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Abstract— A digraph is weight-balanced if, at each node, the one of its out-neighbors and receives messages from its in-
sum of the weights of the incoming edges (in-degree) equals neighbors. Our next step is to systematize the centralized
the sum of the weights of the outgoing edges (out-degree). 5iqqrithm of [5] using the fundamental cycle matrix. We
Weight-balanced digraphs play an important role in a variety - . . . .
of cooperative control problems, including formation control, compute the tlme complexity of this Cer?trallzed _algorlthm
distributed averaging and Optimization. We call a d|graph and show that it does not scale well with the size of the
weight-balanceable if it admits an edge weight assignment that network. Finally, we introduce a modified version of the
makes it weight-balanced. It is known that semiconnectedness weight-balance distributed algorithm, distributed ovhe t
is a necessary and sufficient condition for a digraph to be irror gigraph, and we characterize its time complexity. We
weight-balanceable. However, to our knowledge, the available h hat th ’ in this algorithm i hf
approaches to compute the appropriate set of weights are show that the Converger)ce In this algorithm s muF: aster
centralized. In this paper, we propose a distributed algorithm than that of the centralized one. We conclude with some

running synchronously on a directed communication network remarks and ideas for future work.
that allows individual agents to balance their in- and out-

degrees. We also develop a systematic centralized algorithm
for constructing a weight-balanced digraph and compute its Il. PROBLEM STATEMENT

time complexity. Finally, we modify the distributed procedure We adapt some basic notions from [6]. Lt C R"

e ety s oo v D @ Subspace and = (an.....an) € V. We denote

cegntrglized algorithm. prexity (lea], - - ) |an|_) Py |ae|. We denote a digraph b = (V, E),

whereV is a finite set, called the vertex set, aid” V' x V,

called the edge set. For a digraph with an efige)) € E, u

is called theén-neighborof v anduv is called theout-neighbor

of u. We denote the set of in-neighbors and out-neighbors of
Weight-balanced digraphs have been shown to play ta respectively, wit W@} and V2" The in-degreeand out-

crucial role in the distributed coordination of networks ofdegreeof v are the cardinality ofV} and V2", respectively.

dynamic agents. This class of digraphs is an integral paft digraph is calledopologically balancedf it has the same

in deriving a Lyapunov function for convergence analysign- and out- degrees. Alirected pathin a digraph is an

of average-consensus [1], [2] and consensus on genegditlered sequence of vertices so that any two consecutive

functions [3]. Furthermore, weight-balanced digraphseapp Vvertices in the sequence are an edge of the digraptyche

in the design of stable flocking algorithms for agents withn a digraph is a directed path that starts and ends at the

significant inertial effects, where the weight-balanced asame vertex and has no other repeated vertex.

sumption allows decoupling the centroid dynamic from the A weighted digraphis a triplet G = (V, E, A), where

internal group formation [4]. In [5] a traffic-flow problem is the pair (V, E) is a digraph andA € RZIy", called the

introduced withn junction andm one-way streets with the adjacency matrix where n is the number of elements of

goal of ensuring a smooth traffic flow. It is shown that thd/. The adjacency matrix has the property that, foriajl €

problem can be reduced to computing weights on the edgés, . .., n}, the entrya;; > 0 if (v;,v;) € E anda;; = 0

of the associated digraph that makes the digraph weightherwise. For a weighted digraph the out-degree and in-

balanced, in the sense that the sum of the in- and the owtegree are, respectively, defined by

degrees are equal at each junction. Furthermore, necessary n n

and sufficient conditions are given for a digraph to be dowlvi) = > _aij,  din(vi) = aj;.

weight-balanced and a centralized algorithm is preserted f j=1 j=1

computing the weight on each edge. It is thus an important. . . _ . —
guestion to design distributed algorithms that allow agen% \(/ivem(]:t)e id;gr(ip)h’}f(; gﬁ,f,efl)‘/ls;a(ljlzc:\;vs%ggtil)azlsng?d
I out\Vs ) — Win\Y% )/, i . - )

Fo balapce Fhe|r In- anq out-degrees so that the OVeras called strongly semiconnecteifl the existence of a path
interaction digraph is weight-balanced.

. I . . .__from v; andv; implies the existence of a path from to
The main contribution of this paper is a synchronized Vi Y5 1mp P 0

distributed alaorith directed icati N v;, for all v;,v; € V. The following two theorems establish
distributed algorithm on a directed communication networ constructivecentralizedapproach for determining whether
in which each agent balances its in- and out-degrees.

this alqorith h individual ¢ d S digraph is weight-balanceable.
IS algorithm, eacn Inaividual agent sends a message OTheorem 21 ([5])ZA digraph G = (V, E) is Weight-
_ , balanced if and only if the edge sét can be decomposed
Bahman Gharesifard and Jorge @asrtare with the Department of . .
Mechanical and Aerospace Engineering, University of @Gatifa San Diego, into k subsetsty , . . ., £, such that the following statements
{bgharesi fard, cort es}@csd. edu hold

I. INTRODUCTION



1) E=F,UEU...UEF and where N "
2) every subgraplty = (V, E;), fori = {1,...,k}, is a N o ‘
weight-balanced digraph. w(i) }; (ki kzz:l k-

The following theorem reveals the importance of cycles in _ . . .
the weight-balanced digraphs. Note that functionf is continuous onX with the subspace

i nNXn.
Theorem 2.2 ([5]):Let G = (V, E) be a directed digraph. topology induced formR . for apy_A € X, Qa_ch nonzero
The following statements are equivalent entry of A can be modified within a sufficiently small
9 q ' neighborhood such that the image of this neighborhood is in

1) Every element of lies in a cycle. a neighborhood off (A). Furthermore A* € X is an equi-
2) G is weight-balanced. librium point for the dynamical syster(X, f) if and only
3) G is strongly semiconnected. if A is an adjacency matrix associated to a weight-balanced

Although the approach taken in [5] is constructive, it relie gigraph, Such an equilibrium point exists since the digsaph
on computing the cycles no systematic algorithm is proposegs,med in this paper are all strongly semiconnected, see

for computing the cycles. Theorem 2.2. LetV be a function fromX to R defined
through
I1l. WEIGHT-BALANCED DISTRIBUTED ALGORITHM V(A) = zn: | zn:a” . z":a”‘ @)
- 3 Jul-
Consider a network of robotic agents with a strongly i=1 j=1 j=1

semiconnected graph topology= (V, E). In the following,  thjs function is continuous oft, since one can modify the
we introduce an algorithm in which the agents synchronouslyyumns of4 € X within a sufficiently small neighborhood
cor_npute the weights on each edge such that the digraphis- y sych that the/(U) is in a neighborhood of (A).
weight-balanced. Note that if A is an equilibrium point for(X, f) then
Informal description V(A) = 0. The following theorem contains the main result

1) Each agent can send messages to its out-neighb&sthis paper.
and receive messages from its in-neighbors. Thus eachTheorem 3.1:Suppose that a robotic network is given by
agent can compute its in- and out-degrees. G = (V,E, A), where(V, E) is strongly semiconnected. Let

2) For each agent, if the in-degree is more than the ouf C R™*" be a subspace generated by all the possible
degree, the agent changes the weight on one of ti@éliacency matrices associated 10 £) and let(X,, f) be the
out-edges with the minimum weight such that she i§volution defined by Equation (1). Then each evolution with
balanced. initial condition iNnW(A) ={Be X |0 <V(B) <V(A)}

3) Each agent updates the in- and out- degrees in the né@Proaches a set of the for¥fr(0) N S, whereS is the set
round and repeats the above process. of all weight-balanced assignments Witi(A4). Furthermore,

1 nxn 1 1 1 i
Note that this algorithm updates the weights Syn|_f A e 7ZZ3", the weight-balanced distributed algorithm

chronously. In following, we give a formal description converges in finite time to a weight-balanced digraph.

o ) Proof: The setiW(A) is closed inX, sinceW (A) is a
of the distributed algorithm presented above:. FurthermorF vel set of the continfjofjs functiori. Moreover tr(1is)set is

\évaela?]irgé)r;?;rgshthat the algorithm converges to a Welgh;?ositively invariant for(X, f) by definition of . If an agent

v; modifies one of its out-edges say by R~ in order to
Formal description balance itself|dou(v;) — dow(v;)| decreases by. Moreover,
Suppose that a communication network is given®y=  the in-degree of one of the out-neighbors.gfsayuv;, where
(V, E, A), where(V, E) is strongly semiconnected. L&t C ;- j, increases by. This increaseslou(v;) —dou(v;)| by at
R™*" be a subspace generated by all possible adjacengypste. Since the function” measures the sum ffou(v; ) —

matrices associated tg/, E), thus A € X. We define an douw(v;)| for all j € {1,...,n}, V is non-increasing alongd
evolution by (X, f), where f is defined as follows. For on 117(A). Finally, all evolutions of(X, f) are bounded in
i€{l,....n}, let W(A), f andV are continuous, antl’(A) is closed. Thus
. n the proof follows by the LaSalle invariance principle [7].
a; = k:Hll)llgl#i{aik | air # 0}, For the second part of the proof, we assign to each vertex
n v; a weight
gi = min {j€{l,....n} | aij = a7}, w(v;) = din(v;) — dou(v;). ©)
We definef as following Note that a weighted digrapty = (V,E, A) is weight-
balanced if and only ifw(v;) = 0, for all v; € V. We
A5, Y opeq Qik > D>y Qi start the proof by making an observation. It is clear, from
V7, the definition of the algorithm, that at each time= Z-
s S g < S ag of the algorithm, the agents with non-positive weights are
flag) =< """ A= k=170 (1) inactive. Furthermore, each agent with positive weight wil
J#73 change the weight on one of its out-edges, thus changing the
a; +w(i) 3o @ik < Yoy Wi, in-degree of one of its out-neighbors. As a result, one can,
Jj=1jr, equivalently, say that the agents with positive weight will
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Fig. 1. Sending a message betwagnand v;, possibly after repeating i/ 3
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send their weightv(v;) via an edge, with minimum weight, T
to an out-neighbow; and each time that the edgg; is o=
used for sending a messagév;), the weight on this edge
increases byv(v;). Each agent adds the received message
with its previous weight to compute its new weight. Since

(3)
N p
the digraph is strongly semiconnected N / X >
N\ /

n [}
ZW(%‘) =0, T
=1
wheren is the number of agents. The weight-balanced dis- Y —"
tributed algorithm does not terminate until there is no agen
with positive weight. Suppose that the agenhas the weight
w(v;) > 0. Without loss of generality, we consider a digraph  (5) o< — —— — — o (6) o DR E—
for which there exists an agent with w(v;) = —w(v;) and \\3 7’ \\\i 74
w(vg) =0, for k € {1,...,n} andk # 4, j. Note that the \
algorithm does not terminate till the message;) reaches 3\ e
v;. Suppose that this message should be carried via a simple /7\’ T
path shown in Figure 1 to get tg;. We must show that this \
<~— 0
Fig. 3. lIterations of the weight-balanced distributed alhon for the

is possible in finite time. Suppose that, at times Z-,

the agenty; sends the messaggv;) t0 v;41. It is enough

to S_hQW t.hat the. agent;+; can send the message 42>  digraph of Example 3.3. In each iteration, the edges whichuses for

in finite time. Without loss of generality, assume that th@ending messages are shown with dash lines. Note that theuhgap
agentv;; has two out-neighbors;,, andv, # v;, where ‘;g”g;"{‘oreadsv(o) =6, V(1) = V(@2 =...=V(5) =4 and

vg iS not in the same cycle withr;. In the next iteration, o

v;+1 chooses the out-neighbor with the edge with minimum

weight for transmittingw(v;). Suppose thav;., Ch00Ses  ,05rithm)- Consider the digraphG shown in Figure 2.
Us, 1.8 a(Vig1, Vi) {t} > alvisr, v5){t}, wheret € Z-o  This aigorithm converges to a weight-balanced digraph in
indicates the time. Since we assumed that the weights on @lle ations as demonstrated in Figure 3. In Example 4.8, we

the agents excepf; andv; are zero, the messag&v;) Will gy that, for this example, the distributed approach isemor
come back tov;,, after a finite time, possibly after going efficient than the centralized one .

through some cycles. After that;, ; will choosev; again if
a(Vit1, vip2){t} > a(vit1,vs){t} + w(v;) and will choose
vi+2 Otherwise. Thus, at most, after a finite tirfiee Z-,
we havea(v;11,v;42){T} < a(vit1,vs){T} and the agent  In this section we propose a centralized algorithm for
v;+1 Will choosew; 1 o; thus the claim follows. B constructing a weight-balanced digraph which is esséytial
Remark 3.2 (Convergence rateQdbtaining the conver- similar to the centralized algorithm proposed in [5]. Thama
gence rate of the distributed weight-balanced algorithm is advantageous of this algorithm is that the algorithm only
hard combinatorial problem. We have rough upper boundsses the so-calle€undamental cycle matrixf a digraph.
for this convergence rate and we postpone the details This gives a more systematic approach for constructing a
future work. However, we characterize the time complexityveight-balanced digraph. Moreover, we characterize the ti
of a modified version of this algorithm in Section V. e complexity of this algorithm. In this section we assume that
Example 3.3:(Execution of weight-balanced distributedall the digraphs are strongly semiconnected.

oe—— o
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IV. WEIGHT-BALANCED CENTRALIZED ALGORITHM
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A. Fundamental cycle matrix

Let G = (V, E) be a digraph with vertices andn edges.
We denote the ordered sét- C V x V to be the set of all
ordered pairs obtained by changing the orderszofi.e. if

generate all the rows. If we reduce the cycle matrix by
selecting the independent rows, the resulting matrix ikedal
the fundamental cycle matriand we denote it by (G).

In following, we give a formal definition for the fundamen-
tal cycle matrix. Furthermore, we study an algorithm, addpt
from [8], for computing this matrix. Recall the definition af
breadth-first spanning trd8@FS(G, v) of a digraphG rooted
at v, see [6]. We start by the following definition.

Definition 4.4: Let G = (V,E) be a digraph and let
BFS(G, v) be a breadth-first spanning tree. An edgew) €
E, uw,w € V, is called achord if it is not an edge of
BFS(G,v). We denote byESFS(G,v) C E the set of all

(u,v) € E then (v,u) € E~, whereu,v € V. We call the chords ofG with respect toBFS(G, v).

digraphG = (V, E® E~) the mirror of G and a cycle ol Note that adding a chord to a breadth-first spanning tree
a semi-cycleof G. Note that a semi-cycle is a directed pathdefines a row ofC(G), up to a sign, which consists of the
We have the following definition. chord and some edges of the breadth-first spanning tree. We

Definition 4.1: Let G = (V, E) be a digraph. Theycle
matrix C(G) is an ! x m matrix, where! and m are,

call such a semi-cycleundamental cyclelt is easy to verify
that a digraph withn vertices andn edges hasn — n + 1

respectively, the number of cycles and edges in the digraghords; thus there are: — n + 1 fundamental cycles. We

and fori € {1,...,l} andj € {1,...,m},

1, if the ith semi-cycle includes
edge; with the same directian
—1, if the ith semi-cycle includes
edge; with the opposite directian
0, otherwise

Note that a roww; of C(G), wherei € {1,...,n}, refers
to a cycle of the digraplty if and only if «,;; > 0 for all
je{l,...,m}ora; <O0forall je{1,...,m}. For a
digraphG = (V,E), we say that an edgéu,v) € E is
incident away from: andincident towardv. This motivates
the following definition.

Definition 4.2: Let G = (V, E) be a digraph. Thencident
matrix I(G) is an n x m matrix, wheren and m are,
respectively, the number of vertices and edges adnd for
ie{l,...,n}andj e {1,...,m},

1,  if the jth edge is incident away from
—1, if the jth edge is incident toward
0, otherwise.

[(G)i; =

have the following definition.

Definition 4.5: Let G = (V, E) be a digraph. Afunda-
mental cycle matri¥'(G) is an(m—n+1) xm matrix, where
n andm are, respectively, the number of vertices and edges
of Gandforie {1,...,m—n+1} andj € {1,...,m},

1, if the ith fundamental cycle includes
edge;j with the same orientation,
if the ith fundamental cycle includes
edge; with the opposite orientation,
0, otherwise.
Fundamental cycle centralized algorithmGiven a digraph
G=(V.E),
1) compute a breadth-first spanning tr&FS(G,v),
rooted at an arbitrary vertexe V;
2) compute the set of all chords2FS(G, v) with respect
to the BFS(G, v);
3) compute a fundamental cycle matliXG) by adding

each chord to the breadth-first spannBBS (G, v) and
recording the resulting semi-cycle 6f.

The following theorem reveals the relationship between
the cycle matrix and the incident matrix, see [8] for details

Theorem 4.3:For any digraphG =
C(AIGT =o.
Consider the digraplz = (V, E) in Figure 4, where the
edges are labeled with the sét,...,5}. This digraph
consists of three semi-cycles given by

(101 1 0),
(001 -1 0 1),
(1 1.0 1 1).

(V,E) we have

«
s
Y

B. Weight-balanced centralized algorithm via fundamental
cycle matrix

Let G = (V, E) be a strongly semiconnected digraph. We
have the required tools to propose a centralized algorithm f
computing an adjacency matriA such thatG = (V, E, A)
is weight-balanced. This algorithm is basically similaithe
one of [5]. However, the current algorithm suggests a con-
crete procedure for computing the cycles via a fundamental
cycle matrix.

If we sum the first two semi-cycles, the two edges withVVeight-balanced centralized algorithm. Given a digraph
different orientations cancel out each other, and thus tHe = (V: E),

third semi-cycle will be obtained. We emphasize that two 1) compute a fundamental cycle mat#XG) using the
semi-cycles can be summed only if the common edges fundamental cycle centralized algorithm;

have different orientations. This suggest investigatihg t 2) use this fundamental cycle matrix to compute the cycle
minimum number of rows of the cycle matrix which can matrix C(G);
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Fig. 5. Digraph of Example 4.7, (a), and a breadth-first spantiee that Fig. 6. Adding chords to the breadth-first spanning tree @eoto find a
contains the edges, (b). fundamental cycle matrix.

3) identify the rowsa; of C(G) for which «;; > 0 for  Figure 6. Thus the fundamental cycle matrix is an element
all je{l,....,m}ora;; <Oforallje{l,...,m} of R3*7. We compute the following fundamental cycles
and denote the set of all suehs by S(G);

4) suppose tha$(G) hasp < [ elements, where is the a=(1 10100 0),
number of rows of2(G). ThenW = " |a;|, where B=(0 -1 1.0 1 0 0),
a; € S(G), gives the weights on each edge @fthat vy=(0 1 -1 00 1 1).
makesG weight-balanced;

5) useW to compute an adjacency matrik such that Thus the fundamental cycle matrix is
G = (V,E, A) is weight-balanced.

. . . . 1 1 0O 1 0 0 O
We now gqmpute the time complexity of th|_s algorithm. _ FG) =0 -1 1 0100
Proposition 4.6:Let G be a strongly semiconnected di- 0 1 —-100 1 1
graph withn vertices. The weight-balanced centralized al-
gorithm has the time complexit®(2""). One can compute, using the fundamental cycles, the follow-

a breadth-first spanning tree féf is O(n). If the digraph

Proof: Note that the time complexity of constructinging rows of C(G) which belong toS(G)
G has m edges, then there aren — n + 1 fundamental o= ( 1101000 )’
cycles. In order to construct the cycles of the digraph, one a+f=(101 1 10 0),
needs to find all the linear combination of such fundamental B+y=(0 00 0 1 1 1).

cycles and deted(G). We compute the time complexity of
such computation, which we denote By.cen(G), explicitly. ~ Thus the weight on each edge which makes the dig&ph
Suppose that{a, az,...,am_ns1} are the fundamental weight-balanced is given by

cycles ofG. Then the number of cycles that are constructed W:( 59112 2 1 1 )

with two of these fundamental cycles, not necessarily inde- ’

H —n+1 . . . .
pendent, is at mogt™ ") (note that some the fundamentalone can use this weights to compute the adjacency matrix

cycles can not be added). Similarly, the number of cycleghat makess weight-balanced. o
not necessarily independent, which are constructed: by Example 4.8 (Example 3.3 Cont{onsider the digraph
dm—n+1
fundamental cycles i¢”~""). Thus we have of Example 3.3. This digraph has three chords and thus, using
m—n+1 1 the centralized algorithm and after computing a bread#t-fir
TacerG) = Ters(G) + Y (m et ) : spanning tree, one needs to check nine different combimatio
=2 ¢ of the fundamental cycles. Thus, for this example, the

where we denoted byZgrs(G) the time complexity of distributed algorithm converges faster than the centdliz

computing a first-breadth spanning tree &r Note that we one. ¢
have
ment1 V. WEIGHT-BALANCED MODIFIED DISTRIBUTED
m—-—n-+1 a1
Z . =2 (g —n4 1)+ 1. ALGORITHM
7
=2

We showed in Proposition 4.6 that the weight-balanced
Since we do not allow repeated edges between two verticegntralized algorithm is computationally complex. In this

m < ™t and the claim follows. B section we modify the weight-balanced distributed aldonit
Proposition 4.6 shows that the centralized algorithm cat an algorithm, distributed over the mirror of the digraph,
be computationally very time consuming. which converges quickly to a weight-balanced digraph. The

Example 4.7:(Execution of weight-balanced centralizedimportance of this algorithm is that it can be utilized to
algorithm): Consider the digraph shown in Figure 5—(a)construct a weight-balanced digraph without constructiiveg
where we labeled the edges. A breadth-first spanning tregcles. Furthermore, as we will see in Proposition 5.2, this
that contains edge; is shown in Figure 5—(b). Note that algorithm is much faster than the weight-balanced ceatrli
edgesey, e; and e; are the chords for this example, seealgorithm.
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Fig. 8. The weight-balanced modified algorithm executiorBeample 4.7.
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Weight-balanced modified distributed algorithm. Let G =
(V,E, A) be a strongly semiconnected digraph, where=
{’Ul7 N 7’Un}.

1) Each agenty; can observe the weights of its out-

Fig. 9. The second possible weight-balanced modified alguaréxecution
for Example 4.7. The dash lines show the edges which has beshtas
send messages.

body of the weight-balanced modified algorithm. If after
the 4th iteration of the algorithm the agent would keep
passing its weight to ageft then the algorithm would never
converge to a weight-balanced digraph.

Theorem 5.1:SupposeG = (V, E) is a strongly semi-
connected digraph. Then the weight-balanced modified algo-
rithm converges to a weight-balanced digraph in finite time.

Proof: Assume that an agent, wherev; € V, has a
positive weight in thekth iteration, wherek € Z~o. Thus
in the (k + 1)th iteration, agent; passes its weight to its
neighbors with the least weight. Furthermore, agents with
negative weights are not active, in the sense that they do
not pass their weight to any out-neighbor; thus these agents
act like stationary sinks. Note that for a strongly semicon-

neighbors (the algorithm is assumed to be distributedected digraphz;;lw(vj) = 0, wherew(v;) is defined in

over the mirror of the digrapky).

Equation (3). Since the digraph is strongly semiconnected,

2) At each iteration, agents are able to receive a message agents with positive weights pass their weights until

from one of their in-neighbors.

3) Any agentv, € V with positive weight passes its
weight to only one the out-neighbor with minimum
weight via an edge.

4) If agentv; uses the edg@;,v;) € E to send its weight
to an out-neighborg;; = a;; + w(v;).

5) Multiple-messages ruidf an agent receives more than

one message from its in-neighbors, it adds the receivageight-balanced.

messages to its weight.

6) Fair-decision rule If the agentv; has more than one

the weight reaches an agent with negative weight. The fair-
decision rule prevents any agente V' from passingv(v;)
in a cycle. Since the digraph has finite humber of edges,
after repeating the algorithm for a finite number of iteratio
and at most by passing the weights in some cycles, see
Proposition 5.2, the positive weights will reach the agents
with negative weights and thus the digraph will become
[ ]

We investigate the rate of convergence of the weight-
balanced modified distributed algorithm introduced above.

out-neighbors with the exact same weight, it randomlye make the following observation. Suppose tifat =

chooses one. However, the next timeneeds to choose
between its out-neighbors with the same weight, it wil
choose a new out-neighbor.

In Theorem 5.1 we show that this algorithm converges i
finite time to a weight-balanced digraph. We first execut

(V,E) is a digraph and an agent, wherev; € V, has

B weightw(v;) = r > 0. Then, by the weight-balanced
modified-distributed algorithm, the agent passes the wteigh
g0 an out-neighbor and the process continues until thishteig
geaches an agent with negative weight. Without loss of

this algorithm for Example 4.7. Recall that in this examplegenerality, assume that this weight gets passed through a
after computing the breadth-first spanning tree, one neeBgth to reach an agent; with weight w(v;) = —r, see

to examine nine different combinations of the fundamentdfigure 1. After the next iteration, the next agent might pass
cycles in order to find a weight-balanced digraph. In Figyre the weight to the next agent in the path directly, or after

we labeled each agent with the sft,...,5}, where we
assumed that the initial weight on each edge is one. In Fi

sending it by mistake to a cycle. In the later case, the agent
it will receive the weight- again and by the fair-decision

ure 8, we show that the weight-balanced modified algorithritle, this time it will pick a different out-neighbor. Dereot
converges in three iterations to a weight-balanced digraphthe set of all cycles o&x by cyc(G) and let

Note that agentl has two out-neighbors with the same Cinax(G) = max{diam(G.) | G, € cyc(G)},
weights, namelyl and5. In Figure 9, we show the execution I — {d e
of the algorithm in case agedrtpasses the weight to agent out () = max{dou(vr) | v ’
5; this shows the importance of the fair-decision rule in th&Ve have the following proposition.



Proposition 5.2:Let G = (V,E) be a digraph. The [4] D.Lee and M. W. Spong, “Stable folcking of multiple intefiagents on

time complexity of the weight-balanced-game algorithm balanced digraphs|EEE Transaction on Automatic Controlol. 52,
no. 8, pp. 1469-1475, 1984.

. max 4
Tw-mod-disl G) < dgit (G)dlam(_G)Cmax(G)- [5] L. Hooi-Tong, “On a class of directed graphs - with an agggion to
Proof: The maximum distance between any two agents traffic-flow problems,’Operations Researcivol. 18, no. 1, pp. 87-94,

is diam(G). Suppose a message needs to be sent through 1970
(G) PP 9 %51 F. Bullo, J. Corés, and S. Mamez, Distributed Control of Robotic

?‘ pqth of Iengthdiam(G). _Suppose that all the a;gems Networks Applied Mathematics Series, Princeton University Press,
in this path have the maximum number of out-neighbors 2009. Electronically available at http:/coordinationkanfo.

and furthermore, suppose that all the agents try all thelifl J. P- LaSalle, “Some extensions of Liapunov's second miEthiiRE
Trans. Circuit Theoryvol. CT-7, pp. 520-527, 1960.

other (_)Ut'neighbors (via cycles) before findi_ng the corregly bk Robinson and L. R. FouldDigraphs: Theory and Techniques
out-neighbor. Then, by the above observation, they need Gordon and Breach Science Publishers, 1980.

doFdiam(G)Chax iterations to execute the task. [ |
The following is an immediate corollary of this theorem.
Corollary 5.3: The time complexity of the weight-
balanced modified algorithm i9(n?).

VI. CONCLUSIONS

In this paper, we have proposed three different algorithms
for constructing a weight-balanced digraph from a strongly
semiconnected digraph:

1) the weight-balanced distributed algorithmrunning
synchronously, is developed for computing a weight-
balanced communication network for a group of
agents. We have established the finite-time conver-
gence of this algorithm via the discrete-time LaSalle
invariance principle. Its convergence is illustrated in
different examples. The algorithm is of importance
as weight-balanced graphs play an important role in
variety of cooperative algorithms.

2) the weight-balanced centralized algorithessentially
systematizes the centralized approach in [5] for con-
structing a weight-balanced digraph. We compute the
time complexity of this algorithm and show that it does
not scale well with the size of the network.

3) the weight-balanced modified distributed algorithm
distributed over the mirror of the original digraph,
is developed using the weight-balanced distributed
algorithm. We have also established the finite-time
convergence of this algorithm and characterized its
time complexity, which is substantially better than that
of the centralized algorithm.

Future work will include determining the time complexity
of the weight-balanced distributed algorithm and investi-
gating the connection of the proposed algorithms with the
stability of stochastic systems.
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