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Abstract— Digraphs with doubly stochastic adjacency matri-
ces play an essential role in a variety of cooperative control
problems including distributed averaging, optimization, and
gossiping. In this paper, we fully characterize the class of
digraphs that admit an edge weight assignment that makes the
digraph adjacency matrix doubly stochastic. As a by-product
of our approach, we also unveil the connection between weight-
balanced and doubly stochastic adjacency matrices. Several
examples illustrate our results.

I. I NTRODUCTION

A digraph is doubly stochastic if, at each vertex, the sum
of the weights of the incoming edges as well as the sum of
the weights of the outgoing edges are equal to one. Doubly
stochastic digraphs play a key role in networked control
problems. Examples include distributed averaging [1], [2],
[3], [4], distributed convex optimization [5], [6], [7], and
gossip algorithms [8], [9]. Because of the numerous algo-
rithms available in the literature that use doubly stochastic
interaction topologies, it is an important research question
to characterize when a digraph can be given a nonzero edge
weight assignment that makes it doubly stochastic. This is
the question we investigate in this paper.

We refer to a digraph as doubly stochasticable if it admits
a doubly stochastic adjacency matrix. In studying this class
of digraphs, we unveil their close relationship with a special
class of weight-balanced digraphs. A digraph is weight-
balanced if, at each node, the sum of the weights of the
incoming edges equals the sum of the weights of the outgo-
ing edges. The notion of weight-balanced digraph is key in
establishing convergence results of distributed algorithms for
average-consensus [10], [2] and consensus on general func-
tions [11] via Lyapunov stability analysis. Weight-balanced
digraphs also appear in the design of leader-follower strate-
gies under time delays [12], virtual leader strategies under
asymmetric interactions [13] and stable flocking algorithms
for agents with significant inertial effects [14]. We call
a digraph weight-balanceable if it admits an edge weight
assignment that makes it weight-balanced. A characterization
of weight-balanceable digraphs was presented in [15].

In this paper, we provide a constructive a necessary and
sufficient condition for a digraph to be doubly stochasticable.
This condition involves a very particular structure that the
cycles of the digraph must enjoy. As a by-product of our
characterization, we unveil the connection between the struc-
ture of doubly stochasticable digraphs and a special class
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of weight-balanced digraphs. To the authors’ knowledge, the
establishment of this relationship is also a novel contribution.

The paper is organized as follows. Section II presents some
mathematical preliminaries from graph theory. Section III
introduces the problem statement. Section IV examines the
connection between weight-balanced and doubly stochastic
adjacency matrices. Section V gives necessary and sufficient
conditions for the existence of a doubly stochastic adja-
cency matrix assignment for a given digraph. Section VI
studies the properties of the topological character associated
with strongly connected doubly stochasticable digraphs. We
gather our conclusions and ideas for future work in Sec-
tion VII.

II. M ATHEMATICAL PRELIMINARIES

We adopt some basic notions from [1], [16], [17]. A
directed graph, or simply digraph, is a pairG = (V,E),
whereV is a finite set called the vertex set andE ⊆ V ×V

is the edge set. If|V | = n, i.e., the cardinality ofV is
n ∈ Z>0, we say thatG is of ordern. We say that an edge
(u, v) ∈ E is incident away fromu and incident towardv,
and we callu an in-neighbor of v and v an out-neighbor
of u. The in-degreeandout-degreeof v, denoteddin(v) and
dout(v), are the number of in-neighbors and out-neighbors of
v, respectively. We call a vertexv isolated if it has zero in-
and out-degrees.

An undirected graph, or simply graph, is a pair G =
(V,E), where V is a finite set called the vertex set and
the edge setE consists of unordered pairs of vertices. In
a graph, neighboring relationships are always bidirectional,
and hence we simply use neighbor, degree, etc. for the
notions introduced above. A graph isregular if each vertex
has the same number of neighbors. Theunion G1 ∪ G2 of
digraphsG1 = (V1, E1) and G2 = (V2, E2) is defined by
G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). The intersection of two
digraphs can be defined similarly. A digraphG is generated
by a set of digraphsG1, . . . , Gm if G = G1 ∪ · · · ∪Gm. We
let E− ⊆ V × V denote the set obtained by changing the
order of the elements ofE, i.e., (v, u) ∈ E− if (u, v) ∈ E.
The digraphG = (V,E ∪ E−) is themirror of G.

A weighted digraphis a triplet G = (V,E,A), where
(V,E) is a digraph andA ∈ R

n×n
≥0 is theadjacency matrix.

We denote the entries ofA by aij , wherei, j ∈ {1, . . . , n}.
The adjacency matrix has the property that the entryaij > 0
if (vi, vj) ∈ E and aij = 0, otherwise. If a matrixA
satisfies this property, we say thatA can be assigned to
the digraphG = (V,E). Note that any digraph can be
trivially seen as a weighted digraph by assigning weight1
to each one of its edges. We will find it useful to extend the



definition of union of digraphs to weighted digraphs. The
unionG1∪G2 of weighted digraphsG1 = (V1, E1, A1) and
G2 = (V2, E2, A2) is defined byG1 ∪ G2 = (V1 ∪ V2, E1 ∪
E2, A), where

A|V1∩V2
= A1|V1∩V2

+ A2|V1∩V2
,

A|V1\V2
= A1, A|V2\V1

= A2.

For a weighted digraph, the weighted out-degree and in-
degree are, respectively,

dw
out(vi) =

n
∑

j=1

aij , dw
in(vi) =

n
∑

j=1

aji.

A. Graph connectivity notions

A directed pathin a digraph, or in short path, is an ordered
sequence of vertices so that any two consecutive vertices in
the sequence are an edge of the digraph. Acyclein a digraph
is a directed path that starts and ends at the same vertex and
has no other repeated vertex. Two cycles aredisjoint if they
do not have any vertex in common.

A digraph isstrongly connectedif there is a path between
each pair of distinct vertices and isstrongly semiconnected
if the existence of a path fromv to w implies the existence
of a path fromw to v, for all v, w ∈ V . Clearly, strongly
connectedness implies strongly semiconnectedness, but the
converse is not true. Thestrongly connected components
of a directed graphG are its maximal strongly connected
subdigraphs.

B. Basic notions from linear algebra

A matrix A ∈ R
n×n
≥0 is weight-balancedif

∑n

j=1 aij =
∑n

j=1 aji, for all i ∈ {1, . . . , n}. A matrix A ∈ R
n×n
≥0 is

row-stochasticif each of its rows sums 1. One can similarly
define a column-stochastic matrix. We denote the set of all
row-stochastic matrices onRn×n

≥0 by RStoc(Rn×n
≥0 ). A non-

zero matrixA ∈ R
n×n
≥0 is doubly stochasticif it is both row-

stochastic and column-stochastic. A matrixA ∈ {0, 1}n×n is
a permutation matrix, wheren ∈ Z≥1, if A has exactly one
entry1 in each row and each column. A matrixA ∈ R

n×n
≥0 is

irreducible if, for any nontrivial partitionJ ∪K of the index
set{1, . . . , n}, there existj ∈ J andk ∈ K such thatajk 6=
0. We denote byIrr(Rn×n

≥0 ) the set all irreducible matrices on
R

n×n
≥0 . Note that a weighted digraphG is strongly connected

if and only if its adjacency matrix is irreducible [17].

C. Weight-balanced and doubly stochastic digraphs

A weighted digraphG is weight-balanced(resp.doubly
stochastic) if its adjacency matrix is weight-balanced (resp.
doubly-stochastic). Note thatG is weight-balanced if and
only if dw

out(v) = dw
in(v), for all v ∈ V . A digraph is

calledweight-balanceable(resp.doubly stochasticable) if it
admits a weight-balanced (resp. doubly stochastic) adjacency
matrix. The following two results establish a constructive
centralizedapproach for determining whether a digraph is
weight-balanceable, see [15].
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Fig. 1. A weight-balanceable digraph for which their existsno doubly
stochastic adjacency assignment.

Theorem 2.1:A digraph G = (V,E) is weight-
balanceable if and only if the edge setE can be decomposed
into k subsetsE1, . . . , Ek such that

(i) E = E1 ∪ E2 ∪ . . . ∪ Ek and
(ii) every subgraphG = (V,Ei), for i = {1, . . . , k}, is a

weight-balanceable digraph.
Theorem 2.2:Let G = (V,E) be a directed digraph. The

following statements are equivalent.

(i) Every element ofE lies in a cycle.
(ii) G is weight-balanceable.
(iii) G is strongly semiconnected.

III. PROBLEM STATEMENT

Our main goal in this paper is to obtain necessary and
sufficient conditions that characterize when a digraph is
doubly stochasticable. Note that strongly semiconnected-
ness is a necessary, and sufficient, condition for a digraph
to be weight-balanceable. All doubly stochastic digraphs
are weight-balanced; thus a necessary condition for a di-
graph to be doubly stochasticable is strongly semiconnected-
ness. Moreover, weight-balanceable digraphs that are doubly
stochasticable do not have any isolated vertex. However,
none of these conditions is sufficient. A simple example
illustrates this. Consider the digraphG shown in Figure 1.
Note that this digraph is strongly connected; thus there exists
a set of positive weights which makes the digraph weight-
balanced. However, there exists no set of nonzero weights
that makes this digraph doubly stochastic. Suppose

A =









0 α1 0 0
0 0 α2 0
α3 0 0 α4

α5 0 0 0









,

where αi ∈ R>0, for all i ∈ {1, . . . , 5}, is a doubly
stochastic adjacency assignment for this digraph. Then a
simple computation shows that the only solution that makes
the digraph doubly stochastic is by choosingα3 = 0, which
is not possible by assumption. Thus this digraph is not doubly
stochasticable.

The following result will simplify our analysis by allowing
us to restrict our attention to strongly connected digraphs.

Lemma 3.1:A strongly semiconnected digraph is doubly
stochasticable if and only if all of its strongly connected
components are doubly stochasticable.

Proof: Let G1 andG2 be two strongly connected com-
ponents of the digraph. Note that there can be no edges from
v1 ∈ G1 to v2 ∈ G2 (or vice versa). If this were the case, then
the strongly semiconnectedness of the digraph would imply



that there is a path fromv2 to v1 in the digraph, and hence
G1 ∪G2 would be strongly connected, contradicting the fact
thatG1 andG2 are maximal. Therefore, the adjacency matrix
of the digraph is a block-diagonal matrix, where each block
corresponds to the adjacency matrix of a strongly connected
component, and the result follows.

As a result of Lemma 3.1, we are interested in charac-
terizing the class of strongly connected digraphs which are
doubly stochasticable.

IV. T HE RELATIONSHIP BETWEEN WEIGHT-BALANCED

AND DOUBLY STOCHASTIC ADJACENCY MATRICES

As an intermediate step of the characterization of doubly
stochasticable digraphs, we will find it useful to study the
relationship between weight-balanced and doubly stochas-
tic digraphs. The example in Figure 1 underscores the
importance of characterizing the set of weight-balanceable
digraphs that are also doubly-stochasticable.

We start by introducing therow-stochastic normalization
mapφ : Irr(Rn×n

≥0 ) → RStoc(Rn×n
≥0 ) defined by

φ : aij 7→
aij

∑n

l=1 ail

.

Note that, forA ∈ Irr(Rn×n
≥0 ), φ(A) is doubly stochastic if

and only if
n

∑

i=1

aij
∑n

l=1 ail

= 1,

for all j ∈ {1, . . . , n}. The following result characterizes
when the digraph associated with an irreducible weight-
balanced adjacency matrix is doubly stochasticable.

Theorem 4.1:Let A ∈ Irr(Rn×n
≥0 ) be an adjacency ma-

trix associated to a weight-balanced digraph. Thenφ(A)
is doubly stochastic if and only if

∑n

l=1 ail = C, for all
i ∈ {1, . . . , n}, for someC ∈ R>0.

Proof: The implication from right to left is immediate.
Suppose then thatA is associated to a strongly connected
weight-balanced digraph. Then we need to show that ifA

satisfies the following set of equations

n
∑

l=1

ajl =

n
∑

l=1

alj ,

n
∑

i=1

aij
∑n

l=1 ail

= 1,

for all j ∈ {1, . . . , n}, there existsC ∈ R>0 such that
∑n

l=1 ail = C, for all i ∈ {1, . . . , n}. Let Ck =
∑n

l=1 akl,
k ∈ {1, . . . , n}. Then the doubly stochastic conditions can
be written as

a1j

C1
+

a2j

C2
+ · · · +

anj

Cn

= 1, (1)

for all j ∈ {1, . . . , n}. Note that Ck 6= 0, for all k ∈
{1, . . . , n}, sinceA is irreducible. By the weight-balanced
assumption, we have

a1j + a2j + · · · + anj = Cj ,

for all j ∈ {1, . . . , n}. Thus
a1j

Cj

+
a2j

Cj

+ · · · +
anj

Cj

= 1, (2)

From Equations (1) and (2), we have

a1j

(

1

C1
−

1

Cj

)

+ · · · + anj

(

1

Cn

−
1

Cj

)

= 0, (3)

for all j ∈ {1, . . . , n}. Suppose that, up to rearranging,

C1 = min
k

{Ck | k ∈ {1, . . . , n}},

and,0 < C1 < Ci, for all i ∈ {2, . . . , n}. Then (3) gives

a21

(

1

C2
−

1

C1

)

+ · · · + an1

(

1

Cn

−
1

C1

)

= 0;

thus aj1 = 0, for all j ∈ {2, . . . , n}, which contradicts the
irreducibility assumption. If the set{Ck}

n
k=1 has more than

one element giving the minimum, the proof follows a similar
argument. Suppose

C1 = C2 = min
k

{Ck | k ∈ {1, . . . , n}},

and suppose that0 < C1 = C2 < Ci, for all i ∈ {3, . . . , n}.
Then we have

a31

(

1

C3
−

1

C1

)

+ · · · + an1

(

1

Cn

−
1

C1

)

= 0,

and

a32

(

1

C3
−

1

C2

)

+ · · · + an2

(

1

Cn

−
1

C2

)

= 0,

and thusaj1 = 0 = aj2, for all j ∈ {3, . . . , n}, which
contradicts the irreducibility assumption. The same argument
holds for an arbitrary number of minima.

Corollary 4.2: Any strongly connected digraph is doubly
stochasticable after adding enough number of self-loops.

Proof: Any strongly connected digraph is weight-
balanceable. The result follows from noting that, for any
weight-balanced matrix, it is enough to add self-loops with
appropriate weights to the vertices of the digraph to make
the conditions of Theorem 4.1 hold.

Regular undirected graphs trivially satisfy the conditions
of Theorem 4.1 and hence the following result.

Corollary 4.3: All undirected regular graphs are doubly
stochasticable.

V. NECESSARY AND SUFFICIENT CONDITIONS FOR

DOUBLY STOCHASTICABILITY

In this section, we provide a characterization of the
structure of digraphs that are doubly stochasticable. The main
contributions are Theorem 5.4 and Corollary 5.5.

Let G = (V,E) be a strongly semiconnected digraph. Let
Gcyc denote a union of some disjoint cycles ofG (note that
Gcyc can be just one cycle). One can extend the adjacency
matrix associated toGcyc to a matrixAcyc ∈ R

n×n, by adding
zero rows and columns for the vertices ofG that are not
included inGcyc. Note that the matrixAcyc is the adjacency
matrix for a subdigraph ofG. We call Acyc the extended



adjacency matrix associated toGcyc. We have the following
result.

Lemma 5.1:The extended adjacency matrix associated to
Gcyc is a permutation matrix if and only ifGcyc contains all
the vertices ofG.

Proof: It is clear that if Gcyc is a union of some
disjoint cycles and contains all the vertices ofG, then the
adjacency matrix associated toGcyc is a permutation matrix.
Conversely, suppose thatGcyc does not contain one of the
vertices ofG. Then the adjacency matrix associated toGcyc

has a zero row and thus is not a permutation matrix.
By Theorem 2.2, any strongly semiconnected digraph can

be generated by the cycles contained in it. Thus it makes
sense to define a minimal set of such cycles that can generate
the digraph. That is what we define next.

Definition 5.2: Let G = (V,E) be a strongly semicon-
nected digraph. LetC(G) denote the set of all subdigraphs
of G that are either isolated vertices, cycles ofG, or a union
of disjoint cycles ofG. P (G) ⊆ C(G) is a principal cycle
set of G if its elements generateG, and there is no subset
of C(G) with strictly smaller cardinality that satisfies this
property.

Note that there might exist more than one principal set,
however, by definition, the cardinalities of all principal cycle
sets are the same. We denote this cardinality byp(G).
Principal cycle sets give rise to weight-balanced assignments.

Proposition 5.3:Let G = (V,E) be a strongly semicon-
nected digraph. Then, the union of the elements of a principal
cycle set ofG, considered as subdigraphs with trivial weight
assignment, gives a set of positive integer weights which
make the digraph weight-balanced.

Proof: Since each element of a principal cycleP (G) is
either an isolated vertex, a cycle, or union of disjoint cycles,
it is weight-balanced. By definition,G can be written as
the union of the elements ofP (G). Thus by Theorem 2.1,
the weighted union of the elements ofP (G) gives a set of
weights makes the digraphG weight-balanced.

Note that, in general, the assignment in Proposition 5.3
uses fewer number of cycles than the ones used in Theo-
rem 2.2. Note that a cycle, or a union of disjoint cycles, that
contains all the vertices has the maximum number of edges
that an element ofC(G) can have. Thus these elements are
the obvious candidates for constructing a principal cycle set.
Next, we state a necessary condition for a digraph to be
doubly stochasticable.

Theorem 5.4:Let G be a strongly semiconnected digraph.
Suppose that one can assign a doubly stochastic adjacency
matrix A to G. Then

A =

ξ
∑

i=1

λiA
i
cyc,

where

• {λi}
ξ
i=1 ⊂ R>0,

∑ξ

i=1 λi = 1, andξ ≥ p(G).
• Ai

cyc, i ∈ {1, . . . , ξ}, is the extended adjacency matrix
associated to an element ofC(G) that contains all the
vertices.

Proof: Since one can assign a doubly stochastic ad-
jacency matrix toG, the digraph cannot have any isolated
vertex. LetA be a doubly stochastic matrix associated toG.
By the Birkhoff–von Neumann theorem [18], a square matrix
is doubly stochastic if and only if it is a convex combination
of permutation matrices. Therefore,

A =
n!

∑

i=1

λ̄iA
i
perm,

where λ̄i ∈ R≥0,
∑n!

i=1 λ̄i = 1, andAi
perm is a permutation

matrix for eachi ∈ {1, . . . , n!}. By Lemma 5.1, for all̄λi >

0, one can associate to the correspondingAi
perm a union of

disjoint cycles that contains all the vertices. Thus eachAi
perm

is an extended adjacency matrix associated to an element of
C(G). Let us rename all the nonzero coefficientsλ̄i > 0 by
λi. In order to complete the proof, we need to show that
at leastp(G) of the λi’s are nonzero. Suppose otherwise.
Since eachAi

perm with nonzero coefficient is associated to
an element ofC(G), this means that the digraphG can be
generated by fewer elements thanp(G), which contradicts
Definition 5.2.

The following result fully characterizes the set of strongly
connected doubly stochasticable digraphs.

Corollary 5.5: A strongly connected digraphG is doubly
stochasticable if and only if there exists a set{Gi

cyc}
ξ
i=1 ⊆

C(G), whereξ ≥ p(G), that generatesG and such thatGi
cyc

contains all the vertices ofG, for eachi ∈ {1, . . . , ξ}.
Proof: SupposeG is doubly stochasticable. By The-

orem 5.4,A can be written as the union of at leastp(G)
elements ofC(G) which contain all the vertices and generate
G. This proves the implication from left to right. Suppose
G = ∪ξ

i=1G
i
cyc, whereGi

cyc ∈ C(G) contain all the vertices,
for all i ∈ {1, . . . , ξ}. Consider the adjacency matrix

A =

ξ
∑

i=1

Ai
cyc,

where Ai
cyc is the extended adjacency matrix associated

to Gi
cyc. Note thatA is weight-balanced and satisfies the

conditions of Theorem 4.1 (the sum of each row is equal to
ξ). ThusG is doubly stochasticable.

Corollary 5.5 suggests the definition of the following
notion. Given a strongly connected doubly stochasticable
digraph G, DS(G) ⊆ C(G) is a DS-cycle setof G if all
its elements contain all the vertices ofG, they generateG,
and there is no subset ofC(G) with strictly smaller cardi-
nality that satisfies these properties. Corollary 5.5 implies
that DS-cycle sets exist for any strongly connected doubly
stochasticable digraph. The cardinality of any DS-cycle set
of G is theDS-characterof G, denotedds(G). If a doubly
stochastic digraph is not strongly connected, one can use this
notion on each strongly connected component.

Example 5.6: (Weight-balanceable, not doubly stochasti-
cable digraph):Consider the digraphG shown in Figure 2(a).
It is shown in [19] that there exists a set of weights
which makes this digraph weight-balanced. We show that the
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Fig. 2. The digraph of Examples 5.6 and 5.7 are shown in plots (a) and
(b), respectively.
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Fig. 3. The only principal cycle set for the digraph of Example5.7 contains
the above cycles.

digraph is not doubly stochasticable. The edge(v2, v3) only
appears in the cycleGcyc = {v1, v2, v3}. Thus this cycle
appears in any set of elements ofC(G) that generatesG.
SinceGcyc does not include all the vertices, by Corollary 5.5,
there exists no doubly stochastic adjacency assignment for
this digraph. One can verify this by trying to find such
assignment explicitly, i.e., by seekingαi ∈ R>0, where
i ∈ {1, . . . , 8}, such that

A =













0 α1 0 0 0
0 0 α2 α3 0
α4 0 0 0 0
α5 0 α6 0 α7

0 0 α8 0 0













is doubly stochastic. A simple computation shows that such
an assignment is not possible unlessα2 = α5 = α6 = 0,
which is a contradiction. •

Example 5.7 (Doubly stochasticable digraph):Consider
the digraphG shown in Figure 2(b). One can observe that
the only principal cycle set ofG contains the two cycles
shown in Figure 3. Both of these cycles pass through all the
vertices of the digraph and thus, using Corollary 5.5, this
digraph is doubly stochasticable. Note that this digraph has
another three cycles, shown in Figure 4, none of which is
in the principal cycle set. The adjacency matrix assignment

A =













0 2 0 0 0
0 0 2 0 0
0 0 0 1 1
1 0 0 0 1
1 0 0 1 0













obtained by the sum of the elements of the principal cycle
set, is weight-balanced and satisfies the conditions of The-
orem 4.1 and thus is doubly stochasticable. Also note that
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Fig. 4. Cycles of the digraphG of Example 5.7 which are not in the
principal cycle set.

not all the weight-balanced adjacency assignments become
doubly stochastic under the row-stochastic normalization
map. An example is given by the adjacency matrix

A =













0 3 0 0 0
0 0 3 0 0
0 0 0 2 1
2 0 0 0 2
1 0 0 2 0













. •

An alternative question to the one considered above would
be to find a set of edge weights (some possibly zero)
that make the digraph doubly stochastic. Such assignments
exist for the digraph in Figure 1. However, such weight
assignments are not guaranteed, in general, to preserve the
connectivity of the digraph. The following result gives a
sufficient condition for the existence of such an edge weight
assignment.

Proposition 5.8:A strongly connected digraphG admits
an edge weight assignment (where some entries might be
zero) such that the resulting weighted digraph is strongly
connected and doubly stochastic if there exists a cycle
containing all the vertices ofG.

Regarding Proposition 5.8, note that even if connectivity
is preserved, fewer edges lead to smaller algebraic con-
nectivity [20], which in turn affects negatively the rate
of convergence of the consensus, optimization, and gossip
algorithms executed over doubly stochastic digraphs, see
e.g., [8], [9], [21], [22].

VI. PROPERTIES OF THE TOPOLOGICAL CHARACTER OF

DOUBLY STOCHASTICABLE DIGRAPHS

In this section, we investigate the properties of DS-
cycle sets and of their cardinalityds(G). We start with the
following definition.

Definition 6.1: Let G = (V,E) be a strongly connected
digraph and letA be a weight-balanced adjacency matrix
which satisfies the conditions of Theorem 4.1 withC ∈ R>0.
Then we call the weighted digraphG = (V,E,A) a C-
regular digraph.

We have the following result.



Theorem 6.2:Let G be a strongly connected doubly
stochasticable digraph of ordern ∈ Z>0 with DS-character
ds(G). Then the following statements hold,

• There exists a weight assignmentAwb ∈ Z
n×n
≥0 that

makesG a C-regular digraph withC ≥ ds(G).
• There exist no integer weight assignmentAwb ∈ Z

n×n
≥0

that makesG a C-regular digraph withC < ds(G).
Proof: By Corollary 5.5, it is clear that one can generate

Awb ∈ Z
n×n
≥0 that makesG weight-balanced and also satisfies

the conditions of Theorem 4.1 forC = ds(G), just by taking
the weighted union of the members of a DS-cycle set. Let
C > ds(G). Choose a set of integer numbersλi ∈ Z>0, for
i ∈ {1, . . . ,ds(G)}, such that

∑ds(G)
i=1 λi = C. Consider the

adjacency matrix

A =

ds(G)
∑

i=1

λiA
i
cyc,

where Ai
cyc is the extended adjacency matrix associated

to the ith element of the DS-cycle set. The matrixA is
weight-balanced adjacency and satisfies the conditions of
Theorem 4.1. This proves the first part of the theorem.

Now assume that there exists a weight-balanced adjacency
matrix A ∈ Z

n×n
≥0 that makesG a C-regular digraph with

C < ds(G). Then 1
C

A is a doubly stochastic adjacency
matrix for G. Thus using Theorem 5.4

1

C
A =

C
∑

i=1

λiA
i
cyc,

whereAi
cyc, i ∈ {1, . . . , C}, is the extended adjacency matrix

associated to an element ofC(G) which contains all the
vertices. But this contradicts the minimality in the definition
of a DS-cycle set.

We finish this section by bounding the DS-character of a
digraph.

Lemma 6.3:Let G = (V,E) be a strongly connected
doubly stochasticable digraph. Then

max
v∈V

dout(v) ≤ ds(G) ≤ |E| − |V | + 1.

Proof: The first inequality follows from the fact that
none of the out-edges of the vertexv with maximum out-
degree are contained in the same element of any DS-cycle
setDS(G). To show the second inequality, take any element
of DS(G). This element must contain|V | edges. The rest
of the edges of the digraph can be represented by at most
|E| − |V | elements ofC(G), and hence the bound follows.

VII. C ONCLUSIONS

We have provided necessary and sufficient conditions for
the existence of an edge weight assignment that makes
the adjacency matrix of a given digraph doubly stochastic.
We have unveiled the particular connection of this class of
digraphs with a special subset of weight-balanced digraphs.
The characterization provided here enlarges the range of
network interconnection topologies for which one can run a

variety of distributed algorithms for consensus and optimiza-
tion. Future work will investigate the design of distributed
algorithms that a network of agents can run in order to obtain
the set of weights that makes the adjacency matrix doubly
stochastic.
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