
1

Distributed strategies for making a digraph weight-balanced

Bahman Gharesifard and Jorge Cortés

Abstract— A digraph is weight-balanced if, at each node, the
sum of the weights of the incoming edges (in-degree) equals
the sum of the weights of the outgoing edges (out-degree).
Weight-balanced digraphs play an important role in a variety
of cooperative control problems, including formation control,
distributed averaging and optimization. We call a digraph
weight-balanceable if it admits an edge weight assignment that
makes it weight-balanced. It is known that semiconnectedness
is a necessary and sufficient condition for a digraph to be
weight-balanceable. However, to our knowledge, the available
approaches to compute the appropriate set of weights are
centralized. In this paper, we propose a distributed algorithm
running synchronously on a directed communication network
that allows individual agents to balance their in- and out-
degrees. We also develop a systematic centralized algorithm
for constructing a weight-balanced digraph and compute its
time complexity. Finally, we modify the distributed procedure
to design an algorithm which is distributed over the mirror
digraph and has a time complexity much smaller than the
centralized algorithm.

I. I NTRODUCTION

Weight-balanced digraphs have been shown to play a
crucial role in the distributed coordination of networks of
dynamic agents. This class of digraphs is an integral part
in deriving a Lyapunov function for convergence analysis
of average-consensus [1], [2] and consensus on general
functions [3]. Furthermore, weight-balanced digraphs appear
in the design of stable flocking algorithms for agents with
significant inertial effects, where the weight-balanced as-
sumption allows decoupling the centroid dynamic from the
internal group formation [4]. In [5] a traffic-flow problem is
introduced withn junction andm one-way streets with the
goal of ensuring a smooth traffic flow. It is shown that the
problem can be reduced to computing weights on the edges
of the associated digraph that makes the digraph weight-
balanced, in the sense that the sum of the in- and the out-
degrees are equal at each junction. Furthermore, necessary
and sufficient conditions are given for a digraph to be
weight-balanced and a centralized algorithm is presented for
computing the weight on each edge. It is thus an important
question to design distributed algorithms that allow agents
to balance their in- and out-degrees so that the overall
interaction digraph is weight-balanced.

The main contribution of this paper is a synchronized
distributed algorithm on a directed communication network
in which each agent balances its in- and out-degrees. In
this algorithm, each individual agent sends a message to

Bahman Gharesifard and Jorge Cortés are with the Department of
Mechanical and Aerospace Engineering, University of California San Diego,
{bgharesifard,cortes}@ucsd.edu

one of its out-neighbors and receives messages from its in-
neighbors. Our next step is to systematize the centralized
algorithm of [5] using the fundamental cycle matrix. We
compute the time complexity of this centralized algorithm
and show that it does not scale well with the size of the
network. Finally, we introduce a modified version of the
weight-balance distributed algorithm, distributed over the
mirror digraph, and we characterize its time complexity. We
show that the convergence in this algorithm is much faster
than that of the centralized one. We conclude with some
remarks and ideas for future work.

II. PROBLEM STATEMENT

We adapt some basic notions from [6]. LetV ⊂ R
n

be a subspace andα = (α1, . . . , αn) ∈ V. We denote
(|α1|, . . . , |αn|) by |α|. We denote a digraph byG = (V,E),
whereV is a finite set, called the vertex set, andE ⊆ V ×V ,
called the edge set. For a digraph with an edge(u, v) ∈ E, u

is called thein-neighborof v andv is called theout-neighbor
of u. We denote the set of in-neighbors and out-neighbors of
v, respectively, withN in

G andN out
G . The in-degreeand out-

degreeof v are the cardinality ofN in
G andN out

G , respectively.
A digraph is calledtopologically balancedif it has the same
in- and out- degrees. Adirected pathin a digraph is an
ordered sequence of vertices so that any two consecutive
vertices in the sequence are an edge of the digraph. Acycle
in a digraph is a directed path that starts and ends at the
same vertex and has no other repeated vertex.

A weighted digraphis a triplet G = (V,E,A), where
the pair (V,E) is a digraph andA ∈ R

n×n
≥0 , called the

adjacency matrix, where n is the number of elements of
V . The adjacency matrix has the property that, for alli, j ∈
{1, . . . , n}, the entryaij > 0 if (vi, vj) ∈ E and aij = 0
otherwise. For a weighted digraph the out-degree and in-
degree are, respectively, defined by

dout(vi) =
n

∑

j=1

aij , din(vi) =
n

∑

j=1

aji.

A weighted digraphG = (V,E,A) is calledweight-balanced
if dout(vi) = din(vi), for all vi ∈ V . A digraphG = (V,E)
is called strongly semiconnectedif the existence of a path
from vi and vj implies the existence of a path fromvj to
vi, for all vi, vj ∈ V . The following two theorems establish
a constructivecentralizedapproach for determining whether
a digraph is weight-balanceable.

Theorem 2.1 ([5]):A digraph G = (V,E) is weight-
balanced if and only if the edge setE can be decomposed
into k subsetsE1, . . . , Ek such that the following statements
hold

2

1) E = E1 ∪ E2 ∪ . . . ∪ Ek and
2) every subgraphG = (V,Ei), for i = {1, . . . , k}, is a

weight-balanced digraph.
The following theorem reveals the importance of cycles in

the weight-balanced digraphs.
Theorem 2.2 ([5]):Let G = (V,E) be a directed digraph.

The following statements are equivalent.

1) Every element ofE lies in a cycle.
2) G is weight-balanced.
3) G is strongly semiconnected.
Although the approach taken in [5] is constructive, it relies

on computing the cycles no systematic algorithm is proposed
for computing the cycles.

III. W EIGHT-BALANCED DISTRIBUTED ALGORITHM

Consider a network of robotic agents with a strongly
semiconnected graph topologyG = (V,E). In the following,
we introduce an algorithm in which the agents synchronously
compute the weights on each edge such that the digraph is
weight-balanced.

Informal description

1) Each agent can send messages to its out-neighbors
and receive messages from its in-neighbors. Thus each
agent can compute its in- and out-degrees.

2) For each agent, if the in-degree is more than the out-
degree, the agent changes the weight on one of the
out-edges with the minimum weight such that she is
balanced.

3) Each agent updates the in- and out- degrees in the next
round and repeats the above process.

Note that this algorithm updates the weights syn-
chronously. In following, we give a formal description
of the distributed algorithm presented above. Furthermore,
we demonstrate that the algorithm converges to a weight-
balanced digraph.

Formal description
Suppose that a communication network is given byG =
(V,E,A), where(V,E) is strongly semiconnected. LetX ⊂
R

n×n be a subspace generated by all possible adjacency
matrices associated to(V,E), thus A ∈ X. We define an
evolution by (X, f), where f is defined as follows. For
i ∈ {1, . . . , n}, let

a∗
i =

n

min
k=1,k 6=i

{aik | aik 6= 0},

j∗i =
n

min
j=1,j 6=i

{j ∈ {1, . . . , n} | aij = a∗
i },

We definef as following

f(aij) =

aij ,
∑n

k=1 aik ≥
∑n

k=1 aki,

∀j,

aij ,
∑n

k=1 aik <
∑n

k=1 aki,

j 6= j∗i ,

aij + ω(i)
∑n

k=1 aik <
∑n

k=1 aki,

j = j∗i ,

(1)

where

ω(i) =

n
∑

k=1

aki −
n

∑

k=1

aik.

Note that functionf is continuous onX with the subspace
topology induced formR

n×n: for anyA ∈ X, each nonzero
entry of A can be modified within a sufficiently small
neighborhood such that the image of this neighborhood is in
a neighborhood off(A). Furthermore,A∗ ∈ X is an equi-
librium point for the dynamical system(X, f) if and only
if A is an adjacency matrix associated to a weight-balanced
digraph. Such an equilibrium point exists since the digraphs
assumed in this paper are all strongly semiconnected, see
Theorem 2.2. LetV be a function fromX to R defined
through

V (A) =

n
∑

i=1

|
n

∑

j=1

aij −
n

∑

j=1

aji|. (2)

This function is continuous onX, since one can modify the
columns ofA ∈ X within a sufficiently small neighborhood
U ⊂ X such that theV (U) is in a neighborhood ofV (A).
Note that if A is an equilibrium point for(X, f) then
V (A) = 0. The following theorem contains the main result
of this paper.

Theorem 3.1:Suppose that a robotic network is given by
G = (V,E,A), where(V,E) is strongly semiconnected. Let
X ⊂ R

n×n be a subspace generated by all the possible
adjacency matrices associated to(V,E) and let(X, f) be the
evolution defined by Equation (1). Then each evolution with
initial condition in W (A) = {B ∈ X | 0 ≤ V (B) ≤ V (A)}
approaches a set of the formV −1(0)∩S, whereS is the set
of all weight-balanced assignments inW (A). Furthermore,
if A ∈ Z

n×n
≥0 , the weight-balanced distributed algorithm

converges in finite time to a weight-balanced digraph.
Proof: The setW (A) is closed inX, sinceW (A) is a

level set of the continuous functionV . Moreover, this set is
positively invariant for(X, f) by definition off . If an agent
vi modifies one of its out-edges say byǫ ∈ R>0 in order to
balance itself,|dout(vi)− dout(vi)| decreases byǫ. Moreover,
the in-degree of one of the out-neighbors ofvi, sayvj , where
j 6= i, increases byǫ. This increases|dout(vj)−dout(vj)| by at
mostǫ. Since the functionV measures the sum of|dout(vj)−
dout(vj)| for all j ∈ {1, . . . , n}, V is non-increasing alongf
on W (A). Finally, all evolutions of(X, f) are bounded in
W (A), f andV are continuous, andW (A) is closed. Thus
the proof follows by the LaSalle invariance principle [7].

For the second part of the proof, we assign to each vertex
vi a weight

ω(vi) = din(vi) − dout(vi). (3)

Note that a weighted digraphG = (V,E,A) is weight-
balanced if and only ifω(vi) = 0, for all vi ∈ V . We
start the proof by making an observation. It is clear, from
the definition of the algorithm, that at each timet ∈ Z>0

of the algorithm, the agents with non-positive weights are
inactive. Furthermore, each agent with positive weight will
change the weight on one of its out-edges, thus changing the
in-degree of one of its out-neighbors. As a result, one can,
equivalently, say that the agents with positive weight will

3

...
oo_ _ _ _ _

���
�
� vs

cycle

OO�
�
�
�

vi+1 //

::t
t

t
t

t
vi+2 . . . •

��=
==

==
==

=

vi

==zzzzzzzz
• // vj

Fig. 1. Sending a message betweenvi and vj , possibly after repeating
some cycles.

send their weightω(vi) via an edge, with minimum weight,
to an out-neighborvj and each time that the edgeeij is
used for sending a messageω(vi), the weight on this edge
increases byω(vi). Each agent adds the received message
with its previous weight to compute its new weight. Since
the digraph is strongly semiconnected

n
∑

i=1

ω(vi) = 0,

wheren is the number of agents. The weight-balanced dis-
tributed algorithm does not terminate until there is no agent
with positive weight. Suppose that the agentvi has the weight
ω(vi) > 0. Without loss of generality, we consider a digraph
for which there exists an agentvj with ω(vj) = −ω(vi) and
ω(vk) = 0, for k ∈ {1, . . . , n} and k 6= i, j. Note that the
algorithm does not terminate till the messageω(vi) reaches
vj . Suppose that this message should be carried via a simple
path shown in Figure 1 to get tovj . We must show that this
is possible in finite time. Suppose that, at timet ∈ Z>0,
the agentvi sends the messageω(vi) to vi+1. It is enough
to show that the agentvi+1 can send the message tovi+2

in finite time. Without loss of generality, assume that the
agentvi+1 has two out-neighborsvi+2 and vs 6= vi, where
vs is not in the same cycle withvj . In the next iteration,
vi+1 chooses the out-neighbor with the edge with minimum
weight for transmittingω(vi). Suppose thatvi+1 chooses
vs, i.e. a(vi+1, vi+2){t} > a(vi+1, vs){t}, where t ∈ Z>0

indicates the time. Since we assumed that the weights on all
the agents exceptvi andvj are zero, the messageω(vi) will
come back tovi+1 after a finite time, possibly after going
through some cycles. After that,vi+1 will choosevs again if
a(vi+1, vi+2){t} > a(vi+1, vs){t} + ω(vi) and will choose
vi+2 otherwise. Thus, at most, after a finite timeT ∈ Z>0,
we havea(vi+1, vi+2){T} < a(vi+1, vs){T} and the agent
vi+1 will choosevi+2; thus the claim follows.

Remark 3.2 (Convergence rate):Obtaining the conver-
gence rate of the distributed weight-balanced algorithm isa
hard combinatorial problem. We have rough upper bounds
for this convergence rate and we postpone the details to
future work. However, we characterize the time complexity
of a modified version of this algorithm in Section V. •

Example 3.3:(Execution of weight-balanced distributed

2

��>
>>

>>
>>

��.
..

..
..

..
..

..
. 1oo

3

@@�������

5

@@�������
4

OO

GG��������������
oo

Fig. 2. The digraph of Example 3.3.

(1) •

��@
@@

@@
@@

��/
//

//
//

//
//

//
/ •

2
oo_ _ _ _ _ _

•

3
??�

�
�

�

•

??�������
•

OO

GG��������������oo

(2) •

��@
@@

@@
@@

��/
//

//
//

//
//

//
/ •

4
oo_ _ _ _ _ _

•

3
??�������

•

??�������
•

OO

GG��������������oo

(3) •
3

��@
@

@
@

��/
//

//
//

//
//

//
/ •

4oo

•

3
??�������

•

??�������
•

OO

GG��������������oo

(4) •
3

��@
@@

@@
@@

��/
//

//
//

//
//

//
/ •

4oo

•

5
??�

�
�

�

•

??�������
•

OO

GG��������������oo

(5) •
3

��@
@@

@@
@@

��/
//

//
//

//
//

//
/ •

6oo_ _ _ _ _ _

•

5
??�������

•

??�������
•

OO

GG��������������oo

(6) •
3

��@
@@

@@
@@

3

��/
/

/
/

/
/

/ •
6oo

•

5
??�������

•

??�������
•

OO

GG��������������oo

Fig. 3. Iterations of the weight-balanced distributed algorithm for the
digraph of Example 3.3. In each iteration, the edges which areused for
sending messages are shown with dash lines. Note that the Lyapunov
function readsV (0) = 6, V (1) = V (2) = . . . = V (5) = 4, and
V (6) = 0.

algorithm): Consider the digraphG shown in Figure 2.
This algorithm converges to a weight-balanced digraph in
6 iterations as demonstrated in Figure 3. In Example 4.8, we
show that, for this example, the distributed approach is more
efficient than the centralized one. •

IV. W EIGHT-BALANCED CENTRALIZED ALGORITHM

In this section we propose a centralized algorithm for
constructing a weight-balanced digraph which is essentially
similar to the centralized algorithm proposed in [5]. The main
advantageous of this algorithm is that the algorithm only
uses the so-calledfundamental cycle matrixof a digraph.
This gives a more systematic approach for constructing a
weight-balanced digraph. Moreover, we characterize the time
complexity of this algorithm. In this section we assume that
all the digraphs are strongly semiconnected.

4

•
e1 // •

e3����
��

��
�

e2

��
•

e4

OO

•
e5

oo

Fig. 4. Composition of semi-cycles.

A. Fundamental cycle matrix

Let G = (V,E) be a digraph withn vertices andm edges.
We denote the ordered setE− ⊂ V × V to be the set of all
ordered pairs obtained by changing the orders ofE, i.e. if
(u, v) ∈ E then (v, u) ∈ E−, whereu, v ∈ V . We call the
digraphḠ = (V,E ⊕E−) the mirror ofG and a cycle ofḠ
a semi-cycleof G. Note that a semi-cycle is a directed path.
We have the following definition.

Definition 4.1: Let G = (V,E) be a digraph. Thecycle
matrix C(G) is an l × m matrix, where l and m are,
respectively, the number of cycles and edges in the digraph
and for i ∈ {1, . . . , l} and j ∈ {1, . . . ,m},

C(G)ij =

1, if the ith semi-cycle includes

edgej with the same direction,

−1, if the ith semi-cycle includes

edgej with the opposite direction,

0, otherwise.
Note that a rowαi of C(G), wherei ∈ {1, . . . , n}, refers

to a cycle of the digraphG if and only if αij ≥ 0 for all
j ∈ {1, . . . ,m} or αij ≤ 0 for all j ∈ {1, . . . ,m}. For a
digraph G = (V,E), we say that an edge(u, v) ∈ E is
incident away fromu and incident towardv. This motivates
the following definition.

Definition 4.2: Let G = (V,E) be a digraph. Theincident
matrix I(G) is an n × m matrix, wheren and m are,
respectively, the number of vertices and edges ofG and for
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m},

I(G)ij =

1, if the jth edge is incident away fromi,

−1, if the jth edge is incident towardi,

0, otherwise.
The following theorem reveals the relationship between

the cycle matrix and the incident matrix, see [8] for details.
Theorem 4.3:For any digraphG = (V,E) we have

C(G)I(G)T = 0.
Consider the digraphG = (V,E) in Figure 4, where the
edges are labeled with the set{1, . . . , 5}. This digraph
consists of three semi-cycles given by

α =
(

1 0 1 1 0
)

,

β =
(

0 1 −1 0 1
)

,

γ =
(

1 1 0 1 1
)

.

If we sum the first two semi-cycles, the two edges with
different orientations cancel out each other, and thus the
third semi-cycle will be obtained. We emphasize that two
semi-cycles can be summed only if the common edges
have different orientations. This suggest investigating the
minimum number of rows of the cycle matrix which can

generate all the rows. If we reduce the cycle matrix by
selecting the independent rows, the resulting matrix is called
the fundamental cycle matrixand we denote it byF(G).

In following, we give a formal definition for the fundamen-
tal cycle matrix. Furthermore, we study an algorithm, adapted
from [8], for computing this matrix. Recall the definition ofa
breadth-first spanning treeBFS(G, v) of a digraphG rooted
at v, see [6]. We start by the following definition.

Definition 4.4: Let G = (V,E) be a digraph and let
BFS(G, v) be a breadth-first spanning tree. An edge(u,w) ∈
E, u,w ∈ V , is called achord if it is not an edge of
BFS(G, v). We denote byEBFS

c (G, v) ⊂ E the set of all
chords ofG with respect toBFS(G, v).

Note that adding a chord to a breadth-first spanning tree
defines a row ofC(G), up to a sign, which consists of the
chord and some edges of the breadth-first spanning tree. We
call such a semi-cyclefundamental cycle. It is easy to verify
that a digraph withn vertices andm edges hasm − n + 1
chords; thus there arem − n + 1 fundamental cycles. We
have the following definition.

Definition 4.5: Let G = (V,E) be a digraph. Afunda-
mental cycle matrixF(G) is an(m−n+1)×m matrix, where
n andm are, respectively, the number of vertices and edges
of G and for i ∈ {1, . . . ,m − n + 1} and j ∈ {1, . . . ,m},

F(G)ij =

1, if the ith fundamental cycle includes

edgej with the same orientation,

−1, if the ith fundamental cycle includes

edgej with the opposite orientation,

0, otherwise.

Fundamental cycle centralized algorithmGiven a digraph
G = (V,E),

1) compute a breadth-first spanning treeBFS(G, v),
rooted at an arbitrary vertexv ∈ V ;

2) compute the set of all chordsEBFS
c (G, v) with respect

to theBFS(G, v);
3) compute a fundamental cycle matrixF(G) by adding

each chord to the breadth-first spanningBFS(G, v) and
recording the resulting semi-cycle ofG.

B. Weight-balanced centralized algorithm via fundamental
cycle matrix

Let G = (V,E) be a strongly semiconnected digraph. We
have the required tools to propose a centralized algorithm for
computing an adjacency matrixA such thatG = (V,E,A)
is weight-balanced. This algorithm is basically similar tothe
one of [5]. However, the current algorithm suggests a con-
crete procedure for computing the cycles via a fundamental
cycle matrix.

Weight-balanced centralized algorithm. Given a digraph
G = (V,E),

1) compute a fundamental cycle matrixF(G) using the
fundamental cycle centralized algorithm;

2) use this fundamental cycle matrix to compute the cycle
matrix C(G);

5

(a) •

e2

��

e3

����
��

��
�

•
e1

oo

•
e5 // •

e6����
��

��
�

e4

??�������

•

e7

OO

(b) •
e1 // •

e2

��
e3����

��
��

�

• •

e6����
��

��
�

•

Fig. 5. Digraph of Example 4.7, (a), and a breadth-first spanning tree that
contains the edgee1, (b).

3) identify the rowsαi of C(G) for which αij ≥ 0 for
all j ∈ {1, . . . ,m} or αij ≤ 0 for all j ∈ {1, . . . ,m}
and denote the set of all suchαis by S(G);

4) suppose thatS(G) hasp ≤ l elements, wherel is the
number of rows ofC(G). ThenW =

∑p

i=1 |αi|, where
αi ∈ S(G), gives the weights on each edge ofG that
makesG weight-balanced;

5) useW to compute an adjacency matrixA such that
G = (V,E,A) is weight-balanced.

We now compute the time complexity of this algorithm.
Proposition 4.6:Let G be a strongly semiconnected di-

graph withn vertices. The weight-balanced centralized al-
gorithm has the time complexityO(2n2

).
Proof: Note that the time complexity of constructing

a breadth-first spanning tree forG is O(n). If the digraph
G has m edges, then there arem − n + 1 fundamental
cycles. In order to construct the cycles of the digraph, one
needs to find all the linear combination of such fundamental
cycles and detectS(G). We compute the time complexity of
such computation, which we denote byTw-cen(G), explicitly.
Suppose that{α1, α2, . . . , αm−n+1} are the fundamental
cycles ofG. Then the number of cycles that are constructed
with two of these fundamental cycles, not necessarily inde-
pendent, is at most

(

m−n+1
2

)

(note that some the fundamental
cycles can not be added). Similarly, the number of cycles,
not necessarily independent, which are constructed byi

fundamental cycles is
(

m−n+1
i

)

. Thus we have

Tw-cen(G) = TBFS(G) +
m−n+1

∑

i=2

(

m − n + 1

i

)

,

where we denoted byTBFS(G) the time complexity of
computing a first-breadth spanning tree forG. Note that we
have

m−n+1
∑

i=2

(

m − n + 1

i

)

= 2m−n+1 − (m − n + 1) + 1.

Since we do not allow repeated edges between two vertices,
m ≤ n(n+1)

2 and the claim follows.
Proposition 4.6 shows that the centralized algorithm can

be computationally very time consuming.
Example 4.7:(Execution of weight-balanced centralized

algorithm): Consider the digraph shown in Figure 5–(a),
where we labeled the edges. A breadth-first spanning tree
that contains edgee1 is shown in Figure 5–(b). Note that
edgese4, e5 and e7 are the chords for this example, see

(a) •
e1 // •

e2

��
e3����

��
��

�

• •

e6����
��

��
�

e4

__@
@

@
@

•

(b) •
e1 // •

e2

��
e3����

��
��

�

•
e5 //___ •

e6����
��

��
�

•

(c) •
e1 // •

e2

��
e3����

��
��

�

• •

e6����
��

��
�

•

e7

OO�
�
�

Fig. 6. Adding chords to the breadth-first spanning tree in order to find a
fundamental cycle matrix.

Figure 6. Thus the fundamental cycle matrix is an element
of R

3×7. We compute the following fundamental cycles

α =
(

1 1 0 1 0 0 0
)

,

β =
(

0 −1 1 0 1 0 0
)

,

γ =
(

0 1 −1 0 0 1 1
)

.

Thus the fundamental cycle matrix is

F(G) =

1 1 0 1 0 0 0
0 −1 1 0 1 0 0
0 1 −1 0 0 1 1

 .

One can compute, using the fundamental cycles, the follow-
ing rows ofC(G) which belong toS(G)

α =
(

1 1 0 1 0 0 0
)

,

α + β =
(

1 0 1 1 1 0 0
)

,

β + γ =
(

0 0 0 0 1 1 1
)

.

Thus the weight on each edge which makes the digraphG

weight-balanced is given by

W =
(

2 1 1 2 2 1 1
)

.

One can use this weights to compute the adjacency matrix
that makesG weight-balanced. •

Example 4.8 (Example 3.3 Cont.):Consider the digraph
of Example 3.3. This digraph has three chords and thus, using
the centralized algorithm and after computing a breadth-first
spanning tree, one needs to check nine different combinations
of the fundamental cycles. Thus, for this example, the
distributed algorithm converges faster than the centralized
one. •

V. WEIGHT-BALANCED MODIFIED DISTRIBUTED

ALGORITHM

We showed in Proposition 4.6 that the weight-balanced
centralized algorithm is computationally complex. In this
section we modify the weight-balanced distributed algorithm
to an algorithm, distributed over the mirror of the digraph,
which converges quickly to a weight-balanced digraph. The
importance of this algorithm is that it can be utilized to
construct a weight-balanced digraph without constructingthe
cycles. Furthermore, as we will see in Proposition 5.2, this
algorithm is much faster than the weight-balanced centralized
algorithm.

6

2

������
��

��
�

1oo

3 // 4

����
��

��
�

@@�������

5

OO

Fig. 7. The digraph of Example 4.7. In this figure the agents arelabeled.

−1

��}}{{
{{

{{
{{

0oo

+1 // 0

}}{{
{{

{{
{{

{

>>~~~~~~~~

0

OO

⇒ 2

������
��

��
�

1
2oo_ _ _

3
2

//___ 4

����
��

��
�

2
@@�

�
�

�

5

OO

Fig. 8. The weight-balanced modified algorithm execution forExample 4.7.
The dash lines show the edges which has been used to send messages.

Weight-balanced modified distributed algorithm. Let G =
(V,E,A) be a strongly semiconnected digraph, whereV =
{v1, . . . , vn}.

1) Each agentvi can observe the weights of its out-
neighbors (the algorithm is assumed to be distributed
over the mirror of the digraphG).

2) At each iteration, agents are able to receive a message
from one of their in-neighbors.

3) Any agentvi ∈ V with positive weight passes its
weight to only one the out-neighbor with minimum
weight via an edge.

4) If agentvi uses the edge(vi, vj) ∈ E to send its weight
to an out-neighbor,aij = aij + ω(vi).

5) Multiple-messages rule: If an agent receives more than
one message from its in-neighbors, it adds the received
messages to its weight.

6) Fair-decision rule: If the agentvi has more than one
out-neighbors with the exact same weight, it randomly
chooses one. However, the next timevi needs to choose
between its out-neighbors with the same weight, it will
choose a new out-neighbor.

In Theorem 5.1 we show that this algorithm converges in
finite time to a weight-balanced digraph. We first execute
this algorithm for Example 4.7. Recall that in this example,
after computing the breadth-first spanning tree, one needs
to examine nine different combinations of the fundamental
cycles in order to find a weight-balanced digraph. In Figure 7,
we labeled each agent with the set{1, . . . , 5}, where we
assumed that the initial weight on each edge is one. In Fig-
ure 8, we show that the weight-balanced modified algorithm
converges in three iterations to a weight-balanced digraph.

Note that agent4 has two out-neighbors with the same
weights, namely1 and5. In Figure 9, we show the execution
of the algorithm in case agent4 passes the weight to agent
5; this shows the importance of the fair-decision rule in the

−1

��}}{{
{{

{{
{{

0oo

+1 // 0

}}{{
{{

{{
{{

{

>>~~~~~~~~

0

OO

⇒ 2

������
��

��
�

1
2oo_ _ _

3
3

//___ 4

2���
�

�
�

2
@@�

�
�

�

5

2

OO�
�
�

Fig. 9. The second possible weight-balanced modified algorithm execution
for Example 4.7. The dash lines show the edges which has been used to
send messages.

body of the weight-balanced modified algorithm. If after
the 4th iteration of the algorithm the agent4 would keep
passing its weight to agent5, then the algorithm would never
converge to a weight-balanced digraph.

Theorem 5.1:SupposeG = (V,E) is a strongly semi-
connected digraph. Then the weight-balanced modified algo-
rithm converges to a weight-balanced digraph in finite time.

Proof: Assume that an agentvi, wherevi ∈ V , has a
positive weight in thekth iteration, wherek ∈ Z>0. Thus
in the (k + 1)th iteration, agentvi passes its weight to its
neighbors with the least weight. Furthermore, agents with
negative weights are not active, in the sense that they do
not pass their weight to any out-neighbor; thus these agents
act like stationary sinks. Note that for a strongly semicon-
nected digraph

∑n

j=1 ω(vj) = 0, whereω(vi) is defined in
Equation (3). Since the digraph is strongly semiconnected,
the agents with positive weights pass their weights until
the weight reaches an agent with negative weight. The fair-
decision rule prevents any agentvi ∈ V from passingω(vi)
in a cycle. Since the digraph has finite number of edges,
after repeating the algorithm for a finite number of iterations
and at most by passing the weights in some cycles, see
Proposition 5.2, the positive weights will reach the agents
with negative weights and thus the digraph will become
weight-balanced.

We investigate the rate of convergence of the weight-
balanced modified distributed algorithm introduced above.
We make the following observation. Suppose thatG =
(V,E) is a digraph and an agentvi, where vi ∈ V , has
a weight ω(vi) = r > 0. Then, by the weight-balanced
modified-distributed algorithm, the agent passes the weight
to an out-neighbor and the process continues until this weight
reaches an agent with negative weight. Without loss of
generality, assume that this weight gets passed through a
path to reach an agentvj with weight ω(vj) = −r, see
Figure 1. After the next iteration, the next agent might pass
the weight to the next agent in the path directly, or after
sending it by mistake to a cycle. In the later case, the agent
vi+1 will receive the weightr again and by the fair-decision
rule, this time it will pick a different out-neighbor. Denote
the set of all cycles ofG by cyc(G) and let

Cmax(G) = max{diam(Gc) | Gc ∈ cyc(G)},

dmax
out (G) = max{dout(vk) | vk ∈ G}.

We have the following proposition.

7

Proposition 5.2:Let G = (V,E) be a digraph. The
time complexity of the weight-balanced-game algorithm
Tw-mod-dis(G) ≤ dmax

out (G)diam(G)Cmax(G).
Proof: The maximum distance between any two agents

is diam(G). Suppose a message needs to be sent through
a path of lengthdiam(G). Suppose that all the agents
in this path have the maximum number of out-neighbors
and furthermore, suppose that all the agents try all their
other out-neighbors (via cycles) before finding the correct
out-neighbor. Then, by the above observation, they need
dmax

out diam(G)Cmax iterations to execute the task.
The following is an immediate corollary of this theorem.
Corollary 5.3: The time complexity of the weight-

balanced modified algorithm isO(n3).

VI. CONCLUSIONS

In this paper, we have proposed three different algorithms
for constructing a weight-balanced digraph from a strongly
semiconnected digraph:

1) the weight-balanced distributed algorithm, running
synchronously, is developed for computing a weight-
balanced communication network for a group of
agents. We have established the finite-time conver-
gence of this algorithm via the discrete-time LaSalle
invariance principle. Its convergence is illustrated in
different examples. The algorithm is of importance
as weight-balanced graphs play an important role in
variety of cooperative algorithms.

2) the weight-balanced centralized algorithmessentially
systematizes the centralized approach in [5] for con-
structing a weight-balanced digraph. We compute the
time complexity of this algorithm and show that it does
not scale well with the size of the network.

3) the weight-balanced modified distributed algorithm,
distributed over the mirror of the original digraph,
is developed using the weight-balanced distributed
algorithm. We have also established the finite-time
convergence of this algorithm and characterized its
time complexity, which is substantially better than that
of the centralized algorithm.

Future work will include determining the time complexity
of the weight-balanced distributed algorithm and investi-
gating the connection of the proposed algorithms with the
stability of stochastic systems.

ACKNOWLEDGMENTS

This research was partially supported by NSF Award CCF-
0917166.

REFERENCES

[1] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,”Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[2] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,”IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[3] J. Cort́es, “Distributed algorithms for reaching consensus on general
functions,” Automatica, vol. 44, no. 3, pp. 726–737, 2008.

[4] D. Lee and M. W. Spong, “Stable folcking of multiple interial agents on
balanced digraphs,”IEEE Transaction on Automatic Control, vol. 52,
no. 8, pp. 1469–1475, 1984.

[5] L. Hooi-Tong, “On a class of directed graphs - with an application to
traffic-flow problems,”Operations Research, vol. 18, no. 1, pp. 87–94,
1970.

[6] F. Bullo, J. Cort́es, and S. Martı́nez, Distributed Control of Robotic
Networks. Applied Mathematics Series, Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[7] J. P. LaSalle, “Some extensions of Liapunov’s second method,” IRE
Trans. Circuit Theory, vol. CT-7, pp. 520–527, 1960.

[8] D. F. Robinson and L. R. Foulds,Digraphs: Theory and Techniques.
Gordon and Breach Science Publishers, 1980.

