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ABSTRACT The contributions of the paper are the following. We in-

This paper studies robotic sensor networks performing spa- troduce the wombliness objective function to measure tigaal
tial detection of areas of rapid change in physical phenomen ment of the gradient of the spatial field along the normaldire
We encode the task by means of an objective function, called tion to a non self-intersecting, open polygonal curve. Welgt
wombliness, which measures the change of the spatial fiefdal its smoothness properties and provide an explicit expyadsir
the open polygonal curve defined by the positions of the imbot its gradient. To optimize the wombliness of the open polygo-
sensors. This curve can become self-intersecting whemripegol nal curve determined by the robotic sensor positions, wl/aaa
along the gradient flow of the wombliness. Borrowing toaderfr the evolution of the gradient flow. We design a discontinuous
discontinuous dynamics and hybrid systems, we design an alg wombling algorithm that is guaranteed to monotonicallyi-opt
rithm that allows for network re-positioning, splittingnd merg- mize the wombliness. The algorithm allows for network tran-
ing, while guaranteeing the monotonic evolution of the wiemb  sitions (agent re-positioning, splitting, and mergingjtthrevent
ness. We analyze its convergence properties and illustrate the polygonal curve from becoming self-intersecting. Tgaper

approach in simulations. encompasses our previous results in [16] for closed polgigon
curves and extends them in several ways. First, the corgider
INTRODUCTION of open polygonal curves leads us to study the smoothneps pro

erties of a different objective function. Second, we coesia
richer set of possible network transitions. In particugmijtting

and merging of open curves can give rise to closed curves, and
this further complicates the convergence analysis. THialdis-
continuous control law proposed here guarantees that nat age
additions are required to execute the transitions spedifjettie
algorithm. Finally, we provide stronger convergence rissul

Consider a physical phenomena in a spatial domain modeled
by a deterministic field. Our aim is to design a distributegbal
rithm to allow robotic networks to detect areas of abrupingfea
in the field. The boundaries delimiting these areas can ksdlo
(e.g., a highly localized bank of nutrients) or open (e.gnav-
ing front of cold water). The accurate location of such bound
aries is relevant in various applications, including o@gaaphic
surveys, animal monitoring, and weather forecasting.

In statistical estimation [1, 2], wombliness identifies the PRELIMINARIES
boundaries where abrupt change occurs. Algorithms based on
point-referenced data to detect boundaries with large viioeds
are used in various disciplines [3,4]. In computer vision6[5
image segmentation and edge detection aim to optimizeitumct
als such as alignment, contrast, and geodesic active aobyou
solving gradient-based PDEs. ODE-based approaches are pro Planar Geometric Notions
posed in [7,8]. Our work builds on discontinuous dynamids [9 Givenv = (v1,V2) € R?, we denote by = (v, —v1) € R?
hybrid modeling [10, 11] and stability analysis [12, 13]damn the 90 degree clockwise rotation af Given p # q € R?, |p,q|
particular, on the body of work [14, 15] on extensions of UlgSa  and [p,q] denote, respectively, the open and closed segments
Invariance Principle to hybrid systems. with end pointsp andg. We letuj,q = (d—p)/[|lg— p| and

This section collects useful geometric concepts.oZ-. o
andi, j < n, we use the notatiofi,..., j) to denote(i,..., ) =
{i,...,jrifi<jand(i,....j)={i,...,n1,....j}if i > ].



Nipg = Uipq- We denote by | = {ze R?[(z—p)"npq >0}
the half plane of points in the positive directionmf . Like-
wise, we denoteH;s | = {z€ R? | (z—p)"njq < 0}. For
p,veR? letray(p,v) = {z€ R?|z=p+tv, t € Rso}.
Given v, Vo, n1,np € R2, with v; orthogonal ton;, i € {1,2},
wedge(p, (vi,n1),(v2,n2)) is the cone with vertexp, axes
ray(p,vi)andray(p,v2), and as interior, the set towards which
ny points alongr ay (p,v1) andny points alongr ay (p,vz2). A
domain® c R? is an open and simply connected set. Given
g€ D, TqD denotes the set of vectors tangenftavith origin at

g. Forgeint(D), TqD is 2-dimensional. Fon € 0D, TqD is the
half plane divided by the tangent line @ at q and containing
D. We let pky, : TpR? — TD = U{TqD | g € D} map a vector

in R? with origin atq € 9D to its orthogonal projection onfgyD.

Curve Parameterizations

A curve Cin R? is the image of a map: [a,b] — R2. The
mapy is called aparameterization of C A curve C is self-
intersectingif y is not injective on(a,b). A curveC is open
if y(a) # y(b). For an open curv€, we letnc = y/||y||*- de-
note the unit normal vector 8. Given a curveC parameterized
by a piecewise smooth map: [a,b] — C, the line integral of
fiCCR2RoverCis o f = [ f(a)dg= [ f(y(t) (1) dt
, and it is independent of the selected parameterization.

We deal with polygonal curves. An open,
self-intersecting,  polygonal curve C partitions RR?
into two closed and connected sets, Leftgide
UEgilWEdge(‘piv (Wi—1, Mpy i g])s (Wi 25 Mpr, . i]) and
Rightside = Ui=5 ‘wedge (pi, (Wi—1,Np_, pi))s (Wit Nip pr,y))),
such that nc along C points outside Leftside and in-
side Rightsidg, see Fig. 1(a). Herewi_1 = pi_1 — pi,
Wir1 = pPir1 — Pi- A closed, not self-intersecting, polygonal
curve C partitions R? into two disjoint open and connected
sets, Inside and Outsidg, such thainc alongC points outside
Inside: and inside Outsidg respectively, see Fig. 1(b,c).

not

Insidec

Rightsidec

Insidec Outsidec

@) (b) ©

Figure 1. (@) OPEN, (b) COUNTERCLOCKWISE CLOSED AND(C)
CLOCKWISE CLOSED CURVES

ANALYSIS OF THE WOMBLINESS OF OPEN CURVES

LetY : R? — R be a function of clasg? modeling the spatial
field. Our objective is to find boundaries of the spatial fi¥ld
where abrupt change occurs. L@tbe a non self-intersecting
curve inR?, and define its wombliness by

5(©) = [(OV.re). (1)

This function measures how mudhchanges along the normal
direction ofC. We are interested in finding the curves which op-
timize . Consider a group af agents with locationgs, ..., pn
moving in a compact domairD c R?. Here, we order the
network agents in counterclockwise order, then join thei-pos
tions of consecutive agents. Legdpc be the open polygonal
curve concatenating the segmefys piy1], i € {1,...,n—1}.
Let S = {(p1,.--,Pn) € D" | Yopc is non-self-intersecting C
D", The wombliness#, : § — R of the group of robots is
Ho(p1, .- - pn):f"[(yopC):Zir‘;llf[pi,pm]@Y’ Niprpal) -

The following result shows that the gradient &f is dis-
tributed over the ring graph. We omit the proof for spacesaas

Proposition 0.1 (Gradient of #) The function#, : S — R is
continuously differentiable. Forg {2,...,n—1},
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whereAY is the Laplacian of Y.

HYBRID DESIGN FOR WOMBLINESS OPTIMIZATION

Our approach to find boundaries where the spatial field
change abruptly starts with an initial network configuratamd
optimizes the wombliness of the open polygonal curve defined
by the network. To maximizé{,, we implement the distributed
gradient flow of this function, cf. Proposition 0.1,

)

. 0Hy .

pi _Sgr(%(Po))prT@ (TF)I), S {1a"'7n}a
where P(0) = Py is the initial configuration. Evolutions un-
der (2) of the open curve defined by, ..., p, may become self-
intersecting. To address this, we propose a switching desig

Curve Self-intersection

Assume the curvgop. is self-intersecting as in Fig. 2(a,b).
Denote these cases@sideandinsideself-intersection, respec-
tively. For the outside self-intersection, none of the operves
is inside of the closed curve, while for the inside self-isgztion,
there is one open curve inside of a closed curve. We first siiscu
these self-intersections and then consider the transitioa net-
work may experience. We further distinguish between wirethe
the self-intersection occurs on an open segment or at a.point



Self-intersection On An Open Segment. For each
i #je{1,...,n} such thatp; €]pj, pj+1[, defineA € [0,1) by
pi = (1—A)pj +Apj+1 and considey; = (1—A)uj +Auj1 and
U = sgn Ho(P)) prr o (azq)) , wherek € {i, j, j + 1}. The self-
intersection happens either in thedt-sideof the segment or in

theright-sideof the segment. The criterium to identify if a tran-
sition is needed in the network configuration is as follows.

If the self-intersection is of left-
Is

L eft-side self-inter section
side type, there exists the possibilitymfcrossing from—l[pJ bisd]

to H[rsjypjﬂ], see Fig. 2(a). Ifu; —v;)T Nip;.pyaa] = 0, then the in-
tersection will happen unless it is resolved.

Dj+1

Pj+1

(a) OUTSIDE ON A SEGMENT

(b) INSIDE AT A POINT

Figure 2. (&) OUTSIDE LEFTFSIDE SELFINTERSECTION ON A SEG
MENT AND (b) INSIDE LEFT-SIDE SELFINTERSECTION AT A POINT.

Right-side self-intersection  If the self-intersection is of right-
side type, it is because there exists the possibilitp;afrossing
from H[r;' pisa] to H[ al If (u —vi)Tn[pj’le] < 0, then the
intersection will happen unless it is resolved.

Self-intersection At A Point. For eachi # | €
{1,...,n} such thatp; = pj, consider the vectoray =

Sgr(%(P)) Prrop (%) anduj = Sgr‘(%(P)) Prrop (%)

Left-side self-intersection If the self-intersection is of left-
side type, it is because there exists the possibilitp;afrossing
out from Leftsidg,,. to Rightsidgopc, see Fig. 2(b). Define

if [pj-1. pj] © H[p. L.pi]’

v {U[pil,m [
Ulpj,pj-_1] if [pj-1,pi] £ [Pi 1.p]
VZ:{u[pmypi] if [P}, pj+1] © [p| Pira)’
Ulp;,pji1] if [pj, Pj+a] £ [Di7pi+ﬂ

If u—u; ¢ wedge(pj, (v1,Vi), (v2, —v3)), then intersection will

happen unless it is resolved.

Right-side self-intersection  If the self-intersection is of right-
side type, it is because there exists the possibilitp;afrossing
out from Rightside | to Leftsidg,,.. Define

v = Upjpia) I [Pj-1, Pl CH p. LAl
Ulpi_1,pi] if [pj-1,pj] £ H p. P’
Vo = {U[Pj,pju] f[pj, pj+a] CH pu Pit1]’
Up.yp)  IF [P} Pjeal ZHES o

If u —u; € wedge(pj,(vi,—Vi),(v2,v5)), then the self-
intersection will happen unless it is resolved.

State Transition.  For simplicity, consider only one
agent causing the self-intersection. If multiple selenstctions
occur at different locations, then the state transitiomsaspond-
ing to each one of them can be executed simultaneously.

Outside self-intersection  In this case, see Fig. 2(a)pc can
be decomposed into one open cur/ﬂ;gc and one closed curve
Yepc- The curveys,, is defined by the concatenation of the seg-
ments{[p, Pya] [ ke (L., =D U,....n—1)}U[pj, pl] if

B €19}, Pyl and{ [P Pes] [ Ke (1., j—UG+1,.

1)} U[pj, pisal, if pi = pj. The curvey%pC is defined by the con-
catenation of the segment§oy, pr+1] | ke (j+1,...,i—1)}U
[pi, pj+1] for bothpi €]pj, pj+1[, andp; = p;. When deallng with
a curve self-intersection on an open segment, piebelongs to
1pj, Pj+1[, thenp; appears both in the definition g, andyZ, .
The wombliness i (Yopc ) = H (Vape ) + H (Yapc )-

Inside self-intersection In this case, see Fig. 2(b), the de-
composed curves intersection each other, we can split thve cu
Yopc into three curves, two open curvevépc, ygpc and one
closed curveﬁpc. The curveyé]Oc is defined by the concate-
nation of the segment§pe, P 1) | k€ (1,...,J — 1)} U [pj, pil,

it pi €]pj, Pj+al, and{[pi, Prsa] [ kK€ (L,....J =D}, if p =

pj. The curveygpC is defined by the concatenation of the seg-
ments{[px, Px+1] | K€ (i,...,n—1)} for both p; €]p;, pj+1[ and

pi = pj. The curveygpc is defined by the concatenation of
the segment§[pe, Pra] [ K € (j+1,...,1 = D} U[pi, pja, if
pr €10y, py 1l and{ [P, Peca] [Ke (+1,....i 1)} Ulpr, py ],

if pi = p;j. Likewise, if a self-intersection is on an open segment,
thenp; appears in the definition ¢ ¢, Y3, andys,. - If a self-
intersection is at a point, i.ep; = pj, thenp; appears both in the
definition of y3,. andyZ,.. The wombliness is summed up as

}[(VOPC) = H(V%pc) +}[(Vgpc) + H(ygpc)-
We then deal with the curves if a self-intersection occurs:

Agent re-positioning: For the outside self-intersection, if
H (Yope) and H (2, ) have a different sign, we only keep
the curve whose wombliness has the same sigH @gc ).
Assume we keep%pc. Then, we re-position the agents in
yépc along the boundary ofgpc, see Fig. 3. This does not



affect the value of the wombliness v@‘pc, and can be made

in an arbitrary way. The absolute value of the wombliness

of the resulting non-self-intersecting curve is strictlyder
than that of the original self-intersecting curve.
For the inside self-intersection, itF[(y},pc) has a differ-

ent sign from#{(y3,) and # (v3,c). either #(y5,.) and

H (Yopc ) have the same sign or not. For the former one, we

re-position the agents i\yﬁpC andygpC along the boundary
of y})pc, while for the latter one, we re-position the agents in
Yopc along the boundary o, or y3,. and then keegg .
andygpc connecting at poinp;, see Fig. 4. We treat anal-
ogously the case wheﬂ(ygpc) has a different sign from
H(Yope) and#H (V3,c ). If H(v,) has a different sign from
H (Yope) andH (Y3pc ), the only difference is that we need to
mergey%pC andy%pc into one open curve after we re-position
the agents inj3,; along the boundary ofj,. and y3,..

curve. After the splitting, each curve evolves indepenigent
according to (2). The transition is illustrated in Fig. 5(a)

Pi+1

Pj+1

(@) (b)

Figure 5. (@) SELF-INTERSECTION AT A POINT, Yopc IS SPLIT INTO

We detail later the procedure for curve merging, when dis- Yopc AND Y2pc. (b) CURVE SPLITTING UNDER DISCONTINUOUS LAW

cussing transitions for intersecting open and closed surve

Pj+1 Pj+1

Figure 3. OUTSIDE SELFINTERSECTION AGENT RE-POSITIONING.
AGENTSYL,. GET RE-POSITIONED ONTOVZpc.

Pj

Pj+1
) Al
Pit D; /opc
Di it

(b) AGENTS IN Y3pc AND Yioc
GET RE-POSITIONED

Pj+1

(@) AGENTS IN Yipc GET RE
POSITIONED

Figure 4. INSIDE SELFINTERSECTION AGENT RE-POSITIONING.
H (Y5pc) HAS A DIFFERENT SIGN FROMH (Y30c) AND H (V3pc).

Curve splitting: For the outside self-intersection, #(ygp)
and}[(ygpc) have the same sign & (yopc ), we keep both
curves. If the self-intersection occurs at a point, we $pét

If the self-intersection occurs on a segment, we consthain t
agent motion to remain along the segmemte [pj, Pj+1),
and project its control law (2) along the segment,

Pi = Plp;.pj.a (sgr(%(Po)) Prrop (%}:))) 3)

This does not affect the wombliness wf,c. This control

law defines a discontinuous dynamical system, and we un-
derstand its solution in the Krasovskii sense [9]. If the en-
suing evolution leads the agent to intersect with any of the
extreme points of the segment, then we treat this case as
a self-intersection at a point with an additional considera
tion. If the criterium to split is satisfied, we also evalutite
criterium as if the two curves were split and we were con-
sidering a merging event (see below the discussion on inter-
section between open and closed curves). If the criterium to
merge is not satisfied, then there is a network splitting. If
the criterium to merge is satisfied, then there is no transi-
tion and the two agents evolve together with the same law.
If the two intersecting pointgiy1 and pj,1 stay together,

the evolution may cause the pojgtnext to the intersecting-
position intersect with the segmejq;, pj+1[. In this case,

we move one ageryj1 to the positionp; and consider the
open curveys,. and the closed curvgz,,;, see Fig. 5(b),
and recalculate the womblineg(yg,, ) and# (y2,c ). De-
pending on the values of the new wombliness, agents repo-
sition or the curve splits. Note that the sum of the absolute
value of}[(y},pc) andﬂ-[(ygpc) decreases because we do not
calculate the wombliness of the segmﬁmﬁﬂ, pj++1[ when

we movepj 1 to pj, Wherepj‘+1 and pj++1 denote the posi-
tion of j + 1 agent before and after the movement, respec-
tively. Therefore, we add the absolute value of the wombli-
ness of this segment back to make sure the wombliness of



the curve is monotonically nondecreasing. For the inside
self-intersection, we also use this discontinuous cotewel

Remark 0.2 The implementation of the state transitions de-
scribed above requires the agents to be able to detect the sel
intersection, determine its type and the values of the wiorab$

of the curves involved. Although for space reasons we do not
go into detail here, this information can be computed by #te n
work using distributed algorithms [17, 18]. This obseroatis
also valid for the transitions described in the next sestion e

Intersection Between Open Curves

As a result of the curve splitting transition, there might be
more than one curve moving iR. Itis conceivable that along the
ensuing evolution these curves intersect each other. Flisk
ity, we only consider the case when there are two curves ixplv

in D. The case with more than two curves can be treated in an

analogous way. Here, we discuss the intersection between tw
open curves. LeizgpC andygpc be the open curves determined
by n; agents at positionB” = (pf, ..., pj, ) andn, agents at po-
sitionsPP = (p?, e pﬁz), respectively. Letig' (P*) = H (Y3, )

and 745’ (PP) = #(yBpc ). If Vi, andybpe are bothin the left-side
or right-side of each other, we name this as a same-sidséter
tion, see Fig. 6, otherwise as a different-side intersactio

Intersection On An Open Segment. For eachi €
{1,...,m} such thap €| p?, pfﬂ[forsomej e{1,...,n2}, de-
fineA € [0,1) by p” (1—)\)p[j3+)\p[j3+l. Forke {j, j+1}, con-
sider the vectors; = (1 —A)uj +Auji1, Ui = sgr(%“(P“))a%u

opy
B
anduy = sgr(%B(PB))% .
k

ygpc belongsto Leftsideyp If the intersection is of this type,

see Fig. 6(a), there exiosptcs the possibility mff crossing from
Leftsideyg to Rightsideg I (u —vi)Tn[pB s >0, then
opc i

opc ,le]
p? will cross unless the intersection is resolved.

ygpc belongsto Rightsi dey;; If the intersection is of this type,
opc
there exists the possibility gff' crossing from Rightsid\F to
opc

Leftsideygpc. If (Ui*Vi)Tn[pp b |

<0, p will cross unless the
jPi+1

intersection is resolved.

Intersection At A Point. For eachi € {1,...,n1} and
j € {1,...,n2} such thatp! = p?, consider the vectors; =

sgn(Ho(PY)) pryo, (%‘;) andu; = sgn(#o(PP)) prr 5 (%)-

Yopc belongsto Leftsideyﬁ In this case, define
opc
i 1P B
g o) I (P00 P] C G e
"7\ i 1o, p) ¢ HES 2
R I E ey )
T
Uit o) 1T [P0 C e s
P e, IR 2 )
o) PPl gy

If Ui — u; ¢vvedge(p?, (V1,V1), (V2, —Vv3)), then the intersection
needs to be resolved.

Yopc belongstoRightsi devg

lopc

In this case, see Fig. 6(b), define

if (p® .. pP Is
D R L L L
e oy if (PP, PP ¢ HIS
[P 1 pi'] Pj_1, Fj (% P
if 0P P Is
T R N
Upg, 1,09 if [P}, Pj 4] Z H[IS?ﬁp?‘H]'

If ui—uj & vvedge(p‘j}, (V1,—Vi),(V2,V5)), then the intersection
needs to be resolved.

() Yaec IN Leftside (b) y3, IN Rightside
\}épc Y%PC

Figure 6. SAME-SIDE INTERSECTION HAPPENS@a) ON A SEGMENT
AND (b) AT A POINT.

State Transition.  For simplicity, consider only one
agent causing the intersection. The two intersecting operes
can be rearranged into two different open cury%% andygpc
depending on the types of the intersections, as we discuss ne

Same-sideintersection In this case, see Fig. %pc is defined
by the concatenation of the segmefitsy, pg, 4] [ ke (1,...,i—

DY UP, b, o ULIRE PR ) ke (j+ 1., — 1)}, if pfl €
190,00 and {[pf,pg,q) | ke (L...i =} u[ppb, U



{[Ph. Pha) [ ke (i +1,...,mp— 1)}, if p* = pf’. V2 is defined
by the concatenation of the segme{\[an, pEH] ke (1,...,]—
1)} U}, pf AP Pl ke i+ L m = 1)), if pf e
9. P al and by {[pk, Bl o] [k € (L= 1)} U [pf, ] U
{Ip¢, P q) ke (i+1,...,m— 1)}, if p = pf. When intersec-
tion happens on an open segment, tiperappears both in the
definition ofyj,; andy3,.. The wombliness ofg,. andys is

summed up ag{ (Yopc) = H (Yape) + H (Yope)-

Different-side intersection For this case, we change the di-
rection of one open curve, saﬁpc, then the resulting curves
can be rearranged into two open Cur\)‘é%c and ygpc, see
Fig. 7. TheyéL,IOC is defined by the concatenation of the seg-
ments{[pg, pE. 1] | ke (L,....i— 1) }u[p?, B UL lp by o] ke
(y-- 2} i pf €lp), oy ol and {[pf. pig] [ ke (L.~
D} U P udleh e ] ke (=12}, i pf
p‘f. ygpc is defined by the concatenation of the segments
{[pfo ko) [ ke (e j+ 203 U LR, 1 o U [RE, PR [ ke
(i+1,....m 1)}, if ot epf o[ and by {[p},pf 4] | ke
(N2, J+ D YULRE, o] U, 8, o] [ KE (41, m—1)},

if pf = p?. Likewise, when intersection happens on an open seg-
ment, thenp; appears both in the definition gf,; andy3..

The wombliness ofy3,. andy3, is summed asH (Yopc) =

}[(yépc) + }[(ygpc). We need to change the sign of the wombli-
ness of the segments whose directions are changed.

(a) INTERSECTION ON A SEGMENT

(b) INTERSECTION AT A POINT

Figure 7. DIFFERENTSIDE INTERSECTIONS

Agent re-positioning: If H(Ygc) andﬂ{(yﬁpc) have a different
sign, we only keep the curve whose wombliness is larger in
absolute value. Without loss of generality, assume theecurv

we keep isyopc. Then, we re-position the agents \ig.pc
along the boundary oﬁpc. This process does not affect the

value of the wombliness o,ﬁpc, and can be made in an ar-
bitrary way. Note that the absolute value of the wombliness

of the resulting non-self-intersecting curve is strictiyger
than the value of the wombliness &, andygpc.
Curverearrangement: When the intersection happens at a
point, if # (Ygpc) and}[(ygpc) have the same sign, then we
rearrange the original curvgf,. andyopc into curvesyépc

andygpc, see Fig. 7. After the rearrangement, the curves
evolve according to (2). If the intersection occurs on amope
segment, we use the discontinuous control law in (3).

Intersection Between Open And Closed Curves

For simplicity, we only treat the case of two curvesn
Let ycpc be a closed curve determined by agents at positions
PB = (pB..... ph,) and womblinessf (PP) = #(yEpc). There
are three different kinds of intersections. The first casehen
a point of the open curve intersects on a segment of the closed
curve. The second case is when a point of the closed curve inte
sects on a segment of the open curve. The last case is when the
intersection happens at a point of the two curves.

Intersection At A Point Of  yg,. And On An Open
Segment Of ygpc. For eachi € {1,...,n1} such thatp® €
]p?, p?H[ for somej € {1,...,ny}, defineA € [0,1) by p]
(1—7\)p?+)\p?+1. Forke {j,j+1}, considern; = (1—-A)u; +

o B
AUj 1, Uy = S (P) i anduc = sgris (PF) 2%
! k

Yopc belongs to Insideyg In this case, there exists the pos-

cpc

sibility of pX crossing from Insid@ to OUtSid%‘} . The cri-
tpc tpc

terium to identify if a transition is needed in the networkneo
figuration is the same as that for the intersection betweem op
curves on a segment whef),. belongs to Leftsidg .

opc

Yopc belongsto Outsideyg In this case, there exists the pos-
cpc

sibility of p crossing from Outsidvg to Insideg . The cri-

p cpc
terium to identify a transition is the same as that for therint
section between open curves on a segment wfgn belongs
to Rightsid%; . The condition when a vertex of a closed curve

opc

intersects on a segment of an open curve is the same as above.

Intersection At A Point Of g, And ygpc.
For eachi € {1,...,n1} and j € {1,...,m} such that

pi = p?, consider Ui = sgn#o(P%))prryp (%) and
o
uj = sgn(He(PP)) prr (%)'

J

Yopc belongstolins deyg Forv; andv; as in (4), the criterium
pc

C
to identify a transition is the same as that for the inteieadbe-
tween open curves at a point whgfa. belongs to Leftsid\? .
opc



yg‘pc belongs to Outsideyg For vi andv, as in (5), the cri-
cpc

terium for a transition is the same as that for the intereadbe-
tween open curves at a point whgy. belongs to Rightsidvg .
opc

State Transition.  We have encountered above the neces-
sity to deal with intersections between the curygs andy[épc.
For simplicity, we begin by considering the case where tlere
only one agent causing the intersection.

Same-side intersection In this case, the two original curves
can be merged into one open curyépc, defined by the

concatenation of [pi, Py, 4] [ k€ (1,...,i—=1)} U [p?,p?ﬂ] U
{15 PRyal [ ke G+ 2 j = ol el U ([P, pg ) T ke
ooy — 1), i p €lpf, bl and {[pg, P3| Kk €
(1, i =030 e, o Ul B 4 [ ke (142, ] - 1} U
[0, o8yl U, Pyl ke (i1, — 1)}, if pf = pf.

Different-side intersection Here, we change the direction
of ygpc, and the resulting curves are merged into an open

curve vy, defined by the concatenation éfpy, pi_y] | k €
(oo i+ DU P pF ] U PEy) ke (4L, —
DU lPP, P U{lpg, Py yl ke ..., 2)} if p*e]p!.pf, [ and
{1pE iy [ k€ (na,.oni+ 1} U RS, P, o U{[pE. Pl | k&
(41 0= 0Pl p JU{pg. i y) [k e (i—1,...,2)},
if pft = p.

p‘?‘ //
i+ 1“

(a7
Pi—1

P
7

(a) INTERSECTION AT A POINT OF(b) INTERSECTION AT A POINT OF
Y3pc, ON A SEGMENT OFy%pc Y3pc AND y%pc

Figure 8. CURVES MERGINGYZ,. AND y%pc MERGE INTO ONE OPEN
CURVE. (a) SHOWS SAMESIDE INTERSECTION ON A SEGMENT (b)
SHOWS DIFFERENTSIDE INTERSECTION AT A POINT

For both same-side and different-side intersections, when
dealing with a curve intersection at an open segment,;én
1P}, Pj+1[, the nodep; appears both in the definition yﬁpc. The

wombliness of/gp is asH (Yope) = H (Yape) + H(yBpc ). Note

that for this type of intersections, we need to change the aig
the wombliness of the segments whose directions are changed

Agent re-positioning: If #H (Ygc) and}[(ygpc) have a different
sign, we only keep the curve whose wombliness is larger in

absolute value. Assume we ke&gc. Then, we re-position
the agents ir‘yg‘pc along the boundary oﬁpc. This process

does not affect the value of the womblinesy&:, and can
be made arbitrarily. The absolute value of the wombliness
of the resulting non-self-intersecting curve is strictlyder

than the value of the wombliness &, andygpc.
Curvemerging: When the intersection occurs at a point, if

H (Y3pc) and }[(ygpc) have the same sign, we merge the

original curvesyg,. andy[épc into a new open curve,%pc.

see Fig. 8. After the merging, the curve evolves according
to (2). When the intersection occurs on an open segment, we
use the same discontinuous control law described in (3).

CONVERGENCE ANALYSIS

Here, we characterize the convergence properties of the
wombling algorithm. Before stating the main result, we ontr
duce some necessary notation. kEdde the set of piecewise con-
stant signalo(t) : [0, +0[— Z-o. Forh > 0, let Zgyen be the
set of all switching signals with dwell time Consider the con-
strained switched system pdi#,Y), where.Z is a finite family
of continuous vector fields and is a map from?D" to (%),
where (%) is the power set of.

Theorem 0.3 The evolution of a robotic network under the
wombling algorithm monotonically optimizes the total wdimb
ness of the spatial field. Moreover, assulfi®) C Zqwer for

all Py € S. Then each of the subnetworks that are solutions of
(% ,Y(Py)) converges to a critical configuration of the spatial
wombliness.

We only provide a proof sketch for space reasons. Given
agents, there is a finite number of possibilities to divide tiet-
work into subgroups of two or more agents. In each case, there
exists a region ofD" where the wombling algorithm is a well-
defined vector field. With this information, we use the mudip
weak Lyapunov functions method in [15] to analyze the conver
gence of the robotic network. Given a subdivisioof the net-
work into groups{gs, - .., 0k}, we consider the wombliness mea-
sureHy, associated to each group of agerits, {1,...,k}, and
associate ta the Lyapunov functiorV, = 5X_; | #Hg,|. Accord-
ing to wombling algorithm, the absolute value of the wométis
of the subnetworks can only but increase when the network un-
dergoes curve-splitting and curve-merging or when the tsgan
the network are re-positioned. Hence, the algorithm marieto
cally optimizes the wombliness of the robotic network, anel t
collection of functionsv, is a set of multiple weak Lyapunov
functions. Using [15, Theorem 2] and [14, Theorem 4.3], the s
lutions of the system converge to the set of critical poirithe
wombliness of the spatial field.
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Figure 9. SIMULATION OF ROBOTIC NETWORK WITH8 AGENTS.

(@ (b) ©
Figure 10. SIMULATION OF ROBOTIC NETWORK WITH12 AGENTS.

Remark 0.4 Regarding Theorem 0.3, note that, as the number
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