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Abstract— Networks of environmental sensors are playing an
increasingly important role in scientific studies of the ocean,
rivers, and the atmosphere. Robotic sensors can improve the
efficiency of data collection, adapt to changes in the environ-
ment, and provide a robust response to individual failures. Their
operation must be driven by statistically-aware algorithms that
make the most of the network capabilities for data collection
and fusion. At the same time, such algorithms need to be
distributed and scalable to make robotic networks capable of
operating in an autonomous and robust fashion. The combina-
tion of these two objectives, complex statistical modeling and
distributed coordination, presents grand technical challenges:
traditional statistical modeling and inference assume full avail-
ability of all measurements and central computation. While the
availability of data at a central location is certainly a desirable
property, the paradigm for distributed motion coordination
builds on partial, fragmented information. This work surveys
recent progress at bridging the gap between sophisticated
statistical modeling and distributed motion coordination.

I. I NTRODUCTION

Scientific studies of environmental phenomena often in-
volve a data collection stage. Samples are taken of a spatially
distributed process of interest, such as a temperature fieldor
chemical concentrations. Combining these samples with a
model, the scientist may make predictions about the process
at unmeasured locations, or inference about the quality and
accuracy of the model. This work reviews some results which
lay the groundwork for cooperative control of mobile sensing
devices based on statistically motivated objectives, whenthe
underlying process is modeled as a random field.

Physical process models may be roughly divided into
two categories: deterministic and stochastic. Deterministic
models are often coupled with a stochastic measurement
error term, e.g., [1], [2], [3], [4], but require that model
parameters and initial conditions be known to a high degree
of accuracy [5]. When this cannot be guaranteed, or when
the parameter space of the deterministic model has high
dimension, it may be desirable to treat the process itself
as in some degree unknown, using a stochastic process
model. A classic example is a fair coin toss. It is clear that
under extremely strict monitoring of the initial conditions
and model parameters, the interested physicist could exactly
model the entire trajectory of the coin, culminating in its final
resting position. The model which is usually used, however,
is to assign a simple probability to each outcome. In this
context, it is easy to allow for the possibility that the coin
is not “fair”. We toss the coin a few times, collect the data,
and the results give us information about the model (or about
future coin tosses). For this reason, stochastic modeling is
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sometimes calleddata driven, as opposed to themodel driven
deterministic modeling. We focus on data driven models, and
particularly their explicit representations of uncertainty.

Our treatment here deals with two important tasks faced
by a network of autonomous sensors: choosing the loca-
tions to take samples and incorporating those data into
the global model. There is a rich literature on the use
of model uncertainty to drive the placement of sensing
devices, e.g. [6], [7], [8]. Most of this research has focused
on choosing from discrete sets of hypothetical sampling
locations, and until recently all of it has made use of
centralized computational techniques. Likewise, the work
on data fusion [9], [10] mostly concentrates on centralized
methods where access to all of the data is allowed. A
related classical problem concerns the fusion of data from
multiple instruments taking noisy samples from the same
deterministic process (e.g., [11]). In cooperative control,
various works consider mobile sensor networks performing
spatial estimation tasks. [12] introduces performance met-
rics for oceanographic surveys by autonomous underwater
vehicles. [13] considers a robotic sensor network with
centralized control estimating a static field from samples with
both sensing and localization error. In [14], a deterministic
model is used, where the random elements come in the
form of unknown model parameters, and localization error
is included. The work [15] uses a Gaussian process model
where all information is globally available via all-to-all
communication. [16] considers optimal sampling trajectories
from a parameterized set of paths. [17] discusses the tracking
of level curves in a noisy scalar field.

Here we present recent work on spatial estimation tasks
that require complex statistical modeling combined with
distributed computation and control. Our aim is to motivate
further research at the intersection of these exciting areas.
The paper is organized as follows. In Section II we describe
some types of sensor networks and provide a framework for
the discussion of distributed solutions. Section III outlines
some of the important features of spatial statistical models
as pertain to the tasks described above. Section V gives a
brief introduction to some recent work in distributed optimal
design and distributed sequential design (choosing locations
and trajectories for sampling).

II. N ETWORK ARCHITECTURE

In the context of environmental sampling, the term “sensor
network” may describe anything from a small number of
fixed position rainfall monitors in the forest to a complex
group of static flotation devices and mobile robots in the
ocean. The literature on stochastic spatial modeling has
traditionally dealt with sensors whose location is fixed in
space. However, the ability to move about the field and



take samples at desired locations has obvious benefits. A
network in this context is a group of agents connected by
wired or wireless communication paths. For our purposes,
we consider networks comprised of two types of agents:
static and mobile. The term “mobile agents” describes robots
with the ability to move, take samples of the spatial process,
and possibly sense their immediate physical environment.
Their storage and computational capabilities are assumed to
be minimal. By “static agents”, we refer to fixed position
computational devices which may or may not take samples.
Because they are static and do not require energy to move
around, they may carry more equipment and thus perform
more in the way of computation and storage tasks. Some
limited range communication is also assumed for both types
of agents. Distributed solutions to global problems are
therefore defined on thecommunication graphof the system.
In the examples below, we deal with networks of agents
in a convex polytopeD ⊂ R

d, d ∈ N. We will call
the mobile robots{R1, . . . , Rn}, n ∈ N, and denote their
locations byP = (p1, . . . , pn)T ∈ Dn. Where static nodes
are mentioned, we will call them{S1, . . . , Sm}, m ∈ N at
locationsQ = (q1, . . . , qm)T ∈ Dm. We assume that robots
have perfect information about their location.

III. A B AYESIAN APPROACH TO SPATIAL MODELS

Let Z denote a random spatial process taking values on
D. Let y = (y1, . . . , ym)T ∈ R

m be m ∈ N samples taken
from Z at corresponding locationss = (s1, . . . , sm)T ∈
Dm, with si = (si, ti), i ∈ {1, . . . ,m}. Given these
data, various models allow for prediction ofZ at any point
in D, with associated uncertainty. In a Bayesian setting,
the prediction takes the form of a distribution, called the
posterior predictive [18]. If the field is modeled as a Gaussian
process, we may write,

Z(s0) = µ(s0) + ν(s0),

where µ : D → R denotes the mean andν : D → R is
a zero mean random field. Here, we assume second-order
stationarity of the spatial process. A spatial random process
δ on D ⊂ R

d is second-order stationary if it has constant
mean, and its covariance is of the formCov(δ(s1), δ(s2)) =
C(s1, s2), whereC : D × D → R≥0 is a positive definite
covariance function which only depends on the difference
s1 − s2. This assumption is valid for spatial fields which
do not exhibit abrupt changes in characteristics, such as
temperature fields over a relatively small region, and is often
used as an experimental first step.

Assuming the covariance ofν is known, the mean of
the posterior predictive distribution corresponds to theBest
Linear Unbiased Predictor, and its variance to the mean-
squared prediction error. If the mean is known, the posterior
predictive distribution ofZ at locations0 given samplesy
is normal with mean and variance, respectively,

ẑS(s0; s) = µ(s0) + cT
Σν

−1(y − µ), (1a)

σ2
S(Z(s0); s) = Var[Z(s0)] − cT

Σν

−1c. (1b)

Hereµ is them-vector whoseith element isµ(si), c is the
vector whoseith element isCov[ν(s), yi], Σν = Σν(s) ∈
R

m×m is the covariance matrix of the vectory. If the mean

is not known, but can be treated as an unknown expansion
on a vector ofp ∈ N known basis functions, we write

µ(s) = f(s)T β, wheref(s) = (f1(s), . . . , fp(s))
T ,

and f(s) is known for alls ∈ D. The posterior predictive is
again normal with mean and variance, respectively,

ẑU(s0; s) =
(

c + FE
−1ξ0

)T
Σν

−1y, (2a)

σ2
U(Z(s0); s) = Var[Z(s0)] − cT

Σν

−1c + ξT
0 E

−1ξ0. (2b)

Here F ∈ R
m×p is the matrix whoseith row is f(si),

E = F
T
Σν

−1
F ∈ R

p×p, andξ0 = f(s0)−FΣν

−1c. These
first two examples of predictive distributions are well known
in the literature under various names.Kriging [9], [5] is a
standard geostatistical technique in which the distribution (1)
corresponds tosimple krigingand the distribution (2) corre-
sponds touniversal kriging. Here, we do not consider the
case when the covariance of the field is not known. In this
situation, few analytical results exist, see e.g., [19].

In the discussion so far, we have left out the notion that the
field may evolve in time. One simple way to treat a dynamic
field is to use the standard spatial methods and treat time as
another dimension. This is particularly useful when the goal
is to predict the value of the field at unsampled locations
over a continuous time domain. If both the samples and the
predictions are to be made at discrete intervals, an alternative
approach may be more appropriate, as we discuss next.

IV. D ISTRIBUTED ESTIMATION

Here, we discuss the problem of incorporating newly
collected samples into the field estimation done by a network
of mobile agents following [20]. Our objective is to provide
individual agents with local representations of the field that
are statistically consistent with the sampled data and take
into account nontrivial correlation effects among samples.
At the same time, we are interested in accomplishing this in
an online and distributed fashion. Once in possession of an
accurate representation of the field, each agent can use this
information for a variety of objectives. Here, we illustrate
this idea in a scenario where the network is interested in
finding the maxima of a physical process of interest.

When samples are available at a single time instant, the
posterior predictive distribution is given by (2). When sam-
ples are available at several time instants, one can extrapolate
these estimators using the so-called Kriged Kalman fil-
ter [21], [22]. Assume the random field is dynamic modeled
as a spatio-temporal process of the form

Z(s, k) = f(s)T β(k) + ν(s, k), (3a)

f(s)T β(k) = b(s)T β(k − 1) + η(s, k), (3b)

where (s, k) ∈ R
d × Z>0. Let us describe each one of

the elements in these equations. The form ofZ is the
same as the universal kriging model described above, except
that β and ν now evolve with time. The functionsb(s) =
(b1(s), . . . , bm(s))T ∈ R

m determining the evolution ofβ
are assumed to be known. Bothν andη are stationary spatial
fields that exhibit temporal variability but have no temporal
dynamics associated with them. Formally, both are zero-
mean Gaussian random fields with separable covariance



Cov(ν(s, k), ν(s′, k′)) = Cν(s − s′) δ(k − k′),

Cov(η(s, k), η(s′, k′)) = Cη(s − s′) δ(k − k′),

whereδ denotes the Dirac delta function. Note that bothν

andη are uncorrelated in time. We assume that the functions
Cν , Cη : R

d → R≥0 have finite ranger ∈ R>0.
After some manipulations, we can combine the equations

that we obtain from (3b) with samples available at the agent
positionsp1(k), . . . , pn(k) at timek as

β(k) = H(k)β(k − 1) + J(k)η(k), (4)

where, for convenience, we have introduced the notation
H(k) = J(k)B(k), J(k) = (F(k)T

F(k))−1
F(k)T , and

B(k) = [b(p1(k)), . . . , b(pn(k))]T ∈ R
n×m,

F(k) = [f(p1(k)), . . . , f(pn(k))]T ∈ R
n×m,

η(k) = (η(p1(k), k), . . . , η(pn(k), k))T ∈ R
n.

Notice that the matricesH and J driving the evolution of
the parameterβ change from one time instant to another
only if agent positions change. LetΣν(k) ∈ R

n×n denote
the covariance matrix of samples made at timek, and let
Ση(k) ∈ R

n×n denote the covariance matrix ofη(k).

A. Sequential parameter estimation via Kalman filtering

With the model (4), the parameterβ can be optimally
predicted via a Kalman filter. Here, instead of considering the
usual Kalman filter recursion equations, we use the equiva-
lent information filter formulation, see for instance [23].

Assumeβ is initially distributed according to a multivari-
ate normal distributionβ(0) ∼ Np(β0,Ξ). Givent, s ∈ R≥0,
let β̂(t|s) denote the estimator ofβ at time t with data
collected up to times, and let P (t|s) denote the associ-
ated mean-squared error. The usual Kalman filter equations
are written in the variables(β̂(k|k − 1), P (k|k − 1)) and
(β̂(k|k), P (k|k)). Instead, we define

â(t|s) = P (t|s)−1β̂(t|s),

and write the information filter equations in the variables
(â(k|k−1), P (k|k−1)−1) and(â(k|k), P (k|k)−1). Initially,
â(0|0) = Ξ−1β0 andP (0|0)−1 = Ξ−1.

The information filter equations have two steps.
Prediction: Using (4), the one-step-ahead prediction at

time k ∈ Z>0 with data collected up to timek − 1 is

â(k|k − 1) =

P (k|k − 1)−1H(k)P (k − 1|k − 1)â(k − 1|k − 1),

with information matrix

P (k|k − 1)−1 =

(H(k)P (k − 1|k − 1)H(k)T + J(k)Ση(k)J(k)T )−1.

Correction: Under our sensor error measurement model,
the optimal prediction at timek ∈ Z>0 with data collected
up to timek can be recursively expressed as

â(k|k) = â(k|k − 1) + F(k)T (Σν(k))−1y(k),

with information matrix
P (k|k)−1 = P (k|k − 1)−1 + F(k)T (Σν(k))−1

F(k),

wherey(k) ∈ R
n denotes the data collectedat timek.

B. Sequential simple Kriging

For k ∈ Z>0, let y(k) denote the samples taken at timek.
Let y(1:k) = (y(1), . . . , y(k)) denote all of the data available
up to timek. For s ∈ R

d, let
c(s, k)T=(Cν(s − p1(k)), . . . , Cν(s − pn(k))),

∇c(s, k)T=(grad Cν(s − p1(k)), . . . , grad Cν(s − pn(k))).

The covariance structure of the spatial field has some im-
portant consequences. On the one hand, theith components
of c(s, k) and ∇c(s, k) can only be non vanishing if
‖s − pi(k)‖ ≤ r. More importantly, the decorrelation in
time of the spatial field and the sensor errors imply that
only the observations collected at exactly timek play a role
in the construction of the conditional predictive distribution
of Z and ∇Z with observations collected up to timek.
Accordingly, conditionally on the data collected up to timek

and the parameterβ(k), the posterior predictive distribution
is given by (1), with mean

f(s)T β(k) + c(s, k)T
Σν(k)−1(y(k) − F(k)β(k)),

and varianceK(0) − c(s, k)T
Σν(k)−1c(s, k).

C. Distributed Kriged Kalman filter

The Bayesian universal Kriging predictor of the spatial
field, which corresponds to the posterior predictive distribu-
tion conditional on the data, can be obtained in an analogous
way as explained above for the simple kriging case, and
hence we do not reproduce it here.

Once the statistical basics are covered, the challenge liesin
developing distributed methods that allow individual agents
to compute the parameter estimates and posterior predictive
distributions in an online fashion. In these computations,
there are several matrix-vector multiplications that involve
quantities that are spatially distributed across the network. To
further complicate things, some of these expressions involve
the inverse of sparse correlation matrices, which are not
sparse any more. Here, we do not provide a comprehen-
sive account of the distributed methods used, but rather
focus on illustrating the main idea in the computation of
F(k)T (Σν(k))−1y(k), necessary to carry out the correction
step in the parameter estimation. Note that the quantity we
are interested in computing can be expressed as

F(k)T (Σν(k))−1y(k) =

n
∑

i=1

rowi(F(k))zi(k), (7)

wherez(k) = (Σν(k))−1y(k) solves the linear equation

Σν(k)z(k) = y(k). (8)

In this way, we have decomposed the computation of the
quantity F(k)T (Σν(k))−1y(k) into two parts: an aggrega-
tion of n quantities, one per agent, and the solution of a
linear equation determined by a sparse matrix.

Each agenti has access to rowi(Σν(k)), y(k)i and to
rowi(F(k)). Knowledge of the first two quantities is all
that is needed to execute a distributed Jacobi-overrelaxation
(JOR) algorithm [24] to solve (8) that provides agenti with
knowledge of the quantityzi. This can then be combined
with rowi(F(k)) to solve (7) via distributed averaging.
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Fig. 1. Distributed gradient ascent cooperative strategyṗi(t) =
E(∇Z(pi(t), t) | y(1:t)), i ∈ {1, . . . , n}, implemented by a robotic sensor
network of n = 14 agents. Individual agents converge asymptotically to
the set of expected critical points of the spatial field. The field has mean
µ(s) = .3+1.2 e−‖s−(.25,.75)‖2

+1.1 e−‖s+(1.25,1.25)‖2

and covariance
structure determined byK(s) = e−5‖s‖2

for ‖s‖ ≤ r = 1.75. We depict
the contour plot of the posterior mean. Initially agents knowβ ∼ N3(0, I3).
The communication radius isR = 2.75, the control authority of each agent
is bounded byumax = .25, and the noise sensor error variance isσ = .15.
The black disks depict the (randomly generated) initial agent positions and
the gray disks depict the agent positions after38 seconds.

Similar ideas can be invoked to produce a fully distributed
implementation of the Kriged Kalman filter, see [20] for
details. Remarkably enough, this procedure also works for
computing the posterior predictive distributions of the gradi-
ent random field associated withZ. Mobile agents, equipped
with this information, can then perform a variety of motion
coordination tasks with direct relevance to the random field.
Fig. 1 illustrates one example of such an application, in
which a network of agents seek optima of a random field.

V. UNCERTAINTY-BASED SAMPLING STRATEGIES

Whether the goal of the experiment is field prediction
or model inference, a Bayesian model such as those in
Section III provides a full accounting of estimation uncer-
tainty. This uncertainty depends on the locations at which
the samples are taken.Optimal design[7] is the process of
choosing locations to sample in order to minimize the result-
ing uncertainty. This can have various meanings, depending
on the goals of the experiment. One might be interested in
minimizing the maximum or average predictive variance over
the region, or in maximizing the generalized variance or
predictive entropy over new sample locations. In general,
the optimal sampling problem is a difficult one. In this
section, we present two regimes and study the location of
their optimizers.

A. Optimal static deployment under near independence

Here we follow [25] to consider the problem of where
to place the agents of a mobile network in the case that a
single sample is to be taken by each. In [26], an assumption
of near independencebetween distinct sampling locations
was suggested as a first step in gathering data in a relatively
large space. The authors consider the maximum variance
over the predictive region of the model (1). Out of a
discrete set of sampling configurations, they show that the

one which minimizes the maximum distance to the nearest
agent from any point in space is asymptotically optimal in
the limit of near independence. Without this assumption of
near independence, even the task of choosing from discrete
locations is NP-hard.

In [25], we consider two performance metrics for optimal
placement of sensor networks over a continuous space based
on simple kriging. We consider the maximum posterior
predictive variance and a novel form of D-optimality over
a bounded region,

M(P ) = max
s∈D

σ2
S(Z(s);P ) (9a)

E(P ) = − |Σν(p1, . . . , pn, γ(p1), . . . , γ(pn))| , (9b)

where γ(pi) denotes the reflection of locationpi over the
nearest boundary ofD. We study the critical points of these
criteria asymptotically, in the limit of near independence.
In general, these objective functions pose nonconvex and
high-dimensional optimization problems. In addition, thefirst
criterion is nonsmooth. Our results are relevant to the extent
that they guarantee that, for scenarios with small enough
correlation between distinct points, circumcenter and incenter
Voronoi configurations are optimal for appropriate measures
of uncertainty. See [27] for details on these configurations.
For the results summarized below, we considerM(k), re-
spectivelyE(k), to denote the functionM, respectivelyE ,
with the correlation raised to thekth power. Ask increases,
the correlation between distinct locations inD decreases
in strength, but retains some aspects of the shape of the
correlation function (e.g., range and smoothness). Theindex
of a configuration is the cardinality of the set of minimum
pairwise inter-agent distances.

• Let Pmcc ∈ Dn be a multi-circumcenter Voronoi config-
uration. Then, ask → ∞, Pmcc asymptotically globally
optimizes M(k), that is, M(k)(Pmcc) approaches a
global minimum.

• Let Pmic ∈ Dn be a multi-incenter Voronoi configura-
tion with lowest index. Then, ask → ∞, Pmic asymp-
totically globally optimizesE(k), that is, E(k)(Pmic)
approaches a global minimum.

The work [27] describes simple, distributed algorithms which
may be used to steer a mobile network towards these multi-
center Voronoi configurations. Fig. 2 shows the results of
some illustrative simulations. In each case, we compare
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Fig. 2. Value of (a)M(k) for multi-circumcenter configuration,
and (b) E(k) for multi-incenter configuration. The multicenter
results are depicted with the (solid) line, and compared against
an approximated global minimum (dashed) arrived at by gradient
descent for each value ofk, and random (dotted) configurations of
5 agents for increasingk. The covariance function is exponential.

the multicenter configurations against a randomly chosen



configuration, as well as against a dynamic approximate local
minimum. This approximate local minimum is arrived at by
running a gradient descent algorithm for each value ofk.

B. Adaptive design by projected gradient descent

When the goal of the experiment is to find the besttra-
jectoriesfor the mobile robots to follow in order to optimize
sampling of a spatio-temporal random field, the problem
becomes even more challenging. In the existing literature,
a standard technique for choosing sampling locations is
adaptive design. This amounts to a one step ahead, greedy
optimization method where sample locations at the next
step are chosen based on information known so far. In the
works [28], [29], [30], we present a framework whereby a
hybrid network of static nodes and mobile agents can sequen-
tially optimize sampling for an approximation of the random
field using a distributed version of the projected gradient de-
scent technique. Assume that the mobile robots take samples
synchronously at discrete timestepsk ∈ {1, . . . , T }, T ∈ N.
Let x(1:k) denote the vector of space-time locations at which
samples have been taken up to timestepk. Between timestep
k andk + 1, Ri moves according to the discrete dynamics

pi(k + 1) = pi(k) + ui(k),

where ‖ui‖ ≤ umax for some umax ∈ R>0. The robots
collaborate with the static nodes to determine the control
vector ui(k). We assume a limited communication radius,
R ∈ R>0, for the robotic agents, with the restriction,

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + rs + umax, (10)

whereCR(·) denotes thecircumradiusof a polytope, andrs

is a maximum radius beyond which the covariance is zero.
This restriction ensures communication between each robot
and nodes whose Voronoi regions are correlated.

We examine two different uncertainty-based optimality
criteria based on the models described in Section III. Here
we use the universal kriging model. The works [29], [30]
extend these results to a related Bayesian model which allows
for uncertainty in the covariance, which we have omitted
due to space constraints. The treatment in all cases follows
a similar pattern. The optimality criteria involve optimizing
at timestepk a function of the positions of thenext set of
measurements. Specifically, we try to

• maximize theentropy of the joint posterior predictive
distribution at the new sample locations, or

• minimize theaverageover the predictive region of the
posterior predictive variance.

In each case, the finite covariance radius allows an approx-
imation of thecentralizedobjective function which may be
distributed over the hybrid network. Here we describe the
process for posterior predictive entropy maximization. The
posterior predictive entropy is a measure of the information
which will be provided about the model by a set of new
locations if samples are taken at those locations. We would
like to choose sample locations at stepk + 1 such that the
entropy is at a maximum. This requires calculation of the
log determinant of the correlation matrix,K, which can not

be done in a distributed fashion. The second order Taylor
series expansion yields an approximation of the entropy,

H(k)(P ) = log det Υ −
1

2
tr
(

(K − I)
2 )

.

The value ofH(k) and of its gradient atP may be calculated
using a combination of the distributed average consensus and
distributed JOR algorithms.

Between timestepk and k + 1, we restrict the robots to
a convex region,Ω(k), defined by the maximum movement
rate and a minimum inter-agent distance. The network may
use the following steps to perform a distributed version of
projected gradient method at timestepk to optimize H(k)

over Ω(k),
• calculateH(k)(P ) and∇H(k)(P ) using distributed av-

erage consensus and distributed JOR
• run a distributed version of an Armijo-type line search

to find a stepsize,α
• find the projection,P ′, on Ω(k) of P + α∇H(k)

• repeat above forP = P ′.
Note that these steps are meant in a distributed way across
the network of static nodes. Thus all information is not
known to all nodes at once. For example,Sj will only know
the partial derivatives ofH(k) corresponding to the robots
within communication range ofVj(Q). Using this projected
gradient ascent algorithm, the network can be guaranteed that
the location chosen for the next set of measurements is at
a local maximum ofH(k) over Ω(k). The overall adaptive
design algorithm for the network then follows these steps:

• at timestepk ∈ {1, . . . , T}, Ri executes the following
– take sample
– send sample and location to nearby nodes
– receive next location
– move to next location before next timestep

• at timestepk ∈ {1, . . . , T}, Sj executes the following
– collect samples and locations from nearby robots
– using the method described above, run the dis-

tributed gradient ascent algorithm to find the next
sample locations

– send resulting next location to each robot inVj(Q)

In simulation, we compared our gradient method against
two a priori methods. The first was a static configuration
where the robots spread out and remain in position. The
second was a naive lawnmower approach, in which the robots
began evenly spaced in the vertical direction and marched
back and forth horizontally across the region. In all cases,
some of the agents dropped communication during the course
of the simulation to illustrate the robustness to failure of
the gradient approach. Fig. 3 shows the resulting objective
function values as a function of timestep for both the entropy
condition and the average error variance condition.

VI. D ISTRIBUTED ESTIMATION AND CONTROL

In mobile robotics, it is well known that performance and
robustness can be improved through cooperative control. To
extend these benefits to the paradigm of sensor networks
using random field models, guidelines must be established
for data collection and representation in such distributed
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Fig. 3. Objective values as a function of timestep with the
static (triangle), lawnmower (diamond), and gradient descent (star)
approaches. (a)̃A(k), run with 5 static nodes and 10 robotic agents.
(b) H

(k), run with 10 static nodes and 20 robotic agents. The
covariance function is exponential, and the model used is a more
general version of the kriging models in Section III (see [29], [30]).

systems. Here, we have reviewed work that provides a basis
for this study, but there is much more yet to be explored.
We briefly outline some exciting research topics below.

Within the context of the Gaussian process model dis-
cussed here, asymptotic results similar to those in SectionV
may be useful in finding optimaltrajectories for sam-
pling dynamic random fields. Other distributed optimization
methods and criteria should be examined, as well as the
asynchronous sampling regime. In addition, the statistical
assumptions within the Gaussian process model should be
challenged. Other established spatial models such as Gaus-
sian Markov random fields and graphical models should also
be examined with an eye towards distributed implementation,

A comprehensive solution to the distributed approach to
data collection in random fields should include development
of new statistical models which take the distributed natureof
the problem into account directly. Recent work in Bayesian
statistics has focused on the use of hierarchical models to
represent non-stationary or even discontinuous random fields.
We believe that similar techniques may be used to combine
accurate process models with the distributed operational
context required for cooperative control.

VII. C ONCLUSIONS

We have motivated the need for statistically aware dis-
tributed algorithms for the estimation and control of robotic
sensor networks. This exciting area of research draws from
cutting edge spatial statistics and the fields of distributed
computation and control. We have outlined some of the main
problems and given examples of recent work on distributed
data fusion and sequential optimal design. We believe the
coming years will see a fertile activity on this area.
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