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SUMMARY

This paper considers autonomous robotic sensor networks taking measurements of a physical process for predictive

purposes. The physical process is modeled as a spatiotemporal random field. The network objective is to take

samples at locations that maximize the information content of the data. The combination of information-based

optimization and distributed control presents difficult technical challengesas standard measures of information

are not distributed in nature. Moreover, the lack of prior knowledge on the statistical structure of the field can

make the problem arbitrarily difficult. Assuming the mean of the field is an unknown linear combination of known

functions and its covariance structure is determined by a function known up to an unknown parameter, we provide

a novel distributed method for performing sequential optimal design by anetwork comprised of static and mobile

devices. We characterize the correctness of the proposed algorithm and examine in detail the time, communication,

and space complexities required for its implementation. Copyrightc© 2009 John Wiley & Sons, Ltd.
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1. Introduction

Networks of environmental sensors are playing an increasingly important role in scientific studies, with

applications to a variety of scenarios, including detection of chemical pollutants, animal monitoring,

and mapping of ocean currents. Among their many advantages,robotic sensor networks can improve
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2 R. GRAHAM AND J. CORT́ES

the efficiency of data collection, adapt to changes in the environment, and provide a robust response

to individual failures. The design of coordination algorithms for networks performing these spatially-

distributed sensing tasks faces the major challenge of incorporating the complex statistical techniques

that come into play in the analysis of environmental processes. Traditional statistical modeling and

inference assume full availability of all measurements andcentral computation. While the availability

of data at a central location is certainly a desirable property, the paradigm for motion coordination

builds on partial, fragmented information. Coordination algorithms need to be distributed and scalable

to make robotic networks capable of operating in an autonomous and robust fashion. At the same time,

these algorithms must be statistically driven to steer the network towards locations that provide the

most informative samples about the physical processes. This work is a step forward in bridging the gap

between sophisticated statistical modeling and distributed motion coordination.

Consider an experiment in which samples are collected from adynamic scalar physical process

with the goal of estimating its value at unmeasured points ina space-time domain. One motivating

example is sampling subsurface ocean temperature with autonomous underwater vehicles. The relative

sparsity of samples in such an experiment, see e.g., [1], suggests using stochastic methods rather than

deterministic ones, particularly at small scales where ode-driven deterministic models may not take

advantage of averaging effects. This can also be a useful approach if the dynamics of the field are

not well known, require a high-dimensional parameter spaceto model, or require extremely accurate

specification of initial conditions. Autonomous vehicles may take advantage of a sequential approach,

in which new sample locations are chosen based on information gained from past samples. This is

known in the statistical literature asadaptive design. We use a Bayesian approach to spatiotemporal

modeling, and treat the field as a Gaussian Process (GP). A GP is an infinite-dimensional model in

which any vector of realizations from the field is treated as jointly normally distributed conditional on

the space-time positions. Temperature is one example of thetype of correlated spatial field known to

be well modeled by a GP (e.g. [2, 3]). In the Bayesian paradigm, a prediction at any point in the field

takes the form of a conditionaldistribution, derived from a prior distribution and the sampled data.

GP models are fully specified by mean and covariance functions, and provide powerful and flexible

tools for modeling under uncertain conditions. The mean provides a smooth “trend” surface, while

small scale perturbations are captured by the covariance structure. Prior uncertainty about the mean

is commonly handled by treating it as an unknown regression on a set of known basis functions. A

less common model, which we make use of here, also allows for an unknown scalar term in the prior
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 3

covariance, enabling estimation of fields in which the deviation from the mean surface is not known a

priori. From a relatively small number of samples, statistical methods generate an accurate predictive

map over the entire space-time domain, complete with a measure of predictive uncertainty. This allows

complex surfaces to be estimated with simple models. Any measure of the utility of sample locations

in such a model should be based on the uncertainty of the resulting estimation, reflecting deviations in

the data as well as the prior uncertainty in the model. This presents a difficult challenge in a distributed

setting, because the predictive uncertainty depends on allsamples in a nontrivial way.

Literature review. Complex statistical techniques allow a detailed account ofuncertainty in

modeling physical phenomena. Of particular relevance to this work are [4], regarding statistical

models, and [5, 6], regarding the application of optimal design techniques to Bayesian models. Optimal

design [7, 8] refers to the problem of choosing sample locations which optimize estimation.

In cooperative control, various works consider mobile sensor networks performing spatial estimation

tasks. [9] considers a robotic sensor network with centralized control estimating a static field from

measurements with both sensing and localization error. Depending on the goal of the experiment,

different types of information should be maximized [6, 10, 11]. We focus on the predictive variance

as a measure of the accuracy of prediction. An alternative optimality criterion called mutual

information [12, 13] is also effective for predictive purposes, but requires that samples and predictions

are made on a discrete space (e.g., a grid). Using mutual information, the work [14] addresses the

multiple robot path planning problem by greedily choosing way points from a discrete set of possible

sensing locations. [15] chooses optimal sampling trajectories from a parameterized set of paths. Here,

instead, we are interested in optimizing in a continuous design space and over the set of all possible

paths. A different problem is considered in [16], where robots track level curves in a noisy scalar

field. [17] develops distributed estimation techniques forpredictive inference of a spatiotemporal

random field and its gradient. We make use of some of the tools developed in the latter paper for

distributed calculations. In [18, 19, 20, 21], the focus is on estimating deterministic fields with random

measurement noise and, in some cases, stochastic evolutionover discrete timesteps. A fundamental

difference with these works is that, in addition to considering uncertainty about the process evolution

over time, we consider fields with uncertainty in its covariance structure, i.e., fields in which the

deviation from the mean surface is not known a priori and alsoneeds to be estimated. In between the

specificity of deterministic modeling and the flexibility offully probabilistic modeling there are other
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4 R. GRAHAM AND J. CORT́ES

alternative methods such as distributed parameter systems[22], which introduce possibly correlated

stochastic parameters into an otherwise deterministic model. In this paper, the process itself is treated as

random. This allows for a simpler model and more prior uncertainty, and places the focus on estimation

as opposed to inference. Complex dynamics and spatial variation are accounted for with space-time

correlation instead of explicit partial differential equations. In part to cope with the additional burden

of spatial uncertainty, we introduce a hybrid network of static computing nodes and mobile sensors.

An alternative approach to the spatiotemporal Gaussian Process is the Kriged Kalman filter [23, 24]

approach, which treats the process as a spatial GP with discrete temporal evolution governed by a

Kalman filter. Instead, we use an integrated space-time model because it is more general, and because

the treatment for our purpose is simpler. Of the above references, those which consider random field

models do so under an assumption of known covariance. To our knowledge this is the first work in

the cooperative control field which allows for prior uncertainty in the covariance of the spatiotemporal

structure as well as the mean. We make use of a model derived in[25], which is the only spatial model

we are aware of that makes a direct analytical connection between prior uncertainty in the covariance

and the resulting predictive uncertainty. Aside from this model or derivatives, the common practice

when confronted with unknown covariance is to either run a separate estimation procedure and then

treat the covariance as known, or to use simulation methods such as Markov chain Montecarlo to

estimate the posterior distribution. The work [26] addresses a method of choosing sample locations

from a discrete space which are robust to misspecification ofthe covariance. Another method for

handling unknown covariance has recently grown out of the exploration-exploitation approach of

reinforcement learning (see, e.g. [27]). The work [28] applies this approach to the spatial estimation

scenario by breaking up the objective into an exploration component which focuses on learning about

the model in a discretized space and an exploitation component in which that knowledge is put to

use in optimizing for prediction. Here, we require no discretization and we take full advantage of the

mobile capabilities of networks of autonomous sensors. Ourwork is based in part on previous material

presented in [29] and [30].

Statement of contributions. We begin with a widely accepted Bayesian model for the prediction of

a spatiotemporal random field, designed to handle various degrees of knowledge about the mean and

covariance. The predictive variance of this model can be written as a scaled product of two components,

one corresponding to uncertainty about the covariance of the field, the other corresponding to
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 5

uncertainty of the prediction conditional on the covariance. Our first contribution is the development of

an approximate predictive variance which may be calculatedefficiently in a sequential and distributed

manner. This includes introducing a scheduled update of theestimated covariance parameter based

on uncorrelated clusters of samples. We introduce three possible approximation methods which

trade off accuracy for computational burden. To our knowledge, none of these approximations have

been examined for this particular optimization approach, although one of the methods is similar to

the exploration-exploitation approach used by [27] to optimize for a different information criterion

with different model assumptions. Our second contributionis the characterization of the smoothness

properties of the objective function and the computation ofits gradient. Using consensus and distributed

Jacobi overrelaxation algorithms, we show how the objective function and its gradient can be computed

in a distributed way across a network composed of robotic agents and static nodes. This hybrid network

architecture is motivated in part by the heavier computational capabilities of static agents and in part

by the spatial structure of the problem. Our third contribution is the design of a coordination algorithm

based on projected gradient descent which guarantees one-step-ahead locally optimal data collection.

Due to the nature of the solution, optimality here takes intoaccount both the unknown parameter in

the covariance and the (conditional) uncertainty in the prediction. Finally, our fourth contribution is

the characterization of the communication, time, and spacecomplexities of the proposed algorithm.

For reference, we compare these complexities against the ones of a centralized algorithm in which all

sample information is broadcast throughout the network at each step of the optimization.

Organization. Section 2 introduces basic notation and describes the statistical model. Section 3

states the robotic network model and the overall network objective. The following two sections

present the main results of the paper. Section 4 introduces the objective function, with attention to

its smoothness properties, and discusses how the network can make the required calculations in a

distributed way. Section 5 presents the cooperative strategy for optimal data collection along with

correctness and complexity results. Section 6 contains ourconclusions.

2. Preliminary notions

Let R, R>0, andR≥0 denote the set of reals, positive reals and nonnegative reals, respectively, and let

Z>0 andZ≥0 denote the sets of positive and nonnegative integers. We denote by⌊x⌋ and⌈x⌉ the floor

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2009;1:1–2
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6 R. GRAHAM AND J. CORT́ES

and ceiling ofx ∈ R, respectively. Forp ∈ R
d andr ∈ R>0, let B(p, r) be theclosed ballof radius

r centered atp. We will generally use upper case to denote vectors and matrices, with the exception of

the correlation vector,k, and basis function vector,f , which are lower case to distinguish them from

the matricesK andF (see Section 2.2). GivenU = (u1, . . . , ua)T , a ∈ Z>0, andV = (v1, . . . , vb)
T ,

b ∈ Z>0, we denote by(U, V ) = (u1, . . . , ua, v1, . . . , vb)
T its concatenation. We denote byF(Ω)

the collection of finite subsets ofΩ. Let iF : (Rd)n → F(Rd) be the natural immersion, i.e.,iF(P )

contains only the distinct points inP = (p1, . . . , pn). Note thatiF is invariant under permutations of

its arguments and that the cardinality ofiF(p1, . . . , pn) is in general less than or equal ton.

We consider a convex regionD ⊂ R
d, d ∈ Z>0. The assumption of convexity is a requirement for

projected gradient descent (see Section 2.1). LetDe = D×R≥0 denote the space of points overD and

time. LetprojΩ : R
m → Ω denote the orthogonal projection onto the setΩ,

projΩ(x) = argmin
y∈Ω

‖x − y‖.

Let dist : R
d × F(Rd) → R≥0 denote the (minimum) distance between a point and a set, i.e.,

dist(s,Ω) = minq∈Ω ‖q − s‖. With a slight abuse of notation, for two convex sets,Ω1,Ω2, we will

write the minimum distance between points in the two sets as,dist(Ω1,Ω2) = minp∈Ω1
dist(p,Ω2).

The ǫ-contraction of a set Ω, for ǫ > 0, is the setΩctn:ǫ = {q ∈ Ω | dist(q,bnd Ω) ≥ ǫ},

wherebndΩ denotes the boundary ofΩ. For a bounded setΩ ⊂ R
d, we let CR(Ω) denote the

circumradiusof Ω, that is, the radius of the smallestd-sphere enclosingΩ. The Voronoi partition

V(S) = (V1(S), . . . , Vn(S)) of D generated by the pointsS = (s1, . . . , sn) is defined byVi(S) =

{q ∈ D | ‖q − si‖ ≤ ‖q − sj‖, ∀j 6= i}. EachVi(S) is called aVoronoi cell. Two pointssi andsj are

Voronoi neighborsif their Voronoi cells share a boundary.

We useλmin(A) andλmax(A) to denote the smallest and largest eigenvalue of the square matrix A,

respectively. We letρ(A) denote the spectral radius ofA, det A the determinant ofA, [A]ij the(i, j)th

element ofA, and coli(A) denote theith column ofA. Let0i×j denote thei× j zero matrix (or vector

if either i or j is 1). If the dimensions are clear from the context we may omit thesubscripts and use0.

Given a partitioned matrix,A =
[

A11 A12

A21 A22

]

, we denote by(A11 |A ), respectively(A22 |A ) the Schur

complement ofA11, respectivelyA22 in A, i.e.,

(A11 |A ) = A22 − A21A
−1
11 A12 and (A22 |A ) = A11 − A12A

−1
22 A21.

Table I provides an overview of notational conventions introduced in this section.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 7

Notation Description

d Spatial dimension of experiment region

D Convex spatial region where the experiment takes place

De Space-time domain ofD over the entire experiment

⌊a⌋ , ⌈a⌉ Floor and ceiling ofa

B(p, r) Closedd-dimensional ball of radiusr centered atp

projΩ(s) Orthogonal projection ofs ontoΩ

dist(p,Ω),dist(Ω1,Ω2) Minimum point-to-set and set-to-set distance

iF(P ) Natural immersion of vectorP (set of distinct points)

F(Ω) Collection of finite subsets ofΩ

Ωctn:ǫ Theǫ-contraction ofΩ

CR(Ω) Radius ofsmallestd-sphere containingΩ

V(S) Voronoi partition generated byS

Vi(S) Theith cell in the Voronoi partition,V(S)

λmin(A), λmax(A) Extremal eigenvalues of square matrix,A

ρ(A) Spectral radius ofA

det A Determinant ofA

[A]ij Elementi, j of matrixA

(B |A ) Schur complement of submatrixB in matrixA

Table I. Notational conventions.

2.1. Projected gradient descent

We describe here the constrained optimization technique known as projected gradient descent [31] to

iteratively find the minima of an objective functionF : R
m → R≥0. Let Ω denote a nonempty, closed,

and convex subset ofR
m, m ∈ Z>0. Assume that the gradient∇F is globally Lipschitz onΩ. Consider

a sequence{xk} ∈ Ω, k ∈ Z>0, which satisfies

xk+1 = projΩ (xk − αk∇F (xk)) , x1 ∈ Ω, (1)

where the step size,αk, is chosen according to the LINE SEARCH ALGORITHM described in Table II,

evaluated atx = xk.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2009;1:1–2
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8 R. GRAHAM AND J. CORT́ES

Name: L INE SEARCH ALGORITHM

Goal: Determine step size for the Sequence (1)

Input: x ∈ Ω

Assumes: τ, θ ∈ (0, 1), max stepαmax ∈ R>0

Output: α ∈ R>0

1: α := αmax

2: repeat

3: xnew := projΩ (x − α∇F (x))

4: ̟ := θ
α
‖x − xnew‖

2 + F (xnew) − F (x)

5: if ̟ > 0 then

6: α := ατ

7: until ̟ ≤ 0

Table II. LINE SEARCH ALGORITHM.

In Table II, the grid sizeτ determines the granularity of the line search. The tolerance θ may be

adjusted for a more (largerθ) or less (smallerθ) strict gradient descent. Withθ > 0, the LINE SEARCH

ALGORITHM must terminate in finite time. The Armijo condition (step7) ensures that the decrease in

F is commensurate with the magnitude of its gradient. A sequence{xk}∞k=1 obtained according to (1)

and Table II converges in the limit [31] ask → ∞ to stationary points ofF .

2.2. Bayesian modeling of space-time processes

Let Z denote a random space-time process taking values onDe. Let Y = (y1, . . . , yn)T ∈ R
n ben ∈

Z>0 measurements taken fromZ at corresponding space-time positionsX = (x1, . . . , xn)T ∈ Dn
e ,

with xi = (si, ti), i ∈ {1, . . . , n}. Given these data, various models allow for prediction ofZ at any

point in De, with associated uncertainty. Optimal design is the procedure of choosing where to take

measurements in order to reduce the uncertainty of the resulting statistical prediction. Since prediction

uncertainty drives the design procedure, it should be modeled as accurately as possible.

In a Bayesian setting, the prediction takes the form of a distribution, called the posterior

predictive [32]. One advantage of a Bayesian approach is that parameters such as the mean and

variance of the field may be treated as random variables, carrying forward uncertainty which informs

the predictive distribution. We assume thatZ is a Gaussian Process. This means that any vector of

realizations is treated as jointly normally distributed conditional on unknown parameters, with mean
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 9

vector and covariance matrix dictated by the mean and covariance functions of the field. Thus a

prediction made after samples have been taken is the result of conditioning the posterior predictive

distribution on the sampled data. When this conditional posterior distribution is analytically tractable,

as in the case of the models presented here, the resulting approach provides two powerful advantages

to optimal design. First, there is a direct and (under certain technical conditions) continuous map from

the space-time coordinates of realizations (data and prediction) to the predictive uncertainty. Second,

the joint distribution of predictions and samples allow conditioning on subsets of samples to see the

effect, for instance, of optimizing over a single timestep.

If the field is modeled as a Gaussian Process with known covariance, the posterior predictive mean

corresponds to theBest Linear Unbiased Predictor, and its variance corresponds to the mean-squared

prediction error. Predictive modeling in this context is often referred to in geostatistics assimple kriging

if the mean is also known, oruniversal krigingif the mean is treated as an unknown linear combination

of known basis functions. If the covariance of the field is notknown, however, few analytical results

exist which take the full uncertainty (i.e., uncertainty inthe field and in the parameters) into account.

We present here a model [4] which allows for uncertainty in the covariance process and still produces

an analytical posterior predictive distribution. We assume that the measurements are distributed as the

n-variate normal distribution,

Y ∼ Normn

(

F
T β, σ2

K
)

. (2)

Here β ∈ R
p is a vector of unknown regression parameters,σ2 ∈ R>0 is the unknown variance

parameter, andK is a correlation matrix whose(i, j)th element isKij = Cor[yi, yj ]. Note that

K is symmetric, positive definite, with1’s on the diagonal. We assume a finite correlation range

in space,rs ∈ R>0, and in time,rt ∈ R>0, such that if‖si − sj‖ ≥ rs or |ti − tj | ≥ rt, then

Kij = Kji = 0. For gradient calculations, we also assume that the correlation mapsi 7→ Kij is C2

(which implies thatsj 7→ Kij is alsoC2). In many kriging applications, an assumption of second-order

stationarity restricts the covariance between two samplesto a function of the difference between their

locations. Instead, we make no restrictions on the correlation function itself, beyond the finite range

and continuous spatial differentiability. The matrixF is determined by a set ofp ∈ Z>0 known basis

functionsfi : De → R evaluated at the space-time locationsX, i.e.,

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2009;1:1–2

Prepared usingrncauth.cls



10 R. GRAHAM AND J. CORT́ES

F =











f1(x1) . . . f1(xn)
...

. . .
...

fp(x1) . . . fp(xn)











.

We will also usef(x) = (f1(x), . . . , fp(x))T ∈ R
p to denote the vector oftime-dependentbasis

functions evaluated at a single point inDe. It should be pointed out here that the standard approach in

kriging is to use basis functions which do not change with time. We include the possibility of space-

time basis functions for completeness, and because they arecommonly used [33] in the related practice

of “objective analysis” used in atmospheric sciences [34].To ensure an analytical form for the posterior

predictive distribution, we assume conjugate prior distributions for the parameters,

β|σ2
∼ Normp

(

β0, σ
2
K0

)

, (3a)

σ2
∼ Γ−1

(ν

2
,
qν

2

)

. (3b)

Hereβ0 ∈ R
p, K0 ∈ R

p×p, andq, ν ∈ R>0 are constants, known astuning parametersfor the model,

andΓ−1(a, b) denotes the inverse gamma distribution with shape parameter a and scale parameterb

(see, e.g. [35]). Since it is a correlation matrix, it shouldbe noted thatK0 must be positive definite. A

common practice in statistics is to useK0 proportional to the identity matrix.

Proposition 2.1 (Posterior predictive distribution) Under the Bayesian model(2), the posterior

predictive atx0 ∈ De is a shifted Students t distribution (see, e.g. [35]) withν + n degrees of freedom,

with probability density function, forz = Z(x0),

p(z|Y,X) ∝ Var[z|Y,X]−
1
2

(

1 +
(z − E[z|Y,X])

2

(ν + n − 2) Var[z|Y,X]

)− ν+n+1
2

.

Here, the expectation is given by

E[z|Y,X] =
(

f(x0) − FK
−1

k
)T

β† + k
T
K

−1Y,

β† = (E + K
−1
0 )−1

(

FK
−1Y + K

−1
0 β0

)

,

whereE = FK
−1

F
T andk = Cor[Y, z] ∈ R

n. The variance is given by

Var[z|Y,X] = ϕ(Y,X)φ(x0;X),

φ(x0;X) = Cor[z, z] − k
T
K

−1
k + ξT

0

(

K
−1
0 + E

)−1
ξ0,

ξ0 = f(x0) − FK
−1

k,

ϕ(Y,X) =
1

ν + n − 2

(

qν + (Y − F
T β0)

T
(

K + F
T
K0F

)−1
(Y − F

T β0)
)

.
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Prepared usingrncauth.cls



COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 11

The proof of the proposition follows from the application ofBayes Theorem to the model given

by (3). Alternatively, it can also be derived from results in[4] and [25] using a technique similar to

the one used later in the proof of Proposition I.3 in AppendixI. Note that sinceK0 andK are positive

definite, the quantitiesφ(x0;X) andϕ(Y,X) are well posed.

Remark 2.2 (Terms in the posterior predictive variance) Note the form for the posterior predictive

variance in Proposition 2.1 as a product of two terms. The first term,ϕ(Y,X), is the posterior mean of

the parameterσ2, given the sampled data. We refer to it as thesigma mean. The second term,φ(x0;X),

can be thought of as the scaled posterior predictive variance conditioned onσ2. We refer to it as the

conditional variance. •

The conditional variance is very close to what the predictive variance would look like ifσ2 were

known, as we show next. The following result may be derived byapplying Bayes Theorem to the

model specified by (2) and (3a), withσ2 treated as known.

Proposition 2.3 (Kriging variance) If the variance parameterσ2 is known, the result is theuniversal

kriging predictor, and the posterior predictive variance takes the form,

VarUK[z|Y,X] = σ2
(

Cor[z, z] − k
T
K

−1
k + ξT

0 E
−1ξ0

)

.

If, in addition, the mean of the field is known, the result is thesimple kriging predictor, and the posterior

predictive variance is given by,

VarSK[z|Y,X] = σ2
(

Cor[z, z] − k
T
K

−1
k
)

.

Remark 2.4 (Extension of subsequent results to kriging) The simple and universal kriging results

are simplified versions of our overall model, and results from the rest of this paper may be applied

to those models with minimal modifications. An exception is that when approximatingVarUK using

subsets of measurements, care must be taken to ensure well-posedness. Specifically, an assumption that

n > p is required to ensure that the matrixE is nonsingular. •

Table III provides an overview of notational conventions introduced in this section.

2.3. Tools for distributed computation

Consider a network,Q, of m nodes with limited communication capabilities. We writeQ = (N, E),

where N= (N1, . . . , Nm) denotes the vector of nodes, andE the set of communication edges (i.e.,

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2009;1:1–2
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12 R. GRAHAM AND J. CORT́ES

Notation Description

X, xi Vector of spatiotemporal coordinates of samples, element of coordinate vector

Y , yi Vector of sample values, element of sample vector

E[A],Var[A] Expectation and variance of random vectorA

Cor[a, b] Correlation between random variables (or vectors)a andb

z Random space-time process of interest

K Sample correlation matrix

k Samples to prediction correlation vector

F Matrix of basis functions evaluated at sample locations

f Basis vector evaluated at predictive location

ξ0 Generalized least squares error estimatingf from F

β Unknown mean regression parameters

β0,K0 Prior mean vector and correlation matrix ofβ

σ2 Unknown variance scalar parameter

q, ν Tuning parameters of prior distribution forσ2

φ Predictive variance conditional onσ2 (“conditional variance”)

ϕ Posterior mean ofσ2 (“sigma mean”)

Table III. Statistical notation.

(i, j) ∈ E if N i and Nj can communicate). We are only concerned with connected graphs (i.e., graphs

in which every vertex is connected to every other vertex via asequence of edges). We will make use of

thedegree, degQ, diameter, diamQ, andnumber of edges, EdQ of Q defined as,

degQ = max
i∈{1,...,m}

degQ(i) diamQ = max
i,j∈{1,...,m}

|Lmin(i, j)| EdQ = |E|, (4)

where we have usedLmin(i, j) to denote a minimum length path between verticesi and j, and

degQ(i) = | {j ∈ {1, . . . ,m} | (i, j) ∈ E} | the degree of nodei.

Here we briefly describe some tools for distributed computations. Let aij ∈ {0, 1}, i, j ∈
{1, . . . ,m} be1 if (i, j) ∈ E, and0 otherwise. Letb = (b1, . . . , bm)T ∈ R

m, C = [cij ] ∈ R
m×m, and

assume nodei knowsbi and theith row ofC. Additionally assume thatcii 6= 0 and, fori 6= j, cij 6= 0

if and only if (i, j) ∈ E. As an example, one can think ofC = K andb = k, with the notation of

Proposition 2.3. The correlation matrixK has a sparsity structure determined by the physical distance
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 13

of samples from each other. Under these assumptions the following results hold.

JOR: The network can compute the vectory = C−1b via a distributed Jacobi overrelaxation

algorithm [17, 36], formulated as the discrete-time dynamical system,

yi(l + 1) = (1 − h)yi(l) −
h

cii

(

∑

j 6=i

cijyj(l) − bi

)

, (5)

for l ∈ Z≥0 andi ∈ {1, . . . ,m}, wherey(0) ∈ R
m andh ∈

(

0, 2
λmax(C)

)

. At the end of the

algorithm, nodei knows theith element ofC−1b.

Discrete-time average consensus: The network can compute the arithmetic mean of elements ofb

via the discrete dynamical system [37],

xi(l + 1) = xi(l) + ǫ
∑

j 6=i

aij(xi(l) − xj(l)), x(0) = b,

whereǫ ∈ (0, 1
degQ

). At the end of the algorithm, all nodes know
Pn

i=1 bi

m .

Maximum consensus: The network can calculate the maximum value of elements ofb via a leader

election algorithm [38]. Each node sends the current estimate of the maximum to all neighbors,

then updates its estimate. If the process is repeated a number of times equal to the diameter of

the network, then every node will know the maximum.

The first two results above are only exact asymptotically, but convergence is exponential with time.

3. Problem statement

Here we introduce the model for the robotic agents and staticnodes, and detail the overall objective.

3.1. Robotic sensor network model

We introduce a hybrid network comprised of mobile sensors and static nodes. This model provides a

stable communication structure, allows for integration ofthe predictive variance over the entire spatial

domain, and reduces the computational burden on the mobile units. Consider a group{N1, . . . , Nm}
of m ∈ Z>0 static nodes at spatial locationsQ = (q1, . . . , qm)T ∈ Dm, and the Voronoi partition,

V(Q) generated by them. Ni will be responsible for approximate prediction over the region Vi(Q). In

addition to the static nodes, consider a group{R1, . . . , Rn} of n mobile robotic sensor agents. The
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14 R. GRAHAM AND J. CORT́ES

robots take point samples of the spatial field at discrete instants of time inZ≥0. Our results below are

independent of the particular robot dynamics, so long as each agent is able to move up to a distance

umax ∈ R>0 between consecutive sampling times. Since the focus of thiswork is the online planning of

optimal sampling paths, any bounded delay incurred by network communication or calculations may

be incorporated into this maximum radius of movement between sampling instants. Bounds on such

delay may be inferred from the complexity analysis in Section 5.1. The communication radius of the

robots is alsorcom. If there is a chance that Rj will be within correlation range ofVi(Q) after moving

a distance ofumax (i.e., at the following sample time), then Ni must be able to communicate with Rj .

To that end, let

rcom ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + rs + umax. (6)

Among all the partitions ofD, the Voronoi partitionV(Q) ensures that (6) is satisfied with the smallest

communication radius. Figure 1 illustrates the communication requirements of the hybrid network.

The robots can sense the positions of other robots within a distance of2umax. At discrete timesteps,

N1

N2

N3

N4

R1

Figure 1. The static nodes are depicted as filled boxes, with the Voronoi partition boundaries as solid lines. Each

node can communicate with its Voronoi neighbors, and with any mobile robot within a distance ofrs+umax (dotted

circle) of the Voronoi cell (in the plot,N2 andN3 can communicate withR1).

each robot communicates the sample and spatial position to static nodes within communication

range, along with the positions of any other sensed robots. The nodes then compute control vectors,

and relay them back to robots within communication range. The implementation does not require

direct communication between robots. We refer to this hybrid network model asQhybrid, and the

communication network of just the nodes asQN. Note that bothQhybrid andQN are connected networks.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 15

3.1.1. Voronoi contraction for collision avoidanceIn addition to the maximum velocity and the

restriction toD, we impose a minimum distance requirementω ∈ R>0 between robots for collision

avoidance. Consider the spatial locationsP = (p1, . . . , pn) of then robotic agents at thekth timestep.

DefineΩ
(k)
i = (Vi(P ))ctn:ω/2 ∩B(pi, umax), where(Vi(P ))ctn:ω/2 denotes theω2 -contraction ofVi(P ).

For eachj 6= i ∈ {1, . . . , n}, we havedist(Ω
(k)
i ,Ω

(k)
j ) ≥ ω. Between timestepsk andk+1, we restrict

Ri to the regionΩ(k)
i . Figure 2 shows an example inR2 of this set. The region of allowed movement of

umax R1

R2

R3

Ω
(k)
1

ω
2

Figure 2. Example contraction regionΩ(k)
1 (dashed) with Voronoi partition boundaries (solid) for comparison.

all robotic agents at timestepk ∈ Z≥0 is then the Cartesian product of the individual restrictions, i.e.,

Ω(k) =
∏n

i=1 Ω
(k)
i ⊂ (Rd)n. Note that eachΩ(k)

i is the intersection of sets which are closed, bounded,

and convex, and hence inherits these properties, which are in turn also inherited byΩ(k). Further note

that computation of the Voronoi partition generated by all robots is not required, only the partition

boundaries between adjacent robots separated by less than2umax. We assume that the regionΩ(k)
i is

reachable between stepsk andk + 1. For vehicles with restricted dynamics, minimal modifications

allow extension of these results to any nonempty, convex subset ofΩ(k)
i .

3.2. The average variance as objective function

For predictions over a spatiotemporal region, the average variance is a natural measure of uncertainty.

Using Proposition 2.1, we define the average over the region of the posterior predictive variance,

A = ϕ(Y,X)

∫

D

∫

T

φ((s0, t0);X) dt0 ds0. (7)
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16 R. GRAHAM AND J. CORT́ES

Here,Y ∈ (Rn)
kmax is a sequence of samples taken at discrete times{1, . . . , kmax}, kmax ∈ Z>0,

at space-time locationsX ∈ (Dn
e )

kmax. We takeT = [1, kmax] to be the time interval of interest,

indicating that the goal of the experiment is to develop an estimate of the space-time process over the

entire duration. Other time intervals may be of interest in different experiments. Their use follows with

minimal changes to the methods described here.

One would like to choose the sample locations that minimizeA. Since samples are taken

sequentially, with each new set restricted to a region nearby the previous, and since the sigma mean

depends on the actual values of the samples, one cannot simply optimize over(Dn
e )kmax a priori.

Consider, instead, a greedy approach in which we use past samples to choose the positions for the next

ones. At each timestep we choose the next locations to minimize the average posterior variance of the

predictor given the data known so far. In Section 4, we develop a sequential formulation of the average

posterior predictive variance and discuss its amenabilityto distributed implementation overQhybrid.

4. Distributed criterion for adaptive design

In this section we develop an optimality criterion to maximally reduce the average predictive variance

at each timestep. We begin by introducing some notation thatwill help us make the discussion precise.

Let Y (k) ∈ R
n, k ∈ {1, . . . , kmax}, denote the samples taken at timestepk, at space-time positions

X(k) ∈ Dn
e . LetY (k1:k2) =

(

Y (k1), . . . , Y (k2)
)

∈ R
n(k2−k1+1), k1 < k2, denote the vector of samples

taken over a range of timesteps, at positionsX(k1:k2) =
(

X(k1), . . . ,X(k2)
)

∈ Dn(k2−k1+1)
e . At stepk,

the samplesY (1:k) have already been taken. We are interested in choosing spatial locations,P ∈ Ω(k),

at which to take the next samples. To that end, letX(1:k+1) : Ω(k) → Dn(k+1)
e map a new set of

spatial locations to the vector of spatiotemporal locations which will result if the(k +1)th samples are

taken there, i.e.,X(1:k+1)(P ) =
(

X(1:k), (P, k + 1)
)

. The adaptive design approach is then to use the

samples that minimize the average prediction varianceso far,

A(k)(P ) = ϕ
(

Y (1:k+1),X(1:k+1)(P )
)

∫

D

∫

T

φ
(

(s0, t0);X
(1:k+1)(P )

)

dt0 ds0. (8)

This sequential formulation of the problem allows us to use past measurements without worrying about

the ones at steps afterk+1. However, efficient distributed implementation still suffers from three major

obstacles. First, the spatially distributed nature of the problem implies that not all sample locations are

accessible to any given agent at any given time. Second, inversion of then(k+1)×n(k+1) correlation

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2009;1:1–2

Prepared usingrncauth.cls



COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 17

matrix, which grows withk2, quickly becomes an unreasonable burden. Finally, the sigma mean also

depends on the actual values of the samples at stepk +1, which are not known until the measurements

are taken. We handle these problems through a series of approximations, first to the conditional variance

in Section 4.1, then to the sigma mean in Section 4.2, resulting in an approximation of the value ofA(k)

which is both distributed in nature and computationally efficient.

4.1. Upper bound on conditional variance

We seek an efficient approximation of the conditional variance termφ
(

(s0, t0);X
(1:k+1)(P )

)

in (8). As

noted in Remark 2.2,φ represents the direct effect of the sample locations on the predictive uncertainty

(i.e., conditional onσ2). The network of static nodes provides a convenient method for calculating the

spatial average. The average over the entire region may simply be written as the sum of averages over

each cell in the Voronoi partition generated by the static nodes. As those samples which are spatially

near a given cell have the most influence on reducing the variance of predictions there, we consider

using local information onlyin these regional calculations. Likewise, the interactionbetween current

samples and those far in the past is minimal, and we restrict attention to recent timesteps to avoid

the problem of growing complexity. The following result gives an approximation of the integrated

conditional variance which may be calculated byQN based on local information only.

Proposition 4.1 (Approximate integrated conditional variance) LetX(k+1−⌊rt⌋:k+1)
j (P ) denote an

ordering of the set of past or current space-time locations correlated in space toVj(Q) and in time to

k + 1 such that

iF

(

X
(k+1−⌊rt⌋:k+1)
j (P )

)

=
{

(s, t) ∈ iF

(

X(1:k+1)(P )
)

| dist(s, Vj(Q)) < rs andk + 1 − t < rt

}

.

Let φ
(k)
j : De × Ω(k) → R map a prediction locationx0 ∈ De and a vector of potential spatial

locations to sampleP ∈ Ω(k) to the conditional variance of a prediction made atx0 using only the

samples at space-time locationsX
(k+1−⌊rt⌋:k+1)
j (P ). Then the following holds,

∫

D

∫

T

φ((s0, t0);X
(1:k+1)(P )) dt0 ds0 ≤

m
∑

j=1

∫

Vj(Q)

∫

T

φ
(k)
j ((s0, t0);P ) dt0 ds0.

Proof. Note that althoughX(k+1−⌊rt⌋:k+1)
j (P ) is not unique, the invariance of the conditional variance

to permutations of the sample locations ensures uniquenessof φj

(

x0;P
)

. The result follows from

Proposition I.2 in Appendix I.
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18 R. GRAHAM AND J. CORT́ES

4.2. Approximate sigma mean

In this section, we describe our approach to deal with the sigma mean termϕ(Y (1:k+1),X(1:k+1)(P ))

in (8). Note that the effect of the sigma mean on prediction isindirect, and its value has the same

influence on predictions regardless of the predictive location. As such, we do not use spatially local

approximations as we did for the conditional variance. However, to avoid the problem of complexity

growth, we use samples from only a subset of the timesteps. Wediscuss this next. Subsequently, we

address the issue of unrealized sample values by using a generalized least squares estimate.

4.2.1. Incorporating new data.Here we consider approximating the value ofϕ as calculated with

samples from a subset of timesteps. There are various reasons for using different sample subsets

depending on the field under study, the objectives of the experiment, and the desired accuracy of

optimization. Sinceϕ is invariant under permutations of the sample vector, the specific ordering is

irrelevant. Proposition 4.2 serves as the basis for choosing the samples to include in an approximation

of the sigma mean. The proof follows from (9c) in Lemma I.3 in Appendix I.

Proposition 4.2 (Approximate sigma mean) LetY1 ∈ R
n1 andY2 ∈ R

n2 denote two sample vectors

of lengthsn1, n2 ∈ Z>0, and letY = (Y1, Y2). Letϕ2 = E[σ2|Y2] denote the value of the sigma mean

conditional on only the samples inY2, andϕ = E[σ2|Y ] the value conditional on the whole sample

vectorY . Then,

ϕ = ϕ2

( ν + n2 − 2

ν + n1 + n2 − 2
+

(Y1 − E[Y1|Y2])
T Var[Y1|Y2]

−1(Y1 − E[Y1|Y2])

ν + n1 + n2 − 2

)

,

whereE[Y1|Y2] and Var[Y1|Y2] denote the conditional expectation and variance, respectively, ofY1

givenY2 (see Proposition I.1 in Appendix I).

This result contains some important implications with respect to the optimization problem. First,

if we use the full value ofϕ(Y (1:k),X(1:k)(P )) = E[σ2|Y (1:k)] in our optimality metric at each

timestep, and all steps are optimized with respect to this measure, the new information gained at later

steps diminishes significantly, while the amount of effort required to glean that information increases.

Second, the additional information added by includingY1 is directly related to how wellY1 may be

estimated fromY2.

These observations lead us to suggest the following three strategies for choosing samples to use in

the approximation of the sigma mean.
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COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 19

Exploration-exploitation: The diminishing returns suggest using an exploration-exploitation

approach [27]. Here a block oftblk ∈ {1, . . . , kmax} sample steps at the beginning of the

experiment designates an exploration phase, during which the sigma mean is taken into account

in the optimization. Subsequent iterations constitute an exploitation phase in which the sigma

mean is treated as a fixed constant and we optimize only the conditional variance.

Recent block: The second strategy is to always use the most recenttblk sample steps. This increases

the computational burden over the exploration-exploitation approach, but ensures that each step

takes the unknown covariance into account in optimization.

Block update: A third choice is to use select blocks oftblk timesteps for scheduled updates of the

sigma mean. Lettskip ∈ Z>0 be a fixed number of timesteps to skip between updates. The

advantage of this method in reducing computational complexity comes from an assumption that

tskip > ⌈rt⌉ − 1, resulting in a block diagonal correlation matrix.

These three approximation methods trade off computationalcomplexity for accuracy. The

appropriateness of each method depends on the specific requirements of the scenario. In all three cases,

the maximum size of the correlation matrix which must be inverted isntblk ×ntblk. Furthermore, using

Lemma I.3, it can be seen that this matrix inversion is the most computationally intensive part of

calculating the sigma mean. Therefore, using any one of these three methods, we avoid computational

complexities which grow out of proportion to the information gain. However, we still have the problem

that the sigma mean includes sample values which have not been taken yet. We address this issue in the

next section. To avoid unnecessary notation, we assume throughout the sequel that all available samples

are used to calculateϕ(k). To accommodate the approximations outlined in this section, it is necessary

only to replace them with the subsampled ones, and modify thenumber of samples accordingly.

4.2.2. Approximating unrealized sample values.While seeking to optimize the(k + 1)th set of

measurements, we would like to incorporate the effect of their locationson the posterior variance,

but the actual values have not yet been sampled. Our approachis to use a generalized least squares

approximation ofY (k+1). We describe this in detail in the next result whose proof is in Appendix I.

Proposition 4.3 (Generalized least squares estimate of sigma mean) Let Ŷ
(k)

LS : Ω(k) → R
n map

a vector of spatial locationsP ∈ Ω(k) to the generalized least squares estimate, based on the
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20 R. GRAHAM AND J. CORT́ES

sample vectorY (1:k), of a vector of samples to be taken at space-time positions(P, k + 1). Let

ϕ̂(k+1) : Ω(k) → R be defined by,

ϕ̂(k+1)(P ) =
1

ν + n(k + 1) − 2

[

qν + βT
0 K

−1
0 β0 + Υ(k)

−
(

K
−1
0 β0 + Γ(k)

)T (
K

−1
0 + E

(k+1)(P )
)−1(

K
−1
0 β0 + Γ(k)

)

]

, where

Υ(k) = (Y (1:k))T (K(1:k))−1Y (1:k), Γ(k) = F
(1:k)(K(1:k))−1Y (1:k),

and E
(k+1)(P ) denotes the matrixE as calculated with space-time location vectorX(k+1)(P ) =

(

X(1:k), (P, k + 1)
)

. After the new samples,Y (k+1) have been taken at locations(P, k + 1), let

y
(k)
LS : Ω(k) → R

n denote the estimation error, i.e.,y
(k)
LS (P ) = Y (k+1) − Ŷ

(k)
LS (P ). Then,

ϕ(k+1) =
ϕ(k)(y

(k)
LS (P ) − 2µk+1|≤k)T Var[Y (k+1)|Y (1:k)]−1

ν + n(k + 1) − 2
y
(k)
LS (P ) + ϕ̂(k+1)(P ), where

µk+1|≤k = (F(k+1) − F
(1:k)(K(1:k))−1Cor[Y (1:k), Y (k+1)])T

× (E(1:k) + K
−1
0 )−1

(

F
(1:k)(K(1:k))−1Y (1:k) + K

−1
0 β0

)

.

In other words,ϕ(k+1) may be estimated bŷϕ(k+1)(P ). The estimation is exact ifY (k+1) =

Ŷ
(k)

LS (P ).

Remark 4.4 (Quality of estimation) It should be pointed out here that the generalized least squares

estimate is not the best guess of the value of the unrealized data. That would correspond to the

conditional expectation given all past data. However, fromProposition 4.2, we can see that this choice

would result in zeroing out the influence of the locations on the posterior mean ofσ2. Instead, we use

an optimality criterion which accounts for this influence. •

4.3. The aggregate average prediction variance and its smoothness properties

Building on the results from Sections 4.1 and 4.2, we define here theaggregate average prediction

varianceÃ(k). Unlike A(k), the functionÃ(k) may be computed efficiently in a distributed manner

over the networkQhybrid. The following result is a direct consequence of Propositions 4.1 and 4.3.

Proposition 4.5. (Spatiotemporal approximation for distributed implementation) Let Ã(k)
j :

Ω(k) → R be defined by

Ã(k)
j (P ) = ϕ̂(k+1)(P )

∫

Vj(Q)

∫

T

φ
(k)
j ((s, t), P ) dt ds.
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Under the assumption that the error term from Proposition 4.3 satisfies,

lim
k→∞

ϕk(y
(k)
LS (P ) − 2µk+1|≤k)T Var[Y (k+1)|Y (1:k)]−1

ν + n(k + 1) − 2
y
(k)
LS (P ) = 0,

thenÃ(k)(P ) =
m
∑

j=1

Ã(k)
j (P ) satisfies lim

k→∞
Ã(k)(P ) ≥ lim

k→∞
A(k)(P ).

Next, we characterize the smoothness properties ofÃ(k). Let∇il denote the partial derivative with

respect topil, the lth spatial component of the spatial position of Ri. We denote by∇i the partial

derivative with respect topi, i.e.,∇i = (∇i1, . . . ,∇id)
T . Thus the gradient of̃A(k) at locationP may

be represented as thend-dimensional vector
(

∇T
1 Ã(k)(P ), . . . ,∇T

n Ã(k)(P )
)T

. Given a matrixA,

denote by∇ilA the component-wise partial derivative ofA. The proof of the next result amounts to a

careful bookkeeping of the smoothness properties of the various ingredients in the expressions.

Lemma 4.6 (Gradient of conditional variance) If f1, . . . , fp are C1 with respect to the spatial

position of their arguments, then the mapP 7→ φ
(k)
j (x0, P ) is C1 onΩ(k) with partial derivative,

∇ilφ
(k)
j (x0, P ) = −2kT

K
−1∇ilk + k

T
K

−1∇ilKK
−1

k

− ξT
0

(

K
−1
0 + E

)−1 ∇ilE
(

K
−1
0 + E

)−1
ξ0 + 2ξT

0

(

K
−1
0 + E

)−1 ∇ilξ0, with

∇ilξ0 = −∇ilFK
−1

k − FK
−1∇ilk + FK

−1∇ilKK
−1

k,

∇ilE = ∇ilFK
−1

F
T + FK

−1∇ilF
T − FK

−1∇ilKK
−1

F,

where the matricesK, E, andF and the vectorsk, andξ0 are calculated from the space-time location

subvector,X(k+1−⌊rt⌋:k+1)
j (P ).

If, in addition, the partial derivatives off1, . . . , fp areC1 with respect to the spatial position of their

arguments, then the mapP 7→ ∇iφ
(k)
j (x0, P ) is globally Lipschitz onΩ(k).

It is worth noting that the matrix∇ilF is nonzero only in columni. The matrix∇ilK is nonzero

only in row and columni. Additionally, due to the finite correlation range in space and time, only

those elements corresponding to correlation with other measurement locationsx = (s, t) which satisfy

‖pi − s‖ ≤ rs andt > k + 1 − rt are nonzero.

Note that the value of̂ϕ(k+1)(P ) depends onP only through the matrixE(k+1)(P ), whose

partial derivative is analogous to that ofE in Lemma 4.6. If subsampling is used to approximateϕ

per Section 2.1, we set∇ϕ̂(k+1)(P ) = 0 for those steps which are skipped. Here we assume no

subsampling for notational convenience. This leads us to the following result.
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22 R. GRAHAM AND J. CORT́ES

Lemma 4.7 (Gradient of sigma mean) If f1, . . . , fp are C1 with respect to the spatial position of

their arguments, then̂ϕ(k+1) is C1 onΩ(k) with partial derivative,

∇ilϕ̂
(k+1)(P ) = −Ψ(P )T ∇ilE

(k+1)(P )Ψ(P )

ν + n(k + 1) − 2
, where

Ψ(P ) =
(

K
−1
0 + E

(k+1)(P )
)−1(

K
−1
0 β0 + Γ(k)

)

.

Additionally, if the partial derivatives off1, . . . , fp areC1 with respect to the spatial position of their

arguments, the gradient∇ϕ̂(k+1) is globally Lipschitz onΩ(k).

We are now ready to state the smoothness properties ofÃ(k) and provide an explicit expression for

its gradient. This is a direct consequence of the lemmas above.

Proposition 4.8 (Gradient of approximate average variance) If f1, . . . , fp are C1 with respect to

the spatial position of their arguments, theñA(k) is C1 onΩ(k) with partial derivative,

∇iÃ(k)(P ) = ϕ̂(k+1)(P )

∫

Vj(Q)

∫

T

∇iφ
(k)
j ((s, t), P ) dt ds

+ ∇iϕ̂
(k+1)(P )

∫

Vj(Q)

∫

T

φ
(k)
j ((s, t), P ) dt ds.

Additionally, if the partial derivatives off1, . . . , fp areC1 with respect to the spatial position of their

arguments, the gradient∇Ã(k) is globally Lipschitz onΩ(k).

4.4. Distributed computation of aggregate average prediction variance and its gradient

Here, we substantiate our assertion that the aggregate average prediction variance and its gradient

introduced in Section 4.3 are distributed over the networkQhybrid. SinceV(Q) is a partition of the

physical space, we may partition all sample locations spatially by region. Thus for each(s, t) ∈ iF(X),

there is exactly onej ∈ {1, . . . ,m} such thats ∈ Vj(Q). In order for the network to calculatẽA(k)

and its gradient atP , it is sufficient for Nj to computeÃ(k)
j and∇iÃ(k)

j for each robot inVj(Q).

ThenÃ(k) may be calculated via discrete-time average consensus (cf.Section 2.3), while∇iÃ(k) may

be calculated from information local to Ri. From Propositions 4.5 and 4.8, it can be seen that the

calculation ofÃ(k)
j and∇iÃ(k)

j requires only local information in addition to the (global)values of

ϕ̂(k+1)(P ) and∇iϕ̂
(k+1)(P ). Let us explain how these two quantities can be calculated.

For i ∈ {1, . . . , nk}, let x
(1:k)
i andy

(1:k)
i denote theith element of the vectorX(1:k) andY (1:k),

respectively. Let I(k)
Local : Z>0 → F(Z>0) map the index of the node to the set of indices of samples

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control2009;1:1–2

Prepared usingrncauth.cls



COOPERATIVE ADAPTIVE SAMPLING OF RANDOM FIELDS WITH PARTIALLY KNOWN COVARIANCE 23

whose spatial position lies inside its Voronoi cell, and whose time element is correlated to timek + 1,

I(k)
Local(j) =

{

i ∈ {1, . . . , nk} | x
(1:k)
i = (s, t) ands ∈ Vj(Q)

}

With a slight abuse of notation, define I(k+1)
Local (j, P ) to be the equivalent set of indices into the full vector

of space-time measurement locations,X(k+1)(P ).

In the following results, we assume that a desired level of accuracy is known a priori to all nodes

so that an execution of the JOR or average consensus algorithms have a finite termination criterion.

Unless stated otherwise, the executions of these algorithms may take place in serial or parallel. Our

first result illustrates how the network can calculate the terms inϕ̂(k+1)(P ) which do not depend onP .

Proposition 4.9 (Distributed calculations without P ) for j ∈ {1, . . . ,m}, assume thatNj knows

x
(1:k)
i , y

(1:k)
i for eachi ∈ I(k)

Local(j). After p + 1 executions of the JOR algorithm and two subsequent

consensus algorithms,Nj has access to,

#1: elementi of (K(1:k))−1Y (1:k) ∈ R, i ∈ I(k)
Local(j) via JOR;

#2: coli
(

F
(1:k)(K(1:k))−1

)

∈ R
p, i ∈ I(k)

Local(j) via JOR;

#3: Γ(k) ∈ R
p via consensus;

#4: Υ(k) ∈ R
p via consensus.

Proof. Under the assumptions onQhybrid, the matrixK(1:k), satisfies the requirements of the distributed

JOR algorithm. The results here build on this fact and the connectedness ofQN (which allows for

consensus).

Next, we describe calculations that the network can executewhen robotic agents are at locationsP .

Proposition 4.10 (Distributed calculations with P ) Given P ∈ Ω(k), assume thatNj , for j ∈
{1, . . . ,m}, knowsx(1:k)

i for eachi ∈ I(k+1)
Local (j, P ) and the results of Proposition 4.9. LetF

(k+1)(P )

denote the matrix of basis functions evaluated at locationsX(1:k+1)(P ). Afterp executions of JOR and
p(p+1)

2 executions of consensus algorithms,Nj has access to,

#5: coli
(

F
(k+1)(P )(K(k+1)(P ))−1

)

∈ R
p, i ∈ I(k+1)

Local (j, P ) via JOR;

#6: E
(k+1)(P ) ∈ R

p×p via consensus.

After these computations,Nj can calculate∇ilE
(k+1) for l ∈ {1, . . . , d}, and consequentlŷϕ(k+1)(P )

and∇iϕ̂
(k+1)(P ) for each robot in{i ∈ {1, . . . , n} | pi ∈ Vj(Q)}.
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Proof. The matrixK
(k+1)(P ) satisfies the requirements of the distributed JOR algorithmby the

assumptions onQhybrid. The itemized results follow from this, and the symmetry of the matrix

E
(k+1)(P ). The calculation of̂ϕ(k+1) and partial derivatives follow from Lemmas I.3 and 4.7.

5. Distributed optimization of the aggregate average predictive variance

Here we present a distributed algorithm which is guaranteedto converge to a stationary point of̃A(k)

on Ω(k). The DISTRIBUTED PROJECTEDGRADIENT DESCENT ALGORITHM in Table V allows the

network of static nodes and mobile agents to find local minimaof Ã(k) on Ω(k). At timestepk, the

nodes follow a gradient descent algorithm, defining a sequence of configurations,{P †
l }, l ∈ Z>0, with

P
†
1 = P (k) ∈ Ω(k), the vector of current spatial locations of the robotic agents and

P
†
l+1 = projΩ

(

P
†
l − α∇Ã|P †

l

)

, α ∈ R≥0,

whereα is chosen via the DISTRIBUTED L INE SEARCH ALGORITHM outlined in Table IV. The

DISTRIBUTED L INE SEARCH ALGORITHM is a distributed version of the LINE SEARCH ALGORITHM

from Table II. The maximum stepsize,αmax ∈ R>0, is designed to ensure that all robots with nonzero

partial derivatives can move the maximum distance.

When|Ã(k)(P †
l+1)−Ã(k)(P †

l )| = 0, the algorithm terminates, and the nodes setP (k+1) = P
†
l+1. By

the end of this calculation, each node knows the identity of robotic agents in its Voronoi cell at timestep

k + 1. Node Nj transmitspi(k + 1) to robot Ri, which then moves to the location between timesteps.

Note that although each robot may be sending position and sample information to multiple nodes, the

approximate average prediction variance is calculatedwithin the Voronoi cell. As the Voronoi cells do

not overlap, there is no problem with information repetition.

The following result describes some nice properties of the DISTRIBUTED PROJECTEDGRADIENT

DESCENT ALGORITHM. Its proof is a direct result of the construction of the algorithm and the fact

that it is equivalent to a centralized projected gradient descent.

Proposition 5.1. (Properties of the DISTRIBUTED PROJECTED GRADIENT DESCENT ALGO-

RITHM) TheDISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM is distributed over the

networkQhybrid. Moreover, if the partial derivatives off1, . . . , fp are C1 with respect to the spatial

position of their arguments, any execution is such that the robots do not collide and, at each timestep

after the first, measurements are taken at stationary configurations ofP 7→ Ã(k)(P ) overΩ(k).
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Name: DISTRIBUTED L INE SEARCH ALGORITHM

Goal: Compute step size for projected gradient descent ofÃ(k)

Input: Configuration,P = (p1, . . . , pn) ∈ Ω(k)

Assumes: (i) Connected network of static nodes

(ii) N j knowspi, Ã
(k)
j (P ), ∇iÃ

(k)(P ) andΩi for each robot within communication range

(iii) ‖∇iÃ
(k)(P )‖ 6= 0 for at least onei ∈ {1, . . . , n}

(iv) Nj knows items#3 and#4 from Proposition 4.9

(v) Shrinkage factorτ and toleranceθ ∈ (0, 1) known a priori by all static nodes

Uses: (i) Projection of next set of locations onΩi,

P
′
j(α, P ) =

n

projΩi
(pi +α∇iÃ(P )), for eachi such thatdist (pi, Vj(Q)) ≤ rs+umax+ω

o

.

(ii) Total distance traveled by robots enteringVj(Q),

distj (α, P ) =
X

i∈{1,...,n} such that

projΩi
(pi+α∇iÃ(P ))∈Vj(Q)

‖projΩi

“

pi + α∇iÃ(P )
”

− pi‖
2
.

Output: Step sizeα ∈ R

Initialization

1: N1, . . . , Nm calculateαmax =
umax

min{‖∇iÃ(P )‖ | ‖∇iÃ(P )‖ 6= 0}
via maximum consensus

For j ∈ {1, . . . , m}, node Nj executes concurrently

1: α := αmax

2: repeat

3: calculatesdistj (α, P )2

4: calculateŝϕ(k+1)
`

P ′
j(α, P )

´

according to Proposition 4.10

5: calculatesÃ(k)
j

`

P ′
j(α, P )

´

6: execute consensus algorithm to calculate the following:

Ã(k) `

P
′(α, P )

´

=

m
X

j=1

Ã
(k)
j

`

P
′
j(α, P )

´

‚

‚P − P
′(α, P )

‚

‚

2
=

m
X

j=1

distj (α, P )2

7: ̟ := θ
α
‖P − P ′(α, P )‖

2
+ Ã(k)(P ′(α, P )) − Ã(k)(P )

8: if ̟ > 0 then

9: α := ατ

10: until ̟ ≤ 0

Table IV. DISTRIBUTED L INE SEARCH ALGORITHM.
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Name: DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM

Goal: Find a local minimum ofÃ(k) within Ω(k).

Assumes: (i) Connected network of static computing nodes and mobile robotic sensingagents

(ii) Static nodes deployed overD such thatrcom ≥ maxi∈{1,...,m} {CR(Vi(Q))} + rs + umax,

robotic agents in initial configurationP (1) ∈ Ω(k)

(iii) Line search shrinkage factorτ and tolerance valueθ ∈ (0, 1) known a priori by all nodes

(iv) A termination marker known to all nodes and robots which may be sent to mark the end of a

gradient descent loop.
Uses: (i) Each node uses the temporary vectorsPcur, respectivelyPnext to hold the configuration at the

current, respectively next step of the gradient projection algorithm. For ease of exposition, we use

global notation although Nj only calculates and uses the parts of these vectors which correspond

to agents currently within communication range.

At time k ∈ Z≥0, node Nj executes:

1: setsRcov(j) := {Ri | dist(pi(k), Vj(Q)) ≤ rs}

2: collectsy(k)
i andpi(k) from Ri for eachi ∈ Rcov(j)

3: computesÃ(k)
j

`

P (k)
´

, thenÃ(k)
`

P (k)
´

by consensus

4: setsPnext := P (k)

5: repeat

6: setsPcur := Pnext(j) and calculates−∇Ã
(k)
j |Pcur

7: transmits∇iÃ
(k)
j (Pcur) to robots inRcov(j)

8: collects sum∇iÃ
(k)(Pcur) from robots inRcov(j)

9: runs DISTRIBUTED L INE SEARCH ALGORITHM at

Pcur to getα

10: setsPnext := Pcur + α∇Ã(k)|Pcur

11: calculates|Ã(k)(Pnext) − Ã(k)(Pcur)|

12: until |Ã(k)(Pnext) − Ã(k)(Pcur)| = 0

13: setsP (k+1) := Pnext, sends position to robots inVj(Q)

Meanwhile, robot Ri executes:

1: setsScov(i) := {Nj | dist(pi(k), Vj(Q))≤ rs}

2: takes measurementy
(k)
i atpi(k)

3: sendsy(k)
i andpi(k) to nodes inScov(i)

4: repeat

5: receives∇iÃ
(k)
j (P (k)) from nodes inScov(i)

6: calculates sum∇iÃ
(k)(P (k))

7: sends∇iÃ
(k)(P (k)) to all nodes inScov(i)

8: until receives finish marker from any node

9: receives locationpi(k + 1) and moves to it

Table V. DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.
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The proposed algorithm is robust to failures in themobileagents. If an agent stops sending position

updates, it ceases to receive new control vectors. The rest of the network continues operating with the

available resources and will eventually sample the areas previously covered by the failing agents. With

minor modifications, the algorithm could be made robust to a certain number of node failures as well.

However, this would require larger communication radius and extra storage (essentially having each

node keep track of the sample locations stored by its Voronoineighbors).

Remark 5.2 (Extension to relative positioning) It is interesting to observe that, due to the fact that

the actual positions of samples are only required in a local context, our algorithm can also be

implemented in a robotic network with relative positioning. The only requirements are the following:

that each node can calculate the mean basis function for all local samples; that each node can calculate

the correlations between pairs of local samples and that neighboring nodes can agree on the ordering

of those samples within the global matrix. These modifications would not impact the convergence

properties of the algorithm. •

5.1. Complexity analysis

Here we examine in detail the complexity of the DISTRIBUTED PROJECTEDGRADIENT DESCENT

ALGORITHM in terms of the number of robotic agents and static nodes. Forreference, we compare

it against a centralized strategy that uses all-to-all broadcast and global information, and does not

take advantage of the distributed nature of the problem. In order to avoid complexities which grow

unbounded withk, we assume here that one of the approximation methods is employed for calculating

ϕ as outlined in Section 4.2.1. For the purposes of complexity, it does not matter which method is used,

only that the size of the matrix which must be inverted at any step is bounded byntblk, and thus does

not depend onk. Letn(k)
c ∈ {1, . . . , ntblk} denote the number of samples used in thecurrentblock for

approximatingϕ at stepk, and letK(k)
c denote the correlation matrix of those samples.

Given that the DISTRIBUTED PROJECTEDGRADIENT DESCENT ALGORITHM is sequential, and

designed to run for a fixed number of timesteps, we are concerned here with complexities involved in

performing a single step. Below, where we refer to complexity notions over multiple iterations of an

algorithm, we are considering the nested algorithms such asJOR, or consensus, which run during a

single step of the DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM.

We examine the algorithm performance against the followingnotions of complexity, see [38, 39],
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28 R. GRAHAM AND J. CORT́ES

Communication complexity: the maximum number of bits transmitted over all (directed)

communication channels between nodes in the network over the course of the algorithm;

Time complexity: the maximum number of iterations to completion of the algorithm times the

maximum number of bits sent over any channel during one iteration;

Space complexity: the total number of bits for which space may be requiredby a single node at any

given time.

We consider the complexity of the algorithms in terms of the number of agents,n, and the number

of nodes,m, independently. We use the well-knownBachmann-Landaunotation for upper and lower

bounds, see e.g., [40]. Where rates of convergence of iterative methods depend on a desired level of

accuracy,ǫ, we use the notationOǫ, instead of the standardO, to emphasize the dependence of bounds

on the accuracy. Throughout the section, we make the following assumption on the diameter, degree,

and number of edges of the communication graphQN of the network of static nodes.

Regularity Assumption- We assume that the group of static nodes is regular in the sense that the

following three bounds are satisfied asm increases:

diamQN ∈ Θ( d
√

m) EdQN ∈ Θ(m) degQN
≤ degmax ∈ R>0.

Remark 5.3 (Network assumptions are reasonable) In two and three dimensions, the maximum

diameter requirement has been shown to be consistent with a hexagonal grid network [41, 42], which is

also consistent (in terms of number of neighbors) with the average case for large Voronoi networks [43].

The requirement of bounded degree is also satisfied by a hexagonal grid. The total number of edges is

half the sum of the number of neighbors over all nodes, so bounded degree yieldsEdQN ∝ m. •

We are now ready to characterize the complexities of our algorithms.

Proposition 5.4. (Average consensus complexity) Let b = (b1, . . . , bm)T ∈ R
m denote a vector

distributed acrossQN in the sense thatNj knows bj for each j ∈ {1, . . . ,m}. The discrete

time consensus algorithm to calculateb
T b
m to an accuracy ofǫ has communication complexity in

Oǫ

(

m2 d
√

m
)

, time complexity inOǫ (m d
√

m), and space complexity inOǫ(1).

Proof. Each node sends a single message to each neighbor at each step, so the time complexity is

bounded by the number of iterations to completion. The errorat iterationt is eave(t) = ‖wave(t)−w‖,
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with w them-vector whose elements are allbT b, andwave(t) the vector of current approximate values.

This is bounded aseave(t) ≤
(

1 − 4
m diamQN

)t

eave(0), where we use [44, Equation (6.10)] to lower

bound the algebraic connectivity ofQN. Thus the number of steps required to guarantee error less

than ǫ is bounded byt∗ave ∈ Oǫ

(

− log−1
(

1 − 4
m diamQN

))

. Applying the bound on the growth

of the network diameter and replacing the logarithm with theseries representation for largem, we

deducet∗ave ∈ Oǫ (m d
√

m). At each iteration, each node stores a single value for each neighbor, and a

constant number of other values. Thus the space complexity is bounded bydegQN
, which is inOǫ(1) by

assumption. Finally, the communication complexity is bounded by a single message over each channel

at each iteration. The total number of such messages from each node is bounded by a constant.

Since Ã(k) uses only measurements correlated in time, the size of the matrices and vectors is

limited to a constant multiple ofn. The next result summarizes the complexity of the leader election

computation, see [39] for a proof.

Proposition 5.5. (Leader election complexity) The leader election algorithm may be run onQN to

calculate the quantity max
i∈{1,...,n

(k)
c }

n(k)
c
∑

j=1

[K(k)
c ]ij , with communication complexity inO (m d

√
m), time

complexity inO ( d
√

m), and space complexity inO(1).

For the algorithms considered next, the distribution of samples defines two different regimes for

complexity. We consider both the worst case and the average based on a uniform distribution.

Proposition 5.6. (JOR complexity) Assume that there is some constant̟λ ∈ (0, 1), known a

priori, such thatλmin(K
(k)
c ) > ̟λ. Regarding the sparsity ofK(k)

c , assume that any one sample is

correlated to at mostNcor ∈ Z>0 others, and that, for anyj ∈ {1, . . . ,m}, the number of samples in

D \ Vj(Q) which are correlated to samples inVj(Q) is upper bounded by a constant,Nmsg ∈ Z>0.

Let b = (b1, . . . , bn
(k)
c

)T ∈ R
n(k)

c be distributed on the network of nodes in the sense that ifNj

knows coli(K
(k)
c ), thenNj knowsbi. Using the distributed JOR algorithm, the network may calculate

(K
(k)
c )−1b to accuracyǫ with communication complexity inOǫ(m d

√
m), time complexity inOǫ( d

√
m),

and space complexity inOǫ(n) worst case,Oǫ(
n
m ) average case.

Proof. The first step of the JOR algorithm is to calculate the relaxation parameter. For correlation

matrices, Appendix II describes a near optimal parameter inthe sense of minimizing the completion

time. Using two leader election algorithms, the network calculatesβ = maxi6=j∈{1,...,n}[K
(k)
c ]ij

and α = maxi∈{1,...,n}

∑n
j 6=1[K

(k)
c ]ij . The relaxation parameter is thenh∗ = 2

2+α−β . The time
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30 R. GRAHAM AND J. CORT́ES

complexity of the JOR algorithm can be broken down into the maximum number of messages any

node sends over any channel times the number of iterations. The number of messages Nj will send

is equal to the number of nonzero off-diagonal entries[K
(k)
c ]ii′ , i 6= i′, wheresi ∈ Vj(Q) and

si′ ∈ Vj′(Q), with j 6= j′. By assumption, this number is bounded byNcor. The error at iterationt

may be writteneJOR(t) = ‖wJOR(t)− (K
(k)
c )−1b‖, wherewJOR(t) is the vector of current approximate

values. From [36], one haseJOR(t) ≤
(

ρ
(

I − hK
(k)
c
))t

eJOR(0), whereI is then
(k)
c × n

(k)
c identity

matrix. By Proposition II.4, we have0 ≤ ρ (I − hK) < 1 − h∗̟λ. The assumption of sparsity

and the fact thatK(k)
c is a correlation matrix give us0 ≤ α < Nmsg, and0 ≤ β < 1, which results in

1−h∗̟λ < 1− 2̟λ

2+Nmsg
. Since both̟ λ andNmsgare positive, we have1− 2̟λ

2+Nmsg
< 1. Thus the number

of iterations required to reach errorǫ is upper bounded byt∗ = (e(0) − e∗)
(

− log−1
(

1 − 2̟λ

2+Nmsg

))

in Oǫ(1). The time complexity is dominated by the time complexity of the leader election algorithm

outlined in Proposition 5.5. For space complexity, we note that the maximum number of samples in

a given Voronoi cell is bounded byn(k)
c , while the average number isn

(k)
c
m . The space complexity is

dominated by the requirement to store vectors of length given by the number of samples in the cell,

and the same number of rows ofK
(k)
c . For communication complexity, the overall algorithm requires

a maximum of one message to be sent per nonzero off-diagonal entry in K
(k)
c , each iteration, plus the

number of messages required for the leader election.

Remark 5.7 (Interpretation of sparsity assumptions) The assumptions on the sparsity ofK
(k)
c in

Proposition 5.6 have the following interpretation: samples do not cluster in space as measured with

respect to the distribution of the Voronoi cells and their size relative to the correlation range. •

The above results allow us to characterize the complexitiesof the DISTRIBUTED PROJECTED

GRADIENT DESCENTALGORITHM.

Proposition 5.8. (Complexity of the DISTRIBUTED PROJECTED GRADIENT DESCENT ALGO-

RITHM) Under the assumptions of Table V, theDISTRIBUTED PROJECTEDGRADIENT DESCENT

ALGORITHM may be completed within toleranceǫ with communication complexity inOǫ(m
2 d
√

m),

time complexity inOǫ(m d
√

m), and space complexity inOǫ(n
2) worst case,Oǫ

(

n2

m2

)

average case.

Proof. The space complexity is dominated by the need to store the inverse correlation matrix of known

samples required for̃A(k)
j . Even though the correlation matrix is sparse, the inverse is in general not,

requiring the wholen
(k)
c ×(n(k)

c +1)
2 storage space for the upper or lower triangle of the symmetric matrix.
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The worst case corresponds to alln
(k)
c samples correlated to one Voronoi region, and the average

to samples distributed uniformly. The time and communication complexities are dominated by the

requirement of the consensus algorithm.

5.1.1. Broadcast method for comparisonHere, we compare our method against a simple algorithm

which floods the network with new information at each sample time as a way of judging its efficiency.

This algorithm would work as follows. At each timestep, all samples and locations are disseminated

through the network, such that each node obtains the entire vectorsX andY . A (centralized) projected

gradient descent algorithm can then be run by Nj , j ∈ {1, . . . ,m} to find the next sample locations

for those agents withinVj(Q). Since all nodes have the same information, any such algorithms should

converge to the same final locations, so there is no difficultywith overlapping computations. Since this

method is only given for comparison, we assume this is the case. Once a node has calculated the next

location for all of the agents which will be in that Voronoi cell, the control vectors may be transmitted to

them. The information dissemination corresponds to an all-to-all broadcast in which each node begins

with a distinct message of length|I(k+1)
Local (j, P )| units. There are a number of different ways this may be

carried out. Here we assume the flooding method in [45], whichis optimal for time complexity. In this

method, every node continues to transmit any new information to all neighbors until new information

is exhausted. The proof of the next result follows from combining [45] with the assumptions onQN

and the fact that the total number of initial messages to be disseminated isn times the number of bits

required to convey a spatial location plus the number required to convey a sample value. The space

complexity is dominated by the requirement to store the entire inverse correlation matrix at each node.

Proposition 5.9. (Complexity of the broadcast method) Under the regularity assumption onQN,

local minima ofÃ(k) may be found by all-to-all broadcast of agent positions and subsequent local

projected gradient descent with,

• communication complexity inΘ(nm)

• time complexity inΘ(n + m)

• space complexity inΘ(n2)

Remark 5.10 (Broadcast method requires global positioning) It should be noted here that while the

DISTRIBUTED PROJECTEDGRADIENT DESCENT ALGORITHM might be extended to systems with

relative positioning (see Remark 5.2), the broadcast method requires global coordinates. •
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Complexity Type Broadcast Distributed PGD

Worst Average

Communication Θ(mn) Oǫ(m
2 d
√

m) Oǫ(m
2 d
√

m)

Time Θ(n + m) Oǫ(m d
√

m) Oǫ(m d
√

m)

Space Θ(n2) Oǫ(n
2) Oǫ

((

n
m

)2)

Table VI. Algorithm complexities. The worst and average cases are over distributions of samples, with the average

corresponding to a uniform distribution inD. The bounds for the broadcast method are derived from results in [45].

Table VI lists the complexity bounds side by side. One can seethat the distributed method scales

better overall with the number of mobile agents. The resultswith respect to increasing the number

of static nodes are less favorable, but include a tradeoff between the average storage requirement and

the communication and time complexities. For our algorithm, increasing the number of nodes has the

additional benefit of decreasing the average computationalburden per node.

5.2. Simulations

We show here an implementation of the DISTRIBUTED PROJECTED GRADIENT DESCENT

ALGORITHM with n=8 robotic agents and the squareD with vertices{(1, 1), (1, 2), (2, 2), (2, 1)}.

The mean regression functionsfi are give byf((x, y), t) = (1, x, y)T and the separable correlation

function is defined byCov[Z(s1, t1), Z(s2, t2)] = Ctrunc(‖s1 − s2‖, 0.25)Ctrunc(|t1 − t2|, 6.9), where

Ctrunc(δ, rs) =











e−
δ

10∗rs
(

1 − 3δ
2rs

+ δ3

2r3
s

)

if δ ≤ rs,

0 otherwise.

This is a tapered exponential covariance function as suggested in [46]. We useω = 0.02, umax = 0.2,

and ran the simulated experiment forkmax = 40 timesteps. The values of our tuning parameters

were ν = 20, q = 0.1, β0 = 0, and K0 = 10 I. To illustrate the robustness to failure, R7

ceased communications after timestep10, and R6 after timestep15. As we are ultimately interested in

measuring performance with respect to the actual posteriorpredictive distribution (i.e., after samples

have been taken), the comparisons between different approaches in this section are made using that

metric as opposed to the various approximations employed inthe distributed implementation.

We simulated the sampled data as follows. A9×9 grid of fixed spatial locations was set up, defining

a vector,Xgrid ∈ D3240
e of fixed grid points over the space-time region (one for each grid point at each
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sampling timestep). A random vector was drawn from the jointprior distribution of all grid locations,

under the assumption thatσ2 andβ take their prior mean values, i.e., from the multivariate distribution,

Norm3240

(

F(Xgrid)
T β0, σ

2
0K(Xgrid)

)

, whereσ2
0 =

qν

ν − 2

denotes the prior mean ofσ2. Each time a sample was taken by an agent, the value was determined

based on least squares (simple kriging) interpolation fromthis grid of fixed points. Figure 3 depicts

snapshots of the sample field used in the examples below. Notethat while the three consecutive

1 2

1

2

(a)

1 2

1

2

(b)

1 2

1

2

(c)

Figure 3. Snapshot of sample field over the square domain,D, for example problem at timesteps (a)k = 13, (b)

k = 14, and (c)k = 15.

timesteps depicted are not identical, there is clearly sometemporal correlation.

The DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM consists of a gradient descent

using an objective function defined by three basic approximations: the least squares approximation of

unrealized data; the approximate conditional variance based on regions defined by the static nodes;

and the approximate sigma mean based on blocks of samples to reduce the computational burden

over time. We begin by examining a centralized, computationally intensive implementation of the

gradient descent technique which uses only the least squares approximation. This allows us to compare

the (adaptive) gradient descent approach against two a priori approaches: a static configuration and

a lawnmower trajectory. The centralized implementation isexecuted by running the DISTRIBUTED

PROJECTEDGRADIENT DESCENTALGORITHM with one single static node (m = 1), responsible for

the whole predictive domain and using all samples up to stepk − 1 to estimateϕ at stepk. In the

language of Section 4.2, we lettblk=kmax. Each of the three approaches begins from the same initial

configuration, and the sample values are drawn from the same predetermined field as described above.
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Figure 4 illustrates the first three steps of trajectories taken in each case. We use only three steps for

1 2
1

2

(a)

1 2
1

2

(b)

1 2
1

2

(c)

Figure 4. Illustration of the difference between the three simulated approaches. Shown are the first three samples

taken by each agent using (a) the static configuration, (b) the a priori lawnmower approach, and (c) the centralized

gradient descent. The initial position of each agent is depicted by a black triangle, the second and third as

successively lighter triangles.

illustrative purposes, as the trajectories quickly overlap and become difficult to read.

In Figure 5, we compare snapshots of the posterior predictive mean and posterior predictive variance

of each of the three approaches, based on all samples taken over the course of the experiment (although

only those samples correlated to the given timestep are depicted in the figure). These snapshots, using

all samples correlated to the predictive timestep instead of only those preceding it, are motivated

by the stated goal of reducing the average variance over the entire predictive region. Note that both

the gradient method and lawnmower seem to catch most of the major features of the sample field,

while the static configuration results in small neighborhoods of very low posterior variance due to

the nontrivial temporal correlation. In Figure 6, we compare the overall average posterior predictive

variance resulting from the three approaches at each step ofthe simulation (still after the samples at the

given step have been taken). It should be noted here that in our extensive simulations there were several

instances in which actual sample values differed enough from the least squares estimation as to cause

erratic results. Those illustrated here are among the more stable ones. Future work will be devoted to

identify situations in which the least squares estimation compromises the algorithm performance.

We next ran the DISTRIBUTED PROJECTEDGRADIENT DESCENTALGORITHM with m = 9 static

nodes using the three approximation methods discussed in Section 4.2. For the recent sample method

and the block update method, we used a block size oftblk = 7, the minimum size to cover all correlated

time lags. In the block update method, we skippedtskip = 6 timesteps between update blocks. For the
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1 2

1

2

(a)

1 2

1

2

(b)

1 2

1

2

(c)

1 2

1

2

(d)

1 2

1

2

(e)

1 2

1

2

(f)

Figure 5. Contours of the first two moments of the posterior predictive distribution at timet = 14 based on

all samples taken by each of the three centralized trajectories. To avoid unnecessary complication, we have

plotted only the positions of samples, not the individual agent trajectories.In each case, all samples correlated

in time to step14 are depicted as triangles, with the shade of the triangle representing the level of temporal

correlation (white triangles are samples taken at step14, and darker triangles are farther away in time and thus

have smaller correlation to the predictive snapshot). Plots (a) and (d) show the posterior predictive mean and

variance, respectively, resulting from samples taken by the static approach. Similarly (b) and (e) correspond to

the lawnmower approach, while (c) and (f) correspond to the centralized gradient descent. Note that the different

shades of the triangles in the static configuration are a result of the dropped agents (the last sample of R6 is closely

correlated to timestep14, thus light in color).

exploration-exploitation method, we used a larger initialblock of tblk = 14 samples. Figure 7 shows

a snapshot of the posterior mean contours resulting from samples taken along each of these network

trajectories. Figure 8 compares the overall average posterior variance as a function of timestep, based

on samples taken using the centralized gradient approach against the three distributed approaches.
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10 20 30 40

3

4

5

6

7

8

k

A(k)

Figure 6. Value ofA(k) as a function ofk for the static (dotted), lawnmower (solid), and centralized gradient

descent (dashed) approaches. The gradient method does the bestpersistently, throughout the experiment. The

static approach shows the most consistent curve, but results in the highest average error overall.

1 2

1

2

(a)

1 2

1

2

(b)

1 2

1

2

(c)

Figure 7. Contours of the posterior predictive mean at timet = 14 based on all samples using the (a) block

update method; (b) recent sample method; and (c) the exploration-exploitation method. To avoid unnecessary

complication, we have plotted only the positions of samples, not the individual agent trajectories. In each case, all

samples correlated in time to step14 are depicted as triangles, with the shade of the triangle representing the level

of temporal correlation (white triangles are samples taken at step14, and darker triangles are farther away in time

and thus have smaller correlation to the predictive snapshot).

6. Conclusions and future work

We have considered a network of static computing nodes and mobile robotic sensing platforms taking

measurements of a time-varying random process with covariance known up to a scaling parameter.

We have used a Bayesian approach, treating the field as a spatiotemporal Gaussian random process,
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10 20 30 40
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6

7

8

k

A(k)

Figure 8. Value ofA(k) as a function ofk using the centralized gradient method (solid), block update method

(dashed), recent sample method (dot-dash), and exploration-exploitation method (dotted). The three approximation

methods perform similarly to the centralized gradient method. The exploration-exploitation approach lags behind

at the end, while the two other approximation methods actually do better than thecentralized gradient approach.

and developed a novel approximation of the variance of the posterior predictive distribution which

may be calculated in a sequential and distributed fashion. Using this formulation, we have developed

a projected gradient descent algorithm which is distributed over the network of nodes and robots. We

have examined the complexity of this approach, and comparedit against the lower bound complexity

of a centralized “broadcast” method, showing that the distributed approach scales better with the

number of mobile agents. Future work will focus on theoretical guarantees on the accuracy of the

approximationÃ(k) and on the robustness to failure of the proposed algorithm. Guarantees on the

least squares approximation have proved extremely difficult, especially in the case of sparse samples.

Future work will also explore alternative methods, such as the expected value of the gradient of the

random field. The extension of these methods to networks in which the static agents are replaced by

slow moving ones would also be of interest. As mentioned in Remark 2.4, special care must be taken

to avoid singularities when generating local approximations for the universal kriging model. Rigorous

methods for handling this situation are also worth exploring.
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APPENDIX

I. Predictions with a subset of measurements

We present here a series of results concerning the relationship between subsets of spatiotemporal

sample locations and hypothetical predictions made from partial information. LetY ∈ R
n denote

a full set of measurements at locationsX ∈ Dn
e . Let n1, n2 ∈ Z>0 such thatn1 + n2 = n. Consider a

partition of the measurementsY = (Y1, Y2) such thatY1 ∈ R
n1 andY2 ∈ R

n2 , and a similar partition

of X. Note that due to the invariance ofϕ andφ under permutations of the samples, our discussion is

valid for any partition of the measurements, not necessarily restricted to samples that are sequential in

time. We will useK1, respectivelyK2, to denote the correlation matrix of locationsX1, respectively

X2, and analogous notation for the matricesF1,F2,E1,E2. Let K12 = K
T
21 ∈ R

n1×n2 denote the

matrix of cross-correlation between the two location vectors.

We begin with a multivariate version of the posterior predictive variance from Proposition 2.1, which

can be considered the hypothetical distribution of the measurements at space-time locationsX2 given

the samplesY1. This result can be obtained by applying Bayes Theorem to theprior model.

Lemma I.1 (Multivariate posterior predictive distribution) Under the Bayesian model(2), the

multivariate posterior predictive distribution of hypothetical samplesY2 conditional on dataY1 is

then2-variate shifted Students t distribution withν + n1 degrees of freedom, which takes the form,

p(Y2|Y1) ∝ det Var[Y2|Y1]
− 1

2

(

1 +
(Y2 − E[Y2|Y1])

T
Var[Y2|Y1]

−1 (Y2 − E[Y2|Y1])

ν + n1 − 2

)−
ν+n1+n2

2

.

Here, the expectation is given by

E[Y2|Y1] = ξT
2|1(E1 + K

−1
0 )−1

(

F1K
−1
1 Y1 + K

−1
0 β0

)

+ K21K
−1
1 Y1,

whereξ2|1 = F2 − F1K
−1
1 K12. The covariance matrix is given by

Var[Y2|Y1] = ϕ(Y1,X1)φ(X2;X1),

where, with a slight abuse of notation, we have usedφ(X2;X1) to denote the following multivariate
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extensions ofφ andϕ,

φ(X2;X1) = K2 − K21K
−1
1 K12 + ξT

2|1

(

K
−1
0 + E1

)−1
ξ2|1,

ϕ(Y1,X1) =
1

ν + n1 − 2

(

qν +
(

Y1 − F
T
1 β0

)T (
K1 + F

T
K0F

)−1 (
Y1 − F

T
1 β0

)

)

.

In the sequel, we will find useful the matricesM ∈ R
(n+p)×(n+p) andM2 ∈ R

(n2+p)×(n2+p) and

vectorsU ∈ R
n+p andU2 ∈ R

n2+p defined as,

M =





K F
T

F −K
−1
0



 , U =





Y

−K
−1
0 β0



 , M2 =





K2 F
T
2

F2 −K
−1
0



 , U2 =





Y2

−K
−1
0 β0



 .

Note thatM2 is the lower right submatrix ofM under a different partition, andU2 is the corresponding

subvector ofU . It can be shown that the matricesM andM2 are invertible.

Proposition I.2 (Approximate conditional variance) The termφ(x0;X) may be written in terms of

spatiotemporal locationsX2 as,

φ(x0;X) = φ(x0;X2) − (k1 − µ1)
T

φ(X1;X2)
−1 (k1 − µ1) , where

µ1 =





K21

F1





T

M−1
2





k2

f(x0)



 , k1 = Cor[Z(x0), Y1], k2 = Cor[Z(x0), Y2].

Thereforeφ(x0;X) ≤ φ(x0;X2) with equality if and only ifk1 = µ1.

Proof. First, we note that the conditional variance can be written usingM as,

φ(x0;X) = Cor[Z,Z] −





k

f(x0)





T

M−1





k

f(x0)



 .

Next, we point out that with the proper partitioning ofM, the matrix φ(X1;X2) is the Schur

Complement,(M2 |M ). Using this, and a similar partition of the vectork, one arrives at the result.

The following result illustrates a number of ways in which the sigma mean may be restated.

Lemma I.3 (Restated sigma mean) The quadratic formUTM−1U can be expressed as,

UTM−1U = (Y − F
T β0)

T (K + F
T
K0F)−1(Y − F

T β0) − βT
0 K

−1
0 β0 (9a)

= Y T
K

−1Y −
(

K
−1
0 β0 + FK

−1Y
)T (

K
−1
0 + E

)−1(
K

−1
0 β0 + FK

−1Y
)

(9b)

= UT
2 M−1

2 U2 + (Y1 − E[Y1|Y2])
T φ(X1;X2)

−1(Y1 − E[Y1|Y2]). (9c)

Furthermore, the termϕ(Y,X) may be written as,

ϕ(Y,X) =
qν + βT

0 K
−1
0 β0 + UTM−1U

ν + n − 2
. (10)
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Proof. Each of the three representations of the quadratic form may be derived directly by using [47,

Proposition 2.8.7] to expand the inverse matrix onto Schur complements. Plugging representation (9a)

into (10) yields the form given in Proposition 2.1.

The generalized least squares (GLS) approximation arises naturally from partitioning the elements

of the termK
−1Y . The following lemma gives explicit form in terms of the GLS error.

Lemma I.4 (Generalized least squares approximations) Let ŶLS = K21K
−1
1 Y1 be the generalized

least squares estimate ofY2 based on samplesY1 (conditional on all parameters), and letyLS =

Y2 − ŶLS. Then we can write,

K
−1Y =





K
−1
1 Y1

0



+





−K
−1
1 K12 (K1 |K )

−1
yLS

(K1 |K )
−1

yLS



 . (11)

Proof of Proposition 4.3. Using (11) in Lemma I.4 we write,

Y T
K

−1Y = Y T
1 K

−1
1 Y1 + (Y2 − ŶLS)T (K1 |K ) (Y2 − ŶLS)

FK
−1Y = F

T
1 K

−1
1 Y1 + ξ2|1 (K1 |K ) (Y2 − ŶLS).

Here we have used the simpler indexed notation,Y1 = Y (1:k) andY2 = Y (k+1) to simplify the algebra.

Applying these results to (9b) in Lemma I.3 yields,

UTM−1U = Y T
1 K

−1
1 Y1 − (K−1

0 β0 + F1K
−1
1 Y1)

T (K−1
0 + E)−1(K−1

0 β0 + F1K
−1
1 Y1)

+ (Y2 − ŶLS)T (K1 |K )
−1

(Y2 − ŶLS)

− 2(K−1
0 β0 + F1K

−1
1 Y1)

T (K−1
0 + E)−1(ξ2|1 (K1 |K )

−1
(Y2 − ŶLS))

− (ξ2|1 (K1 |K )
−1

(Y2 − ŶLS))T (K−1
0 + E)−1(ξ2|1 (K1 |K )

−1
(Y2 − ŶLS)).

Using, e.g. [48, Equation (12,17)], we can write,

φ(X2;X1) = (K1 |K )
−1

+ (K1 |K )
−1

ξT
2|1(K

−1
0 + E)−1ξ2|1 (K1 |K )

−1
.

With some algebraic manipulation we arrive at the result,

UTM−1U = Y T
1 K

−1
1 Y1 − (K−1

0 β0 + F1K
−1
1 Y1)

T (K−1
0 + E)−1(K−1

0 β0 + F1K
−1
1 Y1)

+ (yLS − 2µ2|1)φ(X2;X1)
−1yLS.

The result follows from Lemma I.3.
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II. Near optimal relaxation parameter for JOR

Here we present some results regarding a relaxation parameter for the JOR algorithm which is nearly

optimal with respect to the rate of convergence of the algorithm for a certain class of matrices.

Specifically we are interested in the class of symmetric, positive definite matricesC with ones on

the diagonal. Lety(t) = (y1(t), . . . , yn(t))T ∈ R
n be the vector updated during the JOR iteration

in (5). Lete(t) = ‖C−1b − y(t)‖ denote the error at iterationt. We may write,

e(t) ≤ (ρ(I − hC))
t
e(0), (12)

giving a bound on the error at stept based on the initial error. The value ofρ(I−hC) therefore controls

the rate of convergence, and choosing the relaxation parameter,h, is of vital importance. Throughout

this section we will use the shorthandλmax = λmax(C) andλmin = λmin(C). The work [49] provides

results concerning the convergence of the JOR algorithm, including an optimal relaxation parameter,

which in our case is equivalent tohopt =
2

λmax+λmin
. In this section we will introduce an approximation

to this optimal value which may be calculated in a distributed manner.

Proposition II.1. Assume thatC ∈ R
n×n is a symmetric positive definite matrix with all diagonal

entries equal to1. Let β and α denote the maximum off-diagonal entry ofC and the maximum off-

diagonal row sum ofC, respectively,

β = max
i6=j∈{1,...,n}

{cij} ≥ 0, α = max
i∈{1,...,n}

{

n
∑

j=1
j 6=i

cij

}

≥ 0.

Leth∗ = 2
2+α−β . Then usingh∗ as the relaxation parameter in the JOR algorithm to solvey = C−1b

results in guaranteed convergence.

Proof. Recall from Section 2.3 that convergence of the JOR algorithm is guaranteed as long

as h∗ ∈
(

0, 2
λmax

)

. This can also be seen from (12), sinceh outside of this range would yield

ρ(I − hC) > 1. SinceC is symmetric positive definite with1’s on the diagonal, all off-diagonal

entries must have magnitude strictly less than1. Thus1 − β > 0. The Gershgorin circle theorem

(e.g. [47, Fact 4.10.13]) implies thatλmax ≤ 1+α. Together, these two results yield2+α−β > λmax,

which implies that 2
2+α−β < 2

λmax
, and the result follows.

Lemma II.2. Under the assumptions of Proposition II.1,h∗ ≤ 1
λmin

, with equality if and only ifC is

then × n identity matrix.
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Proof. First, note the following implication chain,

λmin ≤ 1 =⇒ 2λmin ≤ 2 + α − β =⇒ h∗ ≤ 1

λmin
.

Now, assume thath∗ = 1
λmin

. This implies thatλmin = 1 + α − β, but λmin ≤ 1, andα ≥ β. So we

must haveλmin = 1. Since the diagonal entries ofC are all1, the smallest eigenvalue can only be1 if

all off-diagonal entries are zero, i.e., ifC = In.

Lemma II.3. Under the assumptions of Proposition II.1,|1 − h∗λmin| ≥ |1 − h∗λmax|.

Proof. Using Lemma II.2, we have|1 − h∗λmin| = 1 − h∗λmin. The result may then be shown by

two separate cases. First, note that ifh∗ ≤ 1
λmax

then we have,

|1 − h∗λmax| = 1 − h∗λmax ≤ |1 − h∗λmin|,

so the result holds in this case. For the second case, assume that h∗ > 1
λmax

. Then |1 − h∗λmax| =

h∗λmax − 1. The inclusion principle and the fact thatC is positive definite give us the bounds

0 < λmin ≤ 1 − α. Combined with the previously mentioned Gershgorin bound,λmax ≤ 1 + α,

this allows us to write,

λmax + λmin

2 + α − β
≤ 1, 2

λmax + λmin

2 + α − β
≤ 2,

h∗ (λmax + λmin) ≤ 2, h∗λmax− 1 ≤ 1 − h∗λmin.

Thus in all cases,|1 − h∗λmax| ≤ |1 − h∗λmin|.

Proposition II.4. Under the assumptions of Proposition II.1, further assume thatλmin ≥ ̟λ for some

̟λ ∈ (0, 1). Then0 ≤ ρ(I − h∗C) < 1 − 2̟λ

2+α−β

Proof. First note that the spectral radius is given bymax {|1 − h∗λmin|, |1 − h∗λmax|}, and is clearly

nonnegative. From Lemma II.3, we haveρ(I − h∗C) = |1 − h∗λmin|. From Lemma II.2, we can infer

ρ(I − h∗C) = 1 − h∗λmin. The upper bound follows by comparing1 − h∗λmin against1 − h∗̟λ.
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