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SUMMARY

This paper considers autonomous robotic sensor networks takingirageents of a physical process for predictive
purposes. The physical process is modeled as a spatiotemporahrdigld. The network objective is to take
samples at locations that maximize the information content of the data.drhbiration of information-based
optimization and distributed control presents difficult technical challeagestandard measures of information
are not distributed in nature. Moreover, the lack of prior knowledge ersthtistical structure of the field can
make the problem arbitrarily difficult. Assuming the mean of the field is amawi linear combination of known
functions and its covariance structure is determined by a function knpwman unknown parameter, we provide
a novel distributed method for performing sequential optimal designristwork comprised of static and mobile
devices. We characterize the correctness of the proposed algorithexamine in detail the time, communication,
and space complexities required for its implementation. Copy@ 009 John Wiley & Sons, Ltd.
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1. Introduction

Networks of environmental sensors are playing an incrghsimportant role in scientific studies, with
applications to a variety of scenarios, including detectid chemical pollutants, animal monitoring,

and mapping of ocean currents. Among their many advantagiestic sensor networks can improve
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2 R. GRAHAM AND J. CORES

the efficiency of data collection, adapt to changes in thérenmnent, and provide a robust response
to individual failures. The design of coordination algbnits for networks performing these spatially-
distributed sensing tasks faces the major challenge ofjiocating the complex statistical techniques
that come into play in the analysis of environmental proegs3raditional statistical modeling and
inference assume full availability of all measurements egntral computation. While the availability
of data at a central location is certainly a desirable priypéne paradigm for motion coordination
builds on partial, fragmented information. Coordinatidgoaithms need to be distributed and scalable
to make robotic networks capable of operating in an autonusmand robust fashion. At the same time,
these algorithms must be statistically driven to steer #t&vark towards locations that provide the
most informative samples about the physical processes.drk is a step forward in bridging the gap

between sophisticated statistical modeling and distebuhotion coordination.

Consider an experiment in which samples are collected fragreamic scalar physical process
with the goal of estimating its value at unmeasured pointa gpace-time domain. One motivating
example is sampling subsurface ocean temperature withawnous underwater vehicles. The relative
sparsity of samples in such an experiment, see e.g., [1}estg using stochastic methods rather than
deterministic ones, particularly at small scales where-drileen deterministic models may not take
advantage of averaging effects. This can also be a usefubagip if the dynamics of the field are
not well known, require a high-dimensional parameter spagaodel, or require extremely accurate
specification of initial conditions. Autonomous vehicleayrake advantage of a sequential approach,
in which new sample locations are chosen based on informgiined from past samples. This is
known in the statistical literature aslaptive designWe use a Bayesian approach to spatiotemporal
modeling, and treat the field as a Gaussian Process (GP). A& @R infinite-dimensional model in
which any vector of realizations from the field is treatedastly normally distributed conditional on
the space-time positions. Temperature is one example df/tieeof correlated spatial field known to
be well modeled by a GP (e.qg. [2, 3]). In the Bayesian parad@prediction at any point in the field
takes the form of a conditionalistribution, derived from a prior distribution and the sampled data.
GP models are fully specified by mean and covariance fungtiand provide powerful and flexible
tools for modeling under uncertain conditions. The mearviges a smooth “trend” surface, while
small scale perturbations are captured by the covariamaetste. Prior uncertainty about the mean
is commonly handled by treating it as an unknown regressioa eet of known basis functions. A

less common model, which we make use of here, also allowsifon&nown scalar term in the prior
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 3

covariance, enabling estimation of fields in which the déwafrom the mean surface is not known a
priori. From a relatively small number of samples, stat@tmethods generate an accurate predictive
map over the entire space-time domain, complete with a measypredictive uncertainty. This allows
complex surfaces to be estimated with simple models. Anysoresof the utility of sample locations
in such a model should be based on the uncertainty of thetirggektimation, reflecting deviations in
the data as well as the prior uncertainty in the model. Trésgnts a difficult challenge in a distributed

setting, because the predictive uncertainty depends @alples in a nontrivial way.

Literature review. Complex statistical techniques allow a detailed accountuidertainty in
modeling physical phenomena. Of particular relevance te Work are [4], regarding statistical
models, and [5, 6], regarding the application of optimaigiesechniques to Bayesian models. Optimal
design [7, 8] refers to the problem of choosing sample looativhich optimize estimation.

In cooperative control, various works consider mobile senstworks performing spatial estimation
tasks. [9] considers a robotic sensor network with cemedlicontrol estimating a static field from
measurements with both sensing and localization errorebgipg on the goal of the experiment,
different types of information should be maximized [6, 1@].MWe focus on the predictive variance
as a measure of the accuracy of prediction. An alternativiémafity criterion called mutual
information [12, 13] is also effective for predictive puges, but requires that samples and predictions
are made on a discrete space (e.g., a grid). Using mutuaimiatmon, the work [14] addresses the
multiple robot path planning problem by greedily choosingywpoints from a discrete set of possible
sensing locations. [15] chooses optimal sampling trajeetdrom a parameterized set of paths. Here,
instead, we are interested in optimizing in a continuousgtlespace and over the set of all possible
paths. A different problem is considered in [16], where tsbimack level curves in a noisy scalar
field. [17] develops distributed estimation techniques fioedictive inference of a spatiotemporal
random field and its gradient. We make use of some of the tamleldped in the latter paper for
distributed calculations. In [18, 19, 20, 21], the focusnsestimating deterministic fields with random
measurement noise and, in some cases, stochastic evalweordiscrete timesteps. A fundamental
difference with these works is that, in addition to consigguncertainty about the process evolution
over time, we consider fields with uncertainty in its covade structure, i.e., fields in which the
deviation from the mean surface is not known a priori and akeds to be estimated. In between the

specificity of deterministic modeling and the flexibility faflly probabilistic modeling there are other
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4 R. GRAHAM AND J. CORES

alternative methods such as distributed parameter syg§&2hswhich introduce possibly correlated
stochastic parameters into an otherwise deterministicbmthis paper, the process itself is treated as
random. This allows for a simpler model and more prior uraiety, and places the focus on estimation
as opposed to inference. Complex dynamics and spatialticariare accounted for with space-time
correlation instead of explicit partial differential edioas. In part to cope with the additional burden
of spatial uncertainty, we introduce a hybrid network otistaomputing nodes and mobile sensors.
An alternative approach to the spatiotemporal GaussiaoeBsois the Kriged Kalman filter [23, 24]
approach, which treats the process as a spatial GP withetistamporal evolution governed by a
Kalman filter. Instead, we use an integrated space-time hiieause it is more general, and because
the treatment for our purpose is simpler. Of the above rateg, those which consider random field
models do so under an assumption of known covariance. To mawlkdge this is the first work in
the cooperative control field which allows for prior uncértsiin the covariance of the spatiotemporal
structure as well as the mean. We make use of a model derij28]irwhich is the only spatial model
we are aware of that makes a direct analytical connectiond®et prior uncertainty in the covariance
and the resulting predictive uncertainty. Aside from thigd®al or derivatives, the common practice
when confronted with unknown covariance is to either runpasste estimation procedure and then
treat the covariance as known, or to use simulation methods as Markov chain Montecarlo to
estimate the posterior distribution. The work [26] addessa method of choosing sample locations
from a discrete space which are robust to misspecificatioth@fcovariance. Another method for
handling unknown covariance has recently grown out of thalogation-exploitation approach of
reinforcement learning (see, e.g. [27]). The work [28] &xpthis approach to the spatial estimation
scenario by breaking up the objective into an exploratianponent which focuses on learning about
the model in a discretized space and an exploitation commdnewhich that knowledge is put to
use in optimizing for prediction. Here, we require no disizadion and we take full advantage of the
mobile capabilities of networks of autonomous sensors.v@uk is based in part on previous material
presented in [29] and [30].

Statement of contributions. We begin with a widely accepted Bayesian model for the ptexticof
a spatiotemporal random field, designed to handle variogeeds of knowledge about the mean and
covariance. The predictive variance of this model can bewrias a scaled product of two components,

one corresponding to uncertainty about the covariance effigld, the other corresponding to
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 5

uncertainty of the prediction conditional on the covarrur first contribution is the development of
an approximate predictive variance which may be calculafédently in a sequential and distributed
manner. This includes introducing a scheduled update otsfienated covariance parameter based
on uncorrelated clusters of samples. We introduce thresildesapproximation methods which
trade off accuracy for computational burden. To our knogkdhone of these approximations have
been examined for this particular optimization approadimoagh one of the methods is similar to
the exploration-exploitation approach used by [27] to ropte for a different information criterion
with different model assumptions. Our second contribuitthe characterization of the smoothness
properties of the objective function and the computatioitsafradient. Using consensus and distributed
Jacobi overrelaxation algorithms, we show how the objedtimction and its gradient can be computed
in a distributed way across a network composed of robotio@gend static nodes. This hybrid network
architecture is motivated in part by the heavier computaficapabilities of static agents and in part
by the spatial structure of the problem. Our third contiitnuis the design of a coordination algorithm
based on projected gradient descent which guaranteesemaisead locally optimal data collection.
Due to the nature of the solution, optimality here takes attoount both the unknown parameter in
the covariance and the (conditional) uncertainty in thedigteon. Finally, our fourth contribution is
the characterization of the communication, time, and spaceplexities of the proposed algorithm.
For reference, we compare these complexities against e afra centralized algorithm in which all

sample information is broadcast throughout the networlaah etep of the optimization.

Organization. Section 2 introduces basic notation and describes thestitatimodel. Section 3
states the robotic network model and the overall networleabje. The following two sections
present the main results of the paper. Section 4 introddwesljective function, with attention to
its smoothness properties, and discusses how the netwarknalie the required calculations in a
distributed way. Section 5 presents the cooperative gydi@ optimal data collection along with

correctness and complexity results. Section 6 contains@uelusions.

2. Preliminary notions
LetR, R, andR>( denote the set of reals, positive reals and nonnegative, resipectively, and let
Z~( andZx( denote the sets of positive and nonnegative integers. Wateley | x| and[z] the floor
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6 R. GRAHAM AND J. CORES

and ceiling ofz € R, respectively. Fop € R? andr € R+, let B(p, r) be theclosed ballof radius

r centered ap. We will generally use upper case to denote vectors and eeatrivith the exception of
the correlation vectoidk, and basis function vectof, which are lower case to distinguish them from
the matriceK andF (see Section 2.2). Givelil = (uy,...,uq)", a € Zg, andV = (v1,...,vp)7,

b € Zo, we denote byU,V) = (uy,...,uq,v1,...,0)" its concatenation. We denote ByS2)
the collection of finite subsets 61. Letip : (R?)" — F(R?) be the natural immersion, i.ei5(P)
contains only the distinct points iR = (p1, ..., pn). Note thatir is invariant under permutations of
its arguments and that the cardinalityigfps, . . ., p,,) is in general less than or equalsio

We consider a convex regidd C R, d € Z-,. The assumption of convexity is a requirement for
projected gradient descent (see Section 2.1)het= D x R>( denote the space of points oi@rand
time. Letprojg, : R™ — 2 denote the orthogonal projection onto theQet

projq () = argmin [l — y/.

yeEN

Let dist : R? x F(RY) — R denote the (minimum) distance between a point and a set, i.e.
dist(s, ) = mingeq ||¢ — s||. With a slight abuse of notation, for two convex sdis, 22, we will
write the minimum distance between points in the two setslias(2;, Q2) = minycn, dist(p, Q2).
The e-contraction of a set(, for ¢ > 0, is the setQen. = {q€ Q| dist(g,bnd Q) > €},
wherebnd Q denotes the boundary 61. For a bounded set C R?, we let CR(f2) denote the
circumradiusof €, that is, the radius of the smallegtsphere enclosing). The Voronoi partition
V(S) = (V1(9),...,V,(9)) of D generated by the point$ = (s1,...,sy,) is defined byV;(S) =
{geD]||lg—si|l <llg—s;ll, Vj # i}. EachV;(S) is called avoronoi cell Two pointss; ands; are
Voronoi neighborsf their Voronoi cells share a boundary.

We uselmin(A4) and \max(A) to denote the smallest and largest eigenvalue of the squetrexm,
respectively. We lep(A) denote the spectral radius 4f det A the determinant ofi, [A];; the (4, j)th
element of4, and coj(A) denote théth column ofA. Let0;, ; denote the x j zero matrix (or vector
if eithers or j is 1). If the dimensions are clear from the context we may omistiiescripts and use
Given a partitioned matrix4d = [ﬁ; ﬁ;g |, we denote by(A;; |A), respectively( Ay, |A) the Schur

complement ofd, 1, respectivelydss in A, i.e.,
(A11 |A) = A22 — A21A;11A12 and (A22 |A) = AH — A12A§21A21.
Table | provides an overview of notational conventionsadtrced in this section.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 7

Notation Description
d Spatial dimension of experiment region
D Convex spatial region where the experiment takes place
D, Space-time domain @ over the entire experiment
la], [a] Floor and ceiling ofz
B(p,r) Closedd-dimensional ball of radius centered ap
projo(s) Orthogonal projection of onto{2

dist(p, ), dist(Q1, 22) | Minimum point-to-set and set-to-set distance

ir(P) Natural immersion of vectaP (set of distinct points)
F(Q) Collection of finite subsets a?
Qetnie Thee-contraction of2
CR(Q) Radius ofsmallesti-sphere containing)
V(S) Voronoi partition generated hy
Vi(S) The:th cell in the Voronoi partition)’(.S)
Amin(A4), Amax(4) Extremal eigenvalues of square mattik,
p(A) Spectral radius ofl
det A Determinant ofd
[A];; Elementi, j of matrix A
(B|A) Schur complement of submatrE in matrix A

Table I. Notational conventions.

2.1. Projected gradient descent

We describe here the constrained optimization techniqoevkras projected gradient descent [31] to
iteratively find the minima of an objective functidn: R™ — R>(. Let(2 denote a nonempty, closed,
and convex subset &, m € Z~ . Assume that the gradieRF’ is globally Lipschitz orf2. Consider

asequencéxy} € Q, k € Z(, which satisfies
ZTp+1 = projq (xp — iy VF(xy)), 1 € Q, Q)

where the step sizey, is chosen according to thaNe SEARCH ALGORITHM described in Table I,

evaluated at = .
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8 R. GRAHAM AND J. CORES

Name: LINE SEARCH ALGORITHM
Goal: Determine step size for the Sequence (1)
Input: x €N

Assumes. 7,60 € (0,1), max steprmax € R>o
Output: a € Ryo

1. o := amax
2: repeat
3. Znew:= projq (z — aVF(z))
@ = § |z — znewl|” + F(znew) — F(2)

Y

a:=ar

4

5. ifw > 0then
6

7

until w <0

Table Il. LINE SEARCH ALGORITHM.

In Table Il, the grid sizer determines the granularity of the line search. The toleg@gnhmay be
adjusted for a more (largé) or less (smalle#) strict gradient descent. With> 0, the LINE SEARCH
ALGORITHM must terminate in finite time. The Armijo condition (st&pensures that the decrease in
F is commensurate with the magnitude of its gradient. A seceigny, }2° | obtained according to (1)

and Table Il converges in the limit [31] &— oo to stationary points of".

2.2. Bayesian modeling of space-time processes

Let Z denote a random space-time process taking valugd.ohetY = (y1,...,y,)" € R" ben €
Z~o measurements taken frofh at corresponding space-time positiois= (zy,...,z,)7 € D7,
with z; = (s;,t;), i € {1,...,n}. Given these data, various models allow for predictio ait any

point in D., with associated uncertainty. Optimal design is the prapedf choosing where to take
measurements in order to reduce the uncertainty of thetigstatistical prediction. Since prediction
uncertainty drives the design procedure, it should be neada$ accurately as possible.

In a Bayesian setting, the prediction takes the form of arilligion, called the posterior
predictive [32]. One advantage of a Bayesian approach ispghemeters such as the mean and
variance of the field may be treated as random variablesyingrforward uncertainty which informs
the predictive distribution. We assume thatis a Gaussian Process. This means that any vector of

realizations is treated as jointly normally distributedhditional on unknown parameters, with mean
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 9

vector and covariance matrix dictated by the mean and cowveei functions of the field. Thus a
prediction made after samples have been taken is the rdsctinditioning the posterior predictive
distribution on the sampled data. When this conditional grit distribution is analytically tractable,
as in the case of the models presented here, the resultimgaabpprovides two powerful advantages
to optimal design. First, there is a direct and (under ceteghnical conditions) continuous map from
the space-time coordinates of realizations (data and gifed) to the predictive uncertainty. Second,
the joint distribution of predictions and samples allow ditioning on subsets of samples to see the

effect, for instance, of optimizing over a single timestep.

If the field is modeled as a Gaussian Process with known coveej the posterior predictive mean
corresponds to thBest Linear Unbiased Predictpand its variance corresponds to the mean-squared
prediction error. Predictive modeling in this context iteofreferred to in geostatisticssimple kriging
if the mean is also known, emiversal krigingif the mean is treated as an unknown linear combination
of known basis functions. If the covariance of the field is kiwbwn, however, few analytical results
exist which take the full uncertainty (i.e., uncertaintytiire field and in the parameters) into account.
We present here a model [4] which allows for uncertainty & ¢bvariance process and still produces
an analytical posterior predictive distribution. We assuirat the measurements are distributed as the

n-variate normal distribution,

Y ~ Norm, (F'3,0°K). )

Here 3 € RP is a vector of unknown regression parameters,c R is the unknown variance
parameter, and is a correlation matrix whosé:, j)th element isK;; = Cory;,y;]. Note that

K is symmetric, positive definite, withh’s on the diagonal. We assume a finite correlation range
in space;s € R-o, and in time,r; € Rxq, such that if||s; — s;|| > rsor |[t; — t;| > m, then
K;; = K;; = 0. For gradient calculations, we also assume that the ctioelmaps; — K;; is C?
(which implies that; — K;; is alsoC?). In many kriging applications, an assumption of secordkor
stationarity restricts the covariance between two santplesfunction of the difference between their
locations. Instead, we make no restrictions on the corogldtinction itself, beyond the finite range
and continuous spatial differentiability. The matkxis determined by a set @f € Z~ o known basis

functionsf; : D. — R evaluated at the space-time locatiotisi.e.,
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10 R. GRAHAM AND J. CORTES

filz) o fi(za)

fo(@r) oo fplan)
We will also usef(z) = (fi(z),..., fo(z))T € RP to denote the vector dime-dependenbasis
functions evaluated at a single pointin. It should be pointed out here that the standard approach in
kriging is to use basis functions which do not change withetiM/e include the possibility of space-
time basis functions for completeness, and because thepammonly used [33] in the related practice
of “objective analysis” used in atmospheric sciences [Bdnsure an analytical form for the posterior

predictive distribution, we assume conjugate prior distiions for the parameters,

Blo?* ~ Norm,, (ﬁo, UZKO) , (3a)
2 -1 (V gV
o2 ~T (5,7). (3b)

Herefsy € R?, K € RP*P andq, v € Ry are constants, known aisning parametergor the model,
andI'~!(a,b) denotes the inverse gamma distribution with shape parameted scale parametér
(see, e.g. [35]). Since it is a correlation matrix, it shobédnoted thak, must be positive definite. A

common practice in statistics is to uKg proportional to the identity matrix.

Proposition 2.1 (Posterior predictivedistribution) Under the Bayesian mod€PR), the posterior
predictive atrg € D, is a shifted Students t distribution (see, e.g. [35]) with n degrees of freedom,

with probability density function, fot = Z(x),
v4+n+1

3 (z-EEY.XD* ) 7
p(2]Y, X) x Var[z]Y, X] <1+ (V+n_2)var[z3/,X]>

Here, the expectation is given by
E[2]Y, X] = (f(z0) - FK'k)" 87 + K"K"'Y,
Bl=E+K;") (FK 'Y +K;'5),
whereE = FK~!FT andk = Cor]Y, 2] € R". The variance is given by
Var[2Y, X] = ¢(Y, X)¢(z0; X),
$(wo; X) = Corfz, 2] — kK"K 'k + &7 (K;' +E) ' &,
& = f(zo) — FK ™'k,

oY, X) = (qu + (v —FT8)T (K + FTKF) (v — FTﬁo)) .

v+n-—2
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 11

The proof of the proposition follows from the application Bdyes Theorem to the model given
by (3). Alternatively, it can also be derived from resultg4fp and [25] using a technique similar to
the one used later in the proof of Proposition 1.3 in ApperidiXote that sincd, andK are positive

definite, the quantities(z(; X') andp(Y, X) are well posed.

Remark 2.2 (Termsin the posterior predictive variance) Note the form for the posterior predictive
variance in Proposition 2.1 as a product of two terms. Thetérsn, (Y, X), is the posterior mean of
the parameter?, given the sampled data. We refer to it asslggna meanThe second termg(zo; X),
can be thought of as the scaled posterior predictive vagi@oaditioned orr2. We refer to it as the

conditional variance .

The conditional variance is very close to what the predéctigriance would look like it2 were
known, as we show next. The following result may be derivecapplying Bayes Theorem to the

model specified by (2) and (3a), witi? treated as known.

Proposition 2.3 (Kriging variance) If the variance parameter? is known, the result is theniversal

kriging predictor and the posterior predictive variance takes the form,
Varyk[2|Y, X] = 0% (Corfz, 2] — k" K 'k + (L E~ &) .

If, in addition, the mean of the field is known, the result &stimple kriging predictgrand the posterior

predictive variance is given by,
Varsy[z|Y, X] = o? (Cor[z, z] — kTKflk) )

Remark 2.4 (Extension of subsequent resultsto kriging) The simple and universal kriging results
are simplified versions of our overall model, and resultsnfithe rest of this paper may be applied
to those models with minimal modifications. An exceptionhattwhen approximatingaryx using
subsets of measurements, care must be taken to ensureosedpess. Specifically, an assumption that

n > p is required to ensure that the matfxs nonsingular. .

Table 11l provides an overview of notational conventionsaduced in this section.

2.3. Tools for distributed computation

Consider a networks, of m nodes with limited communication capabilities. We wiite= (N, E),

where N= (Ny,...,N,,) denotes the vector of nodes, aftthe set of communication edges (i.e.,
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12 R. GRAHAM AND J. CORTES

Notation Description

X, x; Vector of spatiotemporal coordinates of samples, elemiecardinate vector|
Y,y Vector of sample values, element of sample vector

E[A], Var[A] | Expectation and variance of random vector

Coftla, b] Correlation between random variables (or vectarahdb
z Random space-time process of interest
K Sample correlation matrix
k Samples to prediction correlation vector
F Matrix of basis functions evaluated at sample locations
f Basis vector evaluated at predictive location
&o Generalized least squares error estimafifigm F
I6; Unknown mean regression parameters
Bo, Ko Prior mean vector and correlation matrix®f
o? Unknown variance scalar parameter
q,v Tuning parameters of prior distribution fof

Predictive variance conditional er? (“conditional variance”)

® Posterior mean of? (“sigma mean”)

Table Ill. Statistical notation.

(¢,7) € Eif N; and N; can communicate). We are only concerned with connectedgr@e., graphs
in which every vertex is connected to every other vertex \saguence of edges). We will make use of

thedegreedeg,, diametey diamg, andnumber of edgedidg of Q defined as,

degy = max degq (7 diamg = max Lin(2, 7 Edq = |E|, 4
Bo = _max  dega() o= max (L) Edo=[El @

where we have used,,;,(i,j) to denote a minimum length path between verticeend j, and
degn (i) =|{j € {L,...,m} | (4,5) € E}| the degree of node

Here we briefly describe some tools for distributed compenat Leta;; € {0,1}, 4,5 €
{1,...,m} belif (i,j) € E, and0 otherwise. Leb = (by,...,b,)T € R™, C = [¢;;] € R™*™, and
assume nodéeknowsb; and theith row of C. Additionally assume that;; # 0 and, fori # j, ¢;; # 0
if and only if (¢,j) € E. As an example, one can think 6f = K andb = k, with the notation of

Proposition 2.3. The correlation matd& has a sparsity structure determined by the physical distanc
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 13

of samples from each other. Under these assumptions tlegvfoly results hold.

JOR: The network can compute the vectgr = C~'b via a distributed Jacobi overrelaxation
algorithm [17, 36], formulated as the discrete-time dyraahsystem,
h
gall 4+ 1) = (1= R = (D i) — i), (5)
T
forl € Z>o andi € {1,...,m}, wherey(0) € R™ andh € (0, ﬁ(@) At the end of the

algorithm, node knows theith element ofC' ~1b.

Discrete-time average consensus: The network can compute the arithmetic mean of elements of
via the discrete dynamical system [37],
vl +1) = zi(1) + € ai;(ai(l) — z;(1)), z(0) = b,
J#i
wheree € (0, @). At the end of the algorithm, all nodes kno@w%.

Maximum consensus: The network can calculate the maximum value of elementswid a leader
election algorithm [38]. Each node sends the current egtimithe maximum to all neighbors,
then updates its estimate. If the process is repeated a mwhbmes equal to the diameter of

the network, then every node will know the maximum.

The first two results above are only exact asymptoticallycbnvergence is exponential with time.

3. Problem statement
Here we introduce the model for the robotic agents and staties, and detail the overall objective.

3.1. Robotic sensor network model

We introduce a hybrid network comprised of mobile sensotsstatic nodes. This model provides a
stable communication structure, allows for integratiothef predictive variance over the entire spatial
domain, and reduces the computational burden on the mohiie. Consider a groupNy, ..., N,,}

of m € Z-, static nodes at spatial locatios = (q1,...,q¢,)" € D™, and the Voronoi partition,
V(Q) generated by them. Nvill be responsible for approximate prediction over theiead’;(Q). In

addition to the static nodes, consider a grdifa, ..., R,,} of n mobile robotic sensor agents. The
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14 R. GRAHAM AND J. CORTES

robots take point samples of the spatial field at discret@ims of time inZ>,. Our results below are
independent of the particular robot dynamics, so long ak agent is able to move up to a distance
umax € R between consecutive sampling times. Since the focus ofvibrik is the online planning of
optimal sampling paths, any bounded delay incurred by nétwommunication or calculations may
be incorporated into this maximum radius of movement betvssenpling instants. Bounds on such
delay may be inferred from the complexity analysis in Secbadl. The communication radius of the
robots is alsocom. If there is a chance that;Rwill be within correlation range oV;(Q) after moving

a distance otima (i.€., at the following sample time), then, kust be able to communicate withy R

To that end, let

Teom > ie{I{laXm} {CR(V;(@))} + rs + umax- (6)

Among all the partitions oD, the Voronoi partition/(Q) ensures that (6) is satisfied with the smallest

communication radius. Figure 1 illustrates the commuivcatequirements of the hybrid network.

The robots can sense the positions of other robots withis@miie of2umax. At discrete timesteps,

Figure 1. The static nodes are depicted as filled boxes, with the Vorortidiggaboundaries as solid lines. Each
node can communicate with its Voronoi neighbors, and with any mobild wititin a distance of s+ umax (dotted
circle) of the Voronoi cell (in the plotV. and N3 can communicate wittR; ).

each robot communicates the sample and spatial positiortat s10des within communication
range, along with the positions of any other sensed robdts.nbdes then compute control vectors,
and relay them back to robots within communication rangee iFhplementation does not require
direct communication between robots. We refer to this lylmetwork model afQnyorig, and the

communication network of just the nodes@g. Note that bottQnywig andQy are connected networks.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 15

3.1.1. Voronoi contraction for collision avoidancdn addition to the maximum velocity and the
restriction toD, we impose a minimum distance requirement R, between robots for collision
avoidance. Consider the spatial locatidhs= (p1, . .., p,) of then robotic agents at theth timestep.
DefineQEk) = (Vi(P))etnw/2 N B(pi, tmax), where(V;(P))cn., /2 denotes the -contraction of; (P).
Foreachj #i € {1,...,n},we havedist(QEk), ng)) > w. Between timestepsandk+1, we restrict

R; to the regiorﬂgk). Figure 2 shows an examplel? of this set. The region of allowed movement of

Ro

Ry

Figure 2. Example contraction regi@i’” (dashed) with Voronoi partition boundaries (solid) for comparison.

all robotic agents at timestépe Z> is then the Cartesian product of the individual restricdiare.,
Q) =TT, 0% c (RY)". Note that eack* is the intersection of sets which are closed, bounded,
and convex, and hence inherits these properties, whiclauerni also inherited bf2(*). Further note
that computation of the Voronoi partition generated by ablats is not required, only the partition
boundaries between adjacent robots separated by lesQihan We assume that the regitﬂf’“) is
reachable between stepsandk + 1. For vehicles with restricted dynamics, minimal modifioas

allow extension of these results to any nonempty, convexeﬁulrmgk).

3.2. The average variance as objective function

For predictions over a spatiotemporal region, the averagance is a natural measure of uncertainty.

Using Proposition 2.1, we define the average over the reditireqosterior predictive variance,
A=Y, X) / / #((s0,t0); X) dto dso. (7)
DJT

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@009;1:1-2
Prepared usingncauth.cls



16 R. GRAHAM AND J. CORTES

Here,Y ¢ (}R")’Cmax is a sequence of samples taken at discrete tiffies. ., kmax}, kmax € Zso,

at space-time location& € (D")"™ We takeT = [1,kmad to be the time interval of interest,
indicating that the goal of the experiment is to develop dimede of the space-time process over the
entire duration. Other time intervals may be of interestiffecent experiments. Their use follows with
minimal changes to the methods described here.

One would like to choose the sample locations that minimize Since samples are taken
sequentially, with each new set restricted to a region netrd previous, and since the sigma mean
depends on the actual values of the samples, one cannotysoppinize over(D?)*m=x a priori.
Consider, instead, a greedy approach in which we use paglesto choose the positions for the next
ones. At each timestep we choose the next locations to nerithie average posterior variance of the
predictor given the data known so far. In Section 4, we dgvalsequential formulation of the average

posterior predictive variance and discuss its amenalditistributed implementation ovelnyprig.

4. Distributed criterion for adaptive design

In this section we develop an optimality criterion to maxilpaeduce the average predictive variance

at each timestep. We begin by introducing some notationthitielp us make the discussion precise.
LetY® € R, k € {1,..., kmax}, denote the samples taken at timestept space-time positions

X®) e pr.Letykike) = (yk) |y (k2)) € Rrlka=ki+1) k< k,, denote the vector of samples

taken over a range of timesteps, at positiai§:+2) = (x k) . x(*2)) ¢ prika—kit) At stepk,

the sampled”(1:*) have already been taken. We are interested in choosingblpatitions,P € Q%)

at which to take the next samples. To that end Xét*+1 : Q®) — DM*) map a new set of

spatial locations to the vector of spatiotemporal locaishich will result if the(k + 1)th samples are

taken there, i.e X 1D (P) = (X(1%) (P, k + 1)). The adaptive design approach is then to use the

samples that minimize the average prediction variauoctr,
A(k}) (P) _ @(Y(l:k+1),X(1:k+l)(P))/ / QS((S(),t(]);X(l:k—i_l)(P)) dto dso. (8)
DJT

This sequential formulation of the problem allows us to us& pneasurements without worrying about
the ones at steps after-1. However, efficient distributed implementation still s2rf§ from three major
obstacles. First, the spatially distributed nature of ttebfem implies that not all sample locations are

accessible to any given agent at any given time. Secondsioveof then(k+1) x n(k+1) correlation
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 17

matrix, which grows withk?2, quickly becomes an unreasonable burden. Finally, theasigian also
depends on the actual values of the samples atistep, which are not known until the measurements
are taken. We handle these problems through a series obapations, first to the conditional variance
in Section 4.1, then to the sigma mean in Section 4.2, resyittian approximation of the value @f*)

which is both distributed in nature and computationallyogffit.

4.1. Upper bound on conditional variance

We seek an efficient approximation of the conditional vareterm ((so, to); X 11 (P)) in (8). As
noted in Remark 2.2 represents the direct effect of the sample locations onréxigtive uncertainty
(i.e., conditional orv2). The network of static nodes provides a convenient metbhoddlculating the
spatial average. The average over the entire region mayhshmepwritten as the sum of averages over
each cell in the Voronoi partition generated by the statidaso As those samples which are spatially
near a given cell have the most influence on reducing theneeiaf predictions there, we consider
usinglocal information onlyin these regional calculations. Likewise, the interacti@tween current
samples and those far in the past is minimal, and we resttientéon to recent timesteps to avoid
the problem of growing complexity. The following result g&van approximation of the integrated

conditional variance which may be calculated®y based on local information only

Proposition 4.1 (Approximate integrated conditional variance) LetXJ(’““_L"‘J:k“)(P) denote an
ordering of the set of past or current space-time locatiomsedated in space td;(Q) and in time to
k + 1 such that

ir (Xj(.k“_L"‘J’k“)(P)) - {(s,t) € i (X<11’€+1>(P)) | dist(s, V;(Q)) < rsandk +1 —t < rt} .

Let (;S;k) : D. x Q) — R map a prediction location:y € D, and a vector of potential spatial
locations to sample? € Q%) to the conditional variance of a prediction madesat using only the

samples at space-time locatioAg* !~ l/#+) p)

/ /¢((so,to);x<1:k+1>(P))dto dso < Z/ /¢§’“)((50,to);P) dto dso.
DJT =17 Vi@ JT

. Then the following holds,

Proof. Note that aIthougI:K;kH_ rJ:k+1) (P) is not unigue, the invariance of the conditional variance
to permutations of the sample locations ensures uniqumfas;(mo; P). The result follows from

Proposition 1.2 in Appendix |m
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18 R. GRAHAM AND J. CORTES

4.2. Approximate sigma mean

In this section, we describe our approach to deal with theaimean ternp(y (1:++1) | x (1:k+1)( py)

in (8). Note that the effect of the sigma mean on predictiomdirect, and its value has the same
influence on predictions regardless of the predictive locatAs such, we do not use spatially local
approximations as we did for the conditional variance. Hmreto avoid the problem of complexity

growth, we use samples from only a subset of the timestepgli$@ess this next. Subsequently, we

address the issue of unrealized sample values by using aajjead least squares estimate.

4.2.1. Incorporating new data.Here we consider approximating the valuegfs calculated with
samples from a subset of timesteps. There are various redspmsing different sample subsets
depending on the field under study, the objectives of the raxjgat, and the desired accuracy of
optimization. Sincep is invariant under permutations of the sample vector, theeifip ordering is
irrelevant. Proposition 4.2 serves as the basis for chgdabim samples to include in an approximation

of the sigma mean. The proof follows from (9¢) in Lemma 1.3 ipp&ndix I.

Proposition 4.2 (Approximate sigmamean) LetY; € R™ andY; € R"2 denote two sample vectors
of lengthsny, ny € Z~q, and letY = (Y7, Y3). Letys = E[0?|Y3] denote the value of the sigma mean
conditional on only the samples ¥%, andy = E[0?|Y] the value conditional on the whole sample
vectorY'. Then,

yna =2 (i = EAIYa) Vi Y] (% ~ EiIYa)
v4+ng+ng —2 v+ng+ne —2 ’

<P=s@2(

whereE[Y;|Y2] and Var[Y;|Y>] denote the conditional expectation and variance, respelsti ofY;

givenY; (see Proposition 1.1 in Appendix I).

This result contains some important implications with extpto the optimization problem. First,
if we use the full value ofp(Y (%% X(1:0)(P)) = E[o?|Y(¥)] in our optimality metric at each
timestep, and all steps are optimized with respect to thissme, the new information gained at later
steps diminishes significantly, while the amount of effequired to glean that information increases.
Second, the additional information added by includifgis directly related to how well; may be
estimated fronts.

These observations lead us to suggest the following thrategtes for choosing samples to use in

the approximation of the sigma mean.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 19

Exploration-exploitation: The diminishing returns suggest using an explorationastation
approach [27]. Here a block afk € {1,...,kmax} Sample steps at the beginning of the
experiment designates an exploration phase, during whiekiggma mean is taken into account
in the optimization. Subsequent iterations constitute xploitation phase in which the sigma

mean is treated as a fixed constant and we optimize only ttditemral variance.

Recent block: The second strategy is to always use the most reggrgample steps. This increases
the computational burden over the exploration-expl@tatpproach, but ensures that each step

takes the unknown covariance into account in optimization.

Block update: A third choice is to use select blocks ik timesteps for scheduled updates of the
sigma mean. Letsip € Z be a fixed number of timesteps to skip between updates. The
advantage of this method in reducing computational coniglewmes from an assumption that

tskip > [rt] — 1, resulting in a block diagonal correlation matrix.

These three approximation methods trade off computatimmahplexity for accuracy. The
appropriateness of each method depends on the specificaegits of the scenario. In all three cases,
the maximum size of the correlation matrix which must beliteeisntyk x ntpk. Furthermore, using
Lemma 1.3, it can be seen that this matrix inversion is thetntomputationally intensive part of
calculating the sigma mean. Therefore, using any one oéttieee methods, we avoid computational
complexities which grow out of proportion to the informatigain. However, we still have the problem
that the sigma mean includes sample values which have notalken yet. We address this issue in the
next section. To avoid unnecessary notation, we assumaghowit the sequel that all available samples
are used to calculate®). To accommodate the approximations outlined in this sectids necessary

only to replace them with the subsampled ones, and modifpuingber of samples accordingly.

4.2.2. Approximating unrealized sample valuevhile seeking to optimize thékt + 1)th set of
measurements, we would like to incorporate the effect of tloeationson the posterior variance,
but the actual values have not yet been sampled. Our appi®adctuse a generalized least squares

approximation of” *+1) We describe this in detail in the next result whose proafiidppendix I.

Proposition 4.3 (Generalized least squares estimate of sigma mean) Let YL(S"') - Q) — R™ map

a vector of spatial locations® € Q%) to the generalized least squares estimate, based on the
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20 R. GRAHAM AND J. CORTES

sample vecto®y (1) of a vector of samples to be taken at space-time positighg + 1). Let
¢+ . Q) _ R be defined by,
1
S(k+1)(py — { T 1 k)
® ( ) V+TL(]€+1)—2 qy—’_ﬁ() 0/60+
— (K5 o + F("’))T(Kgl n E(k+1>(P))—1(K6150 I F(k))} where

T(k) — (Y(l:k))T(K(l:k’))—ly(lzk)7 F(k) — F(l:k) (K(l:k))—ly(lzk’),

and E(*+1)(P) denotes the matriE as calculated with space-time location vect§t“+1) (P) =
(XWR (P k + 1)). After the new sample;(**1) have been taken at locations, k + 1), let
7% . Q) — R" denote the estimation error, i.gir (P) = Y+ — V) (p)_ Then,

» - .
D) oM @S (P) — 2y )" Varly D[y O] 0Py 1 o=V (P).  where
= vt n(k+1) -2 LS ’

Tlot1|<k = (F(k+1) _ Flk) (K(Lk))ACOr[Y(Lk)’ Y(k:+1)DT

% (E(M) n Ko_l)fl (F(lzk) (K(lzk))fly(lzk) 4 Kalﬁ()) '

In other words,p**1) may be estimated by(*+1)(P). The estimation is exact ¥ **1) —=
v (P).
Remark 4.4 (Quality of estimation) It should be pointed out here that the generalized leastregua
estimate is not the best guess of the value of the unrealiaéal dhat would correspond to the
conditional expectation given all past data. However, fRrmposition 4.2, we can see that this choice
would result in zeroing out the influence of the locations fwa posterior mean af?. Instead, we use

an optimality criterion which accounts for this influence. .

4.3. The aggregate average prediction variance and its $hmass properties

Building on the results from Sections 4.1 and 4.2, we defime tieeaggregate average prediction
variance A*), Unlike A, the functionA*) may be computed efficiently in a distributed manner

over the networkQnyurig. The following result is a direct consequence of Propos#ié.1 and 4.3.

Proposition 4.5. (Spatiotemporal approximation for distributed implementation) Let /l§k)
Q%) — R be defined by

APy =0y [ [ o (0,0, Py deas.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 21

Under the assumption that the error term from Propositiod ghtisfies,

_(k _ ) —
lim Sﬁk(yf_s)(P) - 2Nk+1\§k)T Var[y (1) [y (1:9)] 1,(1@)(]3) —0
k—oo l/+7'l,(k'+1)72 yLS o

m

then A (P) = 3" A (P) satisfieslim A (P) > lim A®(P).
j:l s — 00 s — 00

Next, we characterize the smoothness propertieé(b}f. Let V;; denote the partial derivative with
respect top;;, thelth spatial component of the spatial position of R/e denote byV, the partial
derivative with respect tp;, i.e.,V; = (V;1, ..., Viq)T. Thus the gradient ofl®) at locationP may
be represented as thed-dimensional vecto( VI A® (P),..., VT A® (P))". Given a matrix4,
denote byV;; A the component-wise partial derivative af The proof of the next result amounts to a

careful bookkeeping of the smoothness properties of thewsingredients in the expressions.

Lemma 4.6 (Gradient of conditional variance) If fi,...,f, are C* with respect to the spatial

position of their arguments, then the m&p— ¢§.’“) (zo, P) is C* on Q) with partial derivative,

Vil (20, P) = —2kTK 'Vk + kTK 1V, KK 'k
_ —1 _ —1 _ —1 .
— & (Ky'+E) V4E(Kg'+E) & +2¢ (Kg'+E) Vi, with
Vil = —VaFK 'k — FK 'V;k + FK~'V; KK 'k,

Vi4E = VyFK'FT + FK 'V, FT —FK 'V, KK 'F,

where the matriceK, E, andF and the vectork, and&, are calculated from the space-time location
subvectorX {1~ lEED (py,
If, in addition, the partial derivatives ofi, . . ., f, are C'! with respect to the spatial position of their

arguments, then the map — Vi¢§k)(x0, P) is globally Lipschitz off2(*),

It is worth noting that the matri¥/; F is nonzero only in columr. The matrixV ;K is nonzero
only in row and columni. Additionally, due to the finite correlation range in space dime, only
those elements corresponding to correlation with othersuregnent locations = (s, t) which satisfy
|pi — s|| < rsandt > k 4+ 1 — r, are nonzero.

Note that the value ofs(*+1)(P) depends onP only through the matrixE(*+1)(P), whose
partial derivative is analogous to that Bfin Lemma 4.6. If subsampling is used to approximate
per Section 2.1, we s&f¢*+1)(P) = 0 for those steps which are skipped. Here we assume no

subsampling for notational convenience. This leads usadathowing result.
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22 R. GRAHAM AND J. CORTES

Lemma 4.7 (Gradient of sigmamean) If fi,..., f, are C' with respect to the spatial position of

their arguments, thep*+1) is C'* on Q*) with partial derivative,

n U(P)T Vv EEHD(P) w(P)
o a(k+1) P) = — ? h
Vag (P) v+nk+1)—2 , where

U(P) = (K" +EFHD(P)) T (Kg ' 8o + TM).

Additionally, if the partial derivatives of, . .., f, are C* with respect to the spatial position of their

arguments, the gradie(*+1) is globally Lipschitz of2(%).

We are now ready to state the smoothness propertig’dfand provide an explicit expression for

its gradient. This is a direct consequence of the lemmaseabov

Proposition 4.8 (Gradient of approximate average variance) If fi,..., f, are C* with respect to

the spatial position of their arguments, thetf*) is C'* on Q(*) with partial derivative,
VAR (P) = oD (P) / / Viol™ ((s,t), P) dtds
V(@) JT
+vigt @) [ [ o (0, ) deds
vi(@Q)JT

Additionally, if the partial derivatives ofy, ..., f, are C* with respect to the spatial position of their

arguments, the gradienf A(*) is globally Lipschitz or2(*),

4.4. Distributed computation of aggregate average prédlicvariance and its gradient

Here, we substantiate our assertion that the aggregatageve@rediction variance and its gradient
introduced in Section 4.3 are distributed over the netwQFkyrig. SinceV(Q) is a partition of the
physical space, we may partition all sample locations afpatly region. Thus for eacts, t) € ix(X),
there is exactly ong € {1,...,m} such thats € V;(Q). In order for the network to calculatd*)
and its gradient af, it is sufficient for N to compute/i;k) and V,-,flgk) for each robot inV;(Q).
ThenA*) may be calculated via discrete-time average consensu8gcfion 2.3), whilév; A*) may
be calculated from information local to; RFrom Propositions 4.5 and 4.8, it can be seen that the
calculation offi;k) and V,»A;.k) requires only local information in addition to the (globa§lues of
@D (P) andV; o+ (P). Let us explain how these two quantities can be calculated.

Fori e {1,...,nk}, letz{"* andy"*) denote theith element of the vectok (1) andy (1),

respectively. Let [

doeal © Z=o — F(Zso) map the index of the node to the set of indices of samples
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whose spatial position lies inside its Voronoi cell, and s&time element is correlated to tirher 1,

18200) = {i € {1, nk} [ 20 = (5,1) ands € V5(Q) )

With a slight abuse of notation, deflrﬁ%gL Jj, P) to be the equivalent set of indices into the full vector
of space-time measurement locatioAs$*+1) (P).

In the following results, we assume that a desired level ofigaxy is known a priori to all nodes
so that an execution of the JOR or average consensus algertihve a finite termination criterion.
Unless stated otherwise, the executions of these algasithay take place in serial or parallel. Our

first result illustrates how the network can calculate thmgein g+ (P) which do not depend oR.

Proposition 4.9 (Distributed calculationswithout P) for j € {1,...,m}, assume thaN; knows

(1:k) k)

x; ,y(l ") for eachi e ILoca,( j). Afterp + 1 executions of the JOR algorithm and two subsequent

consensus algorithmsl; has access to,

element of (K1) =1y (1h) e R, i ¢ 1% () via JOR;

Local\J

col; (FLR(KER)=1) e RP, 4 € 1")(5) via JOR;

Local\J

(k) € RP? via consensus;

T®*) € RP via consensus.

Proof. Under the assumptions @@hyurig, the matrixK (1:¥) | satisfies the requirements of the distributed
JOR algorithm. The results here build on this fact and theneotedness of)y (which allows for
consensus)m

Next, we describe calculations that the network can exeghn robotic agents are at locatioRs

Proposition 4.10 (Distributed calculationswith P) Given P € Q(), assume thatN;, for j €
{1,...,m}, knowsz'"™ for eachi € 1*71)(j, P) and the results of Proposition 4.9. LEt"+1(P)
denote the matrix of basis functions evaluated at locatighs*+1) ( P). Afterp executions of JOR and

(p“) executions of consensus algorithiNg,has access to,

col; (FE+D(P)(K*+D(P))=1) e RP, i € 1541 (5, P) via JOR;

Local

E(*+1(P) € RP*P via consensus.

After these computationN,; can calculatev;; E(*+1 forl € {1,...,d}, and consequently*+1)(P)
andV;p(k+1)(P) for each robot in{i € {1,...,n} | p; € V;(Q)}.
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24 R. GRAHAM AND J. CORTES

Proof. The matrix K(*+1)(P) satisfies the requirements of the distributed JOR algoribynthe
assumptions omMnypiig- The itemized results follow from this, and the symmetry bé tmatrix

E(*+1)(P). The calculation of>(*+1) and partial derivatives follow from Lemmas 1.3 and 4a¥.

5. Distributed optimization of the aggregate average pt@i variance

Here we present a distributed algorithm which is guaranteebnverge to a stationary point af(*)
on Q(®), The DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM in Table V allows the
network of static nodes and mobile agents to find local minahal*) on Q*). At timestepk, the
nodes follow a gradient descent algorithm, defining asemmeﬁconfigurations{Pf}, l € Z~g, With

P/ = P®) ¢ Q) the vector of current spatial locations of the robotic agemd
Ply = proig (P} — 0V Al ) 0 € Ra,

where « is chosen via the BTRIBUTED LINE SEARCH ALGORITHM outlined in Table IV. The
DISTRIBUTEDLINE SEARCHALGORITHM is a distributed version of thelNE SEARCHALGORITHM
from Table Il. The maximum stepsizemnax € R, is designed to ensure that all robots with nonzero
partial derivatives can move the maximum distance.

When[A® (P )~ A®)(P)| = 0, the algorithm terminates, and the nodes/3ét-!) = P/ . By
the end of this calculation, each node knows the identitpbbtic agents in its Voronoi cell at timestep
k + 1. Node N transmitsp; (k + 1) to robot R, which then moves to the location between timesteps.
Note that although each robot may be sending position anglsanformation to multiple nodes, the
approximate average prediction variance is calculatéin the Voronoi cell As the Voronoi cells do
not overlap, there is no problem with information repetitio

The following result describes some nice properties of th€TRIBUTED PROJECTEDGRADIENT
DESCENTALGORITHM. Its proof is a direct result of the construction of the aijon and the fact

that it is equivalent to a centralized projected gradiestcdat.

Proposition 5.1. (Properties of the DISTRIBUTED PROJECTED GRADIENT DESCENT ALGO-
RITHM) TheDISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM is distributed over the
networkQnybrig. Moreover, if the partial derivatives of;,. .., f, are C* with respect to the spatial
position of their arguments, any execution is such that ttts do not collide and, at each timestep

after the first, measurements are taken at stationary coraftguns of P — A*)(P) overQ®).

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@009;1:1-2
Prepared usingncauth.cls



COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALY KNOWN COVARIANCE 25

Name: DISTRIBUTED LINE SEARCH ALGORITHM
Goal: Compute step size for projected gradient descent 6t
Input: Configuration,P = (p1,...,pn) € QW

Assumes. (i) Connected network of static nodes

(i) N; knowsp;, A (P), V;. A™) (P) andQ; for each robot within communication range
(iii) [|V: A (P)|| # 0 for at leastoné € {1,...,n}

(iv) N; knows items#3 and#4 from Proposition 4.9

(v) Shrinkage factor and tolerancé < (0, 1) known a priori by all static nodes

Uses: (i) Projection of next set of locations ap,

Pi(a, P) = {proni (pi+aV;. A(P)), for eachi such thatdist (p:, V;(Q)) < rs+umax+w}.

(i) Total distance traveled by robots enterifig(Q),
dist; (o, P) = > | proja, (pi +aViA(P)) = pil.

1€{1,...,n} such that
projq, (Pi+aViA(P))eV;(Q)

Output: Step sizex € R

Initialization
1: Ni,...,N,, calculateamax = — _ Umax via maximum consensus
min{ ||V A(P)[|| [V A(P)[| # 0}
Forj € {1,...,m}, node N executes concurrently
1. o := amax
2: repeat
3:  calculateslist; (o, P)>
4:  calculatesy* 1) (Pj(«, P)) according to Proposition 4.10
T(k
5:  calculatesd (Pj(a, P))
6: execute consensus algorithm to calculate the following:
A® (P'(a,P)) =" AW (Pj(a, P))
j=1
|P = P'(a, P)||” = dist; (a, P)’
j=1
7 @=L |P—P(a,P)’ + AR (P'(a, P)) — A®(P)
8: ifw > 0then
9: o= QT
10: until @ <0

Copyright© 2009 John Wiley & Sons, Ltd.
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Name: DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

Goal: Find a local minimum ofA® within Q).

Assumes: (i) Connected network of static computing nodes and mobile robotic seagengs
(ii) Static nodes deployed ové? such thaircom > max;cq,....m} {CR(Vi(Q))} + s + Umax
robotic agents in initial configuratioR™" e Q)

(iii) Line search shrinkage facterand tolerance valug € (0, 1) known a priori by all nodes
(iv) A termination marker known to all nodes and robots which may betsemark the end of g
gradient descent loop.

Uses: (i) Each node uses the temporary vectBs, respectivelyPhex to hold the configuration at th
current, respectively next step of the gradient projection algorithme&se of exposition, we us
global notation although Nonly calculates and uses the parts of these vectors which corres
to agents currently within communication range.

Attime k € Z>o, node N executes: Meanwhile, robot Rexecutes:
1: setsReov(j) := {Rs | dist(pi(k), V;(Q)) < rs} 1: setsScov(i) := {N;| dist(pi(k), V;(Q)) < rs}

2: C0||eCtSy§k) andp; (k) from R; for eachi € Rcov(j) 3 sendgjgk) andp; (k) to nodes inScov(4)
3: computesd'” (P®), thenA®) (P*)) by consensus

4: setsPpex := P
5
6
7

: repeat 4: repeat
SetsPeyr := Prext(j) and calculatesrvflf) | Pour
transmitsV; AS" ( Peur) to robots inReou(j) 5:  receivesV; A{”(P™) from nodes inScov(i)
6: calculates sunv; A®) (P*))
8:  collects sumv; A" (Puy) from robots inReou(j) ~ 7: sendsv; A®) (P®) to all nodes inSeov(i)
9:  runs DSTRIBUTED LINE SEARCH ALGORITHM at
Pour to geta
10 SetSPhext:= Poyr+ aV.A® |p,,
11:  calculateg A® (Prex) — A®) (Peyr)|
12: until |[A® (Prex) — A (Peur)| = 0 8: until receives finish marker from any node

13: setsP* 1) ;= Py, sends position to robots I, (Q)  o: receives locatiop; (k + 1) and moves to it

2: takes measuremeyj’“) atp; (k)

Copyright(© 2009 John Wiley & Sons, Ltd.
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The proposed algorithm is robust to failures in thebileagents. If an agent stops sending position
updates, it ceases to receive new control vectors. The frést @etwork continues operating with the
available resources and will eventually sample the areasdqursly covered by the failing agents. With
minor modifications, the algorithm could be made robust teréain number of node failures as well.
However, this would require larger communication radiud artra storage (essentially having each

node keep track of the sample locations stored by its Voroeigihbors).

Remark 5.2 (Extension to relative positioning) It is interesting to observe that, due to the fact that
the actual positions of samples are only required in a localtext, our algorithm can also be
implemented in a robotic network with relative positionifidne only requirements are the following:
that each node can calculate the mean basis function farcal samples; that each node can calculate
the correlations between pairs of local samples and thghbering nodes can agree on the ordering
of those samples within the global matrix. These modificetiazould not impact the convergence

properties of the algorithm. °

5.1. Complexity analysis

Here we examine in detail the complexity of thesDRIBUTED PROJECTEDGRADIENT DESCENT
ALGORITHM in terms of the number of robotic agents and static nodesrdference, we compare
it against a centralized strategy that uses all-to-all ticaat and global information, and does not
take advantage of the distributed nature of the problemrdieroto avoid complexities which grow
unbounded wittk, we assume here that one of the approximation methods iogatpfor calculating

@ as outlined in Section 4.2.1. For the purposes of complgxitpes not matter which method is used,
only that the size of the matrix which must be inverted at @ep $s bounded by, and thus does
not depend ort. Let nék) € {1,...,ntpk} denote the number of samples used inghaentblock for
approximatingp at stepk, and IetKék) denote the correlation matrix of those samples.

Given that the DsTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM is sequential, and
designed to run for a fixed number of timesteps, we are coadenare with complexities involved in
performing a single step. Below, where we refer to compjenitions over multiple iterations of an
algorithm, we are considering the nested algorithms suclod, or consensus, which run during a

single step of the B3TRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

We examine the algorithm performance against the followiogons of complexity, see [38, 39],

Copyright(© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Contr@009;1:1-2
Prepared usingncauth.cls



28 R. GRAHAM AND J. CORTES

Communication complexity: the maximum number of bits transmitted over all (directed)

communication channels between nodes in the network oeerdtirse of the algorithm;

Time complexity: the maximum number of iterations to completion of the algponi times the

maximum number of bits sent over any channel during onetitera

Space complexity: the total number of bits for which space may be requiyg@ single node at any

given time

We consider the complexity of the algorithms in terms of thenber of agentsp, and the number
of nodes,m, independently. We use the well-knowBachmann-Landanotation for upper and lower
bounds, see e.g., [40]. Where rates of convergence of iteratethods depend on a desired level of
accuracye, we use the notatio@., instead of the standard, to emphasize the dependence of bounds
on the accuracy. Throughout the section, we make the falig\assumption on the diameter, degree,

and number of edges of the communication graphof the network of static nodes.

Regularity Assumption- We assume that the group of static nodes is regular in theegbas the

following three bounds are satisfiedxasincreases:

diamg, € O(/m) Edg, € O(m) degy, < degp .. € Rso.

Remark 5.3 (Network assumptions arereasonable) In two and three dimensions, the maximum
diameter requirement has been shown to be consistent wikagbnal grid network [41, 42], which is

also consistent (in terms of number of neighbors) with thexrage case for large Voronoi networks [43].
The requirement of bounded degree is also satisfied by a beahgrid. The total number of edges is

half the sum of the number of neighbors over all nodes, sotedidegree yieldBdg, x m. .
We are now ready to characterize the complexities of ourdhgos.

Proposition 5.4. (Average consensus complexity) Letb = (by,...,b,)T € R™ denote a vector
distributed acrossQy in the sense thalN; knowsb; for eachj € {1,...,m}. The discrete
time consensus algorithm to calcula{éé to an accuracy ok has communication complexity in

O, (m?</m), time complexity irD, (m {/m), and space complexity i@ (1).

Proof. Each node sends a single message to each neighbor at eacbostie time complexity is

bounded by the number of iterations to completion. The etdterationt is eave(t) = ||wave(t) — w||,
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with w them-vector whose elements are &lb, andwaye(t) the vector of current approximate values.
This is bounded as,e(t) < (1 — m)t eave(0), where we use [44, Equation (6.10)] to lower
bound the algebraic connectivity @fy. Thus the number of steps required to guarantee error less
than e is bounded byt},. € O. (—log‘1 (1 - m». Applying the bound on the growth
of the network diameter and replacing the logarithm with $kees representation for large, we
deduce?,. € O, (m+/m). At each iteration, each node stores a single value for eaigfhbor, and a
constant number of other values. Thus the space compleiyinded byleg, , which is inO.(1) by
assumption. Finally, the communication complexity is baechby a single message over each channel
at each iteration. The total number of such messages fromreste is bounded by a constamt.

Since A%) uses only measurements correlated in time, the size of theécemand vectors is
limited to a constant multiple of. The next result summarizes the complexity of the leadeatiele

computation, see [39] for a proof.

Proposition 5.5. (Leader election complexity) The leader election algorithm may be run g} to

77.[(:k)

calculate the quantity max > KMy, with communication complexity i@ (m {/m), time
i€{l,...,n¢" }jzl

complexity inO (¢/m), and space complexity i®(1).
For the algorithms considered next, the distribution of gies defines two different regimes for

complexity. We consider both the worst case and the averaggdon a uniform distribution.

Proposition 5.6. (JOR complexity) Assume that there is some constan{ < (0,1), known a
priori, such that)\min(Kék)) > w,. Regarding the sparsity &, assume that any one sample is
correlated to at mosiNeor € Z~ Others, and that, for any € {1, ..., m}, the number of samples in
D\ V;(Q) which are correlated to samples irj;(Q) is upper bounded by a constaitmsg € Z~g.
Letdb = (by,.. .,bném)T c R be distributed on the network of nodes in the sense thil; if
knows co( ék)), thenN; knowsb;. Using the distributed JOR algorithm, the network may claiteu
(Ké’“))*lb to accuracye with communication complexity i@l (m /m), time complexity ifO. (/m),

and space complexity i (n) worst case(.(;-) average case.

Proof. The first step of the JOR algorithm is to calculate the relaraparameter. For correlation
matrices, Appendix Il describes a near optimal parameténdrsense of minimizing the completion
time. Using two leader election algorithms, the networkcoktes = max;jeqi,.. ny| é’“)]ij

anda = maX;e(1,. n} Z?#[Kék)]ij. The relaxation parameter is théri = The time

_2
----- 24+a—p3"
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complexity of the JOR algorithm can be broken down into theimam number of messages any
node sends over any channel times the number of iteratidresnlimber of messages; Mill send
is equal to the number of nonzero off-diagonal entt{ﬁ{,k)]w, i # i, wheres; € V;(Q) and
si € Vi (Q), with j # j'. By assumption, this number is bounded Ny,.. The error at iteration
may be writterejor(t) = ||wior(t) — (Kék))—lbn, wherew;og(t) is the vector of current approximate
values. From [36], one hasor(t) < (p(I — hKék)))teJOR(O), whereT is then®™ x n* identity
matrix. By Proposition 11.4, we haveé < p(I — hK) < 1 — h*w,. The assumption of sparsity

and the fact thaKék) is a correlation matrix give Us < o < Npsg and0 < 8 < 1, which results in

1—h*wy < 1— QiLN;g Since bothw, and Npsgare positive, we have— 2J2r’7v*msg < 1. Thus the number

of iterations required to reach errefs upper bounded by* = (e(0) — e*) ( —log™! (1 - ziTV?nsg))

in O.(1). The time complexity is dominated by the time complexity led teader election algorithm

outlined in Proposition 5.5. For space complexity, we nbsg the maximum number of samples in
a given Voronoi cell is bounded byék), while the average number 11% The space complexity is
dominated by the requirement to store vectors of lengthngisethe number of samples in the cell,
and the same number of rowsték). For communication complexity, the overall algorithm rigs

a maximum of one message to be sent per nonzero off-diagotrglie Ké’“), each iteration, plus the

number of messages required for the leader electon.

Remark 5.7 (Interpretation of sparsity assumptions) The assumptions on the sparsityKék) in
Proposition 5.6 have the following interpretation: sarspd® not cluster in space as measured with

respect to the distribution of the Voronoi cells and thezesielative to the correlation range. .

The above results allow us to characterize the complexdfethe DISTRIBUTED PROJECTED

GRADIENT DESCENTALGORITHM.

Proposition 5.8. (Complexity of the DISTRIBUTED PROJECTED GRADIENT DESCENT ALGO-
RITHM) Under the assumptions of Table V, tbesTRIBUTED PROJECTEDGRADIENT DESCENT
ALGORITHM may be completed within toleraneewith communication complexity i@ (m? /m),

time complexity irO. (m /m), and space complexity i (n?) worst caseQ, (fn—z) average case.

Proof. The space complexity is dominated by the need to store tleegawcorrelation matrix of known
samples required foﬂgk). Even though the correlation matrix is sparse, the inves$e general not,

- (k) ¢ (. (R . "
requiring the wholélcx(;—cﬂ) storage space for the upper or lower triangle of the symmeetaitrix.
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The worst case corresponds to aﬁc) samples correlated to one Voronoi region, and the average
to samples distributed uniformly. The time and commundigattomplexities are dominated by the

requirement of the consensus algorithmn.

5.1.1. Broadcast method for comparisokiere, we compare our method against a simple algorithm
which floods the network with new information at each samiphetas a way of judging its efficiency.
This algorithm would work as follows. At each timestep, a@hwples and locations are disseminated
through the network, such that each node obtains the emtitersX andY . A (centralized) projected
gradient descent algorithm can then be run by Ne {1,...,m} to find the next sample locations
for those agents withii; (@Q). Since all nodes have the same information, any such agasishould
converge to the same final locations, so there is no diffiauitly overlapping computations. Since this
method is only given for comparison, we assume this is the.c@sce a node has calculated the next
location for all of the agents which will be in that Voronoilgéhe control vectors may be transmitted to
them. The information dissemination corresponds to atoadll broadcast in which each node begins
with a distinct message of Iengytlﬁ’;ja})

carried out. Here we assume the flooding method in [45], wisidptimal for time complexity. In this

(4, P)| units. There are a number of different ways this may be

method, every node continues to transmit any new informaball neighbors until new information
is exhausted. The proof of the next result follows from camg [45] with the assumptions oy
and the fact that the total number of initial messages to fgedninated is times the number of bits
required to convey a spatial location plus the number reguio convey a sample value. The space

complexity is dominated by the requirement to store theaeimiverse correlation matrix at each node.

Proposition 5.9. (Complexity of the broadcast method) Under the regularity assumption aly,
local minima of A*) may be found by all-to-all broadcast of agent positions anbisequent local

projected gradient descent with,

communication complexity i@ (nm)
time complexity ir®(n + m)

space complexity ifd(n?)
Remark 5.10 (Broadcast method requires global positioning) It should be noted here that while the

DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM might be extended to systems with

relative positioning (see Remark 5.2), the broadcast nietbguires global coordinates. .
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Complexity Type| Broadcast Distributed PGD
Worst Average
Communication | O(mn) | O (m?ym) | O(m?m)
Time O(n+m) | O(mym) | O(m-ym)
Space O(n?) O(n?) O. ((%)2)

Table VI. Algorithm complexities. The worst and average cases aradisteibutions of samples, with the average
corresponding to a uniform distribution. The bounds for the broadcast method are derived from resultSjin [4

Table VI lists the complexity bounds side by side. One cantlatthe distributed method scales
better overall with the number of mobile agents. The reswith respect to increasing the number
of static nodes are less favorable, but include a tradeofiden the average storage requirement and
the communication and time complexities. For our algorithmareasing the number of nodes has the

additional benefit of decreasing the average computattmmalen per node.

5.2. Simulations

We show here an implementation of thelSDRIBUTED PROJECTED GRADIENT DESCENT
ALGORITHM with n=8 robotic agents and the squafewith vertices{(1,1), (1,2),(2,2),(2,1)}.
The mean regression functiorfs are give byf((x,y),t) = (1,z,y)? and the separable correlation
function is defined byCov[Z(s1,t1), Z(s2,t2)] = Cuunc|[s1 — 52|, 0.25)Cunc(|t1 — t2|, 6.9), where

S 3
e s (1= 30 + 35) if 5 <,
C’trunc((sy TS) = " "
0 otherwise

This is a tapered exponential covariance function as sted@s [46]. We usev = 0.02, umax = 0.2,
and ran the simulated experiment fakax = 40 timesteps. The values of our tuning parameters
20, ¢ = 0.1, By = 0, andK(y =

ceased communications after timest@pand R; after timestefd 5. As we are ultimately interested in

wererv = 10I. To illustrate the robustness to failure; R
measuring performance with respect to the actual postpratictive distribution (i.e., after samples
have been taken), the comparisons between different agipgedn this section are made using that
metric as opposed to the various approximations employ#teidistributed implementation.

We simulated the sampled data as follow$) A9 grid of fixed spatial locations was set up, defining

a vector,Xqig € D240 of fixed grid points over the space-time region (one for ea@hmpint at each
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sampling timestep). A random vector was drawn from the jpirdr distribution of all grid locations,

under the assumption that and3 take their prior mean values, i.e., from the multivariattritution,

qu
NOI‘I’II3240 (F(Xgrid)Tﬁo,O'gK(Xgrid)), Wheredg = m

denotes the prior mean of. Each time a sample was taken by an agent, the value was determ
based on least squares (simple kriging) interpolation fthis grid of fixed points. Figure 3 depicts
snapshots of the sample field used in the examples below. tHatewhile the three consecutive

2 2

) (b) (c)

Figure 3. Snapshot of sample field over the square dor@aifgr example problem at timesteps (@)= 13, (b)
k =14, and (c)k = 15.

timesteps depicted are not identical, there is clearly smm@oral correlation.

The DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM consists of a gradient descent
using an objective function defined by three basic approtiona: the least squares approximation of
unrealized data; the approximate conditional variancedas regions defined by the static nodes;
and the approximate sigma mean based on blocks of samplesitee the computational burden
over time. We begin by examining a centralized, computafigrintensive implementation of the
gradient descent technique which uses only the least sgjappgoximation. This allows us to compare
the (adaptive) gradient descent approach against two & ppproaches: a static configuration and
a lawnmower trajectory. The centralized implementatioexecuted by running the IBTRIBUTED
PROJECTEDGRADIENT DESCENTALGORITHM with one single static noder( = 1), responsible for
the whole predictive domain and using all samples up to stepl to estimatep at stepk. In the
language of Section 4.2, we lgjk=Fkmax. Each of the three approaches begins from the same initial

configuration, and the sample values are drawn from the saedefermined field as described above.
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Figure 4 illustrates the first three steps of trajectoriéertan each case. We use only three steps for

2 2 2 A
A N o
4 IN A4 A . 4
4 a
A A A ----A A ‘A 3
A A Ao -aA B a
A A --A- A A
A A A
A A -AA A
a A-A A a A B
A
A A A-- A R A . A
1 1 1
1 2 1 2 1 2

€) (b) (©

Figure 4. lllustration of the difference between the three simulated apipesaShown are the first three samples

taken by each agent using (a) the static configuration, (b) the a priariawwer approach, and (c) the centralized

gradient descent. The initial position of each agent is depicted by a blacigle, the second and third as
successively lighter triangles.

illustrative purposes, as the trajectories quickly oyedad become difficult to read.

In Figure 5, we compare snapshots of the posterior predintigan and posterior predictive variance
of each of the three approaches, based on all samples ta&ethewcourse of the experiment (although
only those samples correlated to the given timestep aret@ehin the figure). These snapshots, using
all samples correlated to the predictive timestep instfadnty those preceding it, are motivated
by the stated goal of reducing the average variance overrtir g@redictive region. Note that both
the gradient method and lawnmower seem to catch most of ther fie@tures of the sample field,
while the static configuration results in small neighbordt®of very low posterior variance due to
the nontrivial temporal correlation. In Figure 6, we conmg#re overall average posterior predictive
variance resulting from the three approaches at each stbp eimulation (still after the samples at the
given step have been taken). It should be noted here that extensive simulations there were several
instances in which actual sample values differed enough ffe least squares estimation as to cause
erratic results. Those illustrated here are among the mabdesones. Future work will be devoted to
identify situations in which the least squares estimatimmgromises the algorithm performance.

We next ran the BSTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM with m = 9 static
nodes using the three approximation methods discussed:tio8d.2. For the recent sample method
and the block update method, we used a block sizgw#f 7, the minimum size to cover all correlated

time lags. In the block update method, we skippggl = 6 timesteps between update blocks. For the
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(d) (e) ®

Figure 5. Contours of the first two moments of the posterior predictivegilalision at timet = 14 based on

all samples taken by each of the three centralized trajectories. To avo&tessary complication, we have
plotted only the positions of samples, not the individual agent trajectdriesach case, all samples correlated
in time to stepl4 are depicted as triangles, with the shade of the triangle representing thefléeenporal
correlation (white triangles are samples taken at $tepand darker triangles are farther away in time and thus
have smaller correlation to the predictive snapshot). Plots (a) and ¢#) #te posterior predictive mean and
variance, respectively, resulting from samples taken by the static agpr8imilarly (b) and (e) correspond to
the lawnmower approach, while (c) and (f) correspond to the centdadjrzdient descent. Note that the different
shades of the triangles in the static configuration are a result of the dfageeats (the last sample of B closely

correlated to timestep4, thus light in color).

exploration-exploitation method, we used a larger initiwick of t,x = 14 samples. Figure 7 shows
a snapshot of the posterior mean contours resulting fronpkesntaken along each of these network
trajectories. Figure 8 compares the overall average postariance as a function of timestep, based

on samples taken using the centralized gradient approashsaghe three distributed approaches.
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10 20 30 40

Figure 6. Value ofA®) as a function of for the static (dotted), lawnmower (solid), and centralized gradient
descent (dashed) approaches. The gradient method does theelsstently, throughout the experiment. The
static approach shows the most consistent curve, but results in thestéyleeage error overall.

@) (b) (©

Figure 7. Contours of the posterior predictive mean at time 14 based on all samples using the (a) block

update method; (b) recent sample method; and (c) the exploratidoitexipn method. To avoid unnecessary

complication, we have plotted only the positions of samples, not the individeat trajectories. In each case, all

samples correlated in time to stép are depicted as triangles, with the shade of the triangle representing the leve

of temporal correlation (white triangles are samples taken atlgtegind darker triangles are farther away in time
and thus have smaller correlation to the predictive snapshot).

6. Conclusions and future work

We have considered a network of static computing nodes amdenobotic sensing platforms taking
measurements of a time-varying random process with cowsi&nown up to a scaling parameter.

We have used a Bayesian approach, treating the field as atspapioral Gaussian random process,
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10 20 30 40

Figure 8. Value ofA®) as a function ofc using the centralized gradient method (solid), block update method
(dashed), recent sample method (dot-dash), and explorationitatipio method (dotted). The three approximation
methods perform similarly to the centralized gradient method. The exjgoraxploitation approach lags behind
at the end, while the two other approximation methods actually do better thaaritralized gradient approach.

and developed a novel approximation of the variance of trstepior predictive distribution which
may be calculated in a sequential and distributed fashismdthis formulation, we have developed
a projected gradient descent algorithm which is distrihuteer the network of nodes and robots. We
have examined the complexity of this approach, and compaegghinst the lower bound complexity
of a centralized “broadcast” method, showing that the ithisted approach scales better with the
number of mobile agents. Future work will focus on theosdtiguarantees on the accuracy of the
approximationA*) and on the robustness to failure of the proposed algorithoar@tees on the
least squares approximation have proved extremely diffiegpecially in the case of sparse samples.
Future work will also explore alternative methods, suchhesexpected value of the gradient of the
random field. The extension of these methods to networks iohnthe static agents are replaced by
slow moving ones would also be of interest. As mentioned im&& 2.4, special care must be taken
to avoid singularities when generating local approxintaditor the universal kriging model. Rigorous

methods for handling this situation are also worth explprin
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APPENDIX
I. Predictions with a subset of measurements

We present here a series of results concerning the relatpphetween subsets of spatiotemporal
sample locations and hypothetical predictions made frortighanformation. LetY € R"™ denote
a full set of measurements at locatiaise D. Letny,ny € Zs( such that; + ne = n. Consider a
partition of the measurements = (Y7, Y>) such thatt; € R™* andY; € R™2, and a similar partition
of X. Note that due to the invariance @fand¢ under permutations of the samples, our discussion is
valid for any partition of the measurements, not necessardtricted to samples that are sequential in
time. We will useK, respectivelyK,, to denote the correlation matrix of locatiois, respectively
X, and analogous notation for the matrides, Fo, E1, Eo. Let K2 = K, € R"1*"2 denote the
matrix of cross-correlation between the two location ves:to

We begin with a multivariate version of the posterior prédevariance from Proposition 2.1, which
can be considered the hypothetical distribution of the meamsents at space-time locatiols given

the sampled’ . This result can be obtained by applying Bayes Theorem tptioe model.

Lemmal.l (Multivariate posterior predictive distribution) Under the Bayesian moddR), the
multivariate posterior predictive distribution of hypetiical samplesy; conditional on dataY; is

thensy-variate shifted Students t distribution witht+ n, degrees of freedom, which takes the form,

_ vHngtng

(Ya — E[Y|V1))" Var[Ya|vi] ™! (Y — E[YzIYﬂ)> :

p(Ya|Y1) o det Var[Ya|Y;] 2 (1 + "
Here, the expectation is given by
EYa|¥1] = &), (B1 + Ko )7 (F1K ') + Ky ' o) + K K'Y,
whereéy; = Fy — FlelKlg. The covariance matrix is given by
Var[Ya|Y1] = (Y1, X1)d(Xo; X1),

where, with a slight abuse of notation, we have ugél,; X;) to denote the following multivariate
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extensions op and ¢,

(X2 X1) = Ko — K K 'Kip + szu (Kal + El)_l &)1,
1
v+ng—2
In the sequel, we will find useful the matricad € R("tP)x(n+p) and M, e R(2+p)x(n2+p) gngd

vectorsd € R**? andU, € R™"2*P defined as,

oY1, X)) = (qz/ + (Vi —FT3)" (K + FTKF) ' (Y3 — FlTﬁo)) .

K FT Y K, FJ Y,
M = E U= 1 ) M2 = 1 U2 = 1
F -K; . F, —-K; .
Note that)M; is the lower right submatrix aM under a different partition, ards is the corresponding

subvector ot/. It can be shown that the matricad and M/, are invertible.

Proposition |.2 (Approximate conditional variance) The term¢(zo; X) may be written in terms of
spatiotemporal locationX, as,
B(w0; X) = ¢(w0; Xa) — (ki — p11)" ¢(X13X2) " (ki — 1), where

T
Koy ko

H1 = M;l , k1= COI’[Z(Q?())7 Yl], ko, = COI'[Z(.’L‘0>,Y2].
Fl f(xo)
Thereforep(xg; X) < ¢(zo; X2) with equality if and only ik, = p;.
Proof. First, we note that the conditional variance can be writtg€ngiM as,

T

k k
P(z0; X) = Cor|Z, Z] — M1
f(l“o) f(xo)

Next, we point out that with the proper partitioning @f(, the matrix ¢(X;; X2) is the Schur
Complement( M | M). Using this, and a similar partition of the vecliorone arrives at the resulia

The following result illustrates a number of ways in whick #igma mean may be restated.
Lemmal.3 (Restated sigma mean) The quadratic forni/” M~'1/ can be expressed as,
UM U= (Y = F"5)" (K +F'KoF) (Y = F" o) — 83 Ky ' o (9a)
=YTK™'Y — (K;'6 + FK'Y) " (Ky' + E) 7 (Ky'6 + FK'Y)  (9b)
= U; My Uy + (Y1 — EM1[Ya]) T 6(X1; Xo) ™! (Y1 — E[Y3[Y2)). (9¢)
Furthermore, the ternp(Y, X') may be written as,

qu+ ﬁOTKalﬁo +UT MUY

Y, X
PV, X) v+n-—2

(10)
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Proof. Each of the three representations of the quadratic form reagebived directly by using [47,
Proposition 2.8.7] to expand the inverse matrix onto Scburglements. Plugging representation (9a)
into (10) yields the form given in Proposition 2.i.

The generalized least squares (GLS) approximation areesally from partitioning the elements

of the termK ~1Y". The following lemma gives explicit form in terms of the GLBa.

Lemma |.4 (Generalized least squares approximations) Let Y s = K. K;'Y; be the generalized
least squares estimate &% based on sample¥; (conditional on all parameters), and lgf s =

Y, — Yis. Then we can write,

_ — —1 _
K1y — K;'v; . K 'K (K1 |[K) ' 7is (11)
0 (K1 |K) ' 7is

Proof of Proposition 4.3. Using (11) in Lemma 1.4 we write,
YTK'Y =YK + (Y2 — Yis)” (K1 [K) (Y2 — Yis)
FK 'Y = FIK[ 'V + &) (Ko |K) (Y2 - Yis).
Here we have used the simpler indexed notafign= Y (**) andY, = Y (**1 to simplify the algebra.
Applying these results to (9b) in Lemma 1.3 yields,
UTM U =YTKY, — (K B + FIKT YD) T (K 4+ B) N K B + F1K ')
+ (Y — Yis)T (K1 |K) ™ (Y2 — Yis)
—2(Ky ' Bo + 1K 1) (K + E) 7 (& (Ko [K) T (Vs — Yis))
— (& (K [K) 7' (Y2 = Yis)) " (K "+ E) ! (&1 (Ko [K) ™ (Y2 — Yis)).
Using, e.g. [48, Equation (12,17)], we can write,
6(Xa; X1) = (K1 [K) ™" + (K [K) 7' €], (Ko !+ B) ey (Ky [K) 7

With some algebraic manipulation we arrive at the result,

UTM U =YKy — (K B + FI KT YD) T (K 4+ B) N K B + F1K ')
+ (Uis — 22)1) P(X2; X1) s
The result follows from Lemma |.3m
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II. Near optimal relaxation parameter for JOR

Here we present some results regarding a relaxation pagafoethe JOR algorithm which is nearly
optimal with respect to the rate of convergence of the algorifor a certain class of matrices.
Specifically we are interested in the class of symmetricjtipesdefinite matrices” with ones on
the diagonal. Ley(t) = (y1(¢),...,yn(t))T € R™ be the vector updated during the JOR iteration
in (5). Lete(t) = ||C~1b — y(t)|| denote the error at iteratian\We may write,

e(t) < (p(I — hC))" ¢(0), (12)

giving a bound on the error at stepased on the initial error. The valueg(fl — hC) therefore controls
the rate of convergence, and choosing the relaxation paearheis of vital importance. Throughout
this section we will use the shorthadgax = Amax(C) andAmin = Amin(C). The work [49] provides
results concerning the convergence of the JOR algorithafydimg an optimal relaxation parameter,

which in our case is equivalent tQp = . In this section we will introduce an approximation

2
>\max+>\m\n
to this optimal value which may be calculated in a distrildutganner.

Proposition I1.1. Assume thal’ € R™*" is a symmetric positive definite matrix with all diagonal
entries equal tal. Let 8 and o denote the maximum off-diagonal entry@fand the maximum off-

diagonal row sum of’, respectively,

n

S TS I PN
J#i

Leth* = Then usingh* as the relaxation parameter in the JOR algorithm to sajve C~'b

2
24+a—0("
results in guaranteed convergence.

Proof. Recall from Section 2.3 that convergence of the JOR alguorith guaranteed as long
ash* € (O, ﬁ) This can also be seen from (12), sinkeoutside of this range would yield
p(I — hC) > 1. SinceC is symmetric positive definite withi’s on the diagonal, all off-diagonal
entries must have magnitude strictly less tHaiThus1 — 8 > 0. The Gershgorin circle theorem
(e.g. [47, Fact 4.10.13]) implies thatax < 1+ «. Together, these two results yiede- o — 5 > Amax,

which implies that-2— < 52, and the result followsm

Lemmall.2. Under the assumptions of Proposition /L < ﬁ with equality if and only ilC' is

then x n identity matrix.
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Proof. First, note the following implication chain,

Amin <1 = 2dmn<2+a—f = A" < —.
Amin

Now, assume that* = ﬁ This implies that\min = 1 4+ o — 3, but Apmin < 1, anda > 3. So we

must have\min = 1. Since the diagonal entries 6fare all1, the smallest eigenvalue can only bé

all off-diagonal entries are zero, i.e.(f=1,. m
Lemmall.3. Under the assumptions of Proposition I1|1,— A* Amin| > |1 — A* Amax-

Proof. Using Lemma I1.2, we havil — h*Amin| = 1 — h* Amin. The result may then be shown by

two separate cases. First, note thdt*if< ﬁ then we have,

|1 - h*)\max‘ =1—-h"dAmax < ‘1 - h*)\min|,

so the result holds in this case. For the second case, ashairie t> ﬁ Then|l — h*Amax| =
h*Amax — 1. The inclusion principle and the fact théat is positive definite give us the bounds
0 < Amin < 1 — a. Combined with the previously mentioned Gershgorin boungdx < 1 + «,

this allows us to write,

)\max'f' )\min < 17 2)\max+ )\ming 2’
2+a—p 2+a—4

R (Amax+ Amin) < 2, W Amax—1 <1 —h"Amin.
Thus in all cases]l — A*Amax| < |1 — h*Amin|. ®
Proposition 11.4. Under the assumptions of Proposition II.1, further assulnae X, > w, for some
@y € (0,1). Then0 < p(I — h*C) <1 — 22>

Proof. First note that the spectral radius is givenihyx {|1 — A* Amin|, |1 — A* Amax

}, and is clearly
nonnegative. From Lemma I1.3, we hawel — h*C) = |1 — h* Apin|. From Lemma 11.2, we can infer

p(I — h*C) =1 — h* Amin. The upper bound follows by comparing- ~A* Amin againstl — h*w,. m
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