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Abstract—We study the feature-based map merging problem in
robot networks. Along its operation, each robot observes the en-
vironment and builds and maintains a local map. Simultaneously,
each robot communicates and computes the global map of the
environment. The communication between the robots is range-
limited. We propose a dynamic strategy based on consensus algo-
rithms that is fully distributed and does not rely on any particular
communication topology. Under mild connectivity conditions on
the communication graph, our merging algorithm asymptotically
converges to the global map. We present a formal analysis of its
convergence rate and provide accurate characterizations of the
errors as a function of the timestep. The proposed approach has
been experimentally validated using real visual information.

I. INTRODUCTION

THERE is an increasing interest in multi-robot systems.
The availability of a local map allows each robot to

make local decisions such as local navigation or collision
avoidance. However, it is also of interest for each robot to have
a representation of the environment beyond its local map. The
fusion of the local observations of all the team members leads
to a merged map that contains more precise information and
more features. In a static map merging scenario, the infor-
mation fusion is carried out after the exploration. Dynamic
solutions, where the information is fused while the robots
operate, are more interesting. They enable other multi-robot
tasks such as cooperative exploration, or task assignment. In
this paper, we study the problem of dynamic map merging,
where each robot’s communication radius is limited, and hence
the communication topology is not a complete graph.

While multi-robot localization under communication con-
straints has received some attention [1], [2], most of the
existing multi-robot map merging solutions are extensions
of the single robot case under centralized schemes, all-to-all
communication among the robots, or broadcasting methods.
Particle filters [3] have been generalized to multi-robot systems
assuming that the robots broadcast their controls and their
observations. In multi-robot submap filters [4] and graph maps
of laser scans [5] approaches, each robot builds a local submap
and sends it by broadcast to all the other agents or to a
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central node. The same solution could be applied for many
existing submapping methods [6]. However, in robot network
scenarios, distributed approaches are often necessary because
of limited communication, switching topologies, link failures,
and limited bandwidth.

Distributed estimation methods [7]–[14] maintain a joint
estimate of a system that evolves with time by combining noisy
observations taken by a sensor network. Early approaches sum
the measurements from the different agents in IF (Informa-
tion Filter) form. If the network is complete [7], then the
resulting estimator is equivalent to the centralized one. In
general networks the problems of cyclic updates or double
counting information appear when nodes sum the same piece
of data more than once. The use of the channel filter [8],
[9] avoids these problems in networks with a tree structure.
The Covariance Intersection method [10] produces consistent
but highly conservative estimates in general networks. More
recent approaches [11]–[14] use distributed consensus filters to
average the measurements taken by the nodes. The interest of
distributed averaging is that the problems of double counting
the information and cyclic updates are avoided. They, however,
suffer from the delayed data problem that takes place when the
nodes execute the state prediction without having incorporated
all the measurements taken at the current step [15]. For general
communication schemes [11], the delayed data problem leads
to an approximate KF (Kalman Filter) estimator. An interesting
solution is given in [12] but its convergence is proved in the
absence of observation and system noises. In the algorithm
proposed in [14], authors prove that the nodes’ estimates
are consistent, although these estimates have disagreement.
Other algorithms have been proposed that require the pre-
vious offline computation of the gains and weights of the
algorithm [13]. The main limitation of all the previous works
is that they consider linear systems without inputs, and where
the evolution of the system is known by all the robots. Here
instead we are interested in more general scenarios, without
the previous restrictions. We allow each robot to build its map
by using system models not necessarily linear or known by
the other robots, or where the robot odometry is modeled as
an input, among others. A recent work that does not suffer
from the previous limitations is given in [16]. Here each robot
records its own measurements and odometry, as well as the
observations and odometry from any other robot it encounters.
Despite being very interesting and going beyond the state-of-
art, this work has the drawback that robots must maintain an
unbounded amount of memory, which depends on the time
between meetings. Moreover, if a single robot fails or leaves
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the network, the whole system fails, and the data association is
not discussed. In our case, the information fusion is carried out
on the local maps of the robots for which efficient distributed
data association methods [17] already exist in the literature.

We let each robot build a local map of the environment
using its own measurements. At specific time instants, robots
fuse their local maps and build a global map. Robots do
not introduce information from the global map into their
local maps. Thus, local maps between different robots remain
independent during the whole exploration. Due to the indepen-
dence between local maps, our approach does not suffer from
the previously mentioned problems of delayed data, which
prevents robots from converging to exactly the same global
map, or cyclic updates and double counting information, which
lead to overconfident maps. Note that our global map is
different in general than the one computed by a centralized
SLAM filter, since robots do not use information from the
other team members to update the local maps. An advantage
of our approach is the natural robustness that results from its
distributed implementation. Additionally, our method ensures
that the global map structure remains sparse, and thus pro-
vides a natural submapping. Our method averages local maps,
expressed in IF form, instead of their measurements, using
the consensus filter. The merging of maps composed of static
features does not consider inter-robot observations (although
this information could also be included, see Remark II.1
later). We build on ideas from consensus algorithms that allow
the introduction of new information, while taking advantage
of the latest global map [18], [19]. We use a discrete-time
version of the PI algorithm which is more appropriate for the
robot systems we consider. As weight matrices we use the
Metropolis weights [20] which have been shown to perform
quite good in multi-agent systems [14], [21], [22] and that have
the benefit that they can be locally computed by the agents.

The contributions of this manuscript, and novelty with
respect to our previous works on distributed map merging [23],
[24] are the following: (i) the proposal of the dynamic con-
sensus strategy where, at each step, a discrete-time version
of the PI algorithm is executed; (ii) the careful study of the
convergence rate of the dynamic consensus strategy; (iii) the
applications of this study to characterize the errors in the map
merging and understand the trade-offs between the number
of iterations and the performance of the algorithm; (iv) the
theoretical and experimental study of its time and commu-
nication complexity; and (v) the implementation for feature-
based maps taking into account the possibly different features
discovered by each robot during the exploration. In [23], our
robots performed the exploration of the environment, and
only at the end of it, ran a static consensus algorithm to
merge their maps. In this paper, instead, robots dynamically
merge the information online, i.e., at the same time that
they are performing the exploration. This on-the-fly fusion is
technically challenging and computationally demanding. With
respect to the conference version of this paper [24], here
we make a formal and experimental in-depth study of the
properties of the algorithm (particularly items (ii)-(v)).

This paper is organized as follows. Section II formally states
the problem. Section III solves a simplified problem with

scalar and constant inputs. Section IV presents the dynamic
consensus strategy where the robots track the average of the
scalar inputs. Section V solves the dynamic map merging
problem by using multidimensional inputs containing the
information matrices and vectors of the local maps; we briefly
discuss the initial correspondence, map alignment and data
association, and the algorithm complexity. Finally Section VI
evaluates the performance of the algorithm under real visual
data, and against a centralized solution. Additional information
on consensus algorithms is given in the Appendix.

II. PRELIMINARIES

Throughout the paper we let n be the number of robots.
Indices i, j refer to robots, r, s to elements within the maps,
and G to the global map. We use k ∈ N for exploration steps
and t ∈ N for iteration numbers. We let I be the n×n identity
matrix, and 0 be a n × n matrix with all its elements equal
to zero. When they are followed by a subindex n1 × n2, this
specifies their dimensions. We let 1 ∈ Rn be a column vector
with all entries equal to 1. Given a matrix W , [W ]ij denotes
its (i, j) entry, λi(W ), vi(W ) are its i−th eigenvalue and
eigenvector, and λeff(W ) is the modulus of its eigenvalue with
the second largest absolute value.

We consider a team of n ∈ N robots exploring an unknown
environment. At the exploration step k, each robot i has
observed mk

i ∈ N features and it has estimated its own
pose together with the positions of the features. Let the
constants szr and szf represent the size of respectively a
robot pose and a feature position1. The estimates at each robot
i ∈ {1, . . . , n} and each step k are stored into a stochastic map
with mean x̂ki ∈ RMk

i and covariance matrix Σki ∈ RMk
i×M

k
i ,

beingMk
i = szr+mk

i szf. Let xki ∈ RMk
i contain the true

robot pose and the true positions of the mk
i features, then

x̂ki = xki + vki , (1)

where vki is a zero mean noise with covariance matrix Σki .
In this paper, we do not discuss the exploration strategies
or the Simultaneous Localization and Map Building (SLAM)
algorithms for obtaining the local maps.

If at step k the information from the n robots was available,
e.g., at a central agent, then the global map combining the
information of the local maps at the n robots at step k could
be computed. Let m ∈ N be the number of different features
in the environment and x ∈ RMG be the vector with the
true poses of the n robots and the true positions of the m
features, being MG = n szr + m szf. Each robot i ∈
{1, . . . , n} at step k has observed mk

i ≤ m features and we
let Hk

i ∈ {0, 1}M
k
i×MG be the observation matrix that relates

the elements in x and xki so that xki = Hk
i x. The local map

of each robot i (1) is a partial observation of x,

x̂ki = Hk
i x + vki , (2)

where we assume that the noises vki ,v
k′

j are independent for
different robots i 6= j and all k, k′ ∈ N, since every robot has

1e.g., szr = 3 when the robot pose is composed of its planar position
(x, y) and orientation θ; szf = 2 or szf = 3 for respectively 2D or 3D
environments.
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Fig. 1. Centralized merging of the local maps of n robots in IF form. The global information matrix IkG and vector ikG are the addition of the local ones
Iki , iki , for i ∈ {1, . . . , n}. The first rows and columns contain the robot poses, and the last ones, the feature positions. The elements with zero value are
displayed in white. Each robot i has information of its own pose (light blue) and of the feature positions (dark blue), but it has no information of any other
robot poses j 6= i (white).

constructed the map based on its own observations. Note that
since the local map of a robot i at step k is an evolution of
its map at any previous step k′ < k, then the noises vki ,v

k′

i

are not independent. Let Iki ∈ RMG×MG and iki ∈ RMG be
the information matrix and vector of the local map at robot i
and step k in IF form,

Iki = (Hk
i )T (Σki )−1Hk

i , iki = (Hk
i )T (Σki )−1x̂ki , (3)

for i ∈ {1, . . . , n}. The information matrix IkG and vector ikG
of the global map at step k in IF form are

IkG =

n∑
i=1

Iki , ikG =

n∑
i=1

iki . (4)

The previous operation is additive, commutative, and associa-
tive. For this reason, merging the maps in IF form is a common
practice [25]. Equivalently, the global map at step k can be
expressed by its mean and covariance matrix,

x̂kG = (IkG)−1 ikG, ΣkG = (IkG)−1. (5)

Note that the global map in eqs. (3)-(5) is different from
the one that would be obtained by a centralized multi-robot
SLAM, since the local maps in eq. (3) do not include mea-
surements from the other robots. Our local maps remain inde-
pendent and can be fused by the addition of the information
matrices and vectors as in eq. (4), and the information matrix
of our global map remains sparse (Fig. 1).

Remark II.1. The framework described so far does not take
into account inter-robot observations. We can include this
information in our framework by consider the pose of a robot j
at a certain step as a static feature in the environment, observed
simultaneously by robot j itself, and by the robot that took the
inter-robot measurement. This option, however, increases the
map size and requires additional coordination mechanisms to
notify a robot that someone is taking an observation of it. •

Maps in information form have the property that entries
(r, s) and r in the information matrix Iki and vector iki associ-
ated to the elements not observed by robot i are zero (Fig. 1,
white elements). Consider a feature observed by several robots
R ⊆ {1, . . . , n} (Fig. 1, dark blue area). The associated entries
(r, s) and r in the global map [IkG]rs, [ikG]r (4) are the addition

of the different values [Iki ]rs, [iki ]r, for i ∈ R,

[IkG]rs =
∑
i∈R

[Iki ]rs, [ikG]r =
∑
i∈R

[iki ]r.

Here, each robot i reaches a consensus between its own and
the others’ values [Ikj ]rs, [ikj ]r, for j ∈ R. Consider now the
estimated pose of a robot i. It was exclusively observed by
i, and thus for any other robot j 6= i the associated entries
(r, s) and r are zero, [Ikj ]rs = 0, [ikj ]r = 0. Only robot i is
providing information of these entries for the global map,

[IkG]rs = [Iki ]rs, [ikG]r = [iki ]r,

and thus it is clear that here there is no need for consensus.
The dynamic map merging problem can be separated into
two parts. The first part consists of propagating the rows and
columns of Iki , iki associated with the pose of a robot j. Any
other robot i 6= j just incorporates this data into its global
map. The second part, which consists of reaching a consensus
on the entries associated exclusively to features, is discussed
along the following sections.

Problem 1. We consider n ∈ N robots exploring and ac-
quiring local maps at some exploration steps k = 1, 2, . . . as
in eqs. (1)-(3). The communication is range-limited and two
robots can exchange data only if they are close enough. We let
Gk = (V, Ek) be the undirected communication graph at step
k. The nodes are the robots, V = {1, . . . , n}. If robots i, j can
communicate then there is an edge between them, (i, j) ∈ Ek.
The set of neighbors N k

i of robot i at step k is

N k
i = {j | (i, j) ∈ Ek, j 6= i}.

The goal is the design of distributed algorithms so that each
robot i ∈ V computes and tracks the global map in eqs. (4)-(5)
based on local interactions with its neighbors N k

i .

III. CONSENSUS ON CONSTANT SCALAR INPUTS
We start by considering a simplified version of Problem 1,

where there is a single exploration step k. Instead of an
information matrix and a vector, each robot i ∈ V has a single
scalar input ui ∈ R. The global data xG ∈ R is the sum of
the inputs ui and we let xavg ∈ R be their average,

xG =

n∑
i=1

ui, xavg =
1

n

n∑
i=1

ui =
1

n
xG. (6)
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The goal is that each robot i ∈ V computes an estimate xi(t) ∈
R of xavg by local interactions with its neighbors Ni.

The previous simplified problem can be solved by dis-
tributed consensus algorithms [26] for systems with constant
inputs. In particular, we analyze in depth a discrete version of
the Proportional Integral (PI) estimator [18] in the context of
dynamic consensus. As we will show, the capabilities of the
PI for re-using past information are crucial for the considered
map merging scenario. The PI algorithm is:[

ẋ(t)
ẇ(t)

]
=

[
−γI− LP LT

I

−LI 0

] [
x(t)
w(t)

]
+

[
γI
0

]
u, (7)

where u ∈ Rn = (u1, . . . , un)T , x(t) ∈ Rn =
(x1(t), . . . , xn(t))T and w(t) ∈ Rn = (w1(t), . . . , wn(t))T

are the inputs and variables at the n nodes, LP and LI are
respectively the proportional and the integral Laplacian weight
matrices, and the parameter γ > 0 establishes the rate at
which new information replaces old information. Note that in
addition to the variable xi(t), each robot i ∈ V also maintains
a second variable wi(t) ∈ R. More information of this PI
algorithm can be found at the Appendix.

Discrete-time algorithms are more appropriate for the robot
systems we consider. In this section we analyze a discrete-time
version of the PI algorithm (7) with equal, symmetric, positive
semidefinite Laplacian matrices L ∈ Rn so that LP = LI =
L, LT = L and we let W be its associated weight matrix,
L = diag(W1) −W . We analyze its convergence properties
and its convergence speed depending on the step size h and the
parameter γ. The theoretical results we give are general for any
weighting matrix. We later extend them to the particular choice
of the Metropolis weight matrix W = WM and its Laplacian
matrix L = LM given by eqs. (55)-(56) in the Appendix. From
now on, we let r ∈ Rn be the eigenvector of L associated to
the eigenvalue λ1(L) = 0,

r = 1/
√
n. (8)

We let S2, . . . , Sn be the remaining n − 1 eigenvectors of L
so that [r S2 . . . Sn] = [r S] is a basis of eigenvectors of L,

[r S]TL[r S] = diag (λ1(L), . . . , λn(L)) , (9)

with the eigenvalues sorted as λ1(L) ≤, . . . ,≤ λn(L). This
orthonormal basis exists since L is symmetric with real entries.
For connected communication graphs, all the other eigenvalues
λ2(L), . . . , λn(L) are strictly greater than zero and we let
L(−1) be

L(−1) = (I− rrT )
(
L+ rrT

)−1
(I− rrT ). (10)

For all i ∈ V we let bi = b(λi(L)) be

bi = b(λi(L)) =

√
(γ + λi(L))

2 − (2 λi(L))
2
. (11)

The discrete-time consensus algorithm with constant scalar
inputs, with equal and symmetric Laplacian matrices L, and
step size h > 0 is given by[

x(t+ 1)
w(t+ 1)

]
= A

[
x(t)
w(t)

]
+

[
hγI
0

]
u, with (12)

A = I2n×2n + h

[
−γI− L L
−L 0

]
. (13)

A more general form of the previous algorithm would consist
of having the term −γI−µL instead of −γI−L in eq. (13),
with the parameter µ > 0 weighting the relative effects of
the Proportional and Integral components. In the following
we focus on the study of the system for the case µ = 1 as in
eq. (13) and we give conditions on parameters h, γ that ensure
the convergence in real scenarios. The optimal combination of
the proportional and integral weighting matrices depends on
the graph, and on h and γ. The analysis of the properties
for each case can be done as a replication of the theoretical
analysis presented here. Note that this algorithm is fully dis-
tributed as each robot updates its states using information from
its immediate neighbors. Along this section we will show that
under certain conditions, the states at the nodes asymptotically
converge to the average of the inputs, xi(t)→ xavg as t→∞;
equivalently in vector form, that x(t) → 1xavg . We let the
vectors x∗ and w∗ ∈ Rn be

x∗ = rrTu = 1xavg,

w∗ = rrTw(0)− γ L(−1)u, (14)

where r and L(−1) are given by eqs (8) and (10).
In order to analyze the convergence conditions and conver-

gence speed of algorithm (12), we first analyze the eigenvalues
of the system matrix A in eq. (13). The following result
establishes a relationship between them and the eigenvalues
of the Laplacian L associated to the weight matrix.

Proposition 1. For each eigenvalue λi(L) of the Laplacian L
associated to the weight matrix, there exist eigenvalues λi(A)
and λn+i(A) of the system matrix A in eq. (13),

λi(A) = 1− h (γ + λi(L) + bi) /2,

λn+i(A) = 1− h (γ + λi(L)− bi) /2, (15)

for i ∈ V , being bi given by (11). Note that for λ1(L) = 0,
eq. (15) gives λ1(A) = 1− hγ and λn+1(A) = 1.

Proof: Denote Z =

[
−γI− L L
−L 0

]
, such that A =

I2n×2n + hZ. The relationship between the eigenvalues and
eigenvectors of A and Z for all i ∈ {1, . . . , 2n} is

λi(A) = 1 + hλi(Z), vi(A) = vi(Z). (16)

We define the change of basis Y = PTZP , with

P =

[
r S2 . . . Sn 0

0 r S2 . . . Sn

]
, (17)

where [r S2 . . . Sn] is an orthonormal basis of eigenvectors of
L as in eq. (9), so that the eigenvalues and eigenvectors of Z
and Y are related by

λi(Z) = λi(Y ), vi(Z) = P vi(Y ). (18)

We focus on the matrix Y ,

Y =

[
−γI− [r S]TL[r S] [r S]TL[r S]
−[r S]TL[r S] 0

]
, (19)

which, because of eq. (9), has a sparse structure,
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[r S]TL[r S] = diag(λ1(L), . . . , λn(L)),

−γI− [r S]TL[r S] = diag(−γ − λ1(L), . . . ,−γ − λn(L)).

By solving for Y vi(Y ) = λi(Y )vi(Y ), we get the following
expression for the eigenvalues of Y , for all i ∈ V:

λi(Y ) = −(γ + λi(L) + bi)/2,

λn+i(Y ) = −(γ + λi(L)− bi)/2. (20)

Its eigenvectors vi(Y ), vn+i(Y ) have all its elements equal
to zero but the i−th and the (n+ i)−th components,

[vi(Y )]i = 1, [vi(Y )]n+i = −λi(L)/λi(Y ),

[vn+i(Y )]i = 1, [vn+i(Y )]n+i = −λi(L)/λn+i(Y ). (21)

for i ∈ V , except for vn+1(Y ), which has [vn+1(Y )]1 = 0
and [vn+1(Y )]n+1 = 1. Combining eqs. (16),(18),(20), the
expression for the eigenvalues of A in (15) is obtained.

The following result upper bounds the modulus of the
eigenvalues of the system matrix A in eq. (13) by selecting
appropriate values for the step size h and the parameter γ. This
result is used later to prove the convergence of the system.

Proposition 2. If the step size h and the parameter γ satisfy

γ ≥ (3/2)λn(L), (22a)
hγ < 3/2, (22b)

where λn(L) is the maximum eigenvalue of L, then all the
eigenvalues of A in (15) are real. For connected communi-
cation graphs, all of them but λn+1(A) = 1 have modulus
strictly less than one.

Proof: The eigenvalues of A are related to the ones of L
by (15) as stated by Proposition 1. All the eigenvalues λi(L)
are real and positive because L is positive semidefinite. Since
both γ and h are real, the imaginary part of λi(A) is ±Im [bi],
which is 0 because of (22a). As a result, all the eigenvalues
of A are real. Note that imposing γ ≥ λn(L) instead of (22a)
would make Im [λi(A)] = 0 as well. However, imposing γ ≥
(3/2)λn(L) forces bi ≥ γ for all i ∈ {1, . . . , n}, and this
greatly simplifies the characterization of the convergence speed
in the remaining of this section.

Regarding the modulus, first note that for connected graphs
λi(L) > 0 for all i ∈ {2, . . . , n}. Due to (22a) bi given
by eq. (11) satisfies γ ≤ bi ≤ (2/

√
3)γ, and both λi(Y )

and λn+i(Y ) in eq. (20) decrease as i increases, satisfying
−(4/3)γ ≤ λi(Y ) < −γ, −(1/3)γ ≤ λn+i(Y ) < 0, for all
i ∈ {2, . . . , n}.

We first consider the eigenvalue λ1(A) = 1 − hγ. It is
strictly less than 1 since h > 0, γ > 0, and it is greater than
−1/2 because of (22b). Then, its modulus is strictly less than
1. For all i ∈ {2, . . . n}, both λi(A) = 1 + hλi(Y ) < 1 and
λn+i(A) = 1 + hλn+i(Y ) < 1, since h > 0 and λi(Y ) <
0, λn+i(Y ) < 0. Besides, λi(A) ≥ 1 − (4/3)hγ > −1,
and λn+i(A) ≥ 1 − (1/3)hγ > 1/2. Then the modulus
of both λi(A) and λn+i(A) are strictly less than 1. Finally,
λn+1(A) = 1 as stated in Proposition 1.

In particular, the selection of γ ≥ 3 and h < 3/(2γ) when
the Metropolis Laplacian matrix LM (eqs. (55)-(56) in the

Appendix) is used, satisfies Proposition 2 for any connected
communication graph, since its eigenvalues satisfy λ1(LM ) =
0 and 0 < λi(LM ) < 2 for all i ∈ {2, . . . , n}.

We discuss now which one is the second eigenvalue λeff(A)
of A with maximum absolute value. Observe that λn+i(A) ≥
1/2 decreases as i increases, thus the greatest absolute value
of λn+i(A) for i ∈ {2, . . . , n} is associated to λn+2(A). Also
λi(A) decreases as i increases, and it takes both positive and
negative values. For all i such that λi(A) ≥ 0, the associated
λn+i(A) has greater modulus. For all i such that λi(A) <
0, the maximum absolute value is associated to λn(A). We
conclude that λeff(A) = max{λn+2(A),−λn(A)}.

At this point we are ready to prove the convergence of
algorithm (12) and to characterize its convergence speed.

Theorem 3. Let L be the positive semidefinite Laplacian
matrix associated to the connected undirected communication
graph G. Let us consider that the robots execute algorithm (12)
with a step size h > 0 and a parameter γ > 0 as in Propo-
sition 2. Then, for any input u ∈ Rn and any initial states
x(0) ∈ Rn, w(0) ∈ Rn, the states x(t) ∈ Rn, w(t) ∈ Rn of
the consensus algorithm (12) converge exponentially to

lim
t→∞

x(t) = x∗, lim
t→∞

w(t) = w∗, (23)

as t → ∞, where x∗ and w∗ are given by (14). Moreover,
if we let β = 2

√
10/3, then the error vector exw(t) =(

x(t)T ,w(t)T
)T − (xT∗ ,wT

∗
)T

after t iterations2 satisfies

‖exw(t)‖2 ≤ β (λeff(A))t ‖exw(0)‖2 . (24)

Proof: First we prove the convergence. Let us assume
that the relation in (24) is true. Since h and γ satisfy condi-
tions (22a)-(22b) then, as stated by Proposition 2, |λn+1(A)| =
1 and the other eigenvalues have modulus strictly less than one
|λi(A)| < 1. In particular, this is true for λeff(A), and thus
(λeff(A))t tends to 0 as t → ∞ and the norm of the error
‖exw(t)‖2 converges to zero.

Next, we prove that the error vector satisfies (24). Note that
x∗ and w∗ satisfy[

x∗
w∗

]
= A

[
x∗
w∗

]
+

[
hγI
0

]
u.

Therefore, the discrete time consensus algorithm (12) ex-
pressed in terms of the error exw(t),

exw(t+ 1) = A exw(t) +A

[
x∗
w∗

]
+

[
hγI
0

]
u−

[
x∗
w∗

]
,

gives exw(t+ 1) = A exw(t), exw(t) = At exw(0),

where At is the t−th power of the system matrix A. We define
the following change of basis,

C = PTAP = I + hY,

2All along this paper, we characterize the convergence speed for an even t
in order to give more accurate bounds.
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where P and Y are given by (17) and (19), and we let ezy be
the error in the new coordinates,

ezy(t) = PT exw(t), exw(t) = P ezy(t), (25)

which has the same Euclidean norm, ‖exw(t)‖2 = ‖ezy(t)‖2.
We focus on the system in the new coordinates,

ezy(t+ 1) = C ezy(t), ezy(t) = Ct ezy(0),

where the initial error is ezy(0) = (z(0)T ,y(0)T )T −
(zT∗ ,y

T
∗ )T . By applying the change of basis to (23), the limit

values in the new coordinates are

z∗ =

[
rTu
0n−1

]
, y∗ =

[
rTw(0)

−γ(STLS)−1STu

]
, (26)

where rTw(0) = [y(0)]1. Note that as a result the component
[ezy(0)]n+1 of the error in the new coordinates is zero. Let
us decompose the initial error into a linear combination of the
eigenvectors of C,

ezy(0) = a1 v1(C) + · · ·+ a2n v2n(C), (27)

where it can be seen that for all i ∈ {1, . . . , 2n}

λi(C) = λi(A), and vi(C) = vi(Y ), (28)

being λi(A) and vi(C) given by respectively eqs. (15)
and (21). Now we compute the coefficients ai, an+i in eq. (27)
as follows. Each pair [ezy(0)]i, [ezy(0)]n+i of elements in
ezy(0) give two equations on ai, an+i, for i ∈ V ,

[ezy(0)]i = ai + an+i,

[ezy(0)]n+i = −aiλi(L)/λi(Y )− an+iλi(L)/λn+i(Y ),

For i = 1, the previous equations give [ezy(0)]1 = a1 + an+1

and [ezy(0)]n+1 = 0. Thus, we can chose the first coefficient
a1 to be the first element in the error vector, a1 = [ezy(0)]1,
and its associated an+1 = 0. Proceeding in a similar fashion
with the remaining coefficients ai, an+i, for i ∈ {2, . . . , n},
we get

ai = −λi(L)

bi

(
[ezy(0)]n+i +

λi(Y )

λi(L)
[ezy(0)]i

)
,

an+i =
λi(L)

bi

(
[ezy(0)]n+i +

λn+i(Y )

λi(L)
[ezy(0)]i

)
, (29)

where bi is given by (11). With the initial error decomposed as
in (27), the error after t iterations can be expressed as follows

ezy(t) = Ct ezy(0) =

2n∑
i=1

ai (λi(C))t vi(C),

which combined with (28) and (29) gives

[ezy(t)]1 = (λ1(A))
t

[ezy(0)]1, [ezy(t)]n+1 = 0,

and for all i ∈ {2, . . . , n},

[ezy(t)]i = ci,n+i [ezy(0)]n+i + ci,i [ezy(0)]i, (30)
[ezy(t)]n+i = −ci,n+i [ezy(0)]i + cn+i,n+i [ezy(0)]n+i,

with ci,i =
[
λn+i(Y )(λn+i(A))t − λi(Y )(λi(A))t

]
/bi,

ci,n+i = λi(L)
[
(λn+i(A))t − (λi(A))t

]
/bi, (31)

cn+i,n+i =
[
−λi(Y )(λn+i(A))t + λn+i(Y )(λi(A))t

]
/bi.

The squared Euclidean norm ‖ezy(t)‖22 of the error vector at
iteration t, is given by

‖ezy(t)‖22 =

n∑
i=1

([ezy(t)]i)
2 + ([ezy(t)]n+i)

2

= (λ1(A))2t([ezy(0)]1)2 +

n∑
i=2

(c2i,n+i + c2i,i)([ezy(0)]i)
2

+

n∑
i=2

(c2i,n+i + c2n+i,n+i)([ezy(0)]n+i)
2

+

n∑
i=2

2ci,n+i(ci,i − cn+i,n+i)[ezy(0)]i[ezy(0)]n+i, (32)

where 2ci,n+i(ci,i − cn+i,n+i) is

= −2λi(L)(γ + λi(L))
(
(λn+i(A))t − (λi(A))t

)2
/b2i .

Note that when k1a and k2b have the same sign, then |k1a−
k2b| ≤ max{|k1|, |k2|}max{|a|, |b|}. By taking into account
that both (λn+i(A))t and (λi(A))t ≥ 0 for t even, and that
1/bi ≤ 1/γ, λi(L) ≤ (2/3)γ, max{−λi(Y ),−λn+i(Y )} ≤
(4/3)γ, then it can be seen that

c2i,n+i ≤
22

32
(λeff(A))2t, max{c2n+i,n+i, c

2
i,i} ≤

42

32
(λeff(A))2t,

and |2ci,n+i(ci,i − cn+i,n+i)| ≤ (20/32)(λeff(A))2t.

In addition,

n∑
i=2

|[ezy(0)]i[ezy(0)]n+i|

≤
n∑

i=2

(max{|[ezy(0)]i|, |[ezy(0)]n+i|})2 ≤ ‖ezy(0)‖22.

Combining the previous results, we get

‖ezy(t)‖22 ≤ (40/9) (λeff(A))2t ‖ezy(0)‖22 . (33)

Then, ‖exw(t)‖2 = ‖ezy(t)‖2 satisfies

‖exw(t)‖2 ≤ (2
√

10/3) (λeff(A))t ‖exw(0)‖2 , (34)

as in eq. (24) and the proof is completed.
Note that the convergence speed in Theorem 3 depends

on λeff(A) = max{λn+2(A),−λn(A)}, which is related
to the eigenvalues λ2(L), λn(L) of the Laplacian L of the
communication graph. These eigenvalues depend on the graph
topology and require global information of the network. Sev-
eral distributed algorithms have been proposed [27], [28] that
allow each node to compute these eigenvalues in a distributed
fashion. Then, the agents can compute λn(A), λn+2(A) and
find the one with the largest absolute value. In this case,
they can also compute the optimal step size h∗ such that
−λn(A) = λn+2(A),

h∗ = 4/(2γ + λn(L) + λ2(L) + bn − b2). (35)

IV. DYNAMIC CONSENSUS WITH SCALAR INPUTS
Next we consider the dynamic scenario, where each robot

i ∈ V has a scalar input uki ∈ R, whose value varies along the
steps k = 1, . . . ,K. The global data xkG ∈ R is the sum of
the inputs uki at step k, and we let xkavg ∈ R be their average,

xkG =

n∑
i=1

uki , xkavg =
1

n

n∑
i=1

uki =
1

n
xkG. (36)
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The goal is that, at every step k, each robot i ∈ V computes an
estimate xki (t) that correctly tracks xkavg by local interactions
with its neighbors N k

i . We adopt a strategy where, at each
step k = 1, . . . ,K, the robots run the consensus algorithm in
Section III to compute the average of the inputs up to step k.
The robots use the obtained states for initializing the consensus
algorithm at the next step k + 1. The robots execute a total
number of L consensus iterations, divided into l iterations per
input update step, and the remaining L − l(K − 1) after the
last step. We assume that l is an even number so that the
convergence rate in Theorem 3 holds.
Remark IV.1. Throughout the paper, we consider that the
maximum number of consensus iterations L is limited by the
problem requirements and it is a priori given to the robots.
This value L may depend, e.g., on the amount of energy each
robot has for carrying out its operation, the power consumption
of each data exchange operation, and the energy assigned to
other robot tasks. We consider that the number of iterations
per step l is also established a priori. It may be selected so
that the timespan of input update steps is the desired one,
taking into account the time consumed by the computation
and communication operations executed by the robots.

In case the robot team does not have any of the previous
limitations, then the robots can select the desired l∗k for each
step so that their estimates reach a certain precision. For
instance, if their goal is maintaining a relative estimation error
of ε at each step k, ‖exwk (l∗k)‖2 / ‖exwk (0)‖2 ≤ ε, then, from
eq. (24), the desired value of l∗k would be

l∗k ≥ (log (ε)− log (β)) / log (λeff(A)) .

We do not specify the number of local observation-estimation
iterations carried out by each robot between consecutive steps
k and k + 1. Using this strategy, if a map update step starts,
and a robot is not ready for transmitting its updated local map,
it can act as if it was disconnected from the communication
network. •

From now on, we let Lk be the Laplacian which is associ-
ated to the communication graph Gk = (V, Ek) at step k and
we let [r Sk2 . . . S

k
n] = [r Sk] be a basis of eigenvectors of

Lk as in eq. (9). Note that the eigenvector r is common to all
the Laplacians Lk. We let Ak be the system matrix associated
to Lk given by (13). We also add the index k to the inputs
uk = (uk1 , . . . , u

k
n) and the states xk(t) = (xk1(t), . . . , xkn(t)),

wk(t) = (wk1 (t), . . . , wkn(t)) of the consensus algorithm with
constant inputs (12) to identify the associated step k. We define
x∗k and w∗k ∈ Rn as we did in the previous section but using
the variables at step k,

x∗k = rrTuk = 1xkavg,

w∗k = rrTwk(0)− γ L(−1)
k uk, (37)

being r, L(−1)
k as in (8), (10), and let λ? be

λ? = max
k∈{1,...,K}

λeff(Ak). (38)

The proposed dynamic consensus algorithm is detailed in
Algorithm 1, where the step size h > 0 and parameter
γ > 0 of the consensus algorithm with constant inputs (12)

(Algorithm 1, lines 6 and 13) are as in Proposition 2 for
all k. In the same way that the consensus algorithm with
constant inputs was fully distributed, the dynamic consensus
algorithm is distributed as each robot updates its data by local
interactions with its neighbors.

Algorithm 1 Dynamic consensus algorithm - Robot i
1: – Initialization at k = 1
2: xki (0) = 0,wki (0) = 0, uki ← current local map
3: –Algorithm
4: for each step k = 1, . . . ,K − 1 do
5: execute algorithm (12) for t = l iterations:
6: [xki (t), wki (t)] = consensus alg

(
uki , x

k
i (0), wki (0)

)
7: initialize the states with the previous estimates:
8: xki (0) = xki (t), wki (0) = wki (t),
9: uki ← current local map

10: end for
11: – Final step at k = K
12: execute (12) for the remaining t = L−(K−1)l iterations:
13: [xki (t), wki (t)] = consensus alg

(
uki , x

k
i (0), wki (0)

)
The rate of convergence for the dynamic consensus algo-

rithm (Algorithm 1) depends on (i) the initial input and graph
at k = 1, and (ii) the changes on both the input and the graph
topology during consecutive steps. We let α and σ represent
this information,

α = αk for k = 1, σ = max
k∈{1,...,K−1}

σk, (39)

with αk =
(
‖rTuk‖22 + γ2‖L(−1)

k uk‖22
)1/2

,

and σk = (‖rT (uk − uk+1)‖22
+ γ2‖L(−1)

k uk − L(−1)
k+1 uk+1‖22)1/2. (40)

As the following result states, under mild connectivity con-
ditions on the communication graphs Gk, the states xki (t) at
each node i correctly track the average of the inputs xkavg for
each k.

Theorem 4. Assume all robots in V execute the dynamic
consensus strategy detailed in Algorithm 1 and that their undi-
rected communication graphs Gk are connected for any step
k ∈ {1, . . . ,K}. Then, the states xk(t) ∈ Rn, wk(t) ∈ Rn of
Algorithm 1 converge exponentially to

lim
t→∞

xk(t) = x∗k, lim
t→∞

wk(t) = w∗k, (41)

as t → ∞, where x∗k and w∗k are given by (37). More-
over, the error vector exwk (t) = [(xk(t))T , (wk(t))T ]T −
[(x∗k)T , (w∗k)T ]T for each step k ∈ {1, . . . ,K} after t iter-
ations, with t even, satisfies

‖exwk (t)‖∞ ≤ ‖e
xw
k (t)‖2 ≤ αfk(t) + σgk(t), (42)

fk(t) = (β)k(λ?)
t+(k−1)l, gk(t) = β(λ?)

t
k−2∑
p=0

(β(λ?)
l)p,

where l is the number of iterations of the consensus algo-
rithm with constant inputs executed per input update step,
β = 2

√
10/3, and λ?, α and σ are given by eqs. (38) and (39).
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Proof: The convergence of the states xk(t) ∈ Rn and
wk(t) ∈ Rn to x∗k and w∗k in (37) is a consequence of
Theorem 3. Regarding the convergence rate, as stated by
Theorem 3 the error vector after l iterations satisfies

‖exwk (l)‖2 ≤ β(λ?)
l ‖exwk (0)‖2 . (43)

The final error vector exwk (l) at step k and the initial error
vector exwk+1(0) at the next step k + 1 are related as follows:

exwk+1(0) = exwk (l) +

[
x∗k
w∗k

]
−
[

x∗k+1

w∗k+1

]
. (44)

Combining the previous results we get

‖exwk (t)‖2 ≤ (β)k(λ?)
t+(k−1)l ‖exw1 (0)‖2

+ β(λ?)
t
k−2∑
p=0

(β(λ?)
l)p
∥∥∥∥[ x∗k−p−1 − x∗k−p

w∗k−p−1 −w∗k−p

]∥∥∥∥
2

, (45)

where at step k = 1 the states are initialized with zeros (Algo-
rithm 1, line 2), and thus the initial error at step k = 1 and iter-
ation t = 0 is exw1 (0) = [(−x∗1)T , (−w∗1)T ]T . We compute the
norm of the initial error ‖exw1 (0)‖2 and obtain α in eq. (39),
where we have used the fact that

∥∥(aT , bT )T
∥∥2

2
= ‖a‖22+‖b‖22.

Proceeding in a similar fashion, for k = 1, . . . ,K − 1, the
norms

∥∥((x∗k − x∗k+1)T , (w∗k −w∗k+1)T )T
∥∥

2
are equal to σk

in eq. (40), and thus they are smaller than σ in eq. (39). We
finally obtain the expression in eq. (42).

The interest of the proposed method is that the estimates at
the previous step k−1 are used for initializing their estimates
at step k. Looking at the rate of convergence,

(β)k(λ?)
t+(k−1)lα1 + β(λ?)

t
k−2∑
p=0

(β(λ?)
l)pσk−p−1,

errors associated to previous steps (β)k(λ?)
t+(k−1)lα1, and

β(λ?)
t(β(λ?)

l)k−p−1σp, for p = 1, . . . , k−2, are small since
they have already been reduced by the execution of the algo-
rithm. The last step error β(λ?)

tσk−1 depends on the variation
of the input and graph topology between steps k − 1 and k.
Consider instead a zero-initialization strategy, where at each
step k the robots discard their old estimates (initializing their
estimates with zeros). The rate of convergence of this zero-
initialization strategy would be given by β(λ?)

tαk, where the
term αk depends on the input and the graph itself (eq. (39)).
Therefore, if the variation of inputs and graph topologies σk
are small compared to the input itself αk, then the dynamic
consensus algorithm is preferable to the zero-initialization
strategy.

Equivalently, we briefly discuss the behavior of the algo-
rithm under changes in the communication graph. Consider
that after t < l iterations we let the graph change. This is
equivalent to having a new step k + 1 with a smaller l, and
with the new graph Gk+1 and with the same input, uk = uk+1.
In this case, the additional error introduced due to the graph
change σk+1 in eq. (40) is γ‖L(−1)

k+1 uk‖2. Therefore, as long as
the changes in the topology σk+1 are small and slow enough
compared to the number of iterations t and l, the algorithm
will correctly track the average of the inputs.

V. CONSENSUS ON FEATURE-BASED MAPS

We extend the dynamic consensus strategy (Algorithm 1)
presented in Section IV to operate on matrices and vectors
instead of on scalar inputs. This generalization is key for
merging feature-based stochastic IF maps. The local maps to
be merged given by (3) are represented by a MG × MG

information matrix and an information vector of size MG.
The robots execute in parallel many instances of Algorithm 1
on each entry (r, s) within its information matrix and on each r
entry within its information vector, for r, s ∈ {1, . . . ,MG}3.
Let us add the subscripts {I, r, s} or {i, r} to the variables
uki , x

k
i (t), wki (t) to identify the instance we are referring to.

At step k, each entry within the information matrix [Iki ]rs and
vector [iki ]r of the local map of robot i ∈ V (3) is used as an
input for an instance of Algorithm 1,

uki {I,r,s} = [Iki ]rs, uki {i,r} = [iki ]r,

for r, s ∈ {1, . . . ,MG}. Each robot i executing Algorithm 1
computes an estimate xki (t) of the average xkavg of the inputs
ukj (Section IV, eqs. (36), (37)). We arrange the states xki (t)
of all the instances of Algorithm 1 into the following temporal
averaged information matrix Ikavg,i(t) ∈ RMG×MG and vector
ikavg,i(t) ∈ RMG of robot i at iteration t,

[Ikavg,i(t)]rs = xki (t) {I,r,s}, [ikavg,i(t)]r = xki (t) {i,r},

for r, s ∈ {1, . . . ,MG}. We define the information matrix
IkG,i(t) ∈ RMG×MG and vector ikG,i(t) ∈ RMG , mean
x̂kG,i(t) ∈ RMG , and covariance ΣkG,i(t) ∈ RMG×MG , of
the global map of robot i at iteration t and step k, as

IkG,i(t) = nIkavg,i(t), x̂kG,i(t) =
(
Ikavg,i(t)

)−1
ikavg,i(t),

ikG,i(t) = nikavg,i(t), ΣkG,i(t) =
(
Ikavg,i(t)

)−1
/n. (46)

Recall our discussion in Section II about the two parts of
the dynamic map merging: (i) propagating the rows and
columns of Iki , iki associated the pose of a robot j; and (ii)
reaching consensus on the entries associated exclusively to
features through the instances of Algorithm 1. In eq. (46)
we are assuming that the information concerning the poses
of the robots has already been received by the robots and
incorporated into their information matrices and vectors.

For simplicity, we are presenting the structures of the
information matrices and vectors ikavg,i(t), Ikavg,i(t), as fixed
and known by all the robots. Actually, the robots discover the
features observed by the others in the messages exchanged
at each iteration, and introduce new columns and rows in
ikavg,i(t), Ikavg,i(t) accordingly. A brief discussion of this issue
appears in Section V-A. The interest is that Ikavg,i(t) in eq. (46)
can be inverted at each iteration of the algorithm and thus the
global map can always be estimated.

The following two results regarding the convergence of the
map merging algorithm are a consequence of Theorem 4.

3Initially, this would suppose a total of M2
G + MG instances of the

consensus algorithm. However, since the information matrix is symmetric,
it only has 1

2
MG(MG + 1) different entries. Therefore, the robots actually

executeMG+ 1
2
MG(MG+1) instances of the consensus algorithm instead

of MG +M2
G.
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Corollary 5. Assume all the robots i ∈ V execute the dynamic
consensus (Algorithm 1) on each entry of its information
matrix and vector as detailed above, and assume that their
undirected communication graphs Gk are connected for all
k ∈ {1, . . . ,K}. Then, for the last step K, the estimated
information matrix IKG,i(t), information vector iKG,i(t), mean
x̂KG,i(t), and covariance ΣKG,i(t), at each robot i ∈ V asymp-
totically converge to the information matrix IKG , information
vector iKG , mean x̂KG , and covariance ΣKG , of the global map
given by eqs. (4) and (5),

lim
t→∞

IKG,i(t) = IKG , lim
t→∞

x̂KG,i(t) = x̂KG ,

lim
t→∞

iKG,i(t) = iKG , lim
t→∞

ΣKG,i(t) = ΣKG . (47)

Corollary 6. Assume all the robots i ∈ V execute the dynamic
consensus (Algorithm 1) on each entry of its information
matrix and vector as detailed above, and assume that their
undirected communication graphs Gk are connected for all
k ∈ {1, . . . ,K}. Let Ikavg , ikavg be the average of the local
maps in IF form at step k,

Ikavg =
1

n

n∑
j=1

Ikj , ikavg =
1

n

n∑
j=1

ikj . (48)

Let α{I,r,s} and σ{I,r,s}, be defined as α, σ in (39) for the
inputs uki {I,r,s} = [Iki ]rs; equivalently α{i,r}, σ{i,r} for the
inputs uki {i,r} = [iki ]r. We let αI and σI , respectively αi and
σi, be the maximum over all the entries of I , respectively of
i,

αI = max
r,s∈{1,...,MG}

α{I,r,s}, σI = max
r,s∈{1,...,MG}

σ{I,r,s},

αi = max
r∈{1,...,MG}

α{i,r}, σi = max
r∈{1,...,MG}

σ{i,r}. (49)

Then, for all i ∈ V , k ∈ {1, . . . ,K}, r, s ∈ {1, . . . ,MG},
t ≥ 0, the entry [Ikavg,i(t)]rs within the averaged information
matrix and the entry [ikavg,i(t)]r within the averaged informa-
tion vector estimated by robot i after t iterations satisfy

|[Ikavg,i(t)]rs − [Ikavg]rs| ≤ αIfk(t) + σIgk(t),

|[ikavg,i(t)]r − [ikavg]r| ≤ αifk(t) + σigk(t), (50)

where the convergence speed expressions fk(t), gk(t), are
defined in Theorem 4, eq. (42).

Next we present an interesting property of the map merging
algorithm. As the following result shows, the temporal global
maps x̂ki (t) estimated at each robot i, are unbiased estimates
of the true feature positions x. As a result, the robots do not
need to wait for any specific number of iterations of the map
merging algorithm. Instead, they can make decisions on their
temporal global map estimates whenever they need.

Proposition 7. The estimates of the global map mean x̂kG,i(t),
for each robot i ∈ V , at a step k ∈ {1, . . . ,K}, after t
iterations of the dynamic consensus algorithm, are unbiased
estimates of the true feature positions x,

E
[
x̂kG,i(t)

]
= E

[(
Ikavg,i(t)

)−1
ikavg,i(t)

]
= x. (51)

Proof: The temporal values of Ikavg,i(t), ikavg,i(t), that
evolve according to Algorithm 1, can be alternatively ex-
pressed as a function of the inputs I1

j , . . . , I
K
j , i1j , . . . , i

K
j , (3),

and the initial states. Since the states at k = 1 and t = 0 are
zero (Algorithm 1, line 2), then Ikavg,i(t) and ikavg,i(t) are

Ikavg,i(t) =

n∑
j=1

[Φ(k, t)]ij I
k
j +

k−1∑
p=1

n∑
j=1

[Ω(k, t, p)]ij I
p
j ,

ikavg,i(t) =

n∑
j=1

[Φ(k, t)]ij ikj +

k−1∑
p=1

n∑
j=1

[Ω(k, t, p)]ij ipj , (52)

where the matrices Φ(k, t),Ω(k, t, p),Ψ(t1, t2) ∈ R2n×2n are

Φ(k, t) =

t∑
τ=1

Ψ (τ + (k − 1)l, t− 1 + (k − 1)l)

[
hγI
0

]
,

Ω(k, t, p) =

l∑
τ=1

Ψ (τ + (p− 1)l, t− 1 + (k − 1)l)

[
hγI
0

]
,

Ψ(t1, t2) = A(t2) . . . A(t1 + 1)A(t1), for t1 < t2,

Ψ(t1, t1) = A(t1), and Ψ(t1, t2) = I, for t1 > t2,

and A(t+ kl) = Ak(t) is the system matrix associated to the
iteration t and step k given by (13). Since the local maps x̂kj
at each robot j are an estimate of the true x (2),

x̂kj = Hk
i x + vkj , with E

[
vkj
]

= 0,

then the inputs ikj = (Hk
j )T (Σkj )−1x̂kj are

ikj = (Hk
j )T (Σkj )−1vkj + Ikj x. (53)

Combining eqs. (52) and (53), variables ikavg,i(t) are given by

ikavg,i(t) =

n∑
j=1

[Φ(k, t)]ij(H
k
j )T (Σkj )−1vkj+

k−1∑
p=1

n∑
j=1

[Ω(k, t, p)]ij(H
k−p
j )T (Σk−pj )−1vk−pj + n∑

j=1

[Φ(k, t)]ij I
k
j +

k−1∑
p=1

n∑
j=1

[Ω(k, t, p)]ij I
p
j

x,

where the last term is exactly Ikavg,i(t)x, with Ikavg,i(t) as in
eq. (52). Then x̂kG,i(t) = (Ikavg,i(t))

−1ikavg,i(t) is

x̂k
G,i(t) = x + (Ikavg,i(t))

−1

(
n∑

j=1

[Φ(k, t)]ij(H
k
j )T (Σk

j )−1vk
j

)
+

(Ikavg,i(t))
−1

(
k−1∑
p=1

n∑
j=1

[Ω(k, t, p)]ij(H
k−p
j )T (Σk−p

j )−1vk−p
j

)
.

Since the noises vkj have zero mean for all k ∈ {1, . . . ,K}
and all j ∈ V , the expected value of x̂kG,i(t) is x.

Note that this property holds also for time-varying graphs,
where A(t+kl) is different for each iteration t and each step k.
For fixed graphs, Ψ (t1 + kl, t2 + kl) is simply (Ak)t2−t1+1.

We end this section by discussing two additional issues
that arise in map merging scenarios: the initial correspondence
problem, and the data association and feature labeling.
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A. Initial correspondence and data association

The expression in eq. (3) implicitly assumes that the local
maps are expressed in a common reference frame. This issue is
related to initial correspondence or map alignment problems.
The robots usually start their operation at unknown poses and,
before merging their maps, they must agree on a common
reference frame. This common frame needs to be computed at
least once, and usually only requires the robots to know the
relative pose of its nearby teammates, see e.g., [29]–[31] where
different methods for computing robot-to-robot measurements
are presented. There exist several distributed algorithms that
combine these measurements to produce the common frame,
e.g., [32]–[34], or our recent work [35] and references therein.

The data association consists of establishing a relationship
between the features observed by the different robots. In
this paper, for simplicity, we have presented the formulation
as if the data association had been previously given to the
robots, encoded in the observation matrices Hk

i in eq. (3).
One of the benefits of performing the merging of information
in the form of stochastic maps is that the distributed data
association method in [17], [23] which is suitable for feature-
based maps, can be executed by the robots at the beginning of
each step k. This method can be integrated with a wide variety
of local matchers (Nearest Neighbor, Maximum Likelihood,
Joint Compatibility Branch and Bound, etc.). Each feature is
assigned a label in such a way that during the merging process,
any two features with the same label are merged together.
Robots exchange these labels together with the maps. When
they discover new features in the information received from
their neighbors, they introduce additional rows and columns
in the information matrices and vectors for them. If a robot
has never received information of a feature, e.g., cause it has
been observed by a distant robot, it simply does not have
any space for it in its information matrix and vector. As a
result, the information matrices and vectors do not contain
non-informative zero rows and columns. Information matrices
can be inverted at each iteration of the algorithm and thus the
global map can always be estimated. Due to the limited space,
we do not discuss this data association algorithm in detail here.
The reader is referred to [17], [23] for further information.

B. Complexity analysis

We analyze the algorithm complexity regarding execution
time and amount of communication required. Let Mmax be
the highest size of the local map of any robot, and dmax be
the highest number of neighbors of any robot,

Mmax = max
i∈{1,...,n},
k∈{1,...,K}

Mk
i , dmax = max

i∈{1,...,n},
k∈{1,...,K}

|N k
i |.

The computational complexity per iteration and robot is
O(dmaxM2

G), employed in the addition of at most dmax

information matrices of size MG×MG. The communication
complexity per iteration and robot is O(M2

G), employed by
the robot in sending its information matrix to the network.
Since we keep the local maps independent, each information
matrix IkG,i(t) remains sparse, with the significant coefficients
grouped around the main diagonal. Therefore, if a compression

algorithm is used, the cost of sending matrix IkG,i(t) to
the network and the computational costs for processing the
neighbors’ data can be expressed respectively as O(nM2

max)
and O(dmaxnM2

max). Alternatively, the communication and
computational costs can be expressed respectively as O(n+m)
and O(dmax(n + m)) if we consider the local map sizes as
constants.

VI. EXPERIMENTS

The behavior of our dynamic map merging method is
analyzed with real data. We use a data set [36] with bearing
information obtained with vision (Sony EVI-371DG) in an
environment of 60×45 meters. There total length of the robot
path is 505 meters and it is divided into 3297 steps. It is
an indoor scenario, where the robot moves along corridors
and 29 rooms. The data set contains real odometry data and
images captured at every step. The images are processed
and measurements to natural landmarks are provided. The
natural landmarks are vertical lines (Fig. 2) extracted from
the images and processed in the form of bearing-only data.
The observations in the dataset are labeled so that we have the

Fig. 2. An example of the images used by the 8 robots during the navigation
to test the proposed method [36]. We test the algorithm using the lines
extracted from natural landmarks (in yellow).

ground-truth data association. There are 1406 different vertical
lines labeled in the scene. We select 8 subsections of the whole
path for the operation of 8 different robots (Fig. 8 (a)). We run
a separate SLAM in each robot. We use a recursive filtering
SLAM algorithm (not discussed here), for planar bearing-
only data, with features parameterized in inverse-depth [37]
followed by a transform to Cartesian coordinates before each
merging process. The robots execute the proposed algorithm
for merging their local maps communicating through range-
limited graphs as in Fig. 3, with the Metropolis weights given
by eqs. (55)-(56) in the Appendix, and with the parameters
γ = 1.8 and h = 0.8. In this experiment, we get λ? = 0.97.
They execute a total of L = 500 consensus iterations. The
robots run a total of K = 5 map update steps. Between
consecutive map update steps k, k + 1, each robot performs
10 steps of the bearing-only SLAM algorithm (Fig. 4).

The algorithm is executed for 3 different configurations. In
the first one, the robots execute a small number of consensus
iterations l = 25 after each map update step k = 1, . . . , 4,
and the remaining L − (K − 1)l = 400 iterations after the
last one. In the second case, they use l = 50 and execute
the remaining 300 at k = K. And in the last one, they use
an equal number of iterations per step l = (L/K) = 100.
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Fig. 3. Sample communication graph. There is an edge (gray lines) between
two robots (triangles) if their distance is smaller than 7.5 m.
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Fig. 4. Local map of robot R7. For clarity, feature estimates are only
displayed for steps k = 4 (gray) and k = 5 (light gray). R7 initiates
a new map update step k after executing 10 motions (triangles). During
these motions, new features are introduced in the map, and previous features
estimates are improved.

The obtained scaled estimation errors for the information
matrices |[Ikavg,i(t)]rs − [Ikavg]rs|/σI and information vec-
tors |[ikavg,i(t)]r−[ikavg]r|/σi are displayed in Fig. 5 (a) and (b)
along the L consensus iterations. During the intermediate steps
k = 1, . . . ,K−1, the configuration l = 100 (red solid) exhibits
the fastest convergence, whereas l = 50 (green dashed) also
produces good results. The configuration l = 25 (blue dashed-
dotted) however is less precise and its estimates are further
from the average value. During the last step k = K both
l = 25 and l = 50 configurations reach a small final error.
However, the configuration l = 100 which was reaching the
best results during the previous steps, finishes with the worst
final error. The configuration l = 50 produces interesting
results since the intermediate errors are almost as good as
for l = 100, whereas the final error is similar to the obtained
by l = 25.

We compare the behavior of the dynamic consensus al-
gorithm with a zero-initialization strategy (Fig. 6 (a)). The
errors associated to the information vectors for even iteration
numbers t are shown for both, our dynamic consensus algo-
rithm with l = 100 (black solid), and the zero-initialization
strategy with l = 100 (red solid). For k = 1 both errors are
equal since the dynamic consensus algorithm performs a zero-
initialization. For the other steps k = 2, . . . ,K, the errors of
our proposed algorithm are smaller than the ones obtained
with the zero-initialization strategy. They are upper bounded

k=1 k=2 k=3 k=4 k=5 end
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(a) maxi,r,s |[Ikavg,i(t)]rs − [Ikavg ]rs|/σI .

k=1 k=2 k=3 k=4 k=5 end
0
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l=50
l=100

(b) maxi,r |[ikavg,i(t)]r − [ikavg]r|/σi.

Fig. 5. Estimation errors along the L consensus iterations.
(a) maxi,r,s |[Ikavg,i(t)]rs − [Ikavg ]rs|/σI , (b) maxi,r |[ikavg,i(t)]r −
[ikavg ]r|/σi. The configuration l = 25 (blue dashed-dotted) maintains a high
error along the intermediate steps k = 1, . . . ,K − 1, but at the last step, it
gets a high precision. For l = 100 (red solid) the precision at the end of
each intermediate step k = 1, . . . ,K − 1 is very high, but finishes with the
worst final error. The configuration l = 50 (green dashed) produces accurate
results during both the last and the intermediate steps.

by the theoretical rate of convergence in eq. (50) (gray dashed).
We analyze the behavior of the algorithm under time-varying
communication graphs (Fig. 6 (b)). Robots exchange data
according to the communication graph G in Fig. 3. At each
iteration t and step k, one of the links G fails and it is
erased from G. We display the estimation when the robots
execute the proposed algorithm with l = 100 under the fixed
graph in Fig. 3 without (black solid) and with (red solid) link
failures. Here, although the variations in the graph topology
take place very often (at each iteration), these variations are
small. Therefore, as discussed in Section IV, the estimates
of the proposed algorithm correctly track the average of the
inputs (red solid). Obviously, this convergence is slower than
for the fixed graph case (black solid).

The average execution times and messages sent per iteration
and robot can be seen in Fig. 7 for l = 100. Immediately
after each new step k the execution times are higher, since
robots make additional memory space for the new variables
that appear in their maps. After that, the execution times of
the remaining iterations are much lower. As the size of the
maps increase, times increase as well. The communication
complexity increases with the size of the maps. Within a step
k, the size of the messages is almost the same for all the
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(a) maxi,r |[ikavg,i(t)]r − [ikavg ]r|/σi versus fk(t)αi/σi + gk(t)
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(b) maxi,r |[ikavg,i(t)]r − [ikavg ]r|/σi

Fig. 6. Estimation errors along the L consensus iterations for l = 100.
(a) Comparison with a zero-initialization strategy and with the bounds for
even iteration numbers t. The errors obtained (black solid) are always within
the theoretical bounds (gray dashed) and they are smaller than the errors
associated to the zero-initialization strategy (red solid). (b) Comparison with
a switching graph. The robots execute Algorithm 1 using the communication
graph G in Fig. 3 where, at each iteration t and step k, one of the links is
selected randomly and erased from G.

iterations of the algorithm. For the different configurations
l = 25, 50, 100, the messages exchanged and execution times
per robot and iteration, are almost the same.

k=1 k=2 k=3 k=4 k=5 end
0

0.05

0.1

0.15

0.2

k=1 k=2 k=3 k=4 k=5 end
0

50

100

150

(a) Execution times (seconds) (b) Messages (KBytes)

Fig. 7. Execution times and messages sent per robot and iteration for l =
100. (a) Times with a laptop with i5-M460 (2.53GHz x 4 cores) processor,
4GB RAM, with MatLab 7.10 and Windows 7 as a background framework.
(b) Messages with numbers encoded with single precision (4 bytes).

After the L iterations, the final global maps x̂kG,i(t), ΣkG,i(t),
computed by the dynamic map merging algorithm are very
close to the global map x̂kG, ΣkG in eq. (5) at step k = K. We
show the global map at robot 1, for the l = 100 configuration
(Fig. 8 (b)) after L iterations, which is very similar to the
maps computed by the other robots (they are equal in the
limit). Similar results have been obtained using the other

configurations.
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(a) Approximate trajectories followed by the 8 robots (triangles).
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(b) Global map x̂k
G,i(t), Σk

G,i(t), estimated by robot i = 1

at the last consensus iteration L, for the configuration l = 100.
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(c) Centralized SLAM map vs. global map eq. (5).

Fig. 8. Robots follow the trajectories in (a). Since there is no ground truth
information available, a set of artificial landmarks (AL, black squares) are
displayed to give an idea of the scene. Features belonging to the maps that
were originally observed by different robots are displayed in different colors
(R1, . . . , R8) in (b) and (c) ; the global map x̂k

G, Σk
G in eq. (5) is displayed

with black crosses and lines (GM). (b) The global map estimated with our
distributed method (R1, . . . , R8) is very similar to the global map x̂k

G, Σk
G

in eq. (5) at step k = K (GM). (c) The centralized SLAM map (R1, . . . , R8)
is similar to the global map x̂k

G, Σk
G in eq. (5) at step k = K (GM) as well.

The global map computed with our method (eq. (5)) has
been compared to a centralized SLAM. We have executed a
centralized multi-robot version of the SLAM algorithm used
for building the individual maps, i.e., with features parameter-
ized in inverse-depth, followed by a transform into cartesian
before drawing. Although both are similar, (Fig. 8 (c)), the
centralized map is more precise: the trace of the centralized
covariance matrix is lower, the average covariance per feature
is lower as well, and a high percent of the features (64.79
%) has been estimated with a higher precision (Table I). On
the other hand, the centralized version maintains a single
representation per feature and, as a result, for some features
(35.21 %) it has not been able to use all the available robot
observations, producing estimates less precise than for the
distributed case.

Our distributed approach has a lower computational and
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communication complexity than the centralized method. In Ta-
ble I we display the size of the messages exchanged per
robot and iteration, with number encoding and processor as in
Fig. 7, for the configuration l = 100. The centralized SLAM
makes robots propagate their observations to the central unit
at each SLAM step using flooding (about 2 iterations in our
experiments); then, the central node computes the centralized
map and propagates it back to the robots. In our experiments,
this process takes about 10+2+2 iterations for each step k. The
complexities of both methods increase with the size of the
scene, being the size of the messages exchanged per iteration
and robot higher for the centralized SLAM, for all the steps
k = 1, . . . ,K (Table I). Regarding the execution times, in the
centralized case a single robot is responsible of the workload,
whereas in the distributed case, the computations are shared by
the robots. In Table I we show the total times for completing a
step k, i.e., 10 SLAM iterations followed by l = 100 consensus
iterations for the distributed case, versus 10 SLAM iterations
of the centralized algorithm. Note that among the distributed
cases (l = 25, 50, 100) tested, l = 100 is the one with the
highest times. As we can see, even for this case, our times are
lower than the centralized SLAM ones. Even if we sum up
the execution times at all the robots, the obtained execution
times are lower than for the centralized algorithm. This is due
to the fact that the local map construction depends exclusively
on the local features, and thus the times are much lower than
for the centralized algorithm, whose complexity depends on
the size of the scene.

TABLE I
COMPARISON BETWEEN OUR GLOBAL MAP AND THE CENTRALIZED ONE.

Global map eq. (5) Centralized map
Trace cov. mat. 19.42 4.80
Cov. per feat. 0.068 0.017
Feats. precise 35.21 % 64.79 %

Messages k = 1 24.70 KB 60.17 KB
per robot k = 2 54.35 KB 83.89 KB
and iter. k = 3 75.55 KB 96.52 KB
(KBytes) k = 4 100.61 KB 126.25 KB

k = 5 138.81 KB 152.75 KB
per robot sum robots

k = 1 1.55s 12.4s 13.0s
Exec. times k = 2 2.45s 19.6s 23.1s
per step k k = 3 3.25s 26.0s 37.7s
(seconds) k = 4 4.02s 32.2s 67.4s

k = 5 5.65s 45.2s 125.9s

VII. CONCLUSIONS

We have presented an algorithm for dynamically merging
visual maps in a robot network with limited communication.
This algorithm allows the robots to have a better map of the
environment containing the features observed by any other
robot in the team. Thus, it helps the coordination of the team
in several multi-robot tasks such as exploration or rescue. The
algorithm correctly propagates the new information added by
the robots to their local maps. We have shown that, with the
proposed strategy, the robots correctly track the global map. At
the final step, they obtain the last global map, which contains
the last updated information at all the robots. In this paper
we consider a fixed number of consensus iterations l per step.

As future work we will analyze an adaptive algorithm where
this number l dynamically changes for every step, depending
on the problem requirements. The study of the robustness
properties of the algorithm under link failures, changes of the
topology, robots entering/leaving the network, is an interesting
avenue of future research. Other extensions of this work are
related to the improvement of the communication network
usage. The number of consensus iterations may be optimized
by a proper selection of the weights and µ in eq. (13) or by
controlling the network topology to maximize its connectivity.
The amount of information exchanged by the robots can be
improved by applying submapping ideas or by sending only
the most informative elements.

APPENDIX
CONSENSUS ALGORITHMS AND METROPOLIS WEIGHTS

The Proportional Integral (PI) consensus algorithm for sys-
tems with constant inputs presented in [18] is given by[

ẋ(t)
ẇ(t)

]
=

[
−γI− LP LT

I

−LI 0

] [
x(t)
w(t)

]
+

[
γI
0

]
u, (54)

where u ∈ Rn = (u1, . . . , un)T , x(t) ∈ Rn =
(x1(t), . . . , xn(t))T and w(t) ∈ Rn = (w1(t), . . . , wn(t))T

are the inputs and variables at the n nodes. Note that in
addition to the variable xi(t), each robot i ∈ V also maintains
a second variable wi(t) ∈ R. LP and LI are Laplacian
associated to respectively the proportional and the integral
weight matrices. Their (i, j) entries associated to non neighbor
robots j /∈ Ni have zero value. And γ > 0 is a parameter
that establishes the rate at which new information replaces old
information. The PI algorithm is a continuous-time distributed
averaging method where the state vector x(t) converges to the
average of the inputs 11Tu/n asymptotically as t→∞ [18,
Theorem 5].

A common choice for the weight matrices in distributed
consensus are the Metropolis weights WM ∈ Rn×n introduced
in [20] where for all i, j ∈ V ,

[WM ]ij =


1

1+max{|Ni|,|Nj |}
if j ∈ Ni,

0 if j /∈ Ni ∪ {i},
1−

∑
j′∈Ni

[WM ]ij′ if j = i,
(55)

being |Ni| and |Nj | the number of neighbors of nodes i, j.
We let LM ∈ Rn×n be its associated Laplacian,

LM = diag(WM1)−WM = I−WM . (56)

Note that each agent can compute the weights that affect
its evolution using only local information. The Metropolis
weights associated to connected undirected communication
graphs G have the following properties:

(i) WM is symmetric, WM = WT
M , doubly stochastic,

WM1 = 1 and 1TWM = 1T . It has a single eigenvalue
at 1 and all its other eigenvalues λ(WM ) ∈ (−1, 1);

(ii) LM is symmetric, positive semidefinite [38, Theo-
rem 1.37]. It has an eigenvalue at 0, and all the others
λ(LM ) ∈ (0, 2).
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