
DISTRIBUTED TREE REARRANGEMENTS FOR REACHABILITY

AND ROBUST CONNECTIVITY∗

MICHAEL SCHURESKO† AND JORGE CORTÉS‡

Abstract. This paper studies connectivity maintenance in robotic networks. We propose a
distributed coordination algorithm that can be combined with the individual motion control strategies
of the robotic agents to maintain the overall network connectivity. The coordination algorithm is
based on the idea of maintaining the edges of an evolving spanning tree of the communication graph,
termed the constraint tree. The evolution of this tree is determined by the preferences that each
agent possesses as to which other agents it would like to maintain connectivity with, the network
configuration, and the allowed set of re-arrangement operations. We analyze the reachability and
repair properties of the proposed algorithm. Regarding reachability, we show that the constraint
tree can transition between any two trees which are subgraphs of the current communication graph.
Regarding repair, we show that the algorithm is robust against link drops in the constraint tree and
can repair an initially disconnected constraint tree. We provide simulations of the performance of
the algorithm in deployment scenarios.

1. Introduction. Given a group of robots with processing, motion, and com-
munication capabilities executing a motion coordination algorithm to achieve some
task, we set out to address the following problem: how can we guarantee that the
graph induced by the inter-agent communication remains connected?

Surprisingly, many coordination algorithms for robotic networks fail to maintain
connectivity under simple communication models. Tasks such as “deploy over a region
of interest” or “explore an area” are examples where the control objective naturally
conflicts with the goal of staying close enough to maintain global network connectivity.
Even tasks which appear not to conflict with the concept of network cohesiveness can
cause connectivity to fail. Consider a robotic network where any pair of robots within
a certain distance can communicate. For such networks, it turns out that simple
averaging algorithms that achieve flocking [28] and rendezvous [24] can easily fail
to maintain connectivity, see Figure 1.1(a). Another example where connectivity
maintenance is not guaranteed is the motion planning problem between two network
configurations in physical space. A simple linear interpolation between the initial
and final configurations does not guarantee that connectivity is preserved during the
evolution, even if the network at the two configurations is connected, see Figure 1.1(b).

A strategy to solve the connectivity problem is to make custom modifications to
each motion control algorithm to enforce inter-agent connectivity constraints. It is
desirable, however, to synthesize a general methodology for maintaining connectivity
that goes beyond a case by case study, and can be used in conjunction with any motion
coordination algorithm. In this paper we take on this aim and propose an approach
based on the preservation of a spanning tree of the underlying communication graph.
The idea is to synthesize a distributed algorithm to agree upon “safe” re-arrangements
of the spanning tree (i.e., re-arrangements that do not break connectivity or cause

∗Submitted to the SIAM Journal on Control and Optimization on March 2009, revised version on
August 2010. This work was supported in part by NSF CAREER Award ECS-0546871. Preliminary
versions of this manuscript were presented as [31] at the 2007 IEEE Conference on Decision and
Control, New Orleans, LA and as [33] at the 2009 International Conference on Hybrid Systems:
Computation and Control, San Francisco, CA.

†Department of Applied Mathematics and Statistics, University of California, Santa Cruz,
mds@soe.ucsc.edu

‡Department of Mechanical and Aerospace Engineering, University of California, San Diego,
cortes@ucsd.edu

1

(a)

1

2

3

(b)

Fig. 1.1. Failure to maintain connectivity in rendezvous (a) and while transitioning between
connected configurations (b). In (b), (1) denotes the initial positions, (2) denotes an intermediate
position and (3) denotes the final configuration. Paths shown in black. In (a), the agents within
each group that stays connected will correctly rendezvous to a point.

cycles) based on preferences specified by the motion coordination algorithm. Because
of the fundamental role that spanning trees play in graph theory and computer science,
a distributed algorithm for agreeing on a spanning tree is of interest beyond the area
of distributed control of robotic networks.

Literature review. The fundamental importance of spanning trees to distributed
algorithms has motivated a vast collection of literature which explores their prop-
erties and designs algorithms to construct them, see e.g., [6, 22, 25]. A series of
works [2, 12, 14, 16] improve upon the running time of distributed algorithmic solu-
tions to the problem of finding a minimum spanning tree of a network. The work [26]
found a lower bound on this task, which is reasonably close to the running time of
the solution proposed in [16]. The work [3] provides an algorithm for distributed
repair and construction of a minimum spanning tree. Such algorithms are unsuitable
for our purposes as we would like the spanning tree to dynamically change based on
robot positions while robot motion is inducing links which are not part of the tree to
disappear.

The same reasons that make spanning trees important for distributed computa-
tion are even more critical in ad hoc wireless networking, where link failures due to
node motion are quite common. Large areas of research in this field deal with repair-
ing a spanning tree after it has been broken, see [13] for a survey. An algorithm that
uses partial orders on nodes to prevent cycles during simultaneous link creation is pre-
sented in [19] to compute an approximate minimum spanning tree. These algorithms
handle dynamic link failures, but are not developed with the intent of dynamically
producing a constraint tree to control motion.

In cooperative control and robotics, several works have studied how to constrain
the motion of the agents to preserve connectivity. In [1], when studying rendezvous of
multiple robots, all links of the r-disk interaction topology are preserved by specifying
a constraint set for each robot’s motion which is an intersection of disks of radius r/2.
This procedure is also used in [9, 21] in a more general context, and extended in [15]
to visibility problems in nonconvex environments. These works share the decentral-
ized nature of the approach to link preservation at the cost of highly constraining
the motion of the network – essentially, agents can only move in a way that does
not severe any link in an appropriate proximity graph. Once a link belongs to the
proximity graph, it is preserved from that point on along the evolution of the network.
The work [34] generates connectivity-preserving motions between pairs of formations.

2

In [18], Laplacian-based control laws are designed to solve formation control prob-
lems while preserving connectivity. The work [37] proposes coordination algorithms
that achieve flocking while preserving connectivity. Not particularly tied to a spe-
cific coordination task, the centralized solution proposed in [36] allows for a general
range of agent motions. The distributed solution presented by [29] gives connectiv-
ity maintaining constraints for second-order control systems with input magnitude
bounds. [27, 7] and an earlier version [31] of this paper study distributed solutions
to perform graph rearrangements that preserve connectivity and exhibit robustness
to link failures. Various works have focused on designing the network motion so that
some desired measure of connectivity (e.g., algebraic connectivity) is maximized under
position constraints: [4, 10] consider convex constraints, while [20] deals with a class
of nonconvex constraints. The work [38] use potential fields to maximize algebraic
connectivity and [35] builds a distributed estimator to control algebraic connectivity.
Our previous work in [32] uses nonsmooth analysis tools to design strategies that
maintain the algebraic connectivity of the network above a desired threshold. These
approaches yield robust connectivity preservation algorithms at the cost of a substan-
tial overhead in communication and computation. Finally, we believe our statement
of distributed reachability to be unique among the works in the field.

Statement of contributions. This paper introduces the Connectivity Main-
tenance Algorithm for dynamically agreeing upon a spanning tree of a proximity
graph, that we term constraint tree. Maintaining each edge of the tree preserves the
connectivity of the robotic network. The algorithm allows for on-line topological re-
arrangements of the tree in a distributed manner while at the same time guaranteeing
that no cycles are formed. We assume that each agent has a set of (possibly changing)
preferences as to which other agents it would like to attach to. These preferences can
be specified a priori or can be determined by any motion coordination algorithm the
network is executing.

The Connectivity Maintenance Algorithm has several useful properties.
We show that, in combination with a motion coordination algorithm, the algorithm
guarantees that connectivity is maintained. We also show that the allowable re-
arrangements are flexible enough to make it possible for the constraint tree to transi-
tion to any desired tree which remains a subgraph of the communication graph for a
sufficient time. Moreover, the algorithm is robust to link failures and is able to repair
the constraint tree if the underlying interaction graph remains connected for a suffi-
ciently large period of time. In particular, the algorithm can successfully recover from
an initial disconnected constraint tree. Connectivity Maintenance Algorithm
is “on-line” in the sense that it provides the agents with a “current spanning tree” at
every step of the algorithm. This approach differs in both style and end goals from
the standard “build a spanning tree and design an algorithm to repair it” approach
in the wireless networking community – and fits well with various algorithms in the
controls literature which constraint robot motion to maintain a (fixed) spanning tree.

The proposed algorithm is modular in a way which allows easy combination with
motion coordination algorithms designed to achieve a variety of tasks, such as ren-
dezvous, deployment, flocking or point-to-point reconfiguration. To formalize this
property, the paper also introduces the notion of input-output control and commu-
nication law, building on the modeling framework introduced in [23] to analyze the
properties of motion coordination algorithms. Input-output control and communica-
tion laws allow designers to accommodate reusable algorithmic components which can
be combined to form complete coordination algorithms. Our Connectivity Main-

3

tenance Algorithm is an example of an input-output control and communication
law. To illustrate the soundness of the approach, we combine it with a deployment
algorithm originally presented in [8] to achieve optimal coverage in a convex region.

Organization. Section 2 introduces some basic graph-theoretic notions and the
model for the robotic network. Section 4 presents the Connectivity Maintenance
Algorithm. Section 5 analyzes the algorithm correctness. Section 6 characterizes
the algorithm repair properties against link failures and disconnection. Section 7
characterizes the reachability properties. Section 8 illustrates our algorithm through
simulations. Finally, Section 9 presents our conclusions and ideas for future work.

Notation. Throughout the paper, R, R≥0, and R>0 denote the sets of reals,
non-negative reals, and positive reals, respectively. For a set S, F(S) denotes the
collection of all finite subsets of S. Given sets S1, S2, let F(S1;S2) denote the set of
functions from S1 to S2. Whenever we provide algorithm pseudo-code, we use a← b
to mean “a is assigned a value of b.” For f, g : N → R≥0, we use f(n) ∈ O(g(n))
to mean that there exist N0 ∈ N, c ∈ R such that f(n) < cg(n) for all n > N0; we
use f(n) ∈ Ω(g(n)) to mean that there exist N0 ∈ N, c ∈ R such that f(n) > cg(n)
for all n > N0. Finally, f(n) ∈ Θ(g(n)) means f(n) ∈ O(g(n)) ∩ Ω(g(n)). We use
∧ to mean “logical and” and ∨ to mean “logical or.” For sets X1, . . . ,Xm, we use
πXj

: X1 × · · · ×Xm 7→ Xj to denote the canonical projection onto Xj . We use the

superindex ·[i] to refer to a variable that belongs to the ith agent. For instance, x[i]

refers to the ith agent’s value of the variable x.

2. Preliminary notions. Here, we review some notions related to graph theory
and introduce a formal model for robotic networks and coordination algorithms.

2.1. Graph-theoretic notions. We follow here [6, 11]. An undirected graph,
or simply graph, G = (V,E), consists of a vertex set V and a set E of unordered pairs
of vertices, called edges. A directed graph or digraph, is a graph having ordered pairs
of vertices as edges. A graph (V ′, E′) is a subgraph of a graph (V,E) if V ′ ⊂ V and
E′ ⊂ E; additionally, a graph (V ′, E′) is a spanning subgraph if it is a subgraph and
V ′ = V . From this point on, for a graph on n nodes (i.e., |V | = n) we assume without
loss of generality that V = Zn = {0, . . . , n − 1}, thus allowing us to refer to node
with unique identifier (UID) 0, etc. Given a graph, G = (V,E), the set of neighbors
of node i ∈ V is N (i) = {j ∈ V | (i, j) ∈ E}.

A tree is a connected graph with no cycles. In this paper, we only deal with
directed rooted trees. In a directed rooted tree, each edge connects a child node i to

its parent node p
[i]
curr. The unique node with no parents is called the root, and the

distance in a tree from a node i to the root is called the depth of i, denoted dp
[i]
T . The

depth of the tree, denoted depth(T), is the maximum depth among all nodes. Nodes

i and j are called siblings in a given tree if they have the same parent, p
[i]
curr = p

[j]
curr.

We say i is a descendant of j, or equivalently j is an ancestor of i, if there exists a

sequence of nodes, k1, . . . , kn such that p
[i]
curr = k1, p

[k1]
curr = k2, . . . , p

[kn]
curr = j. We find

it convenient to define an ordering <T on nodes given a tree T as follows: i<T j if
j is a descendant of i or if ai, aj are descendants or equal to i and j respectively,

p
[ai]
curr = p

[aj]
curr, and ai < aj . This is equivalent to saying that i<T j if i is reached after

j in a depth-first traversal of T which explores neighbors of lesser UID first. Note
that <T induces a total order on the nodes of T .

We use proximity graphs as an abstraction of network interconnection among
spatially distributed agents. Proximity graphs [5, 17] associate network topology

4

with robot positions by defining mappings from finite collections of points in R
d to

graphs. For P ∈ F(Rd), let G(P) denote the set of undirected graphs whose vertex set
is some labeling of the elements in P. A proximity graph G associates to P ∈ F(Rd),
|P| = n, an undirected graph in G(P) with vertex set isomorphic to Zn and edge set
EG(P), where EG : F(Rd) → F(Zn × Zn). Examples include the complete graph, the
r-disk graph, and the visibility graph, see [5].

2.2. Robotic network model. Throughout the paper, we use the modeling
framework introduced in [5, 23]. This formalism allows us to provide formal definitions
of the proposed coordination algorithms that are ready to be combined with other
cooperative strategies. We briefly describe the main notions next.

Definition 2.1 (Robotic network). A uniform robotic network S is a tuple
(I,A, Ecmm) consisting of

(i) I = Zn; the set of unique identifiers (UIDs);
(ii) A = {A[i]}i∈Zn

, with A[i] = (X,U,X0, f), i ∈ Zn, the set of physical agents;
here X is the state-space of each agent, f : X × U → TX is the map deter-
mining its controlled dynamics, X0 is the set of allowable initial states, and
U is the control space of each control system.

(iii) Ecmm, the communication edge map, is a map from
∏

i∈Zn
X [i] to the subsets

of I × Zn \ diag(I × Zn).
Next we introduce the notion of input-output control and communication law.

This notion, a generalization of the concept of control and communications law from [5],
is aimed at facilitating composition of algorithmic components.

Definition 2.2. A (synchronous, static, uniform, feedback) input-output control
and communication law CC for a uniform network S consists of the sets:

(i) T = {tℓ}ℓ∈N0
⊂ R≥0, a communication schedule;

(ii) L, a communication language;
(iii) (W,Win,Wout), sets of values of logic variables, input logic variables, and

output logic variables, i ∈ Zn, respectively;

(iv) W
[i]
0 ⊆W , i ∈ Zn, subsets of allowable initial values;

(v) W
[i]
in,0 ⊆Win, subsets of allowable initial input values;

and of the maps:
(i) msg : X ×W ×Win × Zn → L, the message-generation function;
(ii) stf : W ×Win×Ln →W ×Wout the (input-output) state-transition function;
(iii) ctl : X ×X ×W ×Win → U , the control function.
The interpretation of the elements of the input-output control and communication

law is the following. Starting from an allowable initial state as specified by the law, at
each communication round specified in T, each agent sends messages in the language L
to its neighbors according to msg. With the messages received, each agent updates the
value of its logic variables using stf. In between communication rounds, the motion
of each agent is governed by the control function ctl.

Without loss of generality, throughout the paper we consider T = Z≥0, and
unless otherwise specified, we take L = W . For notational convenience, we often
write an input-output state-transition function stf as the pair (stfW, stfout), where
stfW computes values in W and stfout in Wout. We refer to stfout as the output state
transition function. A control and communication law [5] corresponds to an input-
output control and communication law with Win = ∅ = Wout.

Remark 2.3. We note that the algorithms presented in this paper work equally
well if the slight modification is made that the control function ctl, which defines the
instantaneous motion of the robot in continuous time, is replaced with a waypoint

5

generation function, defining the goal position that a given robot should be at during
the next communication round. Such a function can be defined like waypt : X ×W ×
Win×Ln → X. In particular, this observation implies that we can consider arbitrary
agent dynamics so long as the requirements imposed by the waypoint generation
function can be satisfied by the dynamics. •

A composition of two input-output laws is the natural result of substituting a
subset of each law’s output for a subset of the other law’s input. We detail this next.

Definition 2.4 (Composition of input-output laws). The composition of two
input-output control and communication laws, CC1 and CC2, that satisfy

CC1[Win] = X × Y, CC1[Win0] = X0 × Y0, CC1[Wout] = B × C,

CC2[Win] = A×B, CC2[Win0] = A0 ×B0, CC2[Wout] = Y × Z,

for some sets X,Y,Z,A,B,C, with A0 ⊂ A, B0 ⊂ B, X0 ⊂ X, and Y0 ⊂ Y , is the
input-output control and communications law, CC1 ⊗ CC2, with sets

(CC1 ⊗ CC2)[L] = CC1[L]× CC2[L], (CC1 ⊗ CC2)[Wout] = Z × C,

(CC1 ⊗ CC2)[W] = CC1[W]× CC2[W]× Y ×B, (CC1 ⊗ CC2)[Win] = X ×A,

(CC1 ⊗ CC2)[W0] = CC1[W0]× CC2[W0]× Y0 ×B0, (CC1 ⊗ CC2)[Win0] = X0 ×A0,

and functions

msg(x,w,win) = (CC1[msg](x, CC1[w], CC1[win]), CC2[msg](x, CC2[w], CC2[win])),

stfW(w,win, l) = (CC1[stfW](CC1[w], CC1[win], CC1[l]),

CC2[stfW](CC2[w], CC2[win], CC1[l]), πB(CC1[stfout](CC1[w], CC1[win])),

πY (CC2[stfout](CC2[w], CC2[win]))),

stfout(w,win, l) = (πZ(CC2[stfout](CC2[w], CC2[win]), CC2[l]),

πC(CC1[stfout](CC1[w], CC1[win]), CC1[l])),

ctl(xtℓ
, x, w[i], w

[i]
in)=CC1[ctl](xtℓ

, x, CC1[w], CC1[win])+CC2[ctl](xtℓ
, x, CC2[w], CC2[win]).

3. Main ideas behind the algorithm design. In this section, we provide
an informal description of the algorithm design that is developed in the forthcoming
sections. Our objective here is to provide some intuition that helps the understanding
of the technical developments that come later.

3.1. Maintaining connectivity by preserving a spanning tree. We con-
sider a robotic network executing a motion coordination algorithm to perform some
spatial task in an environment of interest. The robotic network is modeled as a graph
with robots as nodes and pairwise communication links between robots as edges. Our
objective is to guarantee that connectivity is preserved while the network moves. The
idea to do this is based on the simple observation that if a spanning subgraph of the
robotic network remains connected at all times, then the network as a whole remains
connected. Since any connected graph contains at least one spanning tree as a sub-
graph, we use it as the spanning subgraph. The reason for using a tree is that it
has the minimal number of edges (hence posing as few constraints as possible on the
robotic network motion). In our discussion, we make the assumption that the motion
coordination algorithm has the property that, if a robot is given a list of neighbors
in the spanning tree, the coordination algorithm will prescribe a robot motion that

6

ensures that the links between itself and its neighbors are not broken. We refer to
such algorithms as motion-compatible.

In order to preserve the edges of the tree, it is sufficient that each node is aware
of the links incident to itself, and moves in such a way that these links are preserved.
However, preserving the same set of links at all times might impose constraints on
the network that are too tight and preclude it from achieving the spatial task the
motion coordination algorithm is designed for. To cope with this problem, we allow
the spanning tree to evolve with time according to a set of preferences that are deter-
mined by the motion coordination algorithm (how these preferences are established
is discussed in detail in the later sections). Our main objective can then be stated as
follows: design a distributed algorithm which can make such changes to the spanning
tree while guaranteeing global graph connectivity. The following basic graph-theoretic
facts are useful in prescribing how the links of the spanning tree can change:

(i) a tree on n nodes has exactly n− 1 edges;
(ii) any connected graph on n nodes with n − 1 edges has no cycles, or alterna-

tively, any graph on n nodes with n − 1 edges containing a cycle is discon-
nected;

In our algorithm, every robot other than the root is responsible for storing the link to
its parent and deciding when this link changes. As a corollary of fact (i) above, this
guarantees that each link in the tree is the responsibility of exactly one and only one
robot. Because of fact (ii), we structure our algorithms for choosing the next parent
of each robot with the express intent of preventing a new robot-parent connection
from forming a cycle in the spanning tree.

3.2. Preventing cycles from forming via depth estimates. In our strategy,
each robot has an estimate of its depth, i.e., the number of nodes in the tree along
its path to the root. The depth estimate of the root is 0, and every other robot
periodically runs an update rule to adjust its depth estimate by adding 1 to the depth
estimate of its parent. With this update law, if the tree remains fixed for a sufficient
number of steps, each robot’s depth estimate eventually converges to its actual depth
in the tree.

A simple way to enforce connectivity while allowing for the possibility of changing
links is to set up the following rule: a node i can change its parent to a new node j
if the depth estimate of j is strictly smaller than the depth estimate of i. While this
rule would guarantee that no cycles are formed, it results in a too strict requirement.
If each robot is only allowed to connect to parents with strictly smaller depth esti-
mates, only a finite number of re-arrangements are possible before the tree becomes
a star topology with each robot attached to the root. It turns out that allowing new
connections from i to j even when both nodes have the same depth estimates is suf-
ficient for flexible re-arrangements. However, this must be done with care to prevent
cycles from forming among sequences of nodes having the same depth. Figure 3.1
provides a visual explanation of when connecting at the same depth does and does
not disconnect the graph.

We have two mechanisms that work together to prevent the appearance of cycles.
These mechanisms are based on the observation that, for any prospective cycle among
agents of the same depth estimate, there must be one agent with a maximum unique
identifier along the cycle. The mechanisms are as follows:

(i) a tie-breaking scheme based on agent unique identifiers. We prescribe that
each robot announces some portion of its state and its intent to connect
before actually changing the identity of its parent. We prevent a robot i from

7

2

3

2

1

0

1

2

3

2

1

0

1

(a)

2

3

2

1

0

1

2

3

2

1

0

1

(b)

2

3

2

1

0

1

2

3

2

1

0

1

(c)

2

3

2

1

0

1

2

3

2

1

0

1

(d)

Fig. 3.1. Illustrations of nodes attempting to attach to parents with a) lesser depth estimates
b) equal depth estimates c) equal depth estimates d) greater depth estimates.

attaching to another robot j of the same depth estimate if j < i and there is
another robot k, with k < i and the same depth estimate as i, which is trying
to attach to i.

(ii) the above tie-breaking scheme only works if we can guarantee that the agent
of maximum UID along the prospective cycle is capable of breaking the cycle
by refusing to attach to its proposed new parent. We ensure this by using

a boolean flag for each robot that indicates whether dp
[p[i]

curr]
est < dp

[i]
est on the

previous round. We use this to ensure that any cycle created as a result of the
addition of proposed new edges is entirely composed of newly created edges,
and thus any agent (in our case, the one with the max UID) along the cycle
can break it by failing to connect to its proposed new parent.

The strategy that results from the combination of the above ideas is guaranteed
to preserve the connectivity of the robotic network, while allowing for the possi-
bility of rearrangements in the set of links to be preserved. The Connectivity
Maintenance Algorithm presented in Section 4 is based on this strategy, but it
incorporates two important modifications to deal with the issues that we discuss next.

3.3. Repair. The algorithm described in Section 3.2 requires that the robotic
network starts from a valid spanning tree. If, due to some unanticipated failure, two
robots lose one of the links they are supposed to preserve, the algorithm makes no
guarantee that the network will become connected again. An extreme case of this
situation would be a spanning tree initialization where all n− 1 edges have been lost.

Our modifications to the above algorithm to handle unanticipated failures and
tree initializations are based on the idea of allowing the tree algorithm to represent
multiple trees with multiple roots. Each robot stores the id of the robot it thinks is
the root of its tree. The robot updates the latter variable by setting it equal to the
root of its parent. If the robot has no parent, it is either because it is the root itself,

8

or because it has lost touch with its parent. In both cases, it sets the root identity
equal to itself. We modify the rules on which pairs of robots are allowed to break their
communication links to forbid breaking any edge between robots with different roots.
We modify the set of preferences that determine how robots attach so that robots
strongly prefer attaching to robots with smaller root ids, thus causing the number
of robots with distinct roots to decrease over time. In our Connectivity Mainte-
nance Algorithm proposed in Section 4, the modifications to handle unanticipated
failures and handle tree initialization are denoted with the symbol ♣ in Table 4.1.
Proofs that these modifications repair a large set of possible failures are presented in
Section 6.

3.4. Reachability. The algorithm described in Section 3.2 has the property
that, given any target spanning tree T , the robotic network can reach a state in
which its current stored spanning tree is T . However, to establish this fact, one needs
to require that the underlying graph allows any robot i to choose any other arbitrary
robot j as its parent. Clearly, in a realistic scenario, there are some pairs of robots
which cannot communicate, or cannot communicate without moving. Instead, we
would like an algorithm which allows the network to reach a target spanning tree
without relying on edges which may or may not be in the network.

The Connectivity Maintenance Algorithm proposed in Section 4 allows
the network to transition from a state in which the spanning tree is T1 to one in
which the spanning tree is T2, for any T1 and T2, so long as T2 remains in the graph.
We accomplish this by recognizing that there is nothing particularly special about the
use of the depth as a tool to prevent cycles: we could use in its place any other notion
to associate a number to each robot as long as it satisfies a simple set of properties
across the tree (these properties are formally described in Proposition 5.1).

Therefore, we specify a new update rule for the depth estimate which, based on
input from another algorithm, either updates the estimate by (a) adding 1 to the
depth estimate of the robot’s parent or (b) increasing its current depth estimate by
1. We refer to an algorithm that determines which update rule to use as a depth-
compatible algorithm. In Table 7.1 we provide an instance of a depth-compatible
algorithm which specifies that (b) is used in situations when a robot i wants to attach
to another robot j and the depth estimate of j is larger than the depth estimate of i.
Such situations can give rise to the formation of cycles, as, for instance, some other
robot k, on a path from j to the root, might be simultaneously increasing its own
depth estimate to be able to attach to i. The algorithm in Table 7.1 incorporates a
tie-breaking rule which prevents such pathologies.

In the algorithm proposed in Section 4, these modifications to allow for arbitrary
re-arrangements are denoted with the symbol♠ in Table 4.1. Proofs of the reachability
properties of the algorithm that results from the combination with the strategy in
Table 7.1 are presented in Section 7.

4. The Connectivity Maintenance Algorithm. This section introduces the
Connectivity Maintenance (abbreviated CM) Algorithm. By itself, the algo-
rithm does not invoke either physical agents or their mobility, and fits within common
frameworks of distributed algorithms.

4.1. Algorithm description. Given a coordination task and a motion coordi-
nation algorithm to achieve it, maintaining a fixed set spanning tree throughout the
evolution will guarantee connectivity preservation but, in general, will interfere in the
optimal achievement of the task. The Connectivity Maintenance Algorithm

9

is a procedure that, coupled with individual motion control strategies of the network
agents, maintains an evolving spanning tree of the communication graph. The un-
derlying idea is that if the motion of the robots is constrained to not break any links
of the spanning tree, the communication graph will remain connected as well. Let us
begin by describing the algorithm informally.

[Informal description:] Each robot maintains a reference to its parent
in the spanning tree and an estimate of its depth, i.e., the distance to
the root. At pre-arranged times, each robot is allowed to change its
parent, in accordance with a set of preferences specified in suitable
way (normally, by a motion coordination algorithm). In order to
preserve connectivity, robots are not allowed to pick a robot of greater
depth than its parent’s (which ensures that no robot will pick one
of its current descendants as a parent node). To allow robots to
attach to potential parents of the same depth estimate, a tie-breaking
algorithm based on UIDs is used to prevent the formation of cycles.

Next, we provide a formal definition using the formalism described in Section 2.2.
Given a network S with communication links determined by proximity graph G, the
Connectivity Maintenance Algorithm is an input-output control and commu-
nication law CC for S consisting of the sets:

(i) W = N × Z4 × Z
3
n × Zn ∪ {null} × Z2, are sets of values of the variables

w[i] = (dp
[i]
est,phase[i], p

[i]
curr, p

[i]
next, n

[i]
root, n

[i]
dep-targ, I

[i]
par-less), for i ∈ Zn.

The meaning of the components of w[i] is as follows. dp
[i]
est is a depth estimate.

phase[i] is a round counter indicating the current mode of the algorithm. p
[i]
curr is a

parent identifier. We refer to the graph induced by (i, p
[i]
curr), i ∈ Zn as the constraint

tree. This is with a slight abuse of terminology, since we will also consider the pos-

sibility of this graph not being initially connected. p
[i]
next is a proposed next parent.

n
[i]
root indicates the UID of the root of the tree containing agent i. n

[i]
dep-targ is the

UID of an agent which i would like to attach to as a parent. It is the most preferred
parent among those which the algorithms coupled with CM Algorithm allow (more

details are provided below when we discuss W
[i]
in). Note that i may not be allowed

by the algorithm to propose that n
[i]
dep-targ be its next parent, for which reason p

[i]
next

might not equal n
[i]
dep-targ. Finally, I

[i]
par-less is a Boolean indicator denoting whether i’s

parent p
[i]
curr had a strictly smaller depth estimate than i as of the most recent com-

munication round. If n
[i]
root is different from 0 for some agent i, then the tree needs to

be repaired. n
[i]
dep-targ is also used as an output logic variable, signaling that robot i

wishes to increase dp
[i]
est with the goal of attaching to n

[i]
dep-targ;

(ii) W
[i]
0 = {(0, 0, i, i, i, null, false)} ⊆ W , i ∈ Zn. Note that p

[i]
curr = i and

dp
[i]
est = 0 for i ∈ Zn. Also note that the tree is initially in need of repair;

(iii) Win, are sets of values of input variables, w
[i]
in , i ∈ Zn, given by

w
[i]
in =(I

[i]
incr-dep, n

[i]
incr-sgnl, R

[i]
pref, f

[i]
allow) ∈

Z2 × Zn ∪ {null} ×R(Zn, Zn)× F(Zn; {true, false}).

The meaning of the components of win is as follows. I
[i]
incr-dep is a Boolean variable

that determines whether the agent’s depth estimate update is in a special mode to

allow for more flexible re-arrangements. n
[i]
incr-sgnl is the identity of an agent which is in

10

the special mode indicated by I
[·]
incr-dep. R

[i]
pref is a strict order relation ranking the order

in which node i would prefer to attach to each other node as its parent: (j, k) ∈ R
[i]
pref

means node i would prefer to attach to j over k. We stipulate that each R
[i]
pref must

satisfy (j, i) ∈ R
[i]
pref for all j ∈ {0, . . . , n − 1} \ {i} and that n

[j]
root < n

[k]
root implies

(j, k) ∈ R
[i]
pref. R

[i]
pref can be thought of as a symbol string representing computation to

be performed to evaluate whether (j, k) ∈ R
[i]
pref. Finally, f

[i]
allow : Zn → {true, false} is

a function which maps a node j to true if and only if the algorithm supplying f
[i]
allow

will allow dp
[i]
est to increase in order for i to attach to j under the CM Algorithm;

(iv) W
[i]
in,0 = {(false, null, Ri−init, f

[i]
allow)}, where (j, k) ∈ Ri−init if n

[j]
root < n

[k]
root

or n
[j]
root = n

[k]
root and ((k = i and j 6= i) or j < k), and f

[i]
allow ≡ false;

(v) Wout = Zn × Zn × F(Zn)× F(Zn)× Zn ∪ {null} are sets of values of output

variables w
[i]
out = (p

[i]
curr, p

[i]
next, S

[i]
constraints, S

[i]
children, n

[i]
dep-targ), for i ∈ Zn.

The meaning of the components of Wout is as follows. p
[i]
curr (taken from W [i])

specifies the parent of agent i to the motion control algorithm. S
[i]
constraints = {j ∈

N (i) | n
[j]
root 6= n

[i]
root} is the set of agents whose estimate of their root nodes are

different from those of i and S
[i]
children = {j ∈ Zn | p

[j]
curr = i} are the children of i

in the constraint tree. If every i maintains connectivity with each agent in {p
[i]
curr} ∪

S
[i]
constraints ∪ S

[i]
children, then the communication graph remains connected. n

[i]
dep-targ ∈

Zn ∪ {null} is copied from W and used to signal which agents i wants to increase
depth to connect to; and of the maps:

(i) function msg(x,w,win, j) = w;

(ii) function stfW(w,win, l) as defined in Table 4.1. In the update step of phase[id] =
2, there are two possible depth update steps, one on line 12 and the other on
line 14. Line 12 is an update rule which, if universally followed, causes each

agent’s depth estimate, dp
[·]
est, to converge on its actual depth in the tree. Line

14 is used when one agent wants to deliberately increase its depth estimate
above its actual depth in order to attach to another desired agent. Usage of
line14 will be discussed in more detail in Section 7.2. Note that 9 is labeled
as the “re-attach” step. We will use this nomenclature throughout the paper;

(iii) function stfout(w,win, l) = (p
[id]
curr, p

[id]
next, {j ∈ N (id) | n

[j]
root 6= n

[id]
root}, {j ∈

N (id) | p
[j]
curr = id ∨ p

[j]
next = id}, n

[i]
dep-targ).

(iv) ctl(xtℓ
, x, w,win) = 0.

4.2. Depth-compatible and motion-compatible algorithms. We intend
for the Connectivity Maintenance Algorithm to be coupled with two classes
of input-output laws. The first class of algorithms, termed depth-compatible, specify
the update depth rule to be used by the Connectivity Maintenance Algorithm

by setting the value of the variable I
[i]
incr-dep for each agent after receiving the value

of n
[i]
dep-targ. The second class of algorithms, termed motion-compatible, specify the

dynamics of the network agents and the set of preferences R
[i]
pref for each agent.

We begin by formalizing the notion of depth-compatible algorithm.

Definition 4.1. An input-output control and communication law CCd is depth
CM-compatible if the following hold:

• Win = Zn ∪ {null} is a set of values for w
[i]
in = n

[i]
dep-targ for i ∈ Zn;

11

function stfW(win, (p
[id]
curr,dp

[id]
est ,phase[id], p

[id]
next), l)

1: if n
[id]
root = id ♣ then

2: Set nmax ← id(n + 1) ♣
3: else

4: Set nmax ← n
[id]
root(n + 1) + n ♣

/*If proposed parent has same depth as id,
is trying to change its parent, and id is greater than my proposed parent’s UID
and the UIDs of any nodes that have proposed attaching to me as a parent, then
keep current parent. Otherwise choose proposed parent*/

5: if phase[id] = 0 then

6: if p
[p

[id]
next]

next 6= p
[p

[id]
next]

curr , dp
[p

[id]
next]

est = dp
[id]
est , id > p

[id]
next and id > min {j | p

[j]
next = id}

then

7: Set p
[id]
next ← p

[id]
curr

8: else

9: Set p
[id]
curr ← p

[id]
next /*We call this the “re-attach” step*/

10: if phase[id] = 1 /*Update depth estimate*/ then

11: if I
[i]
incr-dep = false♠ then

12: Set dp
[id]
est ← min(dp

[p[id]
curr]

est + 1, nmax) ♣
13: else

14: Set dp
[id]
est ← min(dp

[id]
est + 1, nmax) ♠

15: if phase[id] = 2 then

16: Set I
[id]
par-less ← false

17: if dp
[p[id]

curr]
est < dp

[id]
est then

18: Set I
[id]
par-less ← true

/*As a worst-case solution, consider attaching to yourself. By definition of

R
[i]
pref, this does not happen unless there are no other options*/

19: if phase[id] = 3 /*Here we pick p
[i]
next and n

[i]
dep-targ according to R

[i]
pref among the

appropriate sets of allowable values*/ then

20: Let S< = {j ∈ N (id) | dp
[j]
est < dp

[id]
est or p

[j]
curr = p

[id]
curr or dp

[j]
est =

dp
[id]
est and I

[j]
par-less = true or j = i}

21: Let p
[id]
next ← some element of {j ∈ S< | 6 ∃k, (k, j) ∈ R

[id]
pref, k ∈ S<}

22: if {j ∈ S< | 6 ∃k, (k, j) ∈ R
[id]
pref, k ∈ S<} = {p

[id]
curr}♠ then

23: Let Ssgnl ← {j ∈ N (id) | f
[i]
allow(j) = true} ♠

24: Let n
[id]
dep-targ ← {j ∈ Ssgnl | 6 ∃k ∈ Ssgnl, (k, j) ∈ R

[id]
pref} ♠

25: if n
[id]
dep-targ = id or n

[id]
dep-targ = p

[id]
curr ♠ then

26: n
[id]
dep-targ ← some element of {j ∈ N (id) | 6 ∃k ∈ N (id), (k, j) ∈ R

[id]
pref} ♠

27: else

28: n
[id]
dep-targ ← null ♠

29: if p
[id]
curr = id ♣ then

30: Set n
[id]
root ← id ♣

31: else

32: Set n
[id]
root ← n

[p[id]
curr]

root ♣

33: Set phase[id] ← (phase[id] + 1)mod 4

34: return (dp
[id]
est ,phase[id], p

[id]
curr, p

[id]
next, n

[id]
root, n

[id]
dep-targ, I

[id]
par-less) ♣♠

Table 4.1
stfW for Connectivity Maintenance Algorithm.

12

• Wout, are sets of values of output logic variables, (I
[i]
incr-dep, n

[i]
incr-sgnl, f

[i]
allow) ∈

Z2 × Zn ∪ {null} × F(ZN ; {true, false});
• The composition with CM Algorithm guarantees that the maximum depth

estimate dp
[·]
est that any agent i having n

[i]
root = 0 holds for more than 4 rounds

is bounded from above by a function of the number of agents n.

Combining an algorithm which is depth CM-compatible yields a new input-output
control and communication law. The simplest algorithm which is depth CM-compatible,
and the one we assume unless otherwise stated, is Null Depth Increment Algo-
rithm. Null Depth Increment Algorithm ignores the preference input from CM

Algorithm and always forces CM Algorithm to follow the dp
[id]
est ← min(dp

[p[id]
curr]

est +
1, nmax) depth update rule. Essentially, the only variables that Null Depth Increment Algorithm

specifies are I
[i]
incr-dep = false and f

[i]
allow ≡ false for all i ∈ Zn. A formal definition of

Null Depth Increment Algorithm can be given in the form of an input-output
control and communication law as in Definition 2.2, but we omit it for brevity.

Note that we cap the depth estimate of any given node at a number (denoted
by the temporary variable nmax within the description of CM) determined by the
number of agents. We show that this does not affect the operation under Null
Depth Increment Algorithm in the next result.

Theorem 4.2. If I
[i]
incr-dep = false and n

[i]
root = 0 for all i ∈ Zn, the following

invariant is maintained: at most n − k nodes have depth estimates greater than or
equal to k at any time.

Proof. Assume the result holds for round t. To show the invariant holds at round
t + 1, we induct on the depth estimate, using as the base case the fact that at most
n nodes have depth estimate 0. Let any k nodes, ii, . . . , ik each increase depth (i.e.,

dp
[ij]
est (t+1) > dp

[ij]
est (t) for all j ∈ {1, . . . , k}) according to dp

[ij]
est (t+1)← dp

[p
[ij]
curr]

est (t)+1,

j ∈ {1, . . . , k} (nmax does not appear, as it is greater than the maximum value of dp
[·]
est

of any agent we are considering). To have greater depth at t + 1 than on round t,

each ij must have had a parent, p
[ij]
curr, having dp

[p
[ij]
curr]

est (t) = dp
[ij]
est (t). Without loss

of generality, let i1 be the agent with the least depth at round t. By our induction

hypothesis, there were at most n − dp
[i1]
est (t) nodes at depth dp

[i1]
est (t) or greater on

round t. Thus, there were at most n − dp
[i1]
est (t) − k − 1 already at depth estimates

≥ dp
[i1]
est (t), since k must have been at depth estimate dp

[i1]
est to increase at round

t + 1, and at least one node must have been at depth dp
[p[i1]

curr]
est . This gives us at most

n− dp
[i1]
est (t)− k − 1 + k nodes at depth dp

[i1]
est (t) + 1 or greater at time t + 1.

The operation of CM Algorithm composed with Null Depth Increment
Algorithm is illustrated in Figure 4.1.

We end this section by formalizing the notion of motion-compatible algorithms.
As we will see later, certain properties of the dynamics of the communication graph
need to hold for the correctness properties of CM Algorithm to hold, and these are
captured in the following notion.

Definition 4.3. An input-output control and communication law CCd is motion
CM-compatible if the following hold:

• Win = Zn × Zn × F(Zn)× F(Zn)× Zn ∪ {null} is a set of values for w
[i]
in =

(p
[i]
curr, p

[i]
next, S

[i]
constraints, S

[i]
children, n

[i]
dep-targ), with i ∈ Zn;

• Wout = R(Zn, Zn), w
[i]
out = R

[i]
pref, with i ∈ Zn;

• the input-output law that results from the combination with CM Algorithm

13

id = 3id = 4
dp

[·]
est = 1

id = 5

dp
[·]
est = 1dp

[·]
est = 1

(a)

id = 3id = 4
dp

[·]
est = 1

id = 5

dp
[·]
est = 1dp

[·]
est = 1

(b)

id = 4
dp

[·]
est = 1

id = 5

dp
[·]
est = 2dp

[·]
est = 2

id = 3

(c)

Fig. 4.1. Illustration of CM Algorithm combined with Null Depth Increment Algorithm.

Frame (a) indicates connections of the form (i, p
[i]
curr) as solid arrows and (i, p

[i]
next) as dashed arrows.

Frame (b) illustrates the constraint tree after steps 5 through 9 of CM Algorithm. Frame (c) shows
the result of the depth update in lines 10 through 14.

is guaranteed never to induce a motion which causes (i, p
[i]
next) or (i, p

[i]
curr) to

cease to be an edge of the underlying proximity graph. We require that these

also guarantee that no edge, (i, j), of the underlying graph, having n
[i]
root 6=

n
[j]
root, ever be broken. Note that S

[i]
constraints = {j ∈ N (i) | n

[j]
root 6= n

[i]
root}.

Figure 4.2 shows how the input-output laws introduced above interact.

[Manages tree structure and constraints]

[Manages information on target parents] and supplies neighbor preferences]

[Controls agent motion

(Iincr-dep, nincr-sgnl, fallow)

Connectivity Maintenance Algorithm

depth CM-compatible Algorithm motion CM-compatible Algorithm

Rprefndep-targ (pcurr, pnext, Sconstraints, Schildren, ndep-targ)

Fig. 4.2. Illustration of the interaction between the Connectivity Maintenance Algorithm,
a depth CM-compatible Algorithm and a motion CM-compatible Algorithm. The depth CM-
compatible Algorithm and the Connectivity Maintenance Algorithm provide to each other the
update depth rule to be used and the information on parent targets, respectively. The motion CM-
compatible Algorithm and the Connectivity Maintenance Algorithm provide to each other the
preference set and the connectivity constraints that must be enforced, respectively.

5. Correctness analysis. In this section, we analyze the correctness of Con-
nectivity Maintenance Algorithm when combined with any algorithm which is
motion CM-compatible and any algorithm which is depth CM-compatible. We show
that connectivity is preserved throughout the execution of the algorithm and also an-
alyze its tree repair properties. We start by characterizing the topological properties
of the constraint tree under Connectivity Maintenance Algorithm.

For convenience, in the forthcoming analysis, we let rnd(t) ∈ N be the number of

times the assignment phase[i] ← 2 has been made at time t. We also, informally, refer
to rnd(t) as the number of iterations at time t and a cycling through all four values

of phase[i] as an “iteration” of the algorithm. We denote the value of, say dp
[i]
est at

14

iteration rnd(t), by dp
[i]
est(rnd(t)).

Proposition 5.1. The execution of the CM Algorithm verifies that

(i) dp
[i]
est(rnd(t)) ≤ dp

[i]
est(rnd(t)− 1) + 1,

(ii) dp
[i]
est(rnd(t)) ≥ dp

[p[i]
curr]

est (rnd(t)),

for i ∈ Zn, where for convenience, dp
[i]
est(r) = dp

[i]
T (t0) for all iterations r ≤ 0. Thus,

at any time t ≥ 0, if k is an ancestor of i, then dp
[i]
est(rnd(t)) ≥ dp

[k]
est(rnd(t)).

Proof. Note that either lines 12 or 14 of stfW for CM Algorithm, cf. Table 4.1,

are the only steps where the value of dp
[i]
est is modified. We refer to either of these

steps as the update rule. Step 14 trivially maintains (i). To show 12 also maintains

(i), we induct on the current iteration, rnd(t). Let j be p
[i]
curr at iteration rnd(t). This

can only happen because either (a) j became i’s parent due to a re-attach or (b) j

was i’s parent at rnd(t) − 1. In case (a), the re-attach requires dp
[j]
est(rnd(t) − 1) ≤

dp
[i]
est(rnd(t)− 1), and this implies that dp

[i]
est(rnd(t)) ≤ dp

[i]
est(rnd(t)− 1) + 1. In case

(b), dp
[i]
est(rnd(t)− 1) = dp

[j]
est(rnd(t)− 2) + 1. The induction hypothesis implies that

dp
[j]
est(rnd(t)− 1) ≤ dp

[j]
est(rnd(t)− 2) + 1, and therefore dp

[i]
est(rnd(t)) ≤ dp

[i]
est(rnd(t)−

1) + 1. To prove (ii), we note that either i has attached to p
[i]
curr more recently than

dp
[p[i]

curr]
est has changed, or, by the update rule, dp

[i]
est(rnd(t)) ≥ dp

[p[i]
curr]

est (rnd(t)− 1) + 1,

from which we get dp
[i]
est(rnd(t)) ≥ dp

[p[i]
curr]

est (rnd(t), which concludes the result.

The above result is key in showing that if the constraint tree begins with k
connected components, then, under certain technical conditions, the CM Algorithm
is guaranteed to preserve their connectivity. In particular, if the constraint tree begins
connected, k = 1, then it remains connected along the execution, as we show next.

Theorem 5.2. Assume the constraint tree starts with k disjoint connected com-
ponents. Then, at all times during the execution of CM Algorithm, the constraint
tree contains no cycles other than those it started with and retains at most k disjoint
connected components, so long as there are no further communications failures (i.e.,

no edge of the form (i, p
[i]
curr) or (i, p

[i]
next) disappears from the underlying proximity

graph).

Proof. The removal of an edge of the form (i, p
[i]
curr) from the underlying graph

causes the algorithm to set p
[i]
curr ← i, potentially introducing a new cycle. Barring this

possibility, let us proceed with the rest of the proof. We assume the introduction of a
new cycle and proceed by contradiction. Any cycle in the graph must consist entirely

of agents having the same depth estimate (this follows from dp
[i]
est ≥ dp

[p[i]
curr]

est from

Proposition 5.1 and the fact that for a cycle C, we have
∑

i∈C dp
[i]
est − dp

[p[i]
curr]

est = 0).
During the four communication rounds, cf. Table 4.1, leading up to the creation of
any cycle, all agents involved in the cycle must have the same depth estimate as well,

otherwise there exists either an agent i ∈ C having dp
[p[i]

curr]
est > dp

[i]
est, which violates

Proposition 5.1, or an agent i ∈ C having dp
[p

[i]
next]

est > dp
[i]
est, a choice which is prohibited

by step 20 of the CM Algorithm. When a cycle first appears, it must appear due to
some agent i connecting to a new parent j with the same depth estimate. However,
this new parent must, in turn, attach to an agent of the same depth estimate. It
cannot have had a parent of the same depth estimate before the cycle was created,

as that would have set I
[j]
par-less = false and prevented i from connecting to j. This

argument can be carried all the way around the cycle, C, and we can conclude that
for each agent k ∈ C, k attached to a new parent at the time the cycle was formed.

15

Here we invoke the UID-based tie-breaking scheme of step 6, and note that some
agent i in this cycle must have been greater than either of its neighbors in C, which

explicitly triggers the execution of step 7, preventing i from attaching to p
[i]
next and

thus preventing the formation of a cycle.
The following result is a direct consequence.

Corollary 5.3. If no edges of the form (i, p
[i]
curr) or (i, p

[i]
next) are removed from

the underlying graph, the connected component of the constraint tree corresponding to

n
[i]
root = 0 remains connected and never decreases in size.

6. Tree repair properties. In this section we show that the CM Algorithm
can repair links of the constraint tree under some conditions on the evolution of the
underlying graph. The results in this section hold for CM Algorithm when combined
with any algorithm which is depth CM-compatible Algorithm. The importance of
our results is emphasized by the observation that it is not possible to design a repair
algorithm which allows links to break while at the same time handling all possible
agent failures, as we show next.

Theorem 6.1. There is no distributed repair algorithm which can allow links to
break and, at the same time, recover from all possible underlying hardware failures
which leave the communication graph connected.

Proof. Consider an edge between agents i and j which can safely be broken at
time t in the absence of underlying hardware failures. Let there be a cut of the graph
which includes (i, j) and no other links sharing nodes i and j. The remaining edges in
the cut could be severed by hardware failure immediately after the algorithm informs
i and j that their link is safe to break, and the information would require at least one
round to reach i and j.

This result justifies our ensuing study of the link repair properties of CM Al-
gorithm. We divide our analysis in two parts. In Section 6.1, we show that repair
works under the CM Algorithm if the underlying network remains connected. The
agents’ mobility might break the connectivity of the underlying network. Section 6.2
establishes the repair properties of CM Algorithm even if the underlying graph is
dynamically changing and might get disconnected at some times.

6.1. Repair properties when the underlying proximity graph remains

connected. We study first the repair properties when the underlying graph is con-
nected.

Lemma 6.2. For any node i ∈ Zn, if n
[i]
root stays constant for k ≤ n

[i]
root(n + 1)

iterations, and no link failures happen in the intervening time, then, at the end of

these iterations, dp
[i]
est ≥ k.

Proof. We induct on the number of iterations. At iteration 0 each node, i, satisfies

dp
[i]
est ≥ 0. By the update rule, dp

[i]
est at iteration k gets 1 more than the depth estimate

of p
[i]
curr at iteration k− 1. Since no node ever attaches to a parent with greater n

[·]
root,

n
[p[i]

curr]
root must have been greater than or equal to n

[i]
root for all k− 1 previous iterations,

and, by induction, dp
[p[i]

curr]
est must have been at least k − 1. This makes dp

[i]
est at least

1 + (k − 1) = k at the end of the kth iteration.
The next result shows that this algorithm can repair breaks in the spanning tree

whenever the underlying graph remains connected.
Theorem 6.3. Let K be a connected component of the underlying proximity graph

with nK agents. Let idK be the smallest UID of the nodes in K. Assume K remains
connected during the evolution and isolated from any other connected component, and

16

that the (not necessarily connected) constraint tree is such that the only cycles are
self-loops. Then, within idK(n + 1) + n + nK iterations of CM Algorithm, every

node i in K has n
[i]
root = idK .

Proof. By Lemma 6.2 within (idK + 1)(n+1) iterations each node i with n
[i]
root >

idK will have dp
[i]
est ≥ (idK + 1)(n + 1) > idK(n + 1). Since the underlying graph

remains connected at all times, there is some node i having n
[i]
root 6= idK with an edge

(in the underlying graph) between itself and some j having n
[j]
root = idK . Agent i will

prefer to attach to nodes {j ∈ Zn | n
[j]
root = idK} over all other nodes (the preference

function is constrained so that i prefers to attach to nodes with smaller n
[·]
root, and the

smallest n
[·]
root available is idK). Each of these nodes has dp

[j]
est ≤ idK(n + 1) + n, so

the attach is allowed. This can happen for at most n iterations before every node i

satisfies n
[i]
root = idK .

This result implies that the constraint tree connects all the nodes of K (other-

wise, some two nodes would have different values of n
[·]
root). Figure 6.1 shows a sample

instance where tree repair occurs during the execution of the CM Algorithm. The

n
[1]
root = 1

n
[2]
root = 2

n
[4]
root = 2n

[5]
root = 1

n
[3]
root = 1

(a)

n
[1]
root = 1

n
[2]
root = 2

n
[4]
root = 2n

[5]
root = 1

n
[3]
root = 1

(b)

n
[1]
root = 1

n
[2]
root = 1

n
[4]
root = 2n

[5]
root = 1

n
[3]
root = 1

(c)

n
[4]
root = 1

n
[2]
root = 1

n
[5]
root = 1

n
[3]
root = 1

n
[1]
root = 1

(d)

Fig. 6.1. Illustration of tree repair during the execution of the CM Algorithm. Two compo-
nents with different root ids join and eventually decide to merge into a single component.

above analysis is not valid if the underlying graph does not remain connected. Dis-
connection in the underlying graph can occur as a result of changes in graph topology
induced by the motion of the robots. We deal with this more complex situation next.

6.2. Repair properties under dynamic graph conditions. Here, we study
the repair properties of the CM Algorithm when the connectivity of the underlying
graph is evolving. We start by introducing the notion of restricted graph.

Definition 6.4. The restricted graph on k, denoted Grestr(k), is the graph con-

sisting of all nodes i having n
[i]
root ≤ k and edges (i, j), where either j = p

[i]
curr, i = p

[j]
curr,

or n
[i]
root 6= n

[j]
root.

The next result is the crux of our connectivity argument for partially disconnected
constraint trees, as it is the basis for linking the repair properties of CM Algorithm
to the guarantees provided by any motion CM-compatible algorithm. The proof,
along with some auxiliary results, is given in Appendix A.

Proposition 6.5. Given a network which initially satisfies the property that n
[·]
root

is monotonically non-increasing along edges from child to parent. Then, the following
property is an invariant of the CM Algorithm when combined with any motion

CM-compatible algorithm: for any two robots i and j having n
[i]
root = n

[j]
root = k, there

is a path between i and j in Grestr(k).

17

Next, we use Proposition 6.5 to show that the algorithm maintains the connectiv-
ity of any network which starts with Grestr(k) connected for k ∈ {0, . . . , n}, provided

n
[·]
root is initially monotonically non-increasing along links from child to parent.

Theorem 6.6. Consider the composition of CM Algorithm with a motion
CM-compatible algorithm. Assume the network starts in a configuration where

(i) the restricted graph on n is connected,

(ii) any two agents, i, j ∈ Zn, having n
[i]
root = n

[j]
root = k are connected in Grestr(k),

(iii) along each path from child node to parent node, the value of n
[·]
root is mono-

tonically non-increasing.
Then, the network remains connected for all time.

Proof. Consider the links of the graph between iterations t − 1 and t. Each link

in the graph is either between a pair of nodes with the same value of n
[·]
root or between

a pair of nodes with different values of n
[·]
root. By Proposition 6.5, any pair of nodes

having n
[·]
root = k are connected in Grestr(k) (and thus are connected in Grestr(n)) at all

times for any such starting configuration. Any pair of nodes, i, j, having n
[i]
root 6= n

[j]
root

will be preserved during the motion phase (by properties of motion CM-compatible).

During the computation phase, either n
[i]
root and n

[j]
root will become the same, which

guarantees a path exists between the two in G
restr(n

[i]
root)

and thus in Grestr(n), or n
[i]
root

and n
[j]
root will remain different, in which case the edge will remain in Grestr(n). Since

any link (i, j) either remains in Grestr(n) or disappears, but provably maintains a path
between i and j in Grestr(n), any nodes starting connected in Grestr(n) remains so.

Theorem 6.6 shows that a wide class of initial configurations result in the net-
work remaining connected for all time. Showing that the constraints guaranteed by
the notion of motion CM-compatible algorithm achieve Grestr(·)-connectivity is not
enough to show that failed links are repaired along the execution. We now show that
connectivity of the underlying graph holds under a more flexible set of conditions than
those identified in Theorem 6.6.

First, let us show that the constraints imposed by the notion of motion CM-
compatible algorithm suffice to guarantee connectivity in the case where we use the
repair properties of CM Algorithm to build our initial spanning tree from the
default start state of the algorithm.

Corollary 6.7. When CM Algorithm is coupled with a motion CM-compatible
algorithm the following holds: if the network starts in a state where every node i has

p
[i]
curr = n

[i]
root = i (a configuration which satisfies the conditions of Theorem 6.6) and

the communication graph is connected, the swarm will stay connected at all time.
As a prelude to the main result, we show that n iterationsare sufficient time to

satisfy the conditions of Theorem 6.6.
Lemma 6.8. Use nk to denote the number of iterationsit takes for each node,

i, having n
[i]
root = k to be connected to k in Grestr(k) given that the network starts

with a connected underlying graph having n
[i]
root ≥ n

[p[i]
curr]

root holds for each agent i.. This
number obeys the following relationship : nk ≤ n−nk−1 (i.e., within at most n−nk−1

iterations, each node, i, having n
[i]
root = k will be connected to k in Grestr(k), leaving

at most n− nk nodes with n
[·]
root > k).

Proof. From Lemma A.1 note that n
[i]
root ≥ n

[p[i]
curr]

root holds for each agent i. We will
proceed by induction on k. As in Proposition 6.5, our base case, with k = 0 follows
from Corollary 5.3 of Theorem 5.2. Assume our hypothesis holds for all κ < k. So

18

long as there are nodes with n
[·]
root = k not connected to k in Grestr(k), at least one

such node must have a parent with n
[·]
root < k (any such node must have a parent

other than itself, otherwise it would have UID equal to k). So for each round during

which there are such nodes, one such node must permanently get n
[·]
root < k. No node

having n
[·]
root = k which is connected to k in Grestr(k) after round n(k−1) ever becomes

disconnected because the only way for edges in Grestr(k) to become severed are

• Through re-attach: however, this guarantees the child gets a new root. Unless
the parent gets a new root as well, the child remains attached to the parent.

• An edge between i and j in Grestr(k) disappears when i and j get the same

value of n
[·]
root, or i detaches from its old parent, j, and both i and j get the

same value of n
[·]
root. Since i and j were already in Grestr(k), they must get

new n
[·]
root values less than k, but by induction, must therefore be connected

in G
restr(n

[i]
root)

.

Since there are at most n− nk−1 nodes which could possibly have n
[·]
root > k − 1,

after at most n−nk−1 more iterations, no nodes having n
[·]
root = k remain unless they

are connected to k in Grestr(k). For each iterationbetween round nk−1 and iterationnk,

where nk is the minimum time at which each node having n
[·]
root = k is connected to

k in Grestr(k), at least one node per iterationgoes from n
[·]
root = k to n

[·]
root < k, leaving

at most n− nk nodes with n
[·]
root > k.

Note that the above result implies 0 ≤ nk ≤ n for each nk. Finally, the next
result shows that after 2n iterationswith no underlying hardware failures, once the
communication graph becomes connected, it will remain connected for all time.

Theorem 6.9. If the underlying graph starts in any initial state (even if the
underlying graph is disconnected), and the evolution of the network follows the con-
straints imposed by the notion of motion CM-compatible algorithm for 2n iterations,
then, if the underlying graph becomes connected again, it will stay connected for all
time, thus building a connected constraint tree.

Proof. After n iterations, the value of n
[·]
root along links from children to parents is

monotonically non-increasing by Lemma A.2. By Lemma 6.8, another n iterationssuf-
fices to satisfy the conditions of Theorem 6.6. Hence, the result follows.

7. Reachability properties. Here we examine the reachability properties of
the CM Algorithm. Roughly speaking, by reachability we mean that the algorithm
is capable of switching between any two given trees. Without this property, the
preservation of the connectivity of the constraint tree might lead the network to get
stuck at some undesirable configuration.

7.1. Reachability notions. We begin by defining what it means for one tree
to be reachable from another.

Definition 7.1 (Reachable trees). A constraint tree T2 is reachable from a con-
straint tree T1 with a sequence of underlying graphs {G(t)}t∈N under CM Algorithm
coupled with a depth CM-compatible algorithm if the following conditions hold for

any initial allocation of dp
[i]
est, i ∈ Zn satisfying dp

[0]
est = 0, dp

[i]
est ≥ dp

[p[i]
curr]

est for i ∈ Zn,

• i is allowed to set p
[i]
curr = j or p

[i]
next = j at round t only if (i, j) ∈ E(G(t)),

• T1 and T2 are subgraphs of each G(t),

• there exists a set of link preferences (values of R
[i]
pref, i ∈ Zn) such that the

constraint tree will eventually settle on T2 if it starts in T1,

19

Next, we define what it means for an algorithm to satisfy the reachability property.
Definition 7.2. The CM Algorithm combined with a depth CM-compatible

algorithm satisfies the reachability property if, for every pair of trees T1 and T2,
and any sequence of graphs G(t), having T1 and T2 subgraphs of G(t) for all t, T2 is
reachable from T1 with underlying graphs {G(t)}t∈N.

Therefore, an algorithm which satisfies the reachability property can drive the
constraint tree to any desired tree given a suitable preference function. As we show
next, Null Depth Increment Algorithm does not satisfy this property.

Theorem 7.3. The CM Algorithm coupled with Null Depth Increment
Algorithm does not have the reachability property.

Proof. Let G be the cycle graph on n vertices, with (i, (i + 1)mod n) ∈ E(G) for

every i ∈ Zn. Let T1 have p
[n−1]
curr = 0 and p

[i]
curr = i−1 for all i other than 0 and n−1.

Let T2 have p
[1]
curr = 0 and p

[i]
curr = (i + 1)mod n for all i other than 0 and 1. Let the

initial depth estimates, dp
[i]
est, be equal to the exact depth of i in the tree T1. Node

n−1 cannot attach to anything other than 0 until node n−2 has a depth dp
[n−2]
est ≤ 1.

But the only nodes n− 2 can attach to are n− 3 and n− 1. If it attaches to n− 1 it

will get a depth estimate dp
[n−2]
est = 2. Since n − 3 cannot attach to the root, it will

always have a depth estimate dp
[n−3]
est ≥ 2, so if n − 2 attaches to n − 3 it will have

dp
[n−2]
est ≥ 3 > 1 thus preventing node n− 1 from ever attaching to it.

The negative result of Theorem 7.3 motivates the design of a new depth-compatible
algorithm whose combination with CM Algorithm satisfies the reachability prop-
erty. This is what we do next.

7.2. Cycle-Detecting Depth Increment Algorithm. Let us we introduce
the Cycle-Detecting Depth Increment Algorithm. Unlike Null Depth In-
crement Algorithm, this algorithm allows CM Algorithm to follow the depth

update rule dp
[id]
est ← min(dp

[id]
est + 1, nmax), potentially allowing some robots to con-

nect to other robots with initially larger depth estimates. Informally, this algorithm
performs two operations, described as follows.

[Informal description:] Each robot stores a “start number”, a “num-
ber of descendants” and a “mapping from child UID to child start
number.” At each round, in addition to the tree constraint informa-
tion and its number of descendants, each node sends the following
information to each neighbor. If the neighbor is a child, it sends the
corresponding entry in its mapping, or, if the child is not in the map-
ping, it sends its own start number. If the neighbor is not a child, it
sends its own start number. With the messages received, each node
updates its numbers as follows. Its number of descendants is the sum
of the number of descendants information received from each child,
plus one (for itself). Its start number is the one received from its
parent. For each child it receives a message from, it adds an entry
to its map that is indexed by that child’s UID and has a value of the
sum, over all children with lesser UID, of the number of descendants
of those children, plus one plus its own start number.

The formal description of Cycle-Detecting Depth Increment Algorithm
as an input-output control and communication law consists of the sets

(i) L = (Zn ∪ {null})× Z;
(ii) W = (Zn∪{null})×Z2×Z×Z×F(Zn; Z), are sets of values of logic variables

w[i] = (n
[i]
incr-sgnl, I

[i]
incr-dep, n

[i]
start, n

[i]
num-desc, f

[i]
start), i ∈ Zn, where n

[i]
incr-sgnl is

20

function stfW(n
[id]
dep-targ, (n

[i]
incr-sgnl, I

[i]
incr-dep, n

[i]
start, n

[i]
num-desc, f

[i]
start), l)

1: n
[id]
num-desc ←

∑

j∈{j∈N (i) | p
[j]
curr=i}

(1 + n
[j]
num-desc)

2: n
[id]
start ← n

[p[i]
curr]

start

3: f
[id]
start(j) ← n

[id]
start +

∑

{k∈S
[id]
desc | k<j}

n
[k]
num-descfor each j ∈ N (id)

/*(n
[id]
start, n

[id]
num-desc) used in stfout*/

4: Set I
[id]
incr-dep ← true

5: if n
[id]
dep-targ 6= null and n

[id]
incr-sgnl = null then

6: Set n
[id]
incr-sgnl ← id /*Signal originates*/

7: if n
[p[id]

curr]
incr-sgnl 6= null then

8: Set n
[id]
incr-sgnl ← n

[p[id]
curr]

incr-sgnl; Set I
[id]
incr-dep ← false /*Signal propagates*/

9: else if n
[id]
dep-targ 6= null and n

[n
[id]
dep-targ]

incr-sgnl 6= null then

10: if n
[n

[id]
dep-targ]

incr-sgnl < n
[id]
incr-sgnl or n

[id]
incr-sgnl = null then

11: Set n
[id]
incr-sgnl ← n

[n
[id]
dep-targ]

incr-sgnl /*Signal propagates*/

12: else if n
[n

[id]
dep-targ]

incr-sgnl = id then

13: Set I
[id]
incr-dep ← false /*Cycle detected*/

14: return (n
[i]
incr-sgnl, I

[i]
incr-dep, n

[i]
start, n

[i]
num-desc, f

[i]
start)

Table 7.1
stfW for Cycle-Detecting Depth Increment Algorithm.

used to break cycles, while n
[i]
start, n

[i]
num-desc and f

[i]
start are used to detect

descendants;

(iii) W
[i]
0 = {(null, false, 0, 0, f

[i]
start)} ⊂W , with f

[i]
start ≡ 0;

(iv) Win = Zn ∪ {null}, w
[i]
in = n

[i]
dep-targ, i ∈ Zn;

(v) W
[i]
in,0 = {null};

(vi) Wout = Z2× (Zn ∪{null})×F(Zn; {true, false}), are sets of values of output

logic variables w
[i]
out = (I

[i]
incr-dep, n

[i]
incr-sgnl, f

[i]
allow), i ∈ Zn;

and of the maps:

(i) msg(x,w,win, j) =

{

(n
[id]
incr-sgnl, f

[id]
start(j)) p

[j]
curr = id

(n
[id]
incr-sgnl, n

[id]
num-desc) p

[j]
curr 6= id

; Each robot, id sends

n
[id]
incr-sgnl to each of its neighbors, and, to each neighbor j, sends either f

[id]
start(j)

to j if p
[j]
curr = id or sends n

[id]
num-desc to j otherwise, with the intent that n

[j]
start

will be set to f
[id]
start(j);

(ii) stfW as described in Table 7.1;

(iii) stfout(win, w, l) = (I
[id]
incr-dep, n

[i]
incr-sgnl, f

[id]
allow), where f

[id]
allow(j) = ([n

[id]
start, n

[id]
start+

n
[id]
num-desc]∩[n

[j]
start, n

[j]
start+n

[j]
num-desc] = null) if j ∈ N (id) and f

[id]
allow(j) = false

otherwise;
(iv) ctl(xtℓ

, x, w,win) = 0.

21

We note that the variables n
[i]
num-desc and n

[i]
start of the processor state can be used

to correctly answer queries of the form “is i a descendant of j?”, see Lemma B.1.

n
[3]
incr-sgnl = 3

n
[2]
incr-sgnl = null

id = 1

id = 2

id = 3

id = 4

n
[1]
incr-sgnl = 1

n
[4]
incr-sgnl = null

id = 0

(a)

n
[3]
incr-sgnl = 3

n
[2]
incr-sgnl = 1 n

[4]
incr-sgnl = 3

id = 0

n
[1]
incr-sgnl = 1

(b)

n
[3]
incr-sgnl = 1n

[1]
incr-sgnl = 1

n
[2]
incr-sgnl = 1 n

[4]
incr-sgnl = 3

id = 0

(c)

n
[3]
incr-sgnl = 1n

[1]
incr-sgnl = 1

n
[2]
incr-sgnl = 1 n

[4]
incr-sgnl = 1

id = 0

(d)

n
[3]
incr-sgnl = 1n

[1]
incr-sgnl = 1

n
[2]
incr-sgnl = 1 n

[4]
incr-sgnl = 1

id = 0

(e)

Fig. 7.1. From (a) to (e), propagation of n
[id]
incr-sgnl

during Cycle-Detecting Depth Incre-

ment Algorithm. A solid arrow indicates a link from id to p
[id]
curr while a dashed arrow indicates

a link from id to n
[id]
dep-targ

. The agents with id = 1 and id = 3 want to attach to the agents with

id = 4 and id = 2, respectively. This induces a cycle in the graph of desired re-arrangements, which
is detected, and averted.

A sample execution of Cycle-Detecting Depth Increment Algorithm is
illustrated in Figure 7.1.

7.3. Reachability analysis. Here, we establish the reachability properties of
the CM Algorithm coupled with Cycle-Detecting Depth Increment Algo-
rithm. Given a target tree T2, we give the network the simplest set of preferences
that yield T2 as the most desirable tree. To show that this set of preferences yields
T2 given sufficient time, we classify the edges of T2 into (i) those which are in the
current constraint tree, (ii) those which will be in the current constraint tree within
a finite amount of time, and (iii) those which cannot currently be added to the cur-
rent constraint tree. The key observation is that the existence of edges in case (iii)
requires the existence of edges in case (ii). This observation is a consequence of the
following two results, whose proofs, together with some auxiliary results, are given in
Appendix B.

The first result discusses a set of operations that are known to break the tree, see

22

Figure 3.1 for an illustration.
Lemma 7.4. Let T a tree. Any sequence of operations that replaces edges of T

with edges from nodes back to their descendants in T yields a graph which is not
connected.

The next result states that, if any re-arrangement other than those discussed in
Lemma 7.4 is available, a re-arrangement will eventually happen.

Proposition 7.5. If the underlying graph and the constraint tree do not change
for 2 depth(T) iterations, and some node desires to attach to a node other than its de-
scendants, one such node will eventually do so (causing the constraint tree to change).

We are now ready to state the reachability properties of our algorithm.
Theorem 7.6. The CM Algorithm coupled with Cycle-Detecting Depth

Increment Algorithm satisfies the reachability property.
Proof. Let T1 and T2 be two trees of the underlying graph G. For each robot i, let

R
[i]
pref be defined as follows: (p

[i]
2 , p

[i]
1) ∈ R

[i]
pref and (p

[i]
1 , j) ∈ R

[i]
pref for all j 6∈ {p

[i]
2 , p

[i]
1 },

where p
[i]
1 and p

[i]
2 denote the parents of i under T1 and T2, respectively. No node

will ever attach to a parent other than its parent in one of {T1, T2} (since it starts
attached to its T1 parent, only prefers its T2 parent over that, and the graph does

not change). At all times, the edges (i, j) of T2 (j = p
[i]
curr in T2) belong to one of the

following categories

(i) j = p
[i]
curr in the current tree,

(ii) j is not a descendant of i in the current tree,
(iii) j is a descendant of i in the current tree (i cannot attach to j).

If T2 consists of edges only in case (i), then the result follows. If this is not the case,
then the edges not in case (i) cannot all be in case (iii). This follows from Lemma 7.4,
since in such a case, the tree T2 would be achievable from T1 by a sequence of moves
which re-attach nodes to their descendants, and thus T2 would be a disconnected
graph with at least one cycle. So if the edges of T2 do not all fall into case (i),
then there must be at least one edge (i, j), where j is not a descendant of i. By
Proposition 7.5 one such edge will be added to the current tree in finite time. This
will stop happening when each edge in the current constraint tree is also in T2.

8. Simulations. Here we illustrate the performance of the Connectivity Main-
tenance Algorithm in several simulations. We combine the algorithm with Cycle-
Detecting Depth Increment Algorithm and the deployment algorithm pre-
sented in [8]. We consider a network of n agents moving in R

2 according to

ẋ[i] = u[i],

where ‖u[i]‖ ≤ vspeed is the maximum velocity of the robots. The proximity graph
of the robotic network is the r-disk proximity graph. The deployment algorithm
assumes that each robot has a sensor coverage disk – i.e., the sensor we are interested
in on each robot covers a disk of radius rsns ≤ r/2 centered about the robot position.
The algorithm moves the robots to maximize sensor coverage of a “region of interest”
represented by a density function ρ : R

2 → R. In particular, it maximizes the integral,
over the union of all sensor coverage disks, of the density function.

Formally, the deployment algorithm is a motion-compatible algorithm that can
be described by the sets

(i) L = Zn × R
2;

(ii) W = R
2 set of values for the variable w[i] that contains the “target” of agent

i’s motion, P
[i]
targ, i ∈ Zn;

23

(iii) W
[i]
0 = W , i ∈ Zn;

(iv) Win = Zn × Zn × F(Zn) × F(Zn), w
[i]
in = (p

[i]
curr, p

[i]
next, S

[i]
constraints, S

[i]
children),

i ∈ Zn;

(v) Wout = R(Zn, Zn), w
[i]
out = R

[i]
pref defined as follows. For agent i ∈ Zn,

(j, k) ∈ R
[i]
pref for j, k 6= i if n

[i]
root = n

[j]
root = n

[k]
root and ‖x[j] − x[i]‖ < ‖x[k] − x[i]‖;

(vi) W
[i]
in,0 = {(i,N (i), null)};

and the maps:

(i) msg(x[i], w[i], w
[i]
in , i) = (i, x[i]);

(ii) stf(w[i], w
[i]
in , l) = P

[i]
targ ← argmin

p∈D
[i]
C

(‖p− cm
[i]‖), where cm

[i] =
R

D
qρ

R

D
ρ

and

D[i] = {p ∈ R
2 | ‖p− x[i]‖ ≤ rsns ∧ ‖p− x[i]‖ ≤ ‖p− x[j]‖ ∀j ∈ N (i)},

D
[i]
C = ∩

j∈{p
[i]
curr}∩S

[i]
constraints∩S

[i]
children{p

[i]
next}

B
(x[j] + x[i]

2
,
r

2

)

;

(iii) ctl(x[i], x[i](tlast), w
[i], w

[i]
in) = vspeed

(

P
[i]
targ−x[i]

‖P
[i]
targ−x[i]‖

)

.

Links of the constraint tree are preserved adapting the procedure described in [1]. To
preserve a link between two robots, we constrain the motion of the two robots to a
circle of radius r

2 centered at the midpoint of the line between their positions. Because
each robot has a “target” it moves towards, we can find the closest point to the target
in the intersection of the circles generated by the constraint edges (an extra constraint
circle is added, centered about the position of the robot making the motion decision,
with a radius equal to its maximum travel range between communication rounds). We
do this by considering as candidate points each intersection between the boundaries of
each pair of constraint circles, and each closest point between a given constraint circle
and the target. By filtering out those candidate points which are outside one or more
constraint circles, and picking the remaining point with the minimum distance to the
target, we find the closest feasible point to the target. Each robot is then instructed
to move towards its closest feasible point instead of its original target.

The algorithm resulting from the combination of the deployment algorithm with
the Connectivity Maintenance Algorithm is executed in our Java simulation
platform [30]. This platform has been developed to provide a software implementation
of the modeling framework introduced in [23].

Figure 8.1 shows a sample execution of the algorithm.
Figure 8.2 shows the evolution of the algorithm repairing an initially disconnected

constraint tree.
For comparison, Figure 8.3 shows the evolution of the deployment algorithm, with

and without coupling with the Connectivity Maintenance Algorithm, starting
from the same initial condition. As it may be expected, the deployment algorithm by
itself leads the network to a final configuration where the group is disconnected. How-
ever, when coupled with the Connectivity Maintenance Algorithm, a minimal
evolving set of edges are maintained in order to guarantee group connectivity.

9. Conclusions and future work. We have studied connectivity maintenance
of robotic networks performing spatially distributed tasks. We have proposed a dis-
tributed strategy based on maintaining the links of an evolving tree that is specified
by the motion control algorithm. We have analyzed the correctness of the proposed

24

(a) (b) (c)

Fig. 8.1. Execution of Connectivity Maintenance Algorithm, showing (a) the paths taken
by the robots, (b) a contour plot of the density field and the sensor coverage regions of the robots,
(c) the final network constraint tree.

(a) (b)

(c) (d)

Fig. 8.2. From left to right, top to bottom, progress of repair starting with an initially discon-
nected constraint tree. Agents are labeled by “agent id/root id”: those in red have not yet completed

repair. Edges in red are of the form (id, p
[id]
next) and denote a proposed new edge. Edges in gray are

of the form (id, p
[id]
curr) and denote current edges of the constraint tree.

algorithm and characterizes its repair and reachability and properties. The algorithm
has been formalized in a general modeling framework for robotic networks with the
purpose of facilitating easy composition with other coordination algorithms. Future
work will be devoted to understanding how the resulting trees of our algorithm com-
pare to minimum spanning trees, developing systematic ways to encode preference
re-arrangements in connection with other coordination algorithms and exploring the
efficacy of the proposed ideas in conjunction with other proximity graphs relevant in
motion coordination, such as the visibility graph.

25

(a) (b)

(c) (d)

Fig. 8.3. Comparison between executions of the deployment algorithm with –(a) agent trajecto-
ries, (b) final agent configuration with density contours and sensing disks– and without –(c) agent
trajectories, (d) final agent configuration with density contours and sensing disks– coupling with the
CM Algorithm. All simulations start from the same initial condition.

REFERENCES

[1] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita, Distributed memoryless point convergence
algorithm for mobile robots with limited visibility, IEEE Transactions on Robotics and
Automation, 15 (1999), pp. 818–828.

[2] B. Awerbuch, Optimal distributed algorithms for minimum weight spanning tree, counting,
leader election, and related problems, in Proceedings of the ACM Symposium on Theory
of Computing, New York City, NY, May 1987, pp. 230–240.

[3] B. Awerbuch, I. Cidon, and S. Kutten, Optimal maintenance of a spanning tree, Journal of
the Association for Computing Machinery, 55 (2008), pp. 1–45.

[4] S. Boyd, Convex optimization of graph Laplacian eigenvalues, in Int. Congress of Mathemati-
cians, Madrid, Spain, Aug. 2006, pp. 1311–1319.

[5] F. Bullo, J. Cortés, and S. Mart́ınez, Distributed Control of Robotic Networks, Ap-
plied Mathematics Series, Princeton University Press, 2009. Electronically available at
http://coordinationbook.info.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms,
MIT Press, 2 ed., 2001.

[7] A. Cornejo and N. Lynch, Connectivity service for mobile ad-hoc networks, in IEEE Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems Workshops, Venice, Italy,
2008, pp. 292–297.

[8] J. Cortés, S. Mart́ınez, and F. Bullo, Spatially-distributed coverage optimization and con-
trol with limited-range interactions, ESAIM. Control, Optimisation & Calculus of Varia-
tions, 11 (2005), pp. 691–719.

[9] , Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary
dimensions, IEEE Transactions on Automatic Control, 51 (2006), pp. 1289–1298.

[10] M. C. de Gennaro and A. Jadbabaie, Decentralized control of connectivity for multi-agent
systems, in IEEE Conf. on Decision and Control, San Diego, CA, Dec. 2006, pp. 3628–3633.

[11] R. Diestel, Graph Theory, vol. 173 of Graduate Texts in Mathematics, Springer, 2 ed., 2000.

26

[12] G. N. Frederickson, Data structures for on-line updating of minimum spanning trees, in
Proceedings of the fifteenth annual ACM symposium on Theory of computing, New York,
NY, USA, 1983, ACM, pp. 252–257.

[13] F. C. Gaertner, A survey of self-stabilizing spanning-tree construction algorithms, tech.
rep., Ecole Polytechnique Fdrale de Lausanne, 2003. Available electronically at
http://infoscience.epfl.ch/search.py?recid=52545.

[14] R. G. Gallager, P. A. Humblet, and P. M. Spira, A distributed algorithm for minimum-
weight spanning trees, ACM TOPLAS, 5 (1983), pp. 66–77.

[15] A. Ganguli, J. Cortés, and F. Bullo, Multirobot rendezvous with visibility sensors in non-
convex environments, IEEE Transactions on Robotics, 25 (2009), pp. 340–352.

[16] J. Garay, S. Kutten, and D. Peleg, A sub-linear time distributed algorithm for minimum-
weight spanning trees, in Proceedings of the IEEE Symposium on Foundations of Computer
Science, 1993, pp. 659–668.

[17] J. W. Jaromczyk and G. T. Toussaint, Relative neighborhood graphs and their relatives,
Proceedings of the IEEE, 80 (1992), pp. 1502–1517.

[18] M. Ji and M. Egerstedt, Distributed control of multiagent systems while preserving connect-
edness, IEEE Transactions on Robotics, 23 (2007), pp. 693–703.

[19] M. Khan and G. Pandurangan, A fast distributed approximation algorithm for minimum
spanning trees, Distributed Computing, 20 (2008), pp. 391–402.

[20] Y. Kim and M. Mesbahi, On maximizing the second smallest eigenvalue of a state-dependent
graph Laplacian, IEEE Transactions on Automatic Control, 51 (2006), pp. 116–120.

[21] J. Lin, A. S. Morse, and B. D. O. Anderson, The multi-agent rendezvous problem. Part 1:
The synchronous case, SIAM Journal on Control and Optimization, 46 (2007), pp. 2096–
2119.

[22] N. A. Lynch, Distributed Algorithms, Morgan Kaufmann, 1997.
[23] S. Mart́ınez, F. Bullo, J. Cortés, and E. Frazzoli, On synchronous robotic networks

- Part I: models, tasks, and complexity, IEEE Transactions on Automatic Control, 52
(2007), pp. 2199–2213.

[24] , On synchronous robotic networks - Part II: time complexity of rendezvous and deploy-
ment algorithms, IEEE Transactions on Automatic Control, 52 (2007), pp. 2214–2226.

[25] D. Peleg, Distributed Computing. A Locality-Sensitive Approach, Monographs on Discrete
Mathematics and Applications, SIAM, 2000.

[26] D. Peleg and V. Rubinovich, A near tight lower bound on the time complexity of distributed
minimum spanning tree construction, SIAM Journal of Computing, 30 (2000), pp. 1427–
1442.

[27] S. Poduri and G. S. Sukhatme, Constrained coverage for mobile sensor networks, in IEEE
Int. Conf. on Robotics and Automation, New Orleans, LA, May 2004, pp. 165–172.

[28] C. W. Reynolds, Flocks, herds, and schools: A distributed behavioral model, Computer Graph-
ics, 21 (1987), pp. 25–34.

[29] K. Savla, G. Notarstefano, and F. Bullo, Maintaining limited-range connectivity among
second-order agents, SIAM Journal on Control and Optimization, 48 (2009), pp. 187–205.

[30] M. D. Schuresko, CCLsim. a simulation environment for robotic networks, 2008. Electroni-
cally available at http://www.soe.ucsc.edu/˜mds/cclsim.

[31] M. D. Schuresko and J. Cortés, Safe graph rearrangements for distributed connectivity of
robotic networks, in IEEE Conf. on Decision and Control, New Orleans, LA, 2007, pp. 4602–
4607.

[32] , Distributed motion constraints for algebraic connectivity of robotic networks, Journal
of Intelligent and Robotic Systems, 56 (2009), pp. 99–126.

[33] , Distributed tree rearrangements for reachability and robust connectivity, in International
Conference on Hybrid Systems: Computation and Control, R. Majumdar and P. Tabuada,
eds., vol. 5469 of Lecture Notes in Computer Science, New York, 2009, Springer, pp. 470–
474.

[34] D. P. Spanos and R. M. Murray, Motion planning with wireless network constraints, in
American Control Conference, Portland, OR, June 2005, pp. 87–92.

[35] P. Yang, R. A. Freeman, G. Gordon, K. M. Lynch, S. Srinivasa, and R. Sukthankar,
Decentralized estimation and control of graph connectivity for mobile sensor networks, in
American Control Conference, Seattle, WA, 2008.

[36] M. M. Zavlanos and G. J. Pappas, Controlling connectivity of dynamic graphs, in IEEE
Conf. on Decision and Control and European Control Conference, Seville, Spain, Dec.
2005, pp. 6388–6393.

[37] , Flocking while preserving network connectivity, in IEEE Conf. on Decision and Control,
New Orleans, LA, 2007.

27

[38] , Potential fields for maintaining connectivity of mobile networks, IEEE Transactions on
Robotics, 23 (2007), pp. 812–816.

Appendix A. Restricted graph on k and its properties.

Here, we provide the proof of Proposition 6.5. Before doing so, we need to state
a couple of important intermediate results. We start with an invariance property of
CM Algorithm.

Lemma A.1. If no edge of the form (i, p
[i]
curr) breaks, then CM Algorithm

preserves the property that n
[·]
root is monotonically non-increasing along edges from

child to parent. As a corollary, the value of n
[i]
root for any given i is monotonically

non-increasing over time.

Proof. n
[i]
root can only change by taking on n

[p[i]
curr]

root , which does not affect the

invariant. The value of n
[·]
root along the path from child to parent can change when

a node re-attaches, but each node can only attach to nodes with n
[·]
root less than or

equal to its own value of n
[·]
root.

We next show that any network converges, in a finite number of rounds, to a
configuration where the property required in Lemma A.1 is satisfied.

Lemma A.2. Given any starting condition, any motion CM-compatible algo-
rithm guarantees that, under the CM algorithm, each agent i will have the property

that n
[i]
root ≥ n

[p[i]
curr]

root within n iterations.

Proof. Let S = {i ∈ Zn | n
[p[i]

curr]
root > n

[i]
root} and S> = {j ∈ Zn | ∃i ∈ S, n

[j]
root ≥

n
[i]
root}. Note that, since each i ∈ S satisfies that n

[i]
root ≥ n

[j]
root for some j ∈ S

(namely j = i), we deduce that S ⊂ S>. We argue that |S>| decreases by at least

one every iteration. No node, k, will increase n
[k]
root unless its parent connection is

severed (prohibited by motion CM-compatible) or its parent had previously satisfied

n
[p[k]

curr]
root > n

[k]
root, thus putting k ∈ S>. Thus no node gets added to S>. Let l =

argmaxi∈S{n
[p[i]

curr]
root } and note that n

[p[l]
curr]

root > n
[i]
root for all i ∈ S. Since the update

rule, n
[l]
root ← n

[p[l]
curr]

root applies to l, at least one node must be removed from S> every
iteration. When |S>| = 0, we conclude that S = ∅.

We are now ready to give the proof of Proposition 6.5.

Proof of Proposition 6.5. We will proceed by induction on k. For k = 0, the result
follows from Corollary 5.3. Assume the result holds for κ < k. Let the property hold
for k on round t − 1. To show it holds for k on round t, consider the ways in which
an edge can be removed from Grestr(k) on round t:

• An edge, (i, j), in Grestr(k) having j 6= p
[i]
curr and i 6= p

[j]
curr can disappear when

n
[i]
root becomes equal to n

[j]
root.

In this case, either n
[i]
root or n

[j]
root must have been less than k at round t − 1. By

Lemma A.1, the value of n
[i]
root and n

[j]
root can only decrease, making each of these less

than k at round t. By the induction hypothesis, there must be a path between the
two at round t in G

restr(n
[i]
root)

which is also a path in Grestr(k).

• Node i, having p
[i]
curr = h at round t− 1, can change p

[i]
curr.

(i) to a new node, j, having n
[j]
root < k.

In this case, either n
[h]
root 6= n

[i]
root, leaving the two connected, or n

[h]
root = n

[i]
root, but

since n
[i]
root is the value n

[j]
root had at round t − 1, n

[i]
root and n

[j]
root must both be less

than k, leaving the two connected, by the induction hypothesis; or

28

(ii) to a new node, j, having n
[j]
root = k.

If n
[h]
root 6= k at round t, i and h are still connected in Grestr(k). Otherwise, since

n
[h]
root never decreases, we have n

[h]
root = n

[j]
root = n

[i]
root = k at round t − 1 meaning

all three of i, j, h had paths between one another in Grestr(k) at round t − 1. We
show that this sort of attach operation does not break the property we are trying to
establish by ordering the attach and update operations in the following way. First
we perform, in (an arbitrary) sequence, all parent re-attach operations from an old

parent to a new parent with n
[·]
root = k. Since this operation does not change the value

of n
[·]
root for the node switching parents, we do not worry about the n

[·]
root update for

this kind of event. After showing that none of these operations individually break

the connectivity among agents with n
[·]
root = k in Grestr(k), we then proceed with the

remainder of attach and update operations in the synchronous order in which they
occur in the algorithm, relying on the correctness properties already established to

show these operations correct. First, to show none of the n
[i]
root = n

[j]
root = n

[h]
root = k

operations break connectivity we note, as shown above, that at round t − 1 there is

a path between any pair of i, j and h before the attach. After changing p
[i]
curr from

h to j, there is still a path from h to j in Grestr(k), meaning there are paths between
i and j (trivially) and between i and h (through path composition) after the event.
Since all three affected nodes are still interconnected after the event, the connectivity
of any pair of nodes in Grestr(k) is not affected by the re-attach, and we can use the
same line of reasoning for the next re-attach in our sequence. Finally we note that

when a new node, i, sets n
[i]
root = k for the first time, it is entering Grestr(k) for the

first time. It is doing so by attaching (or staying attached) to a node, j, which had

n
[j]
root = k at round t − 1, and thus j was connected to all nodes having n

[·]
root = k at

round t − 1. If we order the sequence of updates again, putting these attaches and

n
[·]
root updates before the ones we have already considered, we show that they do not

break the connectivity among nodes with n
[·]
root = k in Grestr(k).

Appendix B. Properties of the evolutions under Cycle-Detecting Depth

Increment Algorithm.

Here we gather some properties of the executions of the CM Algorithm com-
bined with Cycle-Detecting Depth Increment Algorithm. These results are
instrumental to establish the reachability properties satisfied by this combination. We
begin by introducing several auxiliary graphs.

Lemma B.1. If the constraint tree T remains fixed for 2 depth(T) rounds, then
each i satisfies

(i) n
[i]
num-desc is equal to the total number of descendants of i,

(ii) n
[i]
start =

∑

j<T i 1,

(iii) if i is an ancestor of j, eventually n
[i]
start ≤ n

[j]
start and n

[i]
start + n

[i]
num-desc ≥

n
[j]
start + n

[j]
num-desc will hold, and

(iv) if i is not an ancestor of j, either n
[i]
start > n

[j]
start + n

[j]
num-desc or n

[j]
start >

n
[i]
start + n

[i]
num-desc will hold.

Proof. Each node, i, has the proper value of n
[i]
num-desc one round after the last

of its children have the proper n
[·]
num-desc. This takes at most depth(T) rounds, thus

showing (i). To show (ii), each node has the proper value of n
[i]
start one round after its

siblings each have the proper value of n
[·]
num-desc and its parent, p

[i]
curr, has the proper

29

value of n
[p[i]

curr]
start . This takes at most depth(D) additional rounds after all nodes satisfy

(i). Regarding fact (iii), after 2 depth(T) rounds, for each node m ∈ Zn, n
[m]
num-desc

will be the total number of descendants of m and n
[·]
start will be

∑

k<T m 1. If i is
not an ancestor of j, without loss of generality let j > i. Let k be the nearest
common ancestor of i and j. Let ki and kj be the children of k having i and j

as descendants respectively. At some point ki will get some n
[ki]
start and kj will get

n
[kj]
start ≥ n

[ki]
start + n

[ki]
num-desc thus showing (iii). Regarding fact (iv), if i is an ancestor

of j, for every link, (k1, k2), between i and j, k2 will get some number between

n
[k1]
start and n

[k1]
start + n

[k1]
num-desc − n

[k2]
num-desc for n

[k2]
start. Thus, at every step along the way,

n
[k1]
start ≤ n

[k2]
start ≤ n

[k2]
start + n

[k2]
num-desc ≤ n

[k1]
start + n

[k1]
num-desc. By inducting on the number

of links from i, this gives (iv).

Definition B.2. Consider the subgraphs of the underlying proximity graph:

• The increase depth graph is the graph containing all edges of the form (i, n
[i]
dep-targ)

for n
[i]
dep-targ 6= null and all edges of the form (i, p

[i]
curr) where n

[i]
incr-sgnl 6= null

and n
[p[i]

curr]
incr-sgnl 6= null;

• The lowest subgraph (in the increase depth graph) consists of all edges (i, n
[i]
dep-targ)

where no ancestor, j, of i has n
[j]
dep-targ 6= null and all edges of the form

(i, p
[i]
curr) where some ancestor of i is also in the lowest subgraph;

• The signal graph on i is the graph containing all edges of the form (j, k) where

n
[j]
incr-sgnl = i, n

[k]
incr-sgnl = i and either k = p

[j]
curr or k = n

[j]
dep-targ.

Each of these graphs contains only those nodes adjacent to an edge in the respec-
tive graph. The increase depth graph and its lowest subgraph only change when the

underlying graph, the constraint tree, or n
[i]
dep-targ for some i change. The signal graph

on i can change even when the aforementioned structures remain constant.

We proceed to show that whenever the set of agent preferences are such that each
node in the network would prefer its parent in T2 to its parent in the current tree,
some node will change parents. We break this down by cases.

(i) The “lowest subgraph of the increase depth graph” contains no cycles.
(ii) The “lowest subgraph of the increase depth graph” contains at least one cycle.

Case (i) is treated in Lemma B.3, which describes what happens when the set
of preferences do not induce a cycle in the “lowest subgraph of the increase depth
graph.” Case (ii) is handled in Lemma B.5.

Lemma B.3. If there is no cycle in the “lowest subgraph in the increase depth

graph” then some node j in this graph will attach to n
[j]
dep-targ within a finite number

of time steps.

Proof. If there is no such cycle, than some edge of the form (i, n
[i]
dep-targ) exists

such that neither n
[i]
dep-targ nor any of its ancestors has n

[·]
dep-targ 6= null. Since i

is in the lowest subgraph of the increase depth graph, each ancestor, j, of i has

n
[j]
dep-targ = null. If this is the case, than n

[i]
dep-targ will settle to a depth estimate,

dp
[n

[i]
dep-targ]

est , of its actual depth in the tree (less than n + 1). i will never receive

n
[·]
incr-sgnl = i and will keep increasing depth until it can attach to n

[i]
dep-targ (at a value

of, at most, n + 1).

If there is a cycle in the “lowest subgraph of the increase depth graph” the signal-
ing mechanism of Cycle-Detecting Depth Increment Algorithm will detect

30

it, as shown in Lemma B.4.
Lemma B.4. If there is a cycle in the “lowest subgraph of the increase depth

graph” then within a finite number of timesteps, there exists some k such that the
“signal graph on k” contains that cycle.

Proof. There are two cases in which a node can switch from n
[i]
incr-sgnl = j to

n
[i]
incr-sgnl = k. One is when its parent sends n

[p[i]
curr]

incr-sgnl = k. This does not happen for

any i having (i, n
[i]
dep-targ) in the lowest subgraph of the increase depth graph. The

other is when n
[n

[i]
dep-targ]

incr-sgnl = k and k < j. The nodes i in any cycle of lowest subgraph

having (i, n
[i]
dep-targ) in the lowest subgraph have a unique minimum value of n

[i]
incr-sgnl,

k. When some edge, (i, p
[i]
curr) in the subgraph has n

[p[i]
curr]

incr-sgnl = k, in the next round,

n
[i]
incr-sgnl gets k. Likewise when some (i, n

[i]
dep-targ) in the subgraph gets n

[n
[i]
dep-targ]

incr-sgnl = k,

in the next round, n
[i]
incr-sgnl = k. Since these edges describe every edge in the lowest

subgraph of the increase depth graph, eventually all nodes in this cycle will have

n
[·]
incr-sgnl = k.

This mechanism makes the proof of case (ii) above possible, as we show next.
Lemma B.5. If there is an edge, (i, j) in one of the cycles of the “lowest subgraph

of the increase depth graph” where j is not an ancestor of i and vice versa, then within

a finite number of time steps, some node, k, in this graph will attach to n
[k]
dep-targ.

Proof. By Lemma B.4, every edge of this cycle will get n
[·]
incr-sgnl = k for some

k. Node k will reset, as it receives n
[n

[k]
dep-targ]

incr-sgnl = k, as will every descendant trying to
attach to some node dependent on this cycle. Some node which is not a descendant
of k must be trying to attach to a descendant of k, and will keep increasing depth
while k’s ancestors stay reset.

Finally, Lemma B.6 and Proposition 7.5 tie the two cases together.
Lemma B.6. If the graph and the constraint tree do not change for 2 depth(T)

rounds, either the conditions for Lemma B.5 or Lemma B.3 will hold, or no node, i,

will have n
[i]
dep-targ 6= null

Proof. By Lemma B.1, after 2 depth(T) time steps, no i and j where j is a

descendant of i will have f
[i]
allow(j) = true. CM Algorithm will not allow n

[i]
dep-targ

to be j and thus any cycle in the lowest subgraph of the increase depth graph must
contain at least one of the type of edge described in Lemma B.5.

We are now ready to provide the proof of Proposition 7.5.
Proof of Proposition 7.5. Either there is some node, i which wants to attach

to a node j having dp
[j]
est < dp

[i]
est, or, by Lemma B.6, the lowest subgraph of the

increase depth graph contains no cycles, or the lowest subgraph of the increase depth
graph contains at least one cycle. The first case is trivial, the second is handled by
Lemma B.3 and the third is handled by Lemma B.5.

Proof of Lemma 7.4. The first such edge we replace will disconnect all the de-
scendants of some node, i, from the root. Any replacement involving one of the now
disconnected nodes changing its parent will not connect these nodes back to the root,
since the disconnected node is attaching back to one of its ancestors. Any replacement
involving a currently connected node will also not connect these nodes to the root, as
the currently connected node loses its path to the root when the old edge from itself
to its parent is removed.

31

