When does a digraph admit a doubly stochastic adjacency matrix?
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Abstract— Digraphs with doubly stochastic adjacency matri-  of weight-balanced digraphs. To the authors’ knowledge, th
ces play an essential role in a variety of cooperative control establishment of this relationship is also a novel contitisu
problems including distributed averaging, optimization, and The paper is organized as follows. Section Il presents some
gossiping. In thls_ paper, we f_uIIy characterlze the class of th tical liminaries f h th Secti m
digraphs that admit an edge weight assignment that makes the Mathématical preliminaries irom grapn theory. >ection
d|graph adjacency mautrix doub|y stochastic. As a by-product introduces the prOblem statement. Section IV examines the
of our approach, we also unveil the connection between weight- connection between weight-balanced and doubly stochastic
balanced and doubly stochastic adjacency matrices. Several gdjacency matrices. Section V gives necessary and sufficien
examples illustrate our results. conditions for the existence of a doubly stochastic adja-

cency matrix assignment for a given digraph. Section VI
|. INTRODUCTION studies the properties of the topological character astamti

A digraph is doubly stochastic if, at each vertex, the surWith strongly connected doubly stochasticable digraphs. W

of the weights of the incoming edges as well as the sum &rather our conclusions and ideas for future work in Sec-

the weights of the outgoing edges are equal to one. Doub“?n VIL.
stochastic digraphs play a key role in networked control II. M ATHEMATICAL PRELIMINARIES

problems. Examples include distributed averaging [1], [2] . .

[3], [4], distributed convex optimization [5], [6], [7], & d.We g‘d"pt ﬁome.baf'c notions from ['1]c': [EG]’V[g]- A
gossip algorithms [8], [9]. Because of the numerous aIgo-"eCte graph or simply igraph, is a pairG = (V, E),
rithms available in the literature that use doubly stodbastwherev Is afinite set called Fhe vertex set aﬁ)_dg V X V
interaction topologies, it is an important research goesti is the edge set. IfV] = 18, the cardinality of” is
to characterize when a digraph can be given a nonzero edgfae Z>o, We say thalG is of ordern. We say that an edge

weight assignment that makes it doubly stochastic. This v) € Eis |nC|d_ent away fromu andincident tovx{ardv,
and we callu an in-neighbor of v and v an out-neighbor

the question we investigate in this paper. :
. . . ..of u. Thein-degreeand out-degreeof v, denotedd;,(v) and
We refer to a digraph as doubly stochasticable if it admngoutw), are the number of in-neighbors and out-neighbors of

a doubly stochastic adjacency matrix. In studying thisslas

of digraphs, we unveil their close relationship with a spkci v, respectively. We call a vertexisolatedif it has zero in-
and out-degrees.

class of weight-balanced digraphs. A digraph is weight- : . . .

. . An undirected graph or simply graph is a pairG =
balanced if, at each node, the sum of the weights of th E), where V ig ap?inite Sef )éeﬂledph{he verlzex set and
incoming edges equals the sum of the weights of the outgg-’ """ . ) i
: ) : . : ‘the edge sef consists of unordered pairs of vertices. In
ing edges. The notion of weight-balanced digraph is key in : : : . L

= o . a graph, neighboring relationships are always bidireetfion
establishing convergence results of distributed algorstiior : )
and hence we simply use neighbor, degree, etc. for the
average-consensus [10], [2] and consensus on general funic-. . . X
. . . ; . notions introduced above. A graphrisgular if each vertex
tions [11] via Lyapunov stability analysis. Weight-baladc . .
. . . has the same number of neighbors. Tireon G; U G, of
digraphs also appear in the design of Ieader-followeres{ratdi raphsGy — (Vi, By) and Ga — (Va, B») is defined b
gies under time delays [12], virtual leader strategies undé o' 2Pnst1 = (V1,21 S y

asymmetric interactions [13] and stable flocking algor'ﬁ;hm‘a1 Y % =My ‘??’El Y EIZ)II The intersection of two
for agents with significant inertial effects [14]. We Ca”dlgrap s can be defined simi arly- A digraghis generated
: t{y a set of digraph&:+,...,G,, if G=G1U---UG,,. We

a digraph weight-balanceable if it admits an edge Weigffet E- C V x V denote the set obtained by changing the
assignment that makes it weight-balanced. A characteizat = . -
order of the elements oF, i.e., (v,u) € E~ if (u,v) € E.

of welght—balanceable dlgraphs was pre;ented in [15]. Tc?e digraphG — (V, E U E-) is themirror of G.
In this paper, we provide a constructive a necessary an A weighted digraphis a triplet G — (V, E, A), where

?rl;ﬁ'C'ent;?nd't.'on flor a digraph to ?e dloublty st;)chaf:;a:)h (V,E) is a digraph andd € RL;" is the adjacency matrix
IS condition Involves a very particular structure We denote the entries of by a,;, wherei,j € {1,...,n}.

e bt o £4he adjacency s s he popery hat h ey
'zation, e unvel : W if (vi,v;) € E anda;; = 0, otherwise. If a matrixA

ture of doubly stochasticable digraphs and a special Claggtisfies this property, we say that can be assigned to
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definition of union of digraphs to weighted digraphs. The vV —— V2

union G; UG, of weighted digraph&s; = (V4, Eq, 4;) and
Gy = (VYQ,E27A2) is defined byGl UGy = (V1 Uy, E1 U
E,, A), where U3 —— U4
Alviav, = A1lvinv, + Azlvinv,, Fig. 1. A weight-balanceable digraph for which their exists doubly

A\ \ —A A| \ —A stochastic adjacency assignment.
Vi\Ve — 411, Vo\Vi — 412
For a weighted digraph, the weighted out-degree and in-

degree are, respectively, Theorem 2.1:A digraph G = (V,E) is weight-

balanceable if and only if the edge détcan be decomposed

i n into k subsetsE;, ..., E; such that
do(vi) = ij) din(vi) = ji - . .
ou(vs) ;‘” n(vi) ;“J () E=EiUE,U...UE; and
(i) every subgraphG = (V, E;), fori ={1,...,k}, is a
A. Graph connectivity notions weight-balanceable digraph.

A directed pattin a digraph, or in short path, is an ordered 1heorem 2.2.Let G = (V, E) be a directed digraph. The
sequence of vertices so that any two consecutive vertices fR{lowing statements are equivalent.
the sequence are an edge of the digrapbyélein a digraph (i) Every element ofF’ lies in a cycle.
is a directed path that starts and ends at the same vertex ail) G is weight-balanceable.
has no other repeated vertex. Two cyclesdisgoint if they (i) G is strongly semiconnected.
do not have any vertex in common.

A digraph isstrongly connected there is a path between
each pair of distinct vertices and srongly semiconnected Our main goal in this paper is to obtain necessary and
if the existence of a path from to w implies the existence sufficient conditions that characterize when a digraph is
of a path fromw to v, for all v,w € V. Clearly, strongly doubly stochasticable. Note that strongly semiconnected-
connectedness implies strongly semiconnectedness, eut ttess is a necessary, and sufficient, condition for a digraph
converse is not true. Thetrongly connected componentsto be weight-balanceable. All doubly stochastic digraphs
of a directed graphG are its maximal strongly connected are weight-balanced; thus a necessary condition for a di-

I1l. PROBLEM STATEMENT

subdigraphs. graph to be doubly stochasticable is strongly semicondecte
ness. Moreover, weight-balanceable digraphs that arelgloub
B. Basic notions from linear algebra stochasticable do not have any isolated vertex. However,

none of these conditions is sufficient. A simple example
n 3 .= . nxn illustrates this. Consider the digragh shown in Figure 1.
Zj=1 s for_ _aII L€ {12""n}' A matrix A € RZO. 'S Note that this digraph is strongly connected; thus therstexi
row_-stochastmf each of 'ts. rows sums 1. One can S|m|IarIth set of positive weights which makes the digraph weight-
(rj:vcns?[oihcssl,ltjiz:nnm_;ﬁgzgsctig"rp’? téz('R\/S\{ﬁeog(?lg,&ti)th: zg:} of Palanced. However, there exists no set of nonzero weights
) . > 20 o200 " that makes this digraph doubly stochastic. Suppose
zero matrixA € RZ§" is doubly stochastidf it is both row- grap y PP

A matrix A € RLG" is weight-balancedf 7, a;; =

stochastic and column-stochastic. A matdixe {0, 1}"*" is 0 az 0 O
a permutation matrixwheren € Z>, if A has exactly one A—] 0 0 a 0
entry1 in each row and each column. A matrke RZ;" is | as 00 oy |’
irreducibleif, for any nontrivial partition/ U K of the index as 0 0 O

set{l,...,n}, there existj € J andk € K such thata,;, #

0. We denote byrr(RZ") the set all irreducible matrices on
RZ5". Note that a weighted digrapH is strongly connected
if and only if its adjacency matrix is irreducible [17].

where a; € Ry, for all ¢ € {1,...,5}, is a doubly
stochastic adjacency assignment for this digraph. Then a
simple computation shows that the only solution that makes
the digraph doubly stochastic is by choosimg= 0, which

is not possible by assumption. Thus this digraph is not doubl
stochasticable.

A weighted digraphG is weight-balancedresp.doubly  The following result will simplify our analysis by allowing
stochastig if its adjacency matrix is weight-balanced (respus to restrict our attention to strongly connected digraphs
doubly-stochastic). Note thak is weight-balanced if and  |Lemma 3.1:A strongly semiconnected digraph is doubly
only if dg(v) = dj(v), for all v € V. A digraph is stochasticable if and only if all of its strongly connected
called weight-balanceablgresp.doubly stochasticab)ef it components are doubly stochasticable.
admits a weight-balanced (resp. doubly stochastic) ad{ace Proof: Let G; andG, be two strongly connected com-
matrix. The following two results establish a COﬂStrUCtiVQ)OnentS of the digraph. Note that there can be no edges from
centralizedapproach for determining whether a digraph is,; € G, towv, € G5 (or vice versa). If this were the case, then
weight-balanceable, see [15]. the strongly semiconnectedness of the digraph would imply

C. Weight-balanced and doubly stochastic digraphs



that there is a path from, to v; in the digraph, and hence for all j € {1,...,n}. Thus
G1 UG4 would be strongly connected, contradicting the fact aij  ag; nj
thatG, andG, are maximal. Therefore, the adjacency matrix ot tote =h (2)
. . . . J J J
of the digraph is a block-diagonal matrix, where each block .
corresponds to the adjacency matrix of a strongly connect&de™M Equations (1) and (2), we have
component, and the result follows. ] 1 1 1 1
As a result of Lemma 3.1, we are interested in charac- %\ g, @ ) T T -7 )=0 0

o . . G G Cn G
terizing the class of strongly connected digraphs which are _ .
doubly stochasticable. for all j € {1,...,n}. Suppose that, up to rearranging,

Ci=min{C, | ke{l,....n
IV. THE RELATIONSHIP BETWEEN WEIGH¥BALANCED ! k {C | {1, nh},
AND DOUBLY STOCHASTIC ADJACENCY MATRICES and,0 < Oy < G, for all i € {2,...,n}. Then (3) gives

As an intermediate step of the characterization of doubly 1 1 1 1

stochasticable digraphs, we will find it useful to study the agy (C - C) + ot ant (C - C) =0;

relationship between weight-balanced and doubly stochas- 2 ! " !

tic digraphs. The example in Figure 1 underscores th#usa; = 0, for all j € {2,...,n}, which contradicts the

importance of characterizing the set of weight-balanaablrreducibility assumption. If the setCy }_, has more than

digraphs that are also doubly-stochasticable. one element giving the minimum, the proof follows a similar
We start by introducing theow-stochastic normalization argument. Suppose

map ¢ : Irr(RLg") — RStoc(RLF™) defined by Ch = Cy = min{Cy | k€ {1 n}}
k AR )

: @ij
¢ aij ST an and suppose thdt < C;, = Cy, < C;, for all i € {3,...,n}.
- Then we have
Note that, forA € Irr(R%§"™), ¢(A) is doubly stochastic if 1 1 1 1
and only if . as (03—01>+--~+an1 (Cﬂl_Cl):O’
Dot =1 d
= D= il an

1 1 1 1
. . . - | =——-—=1]=0,
for all j € {_1,...7n}. Th_e foIIovx{lng res.ult cha.racterlz.es a32 (C3 CQ) + - Fap (Cn Cg>
when the digraph associated with an irreducible weight-

balanced adjacency matrix is doubly stochasticable. and thusa;, = 0 = ajp, for all j € {3,...,n}, which
Theorem 4.1:Let A € Trr(R%X") be an adjacency ma- contradicts the irreducibility assumption. The same argum

trix associated to a weight-balanced digraph. Thep) Nolds for an arbitrary number of minima. . n
is doubly stochastic if and only i7", ay = C, for all Corollary 4.2: Any strongly connected digraph is doubly
i€{1,...,n}, for someC € Rs,. B stochasticable after adding enough number of self-loops.
Proof: The implication from right to left is immediate. Proof:  Any strongly connected digraph is weight-

Suppose then thatl is associated to a strongly connected?@lanceable. The result follows from noting that, for any
weight-balanced digraph. Then we need to show that if weight-balanced matrix, it is enough to add self-loops with

satisfies the following set of equations appropria_lt_e weights to the vertices of the digraph to make
the conditions of Theorem 4.1 hold. ]
” - Regular undirected graphs trivially satisfy the condition
Za-ﬂ - Za“’ of Theorem 4.1 and hence the following resuilt.
121 =t Corollary 4.3: All undirected regular graphs are doubly
Z T‘L‘ij —1, stochasticable.
= L v V. NECESSARY AND SUFFICIENT CONDITIONS FOR
for all j € {1,...,n}, there existsC € R-( such that DOUBLY STOCHASTICABILITY
Yimiaq =C, forallie {l,...,n}. Let Cr = 27;_1 arl, In this section, we provide a characterization of the
k€ {L,...,n}. Then the doubly stochastic conditions canycture of digraphs that are doubly stochasticable. Taie m
be written as contributions are Theorem 5.4 and Corollary 5.5.
ary 4 azj NI nj _ 4 1) Let G = (V, E) be a strongly semiconnected digraph. Let
C1 Oy Cn ’ Gy denote a union of some disjoint cycles Gf(note that
for all j € {1,...,n}. Note thatC, # 0, for all k € Geye can be _just one cycle). One can extend the adj_acency
{1,...,n}, since A is irreducible. By the weight-balanced Matix associated Gy to @ matrixAgye € R™*", by adding

zero rows and columns for the vertices @f that are not
included inGeyc. Note that the matrixdey. is the adjacency
ay; + az; + -+ anj; = Cj, matrix for a subdigraph ofy. We call Ay the extended

assumption, we have



adjacency matrix associated @.,.. We have the following Proof: Since one can assign a doubly stochastic ad-
result. jacency matrix toG, the digraph cannot have any isolated
Lemma 5.1:The extended adjacency matrix associated teertex. LetA be a doubly stochastic matrix associatedsto
Glyc Is a permutation matrix if and only if7eyc contains all By the Birkhoff-von Neumann theorem [18], a square matrix
the vertices ofG. is doubly stochastic if and only if it is a convex combination
Proof: It is clear that if Geyc is @ union of some of permutation matrices. Therefore,
disjoint cycles and contains all the vertices @f then the !
adjacency matrix associated g, is a permutation matrix. A= Z XAl
Conversely, suppose thély,. does not contain one of the e A
vertices ofG. Then the adjacency matrix associateditg. - . o _
has a zero row and thus is not a permutation matrix. m ~ where\; € Rxo, >3i"; \i = 1, and A}, is @ permutation
By Theorem 2.2, any strongly semiconnected digraph canatrix for eachi € {1,...,n!}. By Lemma 5.1, for all\; >
be generated by the cycles contained in it. Thus it makdés one can associate to the correspondijg,,, a union of
sense to define a minimal set of such cycles that can generdigjoint cycles that contains all the vertices. Thus edgh,
the digraph. That is what we define next. is an extended adjacency matrix associated to an element of
Definition 5.2: Let G = (V, E) be a strongly semicon- C(G). Let us rename all the nonzero coefficients> 0 by
nected digraph. Le€(G) denote the set of all subdigraphsA;. In order to complete the proof, we need to show that
of G that are either isolated vertices, cyclestafor a union  at leastp(G) of the A;’s are nonzero. Suppose otherwise.
of disjoint cycles ofG. P(G) C C(G) is aprincipal cycle Since eachAp.., with nonzero coefficient is associated to
setof G if its elements generat€, and there is no subset an element ofC(G), this means that the digraphi can be
of C(G) with strictly smaller cardinality that satisfies thisgenerated by fewer elements tha((z), which contradicts
property. Definition 5.2. [
Note that there might exist more than one principal set, The following result fully characterizes the set of strgngl
however, by definition, the cardinalities of all principgicte ~ connected doubly stochasticable digraphs.
sets are the same. We denote this cardinality pfg). Corollary 5.5: A strongly connected digrapy .is doubly
Principal cycle sets give rise to weight-balanced assignse stochasticable if and only if there exists a $6t,,.}5_; C
Proposition 5.3:Let G = (V, E) be a strongly semicon- C(G), where¢ > p(G), that generate&’ and such thaGg,,
nected digraph. Then, the union of the elements of a prihcipgontains all the vertices af, for eachi € {1,...,¢}.
cycle set ofGG, considered as subdigraphs with trivial weight Proof: SupposeG is doubly stochasticable. By The-
assignment, gives a set of positive integer weights whicbrem 5.4, A can be written as the union of at leasiG)
make the digraph weight-balanced. elements of’ (G) which contain all the vertices and generate
Proof: Since each element of a principal cydkG) is G- This proves the implication from left to right. Suppose
either an isolated vertex, a cycle, or union of disjoint egsl G = UleG’c’yc, whereGy,. € C(G) contain all the vertices,

it is weight-balanced. By definition¢x can be written as for all i € {1,...,¢}. Consider the adjacency matrix
the union of the elements dP(G). Thus by Theorem 2.1, ¢

the weighted union of the elements B{G) gives a set of A= ZAi

weights makes the digrapfi weight-balanced. ] i

Note that, in general, the assignment in Proposition 5.3 o ) ] ]
uses fewer number of cycles than the ones used in The@here A, is the extended adjacency matrix associated
rem 2.2. Note that a cycle, or a union of disjoint cycles, thd@® Gy Note thatA is weight-balanced and satisfies the
contains all the vertices has the maximum number of edg€§nditions of Theorem 4.1 (the sum of each row is equal to
that an element of (G) can have. Thus these elements aré)- ThusG is doubly stochasticable. u
the obvious candidates for constructing a principal cyete s~ Corollary 5.5 suggests the definition of the following
Next, we state a necessary condition for a digraph to deotion. Given a strongly connected doubly stochasticable
doubly stochasticable. digraph G, DS(G) C C(G) is a DS-cycle sebf G if all

Theorem 5.4:Let G be a strongly semiconnected digraphits élements contain all the vertices 6f they generaté,

Suppose that one can assign a doubly stochastic adjace@@f! there is no subset 6G) with strictly smaller cardi-
matrix A to G. Then nality that satisfies these properties. Corollary 5.5 iggli

¢ that DS-cycle sets exist for any strongly connected doubly
A Z VAl stochasticable digraph. The cardinality of any DS-cycle se
e of G is the DS-characterof G, denotedds(G). If a doubly
- stochastic digraph is not strongly connected, one can ise th
where notion on each strongly connected component.
o {\}, C Ry, Zle A =1, and€ > p(G). Example 5.6: (Weight-balanceable, not doubly stochasti-
. Agyc, i€ {1,...,&}, is the extended adjacency matrixcable digraph):Consider the digrapty’ shown in Figure 2(a).
associated to an element 6fG) that contains all the It is shown in [19] that there exists a set of weights
vertices. which makes this digraph weight-balanced. We show that the



V) — U2

A

V] —— > V9
Fig. 2. The digraph of Examples 5.6 and 5.7 are shown in plgtsrid
(b), respectively.

Vg <—— U3

V) ——mm > VU9 VY] ——mm > VU9
Fig. 4. Cycles of the digrapliz of Example 5.7 which are not in the
T \L J/ principal cycle set.
Vs V3 Vs V3
\ / not all the weight-balanced adjacency assignments become
doubly stochastic under the row-stochastic normalization
V4 V4 map. An example is given by the adjacency matrix
Fig. 3. The only principal cycle set for the digraph of Examfplé contains 0 3 0 0 O
the above cycles. 00 3 0 0
A= 0 0 0 2 1 °
. . . 2 0 0 0 2
digraph is not doubly stochasticable. The edgg vs) only 100 2 0

appears in the cycl& ., = {v1,v2,v3}. Thus this cycle . . _
appears in any set of elements @fG) that generates;. An aIt.ernatlve question to the.one considered ab.ove would
SinceGy. does not include all the vertices, by Corollary 5.50e to find a set of edge weights (some possibly zero)
there exists no doubly stochastic adjacency assignment f&yat make the digraph doubly stochastic. Such assignments
this digraph. One can verify this by trying to find sucheXist for the digraph in Figure 1. However, such weight
assignment explicitly, i.e., by seeking; € R.o, where assignments are not guaranteed, in general, to preserve the

ie{1,...,8}, such that connectivity of the digraph. The following result gives a
sufficient condition for the existence of such an edge weight
0O an 0 0 O assignment.

0 0 Q2 Q3

0 Proposition 5.8: A strongly connected digrapy’ admits
A=l a4 0 0 0 O

an edge weight assignment (where some entries might be
as 0 ag 0 a7 zero) such that the resulting weighted digraph is strongly
00 as 0 0 connected and doubly stochastic if there exists a cycle

is doubly stochastic. A simple computation shows that suagtontaining all the vertices ofy.

an assignment is not possible unless = a5 = ag = 0, Regarding Proposition 5.8, note that even if connectivity

which is a contradiction. e is preserved, fewer edges lead to smaller algebraic con-

Example 5.7 (Doubly stochasticable digrapiQonsider  nectivity [20], which in turn affects negatively the rate

the digraphG shown in Figure 2(b). One can observe thabf convergence of the consensus, optimization, and gossip

the only principal cycle set of7 contains the two cycles algorithms executed over doubly stochastic digraphs, see

shown in Figure 3. Both of these cycles pass through all theeg., [8], [9], [21], [22].

vertices of the digraph and thus, using Corollary 5.5, this

digraph is doubly stochasticable. Note that this digraph haVl. PROPERTIES OF THE TOPOLOGICAL CHARACTER OF

another three cycles, shown in Figure 4, none of which is DOUBLY STOCHASTICABLE DIGRAPHS
in the principal cycle set. The adjacency matrix assignment . , , , ,
In this section, we investigate the properties of DS-
02000 cycle sets and of their cardinalitys(G). We start with the
00 200 following definition.
A=100 0 1 1 Definition 6.1: Let G = (V, E) be a strongly connected

10001 digraph and letA be a weight-balanced adjacency matrix
10010 which satisfies the conditions of Theorem 4.1 withe R-.

obtained by the sum of the elements of the principal cyciéhen we call the weighted digrapf = (V, E, A) a C-
set, is weight-balanced and satisfies the conditions of Théegular digraph _
orem 4.1 and thus is doubly stochasticable. Also note that \We have the following result.



Theorem 6.2:.Let G be a strongly connected doubly variety of distributed algorithms for consensus and optani
stochasticable digraph of ordere Z-, with DS-character tion. Future work will investigate the design of distribdte

ds(G). Then the following statements hold,
« There exists a weight assignmedty, € ZZ%;" that

makesG a C-regular digraph withC' > ds(G).

« There exist no integer weight assignmehy, € Z%;"
that makes a C-regular digraph withC' < ds(G).
Proof: By Corollary 5.5, itis clear that one can generate

Awp € ZZ3"™ that makes> weight-balanced and also satisfies
the conditions of Theorem 4.1 fo¥ = ds(G), just by taking
the weighted union of the members of a DS-cycle set. Le}
C > ds(G). Choose a set of integer numbeyse Z-., for
i€{l,...,ds(G)}, such thathi(lc) Ai = C. Consider the
adjacency matrix

1]

ds(G) . (3]
A= " XAy
i=1

4
where A@yc is the extended adjacency matrix associated[]
to the ith element of the DS-cycle set. The matrik is  [3
weight-balanced adjacency and satisfies the conditions of
Theorem 4.1. This proves the first part of the theorem. [6]

Now assume that there exists a weight-balanced adjacency

matrix A € ZZ3" that makesG a C-regular digraph with

> [71
C < ds(G). Then %A is a doubly stochastic adjacency
matrix for G. Thus using Theorem 5.4 [8]
1 S
514 = Z /\iAéyCa [9]
i=1

whereA@yC, i€ {1,...,C}, is the extended adjacency matrix[; o]
associated to an element 6{G) which contains all the
vertices. But this contradicts the minimality in the defiit
of a DS-cycle set. [ ]

We finish this section by bounding the DS-character of #2]
digraph.

Lemma 6.3:Let G = (V,E) be a strongly connected [13]
doubly stochasticable digraph. Then

(11]

mea‘iidout(v) <ds(G) < |E| - |V|+1. (14]

Proof:v The first inequality follows from the fact that
none of the out-edges of the vertexwith maximum out- [19]
degree are contained in the same element of any DS-cycle
setDS(G). To show the second inequality, take any elemerité]
of DS(G). This element must contaif}’| edges. The rest -
of the edges of the digraph can be represented by at m<£stJ
|E| — |V| elements off(G), and hence the bound follows. [18]

" g

VIl. CONCLUSIONS

We have provided necessary and sufficient conditions &%
the existence of an edge weight assignment that makes
the adjacency matrix of a given digraph doubly stochastic.
We have unveiled the particular connection of this class of
digraphs with a special subset of weight-balanced digraphsz;
The characterization provided here enlarges the range of
network interconnection topologies for which one can run a

algorithms that a network of agents can run in order to obtain
the set of weights that makes the adjacency matrix doubly
stochastic.

ACKNOWLEDGMENTS

This research was partially supported by NSF Awards
CCF-0917166 and CMMI-0908508.

REFERENCES

F. Bullo, J. Corés, and S. Maez, Distributed Control of Robotic
Networks ser. Applied Mathematics Series.  Princeton University
Press, 2009, electronically available at http:/coortiamook.info.

] R. Olfati-Saber and R. M. Murray, “Consensus problems étworks

of agents with switching topology and time-delayt2EE Transac-
tions on Automatic Controlvol. 49, no. 9, pp. 1520-1533, 2004.

W. Ren and R. W. BeardDistributed Consensus in Multi-vehicle
Cooperative Contrglser. Communications and Control Engineering.
Springer, 2008.

L. Xiao and S. Boyd, “Fast linear iterations for distribd averaging,”
Systems & Control Lettersol. 53, pp. 65-78, 2004.

B. Johansson, M. Rabi, and M. Johansson, “A randomizegmental
subgradient method for distributed optimization in netwarksys-
tems,” SIAM Journal on Control and Optimizatip2009, submitted.
A. Nedic and A. Ozdaglar, “Distributed subgradient metador multi-
agent optimization,1IEEE Transactions on Automatic Contrebl. 54,
no. 1, pp. 48-61, 2009.

M. Zhu and S. Mafinez, “On distributed convex optimization under
inequality and equality constraints via primal-dual suldigat meth-
ods,” IEEE Transactions on Automatic Contrd@009, submitted.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomizessig
algorithms,”IEEE Transactions on Information Thegmol. 52, no. 6,
pp. 2508-2530, 2006.

J. Liu, A. S. Morse, B. D. O. Anderson, and C. Yu, “The caation
coefficient of a complete gossip sequend&dceedings of the IEEE
2009, submitted.

R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensasd
cooperation in networked multi-agent systemBfbceedings of the
IEEE, vol. 95, no. 1, pp. 215-233, 2007.

J. Cores, “Distributed algorithms for reaching consensus on ggner
functions,” Automatica vol. 44, no. 3, pp. 726-737, 2008.

J. Hu and Y. Hong, “Leader-following coordination of rtitdgent
systems with coupling time delays?hysica A vol. 374, no. 2, pp.
853-863, 2007.

H. Shi, L. Wang, and T. Chu, “Virtual leader approach tmainated
control of multiple mobile agents with asymmetric interactipns
Physica D vol. 213, no. 1, pp. 51-65, 2006.

D. Lee and M. W. Spong, “Stable flocking of multiple inaitagents
on balanced graphsEEE Transactions on Automatic Contrebl. 52,
no. 8, pp. 1469-1475, 2007.

L. Hooi-Tong, “On a class of directed graphs - with an lagggion to
traffic-flow problems,"Operations Researclvol. 18, no. 1, pp. 87-94,
1970.

R. Diestel,Graph Theory2nd ed., ser. Graduate Texts in Mathematics.
Springer, 2005, vol. 173.

N. Biggs, Algebraic Graph Theory2nd ed.
Press, 1994.

G. Birkhoff, “Tres observaciones sobre el algebradirieUniversidad
Nacional de Tucuémn, Revista Avol. 5, pp. 147-151, 1946.

B. Gharesifard and J. Cad, “Distributed strategies for making
a digraph weight-balanced,” iAllerton Conf. on Communications,
Control and ComputingMonticello, IL, Oct. 2009.

C. W. Wu, “Algebraic connectivity of directed graphd,inear and
Multilinear Algebra vol. 53, no. 3, pp. 203-223, 2005.

M. Cao and C. W. Wu, “Topology design for fast convergenc
of network consensus algorithms,” ifhe 2007 IEEE International
Symposium on Circuits and Systems (ISCA8)v Orleans, LA, USA,
2007, pp. 1029-1032.

A. Ghosh and S. Boyd, “Upper bounds on algebraic corivigctvia
convex optimization,’Linear Algebra and its Applicationssol. 418,
pp. 693-707, 2006.

Cambridge University



