapeutic search 
in favorable directions.  In hard computational problems it is well known that as the degree of 
constraint increases, there is a phase transition from problems where it is relatively easy to find 
satisfying solutions to a phase where it is difficult to find good solutions.  This phase transition has 
been studied intensively in model complex systems such as random K-SAT [79], however the 
implications for combinatorial drug discovery remain to be explored.  
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Such new datasets may spur cross-fertilization from other quantitative sciences and new 
developments in computational biology, in the same way that large-scale genomic and proteomic 
datasets have already done [80]. 

 

Concluding remarks 
 

A systematic approach to the field of combinatorial drug interventions has only recently 
started and it is too early to have a complete picture of all differences versus combinatorial 
optimization in material sciences or engineering. There are, however, a few aspects we would like 
to point out.  

When explicit models are used in non-biological optimization efforts, there is usually just 
one type of model used in a particular application. Calzolari et. al., however, showed (Figure 10 of 
[46]) separate models of metabolism and of signal transduction as possible sources of inputs for 
the search. It would not be easy to unify them, even if the outputs can be combined. Other 
relevant classes of biological models with distinctive features do exist, for example 
electrophysiology models. Including different heterogeneous models might be especially 
necessary in the optimization of drug combinations because of the partial coverage of these 
models and because of the complexity of biological systems. 

Another feature to be noted is that the relation between drug and target is not simple; 
even targeted therapies have some off-target effects and we do not have a drug for every protein. 
It is therefore not possible to tune selectively all the parameters of a biological model as it might 
be done in many engineering applications. 

Finally we must consider that variation is an essential part of natural selection and 
therefore of any population of living organisms. In other words individual organisms of the same 
kind are necessarily more variable than machines or materials and cannot be represented equally 
well by generic explicit models. We might therefore expect hybrid approaches, which include 
biological search algorithms in addition to models, to play a larger role in the pharmacological 
control of living systems. 
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