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Abstract

In this paper we present a solution for merging feature-based maps in a robotic network with limited
communication. We consider a team of robots that explore an unknown environment and build local
stochastic maps of the explored region. After the exploration has taken place, the robots communicate and
build a global map of the environment. This problem has been traditionally addressed using centralized
schemes or broadcasting methods. The contribution of this work is the design of a fully distributed approach
which is implementable in scenarios with limited communication. Our solution does not rely on a particular
communication topology and does not require any central agent, making the system robust to individual
failures. Information is exchanged exclusively between neighboring robots in the communication graph.
We provide distributed algorithms for solving the three main issues associated to a map merging scenario:
establishing a common reference frame, solving the data association, and merging the maps. We also give
worst-case performance bounds for computational complexity, memory usage, and communication load.
Simulations and real experiments carried out using various vision sensors validate our results.

Keywords: Distributed consensus, Map merging, Robotic networks, Cooperative strategies, Limited
communication

1. INTRODUCTION

The increasing interest in multi-robot applications is motivated by the wealth of possibilities offered by
teams of robots cooperatively performing collective tasks. The efficiency and robustness of these teams
goes well beyond what individual robots can do. An important issue associated to the operation of a robot
team is perception. In general, each robot just observes a portion of the environment. In order to make
decisions in a coordinated way, the robots must fuse their local observations into a global map. Many existent
solutions for single robot perception have been extended to multi-robot scenarios under centralized schemes,
full communication between the robots, or broadcasting methods. Particle filters have been generalized
to multi-robot systems assuming that the robots broadcast their controls and their observations [1]. The
Constrained Local Submap Filter has been extended to the multi-robot case assuming that each robot
builds a local submap and broadcasts it, or transmits it to a central agent [2]. Methods based on graph
maps of laser scans [3, 4, 5] make each robot build a new node and broadcast it. The same solution
could be applied for many existing submap approaches [6]. However, in multi-robot scenarios, distributed
approaches are often necessary because of the limited communication capabilities of the agents and the
need to deal with incomplete or disconnected communication graphs, switching topologies, link failures, and
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limited bandwidth. At the same time, distributed approaches introduce an additional level of complexity
on the algorithm design and analysis.

In this paper, we propose distributed algorithms for the three main issues associated to the map merging
problem: establishing a common reference frame, solving the data association, and merging the maps. The
first issue in a map merging scenario consists of establishing a common reference frame for the whole robot
team. In general, the robots start at unknown locations and do not know their relative poses. This infor-
mation can be recovered by comparing their local maps and looking for overlapping regions. This approach,
known as map alignment, has been deeply investigated and interesting solutions have been presented for
feature-based [7] and occupancy grid [8, 9] maps. However, it has the inconvenience that its results depend
on the accumulated uncertainty in the local maps. Alternatively, the relative poses between the robots can
be explicitly measured [10, 11]. These methods present the benefit that the obtained results do not depend
on the uncertainties in the local maps. They also allow the robots to compute their relative poses when
there is no overlapping between their maps, or even if they do not actually have a map. We propose a
method that belongs to this latter class and proceeds as follows. In a first phase, a method from computer
vision [12] is applied to any pair of neighboring robots. It recovers the 2D position and the orientation of
three cameras with the condition that they must be nearby, and that a minimal number of landmarks must
be visible from all the cameras. This method operates on three views and returns the relative positions
between the cameras, up to a scale factor. In a second phase, a consensus algorithm is executed that uses
this relative pose information for computing the center of mass of the robot team. The communication
graph during this phase must be connected. The establishment of a common reference frame needs to be
carried out only once, and since the described method does not require the robots to have a map, it can be
executed at any time. For instance, it can be executed after the exploration and before merging their maps,
by combining it with a rendezvous strategy. Alternatively, it can be executed at an initial stage, prior to
any exploration taking place. After that, the robots explore the environment and build their local maps.
We do not discuss exploration strategies or map building methods, and note that any algorithm producing
feature-based maps can be employed.

When the robots finish their exploration, and before merging their maps, they must solve the data associa-
tion. The data association problem consists of establishing correspondences between different measurements
or estimates of a common element. Traditional data association methods, like the Nearest Neighbor and
Maximum Likelihood [10, 13, 14], the Joint Compatibility Branch and Bound (JCBB) [15], or the Combined
Constraint Data Association [16] are designed for single robot systems. They operate on two sets of elements,
one containing the feature estimates and the other one containing the current observations. Methods based
on submaps [2, 17, 18] use these data association algorithms by transforming one map into an observation
of a second one. Multi-robot approaches have not fully addressed the problem of data association. Many
methods rely on broadcasting controls and observations or submaps, see e.g., [1, 3, 4, 5, 14, 19], and solve
the data association using a cycle-free order, thus essentially reducing the problem to that of the single
robot scenario. However, in a distributed map merging scenario, the robots may fuse their maps with any
other robot’s map in any order and at any time. Therefore, it is not possible to force a specific order for
solving the data association between the local maps. Our approach here is to let each robot solve its own
local association with its neighbors in the communication graph. This scenario is more flexible but may
lead to inconsistent global data associations in the presence of cycles in the communication graph. These
inconsistencies are detected when chains of local associations give rise to two features from one robot being
associated among them. These situations must be correctly identified and solved before merging the data.
Inconsistent associations have already been discussed in the computer vision literature [20], although in cen-
tralized scenarios. Here, we present a method for detecting and solving these inconsistencies under limited
communication in a decentralized fashion.

Finally, once the maps are aligned into a common reference and the data association has been solved, they
need to be fused. There has been an intensive recent research in distributed implementations of the Kalman
Filter that make use of its information form (IF). Measurement updates in IF are additive and therefore
information coming from different sensors can be fused in any order and at any time. While optimal solutions
exist for complete communication networks [21], for general communication schemes [22, 23] the delayed data
problem leads to an approximate KF estimator. This problem appears when the nodes execute the state
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prediction without having incorporated all the measurements taken at the current step. As a result, their
estimates become suboptimal and give rise to disagreement. The effects of this delayed data problem have
been studied in [24]. A solution that reduces this disagreement has been presented [25] and its convergence
has been proved in the absence of observation and system noises. However, this solution does not consider
system inputs, which usually model odometry measurements in typical robotic applications. Therefore, it
does not solve its associated delayed data problem. Other methods have been proposed that require the
previous offline computation of the gains and weights of the algorithm and that are only applicable when
the variance of measurement noises is constant and a priori known [26]. Due to the limitations of these
methods, the formulation of a multi-robot perception problem as a distributed estimator presents multiple
obstacles. Here, instead we formulate the map merging as a sensor fusion problem, where each robot can be
seen as a sensor and its local map as a measurement. Instead of maintaining a global estimator, we let each
robot maintain its own local estimator, i.e., build its local map using exclusively measurements acquired by
itself. The information received from other robots is introduced into its estimated global map, but not into
its local map. Sensor fusion approaches [27] present the inconvenience that the successive measurements, in
our case local maps, from the same robot must be independent. In a map merging scenario this does not
hold, since the local map of a robot is an evolution of any of its previous maps. However, since we discuss a
static map merging where the maps are fused after the exploration, our approach does not suffer from this
limitation. In our solution, the local maps of the robots are expressed in IF form and they are fused in an
additive fashion using a consensus filter [27, 28] to provide a distributed implementation.

This work combines ideas from two important research fields, distributed sensor networks and networked
robotics. We make important contributions related to the development of specific solutions to the aspects
of the map merging problem. The organization of the document is as follows. Section 2 states the dis-
tributed map merging problem and its three aforementioned subproblems. Section 3 addresses the problem
of establishing a common reference frame and proposes a solution based on the computation of the center
of mass of the robot team. We combine different existing methods to give a distributed algorithm and,
in addition, we provide a formal proof that the algorithm to compute the center of mass position is cor-
rect. Section 4 addresses the problem of computing the data association between the maps acquired by
the robots. A preliminary version of this work appeared in [29]. Here, an improved algorithm is presented
that simultaneously builds a set of labels for the features which reflects the global data association. This
labeling process fulfills the connection between the distributed data association and map fusion processes.
Section 5 presents the map fusion algorithm which incrementally discovers the feature labeling of any other
robot in the network while simultaneously merges the maps. The relationship between the outcomes of
this algorithm and the ones of a distributed sensor fusion are formally compared, concluding that they are
equivalent. Finally Section 6 studies the complexity of the algorithm and Section 7 evaluates its performance
for merging feature-based maps obtained with both omnidirectional and conventional cameras.

2. PROBLEM DESCRIPTION

Throughout the paper we use the following notation (Table 1):
We consider a team of n ∈ N robots with limited communication capabilities. Let G = (V, E) be the

undirected communication graph. The nodes are the robots, V = {1, . . . , n}. If two robots i, j can exchange
information, then there is an edge (i, j) ∈ E between them. Let Ni be the set of neighbors of robot i,

Ni = {j | (i, j) ∈ E , j 6= i}.

The robots have explored an unknown environment. Along its operation, each robot i has observed mi ∈ N
features whose true positions are unknown. Based on its own observations, each robot i has estimated its
own pose together with the positions of the features. It has built a stochastic map withMi = szr+mi szf
elements, composed of a mean x̂i ∈ RMi and covariance matrix Σi ∈ RMi×Mi . The constants szr, szf
represent the size of, respectively, a robot pose and a feature position; szr = 3 for planar motions, where
the robot position (x, y) and orientation θ are estimated; szf = 2 or szf = 3 for respectively 2D or 3D
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Table 1: Notation.

Symbol Usage

i, i′, j, j′ robot index

r, r′, s, s′ feature index

G index used for referring to the global reference frame and map

t iteration number, t ∈ N
f i

r the rth feature observed by the ith robot

Ar,s the (r, s) entry of matrix A

Aij the block (i, j) of matrix A defined by blocks

[Aij ]r,s the (r, s) entry of Aij

Mi size of the map of robot i

MG size of the global map

environments. If xi ∈ RMi is the vector with the true robot pose after the exploration and with the true
positions of the mi features, then

x̂i = xi + vi, (1)

where vi is a zero mean Gaussian noise vi ∼ N(0,Σi). The aim is to merge the local maps to obtain a
global estimate of the map.

Let m ∈ N be the number of different features in the environment. As noted above, each robot i ∈
{1, . . . , n} has observed mi ≤ m of them. Let x ∈ RMG contain the true poses of the n robots and the true
positions of the m features, whereMG = n szr+m szf. Let Hi ∈ {0, 1}Mi×MG be the observation matrix
that relates the elements in x with the elements observed by robot i. It is a binary matrix, i.e., each entry
is equal to 0 or 1, where there is at most a 1 per row. Since xi = Hix, eq. (1) becomes

x̂i = Hix + vi,

where vi ∼ N(0,Σi). Considering all the local maps together, we have that(
x̂T

1 . . . x̂T
n

)T
=

(
HT

1 . . .HT
n

)T
x +

(
vT

1 . . .vT
n

)T
.

We assume that the noises vi are independent since every robot has constructed the map based on its own
observations, and thus

(
vT

1 . . .vT
n

)T ∼ N (0,diag (Σ1, . . . ,Σn)). The local map of each robot i is represented
in IF form by its information matrix Ii ∈ RMG×MG and its information vector ii ∈ RMG ,

Ii = HT
i Σ−1

i Hi, ii = HT
i Σ−1

i x̂i. (2)

Given the n local maps in IF form, the operation that merges their information and produces the global
map,

IG =
n∑

i=1

Ii, iG =
n∑

i=1

ii, (3)

is additive, commutative, and associative. For this reason, merging the maps in IF form is a common
practice [7]. Expressed by its mean and covariance matrix,

x̂G = (IG)−1 iG, ΣG = (IG)−1. (4)

it corresponds [28] to the maximum likelihood estimate of x given the noisy observations x̂i, i ∈ {1, . . . , n}.
The goal is for each robot to compute the global map (3)-(4) in a distributed fashion. We propose a map

merging algorithm composed of four stages (see Algorithm 2.1 below). In the first two stages, the robots
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agree on a common reference frame and explore and build their local maps relative to this frame. These first
two stages are interchangeable and the common reference frame computation (Section 3) can be executed
either before or after exploring. In this paper, we do not discuss the exploration strategies or the SLAM
algorithms for obtaining the local maps. After this, robots run an algorithm to agree on a data association
which is globally consistent (Section 4), and this is then used to merge their maps (Section 5).

Algorithm 2.1 Distributed map merging
1: Reach consensus on a global reference frame
2: Explore the environment and build a local map in the global reference frame
3: Reach consensus on a globally consistent data association
4: Reach consensus on the global merged map

3. CONSENSUS ON THE GLOBAL REFERENCE FRAME

In this section we address the problem of establishing a common reference frame for the whole robot
team. This is a key step which is necessary to solve any map merging problem. We define the global
reference as the center of mass of the robot team and we propose a distributed strategy where the robots
compute their pose relative to the center of mass. We assume that the robots are placed at nearby positions,
so that i) the communication network is connected, and ii) the number of common landmarks observed by
each pair of neighboring robots is enough to retrieve their relative poses. In addition we assume that their
orientations satisfy 0 < θi < π for all i ∈ {1, . . . , n}, so that the average orientation is well defined [30]. The
global reference frame computation can be carried out at any time, for instance at the initial stage. The
strategy roughly consists of each robot computing its relative pose to its nearby robots and then using this
data to compute its pose relative to the center of mass based on local interactions in a distributed way.

We use the notation pG
i = (RG

i , TG
i ) ∈ SE(3) to refer to the pose of robot i expressed in the global frame

G, where z = 0 since the robots move on the plane, and the planar rotations are around the z-axis,

RG
i =

 cos θG
i − sin θG

i 0
sin θG

i cos θG
i 0

0 0 1

 , TG
i =

 xG
i

yG
i

0

 , (5)

and we let pi
j = (Ri

j , T
i
j ) ∈ SE(3) be the pose of a robot j relative to robot i. Along this section we use

the generic world reference frame w as a tool for providing the theoretical results and definitions, and we
let pw

i = (Rw
i , T

w
i ) ∈ SE(3) be the pose of robot i expressed in frame w. Note that this frame, which is

unknown by the robots, is not used for executing the proposed algorithms. Instead, the proposed algorithms
exclusively rely on the relative poses pi

j between neighboring robots computed as explained below. We let
G0 = (V0, E0) be the relative poses graph during this stage, and N 0

i be the set of neighbors of robot i in G0.
Finally, we let W 0

i,j be the Metropolis weights defined in Appendix A, (A.3) associated to G0.

3.1. Computing relative poses
Assume that at some time instant the robots are placed at nearby and unknown positions. Each robot

i ∈ {1, . . . , n} takes an image of the scene Pi from its current pose, executes a motion and measures its
odometry ∆pi. Then, each robot i takes a new image P ′i from this second pose and exchanges P ′i with all the
robots j ∈ N 0

i within its communication range. Robot i uses its images Pi,P ′i and its neighbor’s image P ′j
to execute the algorithm in [12] and recover the 2D position and the orientation between the three cameras,
up to a scale factor. This method operates under the condition that the cameras are nearby, and that a
minimal number of landmarks is visible from all the cameras. Then, robot i uses its odometry measurement
∆pi to recover the scale and it finally obtains the relative pose pi

j of each of its neighbors j ∈ N 0
i . If due

to the lack of common landmarks, a pair of neighboring robots were unable to retrieve their relative poses,
they are consider as non-neighbors and its communication link is deleted from G0.
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3.2. Computing the global reference
Here we present the distributed algorithm executed by the robots to agree on the global reference frame

computed as the center of mass G of the robot team. Let us first give an explanation on what this center
of mass is. Suppose we are given the true robot poses pw

i = (Rw
i , T

w
i ) in a world reference frame w. Then the

position of the center of mass T w
G in frame w is

T w
G =

1
n

n∑
j=1

T w
j . (6)

The equivalent expression for the orientation of the global reference frame Rw
G requires further explanations

on averages of rotations and it is discussed later in this section. Let (RG
w , TG

w ) be the inverse of (Rw
G, T w

G),
i.e., the pose of the world frame w expressed in the center of mass frame, RG

w = (Rw
G)T , TG

w = − (Rw
G)T

T w
G.

Then, the pose of each robot i ∈ {1, . . . , n} with respect to the center of mass frame pG
i = (RG

i , TG
i ) is

RG
i = RG

w Rw
i , TG

i = RG
w T w

i + TG
w . (7)

The center of mass G representation does not depend on the original reference frame w selected. The same
robot poses relative to the center of mass pG

i are obtained regardless of the reference w used in (6)-(7).
Moreover, as we show in this section, the robots do not need to know any world reference frame w in order
to compute their poses pG

i = (RG
i , TG

i ) with respect to G (7). More specifically, we let each robot i compute
the pose of the center of mass pi

G = (Ri
G, T i

G) in its own reference frame; and pG
i can be obtained from pi

G

and vice versa as follows:

RG
i =

(
Ri

G

)T
, TG

i = −
(
Ri

G

)T
T i

G, Ri
G =

(
RG

i

)T
, T i

G = −
(
RG

i

)T
TG

i . (8)

We first present the distributed algorithm for the positions and then we explain the agreement on the
orientations. Both algorithms exclusively rely on the relative poses pi

j between neighboring robots computed
in Section 3.1, here denoted by (Ri

j , T
i
j ) ∈ SE(3).

Let each robot i ∈ {1, . . . , n} have an estimate of the position of the center of mass in its own reference
frame T i

G(t) ∈ R3 which is initialized as T i
G(0) = 0 and updated each time step t ∈ N according to

T i
G(t + 1) =

∑
j∈N 0

i ∪{i}

W 0
i,j(R

i
jT

j
G(t) + T i

j ), (9)

where W 0
i,j are the Metropolis weights associated to G0 as defined in Appendix A, (A.3). Then, we have the

following result.

Proposition 3.1. Assume G0 is connected. Then, if each robot i ∈ {1, . . . , n} executes the algorithm (9),
as t → ∞, each T i

G(t) with i ∈ {1, . . . , n} tends to the position of the center of mass in robot’s i reference
T i

G as defined by eqs. (6)-(8),

lim
t→∞

T i
G(t) = T i

G. (10)

Proof. First of all, we show that, by making a proper change of variables, the update rule (9) is actually
an averaging algorithm (see Appendix A) and thus the states at the robots asymptotically reach consensus.
Consider the change of variables,

Ti(t) = Rw
i T

i
G(t) + T w

i , T i
G(t) = (Rw

i )
T Ti(t)− (Rw

i )
T

T w
i , (11)

that expresses each T i
G(t) in a world frame w, being (Rw

i , T
w
i ) the robot poses in frame w. We apply this

change of variables to our system (9),

Ti(t + 1) =
∑

j∈N 0
i ∪{i}

W 0
i,jR

w
i R

i
jR

j
wTj(t) +

∑
j∈N 0

i ∪{i}

W 0
i,j(R

w
i R

i
jT

j
w + Rw

i T
i
j + T w

i ) =
∑

j∈N 0
i ∪{i}

W 0
i,jTj(t), (12)
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since
∑

j∈N 0
i ∪{i}

W 0
i,j = 1 for all i ∈ {1, . . . , n}, Rw

i R
i
jR

j
w = Rw

w = I, and Rw
i R

i
jT

j
w + Rw

i T
i
j + T w

i = T w
w = 0, for

all i, j ∈ {1, . . . , n}. Thus, (12) is an averaging algorithm like (A.1), which converges to (A.2) the average
of the initial states,

lim
t→∞

Ti(t) =
1
n

n∑
j=1

Tj(0) =
1
n

n∑
j=1

Rw
jT

j
G(0) + T w

j =
1
n

n∑
j=1

T w
j = T w

G, (13)

which is the position of the center of mass (6) in the world frame w. Let us now reverse the change of
variables (11) and use equations (7), (8) and (13),

lim
t→∞

T i
G(t) = (Rw

i )
T

T w
G − (Rw

i )
T

T w
i = − (Rw

i )
T (

RG
w

)T
TG
w − (Rw

i )
T (

RG
w

)T
RG

w T w
i

= −
(
RG

i

)T (
RG

w T w
i + TG

w

)
= −

(
RG

i

)T
TG

i = T i
G, (14)

and the proof is complete.

Let us now discuss the agreement on the orientation of the global reference frame. We use the Karcher
mean [30] to compute the average of the robot orientations. Given the robot orientations Rw

i in some frame w,
the orientation of the center of mass Rw

G is the Karcher mean given by,

Rw
G = arg min

Rw

n∑
i=1

d2(Rw, Rw
i ), (15)

where d2(Rw
i , R) is the Riemannian square distance between Rw and Rw

i given by

d2(Rw, Rw
i ) = −1

2
Tr

{
[log((Rw)T

Rw
i )]

2
}
. (16)

Here log is the logarithmic map log : SO(3)→ so(3) defined by

log(R) =
{

0 if β = 0,
β

2 sin β (R−RT ) if β 6= 0,
(17)

where β = arccos
(Tr{R}−1

2

)
. The term

∑n
i=1 d2(Rw

i , R) in (15) can be seen as a cost function to be minimized.
Recalling that the initial orientations θi are located in a geodesic ball of radius less than π/2, then this cost
function restricted to the geodesic ball is convex, and the Karcher mean is well defined [30].

The orientation of the center of mass Ri
G(t) relative to each robot i is then computed using a distributed

consensus algorithm on SO(3) [31] combined with the Metropolis weights as defined in (A.3). Robot i
initializes its variable Ri

G(0) = I and updates it at each t ∈ N by

Ri
G(t + 1) = Ri

G(t) exp(ui(t)), ui(t) =
∑

j∈N 0
i ∪{i}

W 0
i,j log(Uij(t)), Uij(t) = Ri

G(t)T Ri
jR

j
G(t), (18)

where W 0
i,j are the Metropolis weights (A.3) associated to the graph G0 and exp is the exponential map

exp : so(3)→ SO(3) defined by

exp(ui(t)) =
{

I if α = 0,
I + sin α

α ui(t) + 1−cos α
α2 u2

i (t) if α 6= 0,
(19)

where α =
√

1
2Tr{uT

i (t)ui(t)}. Given that the robot orientations are planar and within a range of ±π
2 , and

that the graph G0 is connected, this algorithm converges to the unique Karcher mean expressed in each
robot’s reference frame

lim
t→∞

Rw
i R

i
G(t) = Rw

G, (20)
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for all i ∈ {1, . . . , n}.
After executing this algorithm for order n2 log(ε−1) iterations each robot obtains its pose relative to the

center of mass with a precision ε (see Appendix A). Robots will then express their local maps according
to this global reference frame. Therefore, when the robots finish the exploration and decide to merge their
maps, all of them will be expressed in the same reference frame.

4. CONSISTENT DATA ASSOCIATION AND FEATURE LABELING

Along their exploration, the robots build their local maps using some SLAM algorithm (the specific
strategy used is not relevant for the ensuing discussion). Before merging their local maps, the robots must
agree on a data association which is globally consistent. Simultaneously, each robot assigns a label to
each of its features in such a way that during the posterior merging process (Section 5), the entries in the
information matrix and vector associated to features with the same label can be fused together. Let us
begin by introducing the problem of consistent data association in robotic networks.

Let Si = {f i
1, . . . , f

i
mi
} be the set of mi features observed by robot i ∈ {1, . . . , n}. Each robot i can

compute the data association between its own set Si and the sets of its neighbors Sj , with j ∈ Ni. However,
it does not know the associations obtained by other robots in the team. Note that, in this context, two
features f i

r, f j
s are associated when they are prone to be observations taken by different robots i, j, of a

common landmark in the environment. Since the associations are not perfect, there may appear chains of
local associations relating two or more features from the same robot. This is illustrated in Fig. 1. In general,
these inconsistencies cannot be locally detected by the robots. If they start the merging process using only
its local associations and there is any inconsistency, at some point a robot will be forced to fuse two or
more of its features together. To avoid this situation, we design an algorithm for solving any inconsistent
association before merging the maps.

Robot A

Robot B

Robot C

Robot D

fA
1

fA
2

fB
1

fB
2

fC
1

fC
2

fD
1

fD
2

X

Figure 1: Robots A, B, C and D associate their features comparing their maps in a two-by-two way. Robot A associates its
feature fA

1 with fD
2 and with fB

1 ; robot B associates fB
1 with fC

1 ; robot C associates fC
1 with fD

1 (solid lines). As a result,
there is a path (dashed line) between fD

1 and fD
2 . This is an inconsistent association, and all the features connected to fD

1 are
conflictive. Finding this path would require the knowledge of the whole association graph.

Let F be a function that computes the data association between any two sets of features, Si and Sj , and
returns an association matrix Sij ∈ Nmi×mj where

[Sij ]r,s =
{

1 if f i
r and f j

s are associated,
0 otherwise,

for r = 1, . . . ,mi and s = 1, . . . ,mj . We assume that F satisfies the following conditions,

(i) When Si = Sj , F returns the identity, F(Si,Si) = Sii = I;

(ii) The returned association Sij has the property that the features are associated in a one-to-one way,
miX
r=1

[Sij ]r,s ≤ 1 and

mjX
s=1

[Sij ]r,s ≤ 1,

8



for all r = 1, . . . ,mi and s = 1, . . . ,mj ;

(iii) Given two sets Si and Sj , F(Si,Sj) = Sij = ST
ji = (F(Sj ,Si))T .

Let us note that functions satisfying the above properties exist and are abundant in the literature. One
example is the JCBB method [15] used in our experiments. The methods in [10, 13, 14, 16] are other
examples of functions that also satisfy the requirements above.

We let Gda = (Vda, Eda) denote the undirected association graph resulting from applying F to all pairs
of neighboring robots. Each node in Vda is a feature f i

r, for i = 1, . . . , n, r = 1, . . . ,mi. There is an edge
between two features f i

r, f j
s iff [Sij ]r,s = 1 and (i, j) ∈ E . If the communication graph G were complete and

F were providing the ground truth (gt) data association, then Ggt
da would exclusively contain disjoint cliques,

identifying features observed by multiple robots [20]. Since F is not perfect, Gda is a perturbed version
of Ggt

da that includes additional spurious edges while missing others. In addition, since the communication
graph G will not be in general complete, only a subset of the associations are available to the robots. The
goal of our algorithm is to detect and resolve inconsistencies in this graph Gda in a decentralized fashion.

Definition 4.1. An association set is a set of features that form a connected component in Gda. Such set
is an inconsistent association or a conflictive set if there exists a path in Gda between two or more features
from the same robot. A feature is inconsistent or conflictive if it belongs to an inconsistent association.

We denote by msum the number of features in Gda, msum =
∑n

i=1 mi and by diam(Gda) the diameter
of Gda, the length of the longest path between any two nodes in Gda. Note that the diameter satisfies
diam(Gda) < msum. We denote S ∈ Nmsum×msum the adjacency matrix of Gda,

S =

 S11 . . . S1n

...
. . .

...
Sn1 . . . Snn

 where Sij =
{
F(Si,Sj) if j ∈ Ni ∪ {i},
0 otherwise. (21)

In what follows we present the data association and labeling algorithm which erases links from Gda to break
any inconsistent association. Note that the adjacency matrix is unweighted and the algorithm does not
manage any information of the link quality.

Simultaneously to the data association process, the robots assign labels to their features. After checking
feature f i

r is consistent, robot i assigns it a label Li
r = (i?, r?) ∈ N2 composed of a robot identifier i? and a

feature index r? as follows. Assume f i
r and features f j

s , f j′

s′ , . . . form a consistent association set in Gda and
thus they are observations of a common landmark in the environment taken by robots i, j, j′, . . . . Among
all the candidates (i, r), (j, s), (j′, s′), . . . , a unique label (i?, r?) is selected by the robots, e.g., the one with
the lowest robot id. Then, robot i assigns this label to f i

r, Li
r = (i?, r?); the other robots j, j′, . . . , proceed

in a similar way so that finally,

Li
r = Lj

s = Lj′

s′ = · · · = (i?, r?) .

We say a feature f i
r is exclusive if it is isolated in Gda, corresponding to a landmark observed by a single

robot i; in this case, its label Li
r is simply (i, r). Otherwise, we say f i

r is non-exclusive and it may either
be consistent or conflictive. Consistent features are labeled as explained above, whereas robots wait until
conflicts are resolved for labeling its conflictive features. The data association and labeling process finishes
with an association graph Gda free of any inconsistent association and with all the features labeled. When
the algorithm finishes, two features f i

r, f j
s have the same label, Li

r = Lj
s, iff they are connected by a path

in the resulting conflict-free Gda. The decentralized data association and labeling algorithm is summarized
in Algorithm 4.1. This strategy makes use of two subroutines to detect features and resolve inconsistencies
that we explain in what follows.

Throughout this section, we use S̃i ⊆ Si for the set of unlabeled features at robot i ∈ {1, . . . , n} and let
|S̃i| be its cardinality, i.e., the number of unlabeled features at robot i. The set of labels Li consists of the
labels Li

r already assigned to the features f i
r ∈ Si \ S̃i. Given a matrix Aij of size |S̃i| × |S̃j |, we define the

function r̄ = row
(
f i

r

)
that takes an unlabeled feature f i

r ∈ S̃i and returns its associated row in Aij , with
r̄ ∈ {1, . . . , |S̃i|}. Equivalently, we define the function s̄ = col(f j

s ) for features in S̃j .
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Algorithm 4.1 Data association and labeling - Robot i

1: S̃i ← {f i
1, . . . , f

i
mi
}, Li ← ∅

2: Solve the local data association
3: Assign label(Li

r = (i, r), f i
r) to each exclusive feature f i

r

4: while |S̃i| > 0 do
5: Run the detection algorithm
6: Find each consistent feature f i

r and its root f i?
r?

7: Assign label(Li
r = (i?, r?), f i

r)
8: Run the resolution algorithm
9: Find each resolved feature f i

r and its component id [i?, r?]
10: Assign label(Li

r = (i?, r?), f i
r)

11: Find each exclusive feature f i
r

12: Assign label(Li
r = (i, r), f i

r)
13: end while
14: function Assign label(Li

r, f i
r)

15: Li ← Li ∪ {Li
r}, S̃i ← S̃i \ {f i

r}
16: end function

4.1. Local data association and detection of exclusive features
Initially, all the features of each robot i are unlabeled,

S̃i = {f i
1, . . . , f

i
mi
}, Li = ∅.

Each robot i solves a local data association with each of its neighbors j ∈ Ni and obtains the association
matrix Sij ∈ Nmi×mj . Then, the robot locally detects its exclusive features f i

r which have not been associated
to any other feature,

[Sij ]r,s = 0 for all j ∈ Ni, j 6= i, and all s ∈ {1, . . . ,mj}. (22)

Since an exclusive feature f i
r is always consistent, robot i assigns a label Li

r to it composed of its own robot
id and feature index and removes it from the set of unlabeled features,

Li
r = (i, r), Li = Li ∪ Li

r, S̃i = S̃i \ {f i
r}. (23)

Since its unlabeled features in S̃i may be conflictive, it executes the detection algorithm on this subset.

4.2. Detection algorithm
Following Definition 4.1, the detection of inconsistent associations requires the computation of paths

among the vertices of Gda. This information can be extracted from the powers of the adjacency matrix.
The (r, s) entry of the tth power of S, [St]r,s, equals the number of paths of length t (including paths with
self loops) from node r to node s ([32, Lemma 1.32]). This can be done in a decentralized fashion using
the following detection algorithm which relies on computing the powers of the adjacency matrix St of Gda.
Note that the algorithm is executed exclusively on the unlabeled features S̃1, . . . , S̃n. From now on, we let
G̃da be the subgraph associated to the unlabeled features with adjacency matrix S̃. Equivalently, we let
S̃ij ∈ N|S̃i|×|S̃j | be the elements associated to unlabeled features in the block Sij .

Let each robot i ∈ {1, . . . , n} maintain the blocks within S̃t associated to its own features, Xij(t) ∈
N|S̃i|×|S̃j |, for j ∈ {1, . . . , n} and t ≥ 0, which are initialized as

Xij(0) =
{

I, j = i,
0, j 6= i,

(24)
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and updated, at each time step, via the following algorithm

Xij(t + 1) =
∑

j′∈Ni∪{i}

S̃ij′Xj′j(t), (25)

where S̃ij′ is the association matrix between the unlabeled features at robots i and j′. Observe that the
algorithm is fully distributed because the nodes only use information about its direct neighbors in the
communication graph. Let [S̃t]ij ∈ N|S̃i|×|S̃j | be the block within S̃t related to the associations between
robot i and robot j. The matrices Xij(t) computed by each robot i using the decentralized algorithm (25)
are exactly the sub-matrices [S̃t]ij ,

Xij(t) = [S̃t]ij , (26)

for all i, j ∈ {1, . . . , n} and all t ∈ N [29, Theorem 3.2].
The detection algorithm finishes after t? <

∑n
i=1 |S̃i| iterations, being t? the first t for which for all

i, j ∈ {1, . . . , n}, and all r̄ ∈ {1, . . . , |S̃i|}, s̄ ∈ {1, . . . , |S̃j |},

[Xij(t + 1)]r̄,s̄ = 0 iff [Xij(t)]r̄,s̄ = 0.

When the algorithm finishes, robot i has the power matrices Xij ∈ N|S̃i|×|S̃j |, for j ∈ {1, . . . , n}, which
contain the entries in Sdiam(Gda) associated to the features in S̃i and S̃j . There is a path between f i

r and f j
s

in Gda iff

[Xij ]r̄,s̄ > 0, (27)

being r̄ = row(f i
r) and s̄ = col(f j

s ). These matrices give robot i the information about all the association
paths of its features and the features of the rest of the robots in the network.

Then, each robot i detect its consistent features using two simple rules. An unlabeled feature f i
r ∈ S̃i,

with row index r̄ = row(f i
r), is consistent if and only if the following conditions are satisfied:

(i) There exists no path between f i
r and any other feature of robot i. For all r̄′ ∈ {1, . . . , |S̃i|} \ {r̄},

[Xii]r̄,r̄′ = 0; (28)

(ii) If f i
r is connected with a feature f j

s from a robot j, it cannot be connected with a second feature f j
s′

from the same robot. For all j ∈ {1, . . . , n} \ {i},

if [Xij ]r̄,s̄ > 0 then [Xij ]r̄,s̄′ = 0, (29)

for all s̄′ 6= s̄, with s̄, s̄′ ∈ {1, . . . , |S̃j |}.

After a feature f i
r has been classified as consistent, its robot i proceeds to assign it a label. Here we

show how robot i decides the feature label (i?, r?). Let us first give a general definition of the root robot of
an either consistent or conflictive association set.

Definition 4.2. The root robot i? for an association set is the one that has the most features in it. In
case there are multiple candidates, it is the one with the lowest identifier. Equivalently, we define the root
features f i?

r?
, f i?

r′?
, . . . as the features from the root robot that belong to the association set.

Using the power matrices Xi1, . . . , Xin, robot i can find the number of features m̃j from a second robot
j that belong to the same association set than f i

r with r̄ = row(f i
r) as follows,

m̃j =
∣∣{f j

s | [Xij ]r̄,s̄ > 0, with s̄ = col(f j
s )

}∣∣ . (30)
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If we let m̃? be the maximum m̃j for j ∈ {1, . . . , n}, then the root robot i? and root features f i?
r?

, f i?

r′?
, . . . for

the association set of f i
r with r̄ = row(f i

r) are

i? = min {j | m̃j = m̃?} , {r?, r
′
?, . . . } =

{
s | [Xii? ]r̄,s̄ > 0 with s̄ = col(f i?

s )
}

. (31)

When f i
r belongs to a consistent set, the root i? corresponds to the robot with a single feature f i?

r?
in the

association set that has the lowest identifier,

i? = min
{

j | [Xij ]r̄,s̄ > 0 for some s̄ ∈ {1, . . . , |S̃j |}
}

, r? =
{
s | [Xii? ]r̄,s̄ > 0 with s̄ = col(f i?

s )
}

, (32)

where r̄ = row(f i
r). Robot i assigns to its feature f i

r the label Li
r = (i?, r?) and removes it from the set of

unlabeled features,

Li
r = (i?, r?), Li = Li ∪ Li

r, S̃i = S̃i \ {f i
r}. (33)

Thus, all features in the association set are assigned the same label. The robots proceed with all its consistent
features in a similar fashion. For the features classified as conflictive, the following resolution algorithm is
executed to solve the inconsistencies.

4.3. Resolution algorithm
The resolution of inconsistent features deletes edges from Gda to break the paths between the conflictive

features. Let m̃j be the number of features of a robot j in the inconsistency as in (31) and m̃? be the
maximum m̃j for j ∈ {1, . . . , n}. Note that the root robot i? has exactly m̃? features in the inconsistency.
It is clear that the number of conflict-free components in which a conflictive set can be decomposed is lower
bounded by m? since each root feature f i?

r?
must belong to a different component in order for them to be

conflict-free. The resolution algorithm presented in this section constructs such conflict-free components
by initially assigning each root feature to a component and incrementally adding more features to each of
them as follows. Each component has associated a component id that is used later for labeling its associated
features.

Initially, each robot i analyzes its power matrices Xij to find out if it is the root robot for some of the
conflictive sets as in eq. (31). Then, each conflictive set is managed in parallel following the process shown
below. Let us consider one of the conflictive sets with root robot i?. This robot initiates the resolution
process by creating a new component for each of its root features f i?

r?
with component id (i?, r?). Robot i?

assigns f i?
r?

to this component and tries to add to each component the features directly associated to f i?
r?

.
Whenever a robot successfully adds one of its features to a component, it also propagates the process to any
feature directly associated to it.

Let us consider the case when f j
s has been assigned to a component (i?, r?). For all f i

r such that
[S̃ji]s̄,r̄ = 1, with s̄ = row(f j

s ) and r̄ = col(f i
r), robot j sends a component request message to robot i. When

robot i receives it, the following may happen

(a) f i
r is already assigned to (i?, r?);

(b) f i
r is assigned to a different component;

(c) other feature f i
r′ of robot i is already assigned to (i?, r?);

(d) f i
r is unassigned and no other f i

r′ is assigned to (i?, r?).

In case (a), f i
r already belongs to the component and robot i does nothing. In cases (b) and (c), f i

r cannot
be added to the component and robot i deletes the association between f j

s and f i
r,

[Sij ]r,s = 0, (34)

and replies with a reject message to robot j; when j receives the reject message, it deletes the equivalent
edge [Sji]s,r. In case (d), robot i assigns its feature f i

r to the component (i?, r?) and the process is repeated.
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After n iterations the resolution algorithm finishes, with the size of each conflictive set being reduced by
at least 2m̃? features [29, Theorem 4.3]. When the algorithm finishes, each feature f i

r that has been assigned
to a component (i?, r?) has become consistent due to the edge removals (34). We say that such features
are resolved. Thus, all the resolved features with the same component id form a consistent association set.
Each robot i uses the component id of f i

r as its label,

Li
r = (i?, r?), Li = Li ∪ Li

r, S̃i = S̃i \ {f i
r}. (35)

Additionally, due to edge removal, some unlabeled features f i
r ∈ S̃i may have become exclusive. Robot i

detects such features f i
r by checking that

[S̃ij ]r̄,s̄ = 0, for all j ∈ Ni, j 6= i, all s̄ ∈ {1, . . . , |S̃j |}, (36)

being r̄ = row(f i
r), and it manages them as in (23). The remaining features may still be conflictive. Each

robot i executes a new detection-resolution iteration on these still unlabeled features S̃i.
In a finite number of iterations, all features of all robots have been labeled, and the algorithm finishes.

The resulting association graph Gda is free of any conflictive set. The interest of the presented algorithm is
that it is fully decentralized and works on local information. The decisions and actions taken by each robot
are based on its local data. Each robot i uses its own Sij and Xij to classify its features and establish their
labels, and it is responsible for deleting its own local edges from Sij . For further details on the detection
and resolution algorithm, see [29].

5. CONSENSUS ON THE GLOBAL MAP

Once the local maps have been expressed in a common reference and the data association has been
solved, we address here the map fusion problem. There is a rich literature in sensor networks, where the
observations taken by a set of sensors are fused in IF form to build a better estimate of a variable. A widely
used distributed sensor fusion method whose convergence conditions and properties have been deeply studied
can be found in Appendix B. A brief summary of its characteristics follows. The information matrix Îi

G(t)
and vector îiG(t) estimated by each node i ∈ {1, . . . , n} executing this sensor fusion algorithm in Appendix
B and the associated mean x̂i

G(t) and covariance x̂i
G(t) have the following properties:

(i) they asymptotically converge to the following values,

lim
t→∞

Îi
G(t) = IG / n, lim

t→∞
îiG(t) = iG / n, lim

t→∞
x̂i

G(t) = x̂G, lim
t→∞

Σ̂i
G(t) = n ΣG,

being Ii
G, iiG, x̂G,ΣG the information matrix, information vector, mean and covariance of the global

map respectively;

(ii) the mean is an unbiased estimate of the truth x and E
[
x̂i

G(t)
]

= x for all t ≥ 0;

(iii) the temporal estimates are consistent for all t ≥ 0 since the true uncertainty Qi
G(t) is smaller than the

estimated uncertainty, Qi
G(t) � Σ̂i

G(t).

The use of sensor fusion algorithms for merging stochastic maps has an important difficulty that must be
addressed. Sensors usually observe a set of variables which are a priori known, e.g., temperature, humidity,
etc. Specifically, during the initialization of the algorithm (Appendix B, (B.1)) each node i knows the
observation matrix Hi relating its measurements with the variables to be estimated. In a map merging
scenario, this matrix Hi relates the local features observed by robot i with the globally observed ones.
However, in our case the robots do not know the observation matrices since they do not know the whole set
of features that have been observed by the robot team. Initially each robot i exclusively knows the labels
Li of its local features. The goal is that each robot discovers the feature labeling of all the robots through
the interaction with its neighbors. We propose an algorithm where the feature labeling discovering and the
data fusion are executed simultaneously.
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After solving the data association (Section 4), each robot i ∈ V has its label set Li = {Li
1, . . . , L

i
mi
} with

the labels of its mi features. Two features f i
r and f j

s from robots i, j can be fused together if and only if
their labels Li

r = (i?, r?), Lj
s = (i′?, r

′
?) have the same value,

i? = i′? and r? = r′?.

However, in the initialization stage in Appendix B, (B.1), the robots do not know the label sets Lj from the
other robots, and thus cannot compute their matrix Hi.

Throughout the discussion, we use a sorted version of the label sets Li that we term label vectors Li.
In a label vector Li, the labels Li

r = (i?, r?) appear sorted following the lexicographic order (first by i?,
then by r?). We assume that initially each robot i sorts its set Li to create its label vector Li, and that it
arranges its local map accordingly. The robot poses which have been estimated are always placed together
at the first rows and columns of the information matrices and vectors. In this case, the labels are exclusively
composed of the robot id. Let |Li| denote the number of labels in Li. Given two label vectors Li, Lj , we say
that Li ⊆ Lj if all labels of Li are contained in Lj . We let Γ be a function that joins two label vectors Li,
Lj and returns a new one Lij with all the labels in Li and Lj , without duplicates, and sorted as prescribed
above. It is not difficult to see that the function Γ satisfies the following properties:

(i) Γ(Li, Lj) = Γ(Lj , Li);

(ii) Γ(Li, Li) = Li;

(iii) Γ(Li,Γ(Lj , Lj′)) = Γ(Γ(Li, Lj), Lj′);

(iv) Li, Lj ⊆ Γ(Li, Lj);

for any label vectors Li, Lj , Lj′ .
We let H be a function that computes the observation matrix between two label vectors Li, Lj with

Li ⊆ Lj . H(Li, Lj) returns a matrix Hi
j ∈ {0, 1}|Li| szf×|Lj | szf that relates the Cartesian coordinates of

the features with labels Li and the ones with labels Lj . It can be seen that H has the property that, if
Li ⊆ Lj ⊆ Lj′ , H(Li, Lj) = Hi

j , and H(Lj , Lj′) = Hj
j′ , then Hi

jH
j
j′ = Hi

j′ = H(Li, Lj′). Additionally, H
also satisfies H(Li, Li) = I.

Given the labels of all the robots Lj , for j = 1, . . . , n, we let LG be the global label vector which contains
all the m different labels in L1, . . . , Ln,

LG = Γ(Γ(. . .Γ(L1, L2), . . . ), Ln). (37)

Note that the same LG is obtained if the functions Γ are applied to the label vectors Li in any other order, as
long as each Li, i ∈ {1, . . . , n}, is used at least once. Each observation matrix Hi in (B.1) is then H(Li, LG).

We let each robot i start with its own Li and, incrementally, incorporate the new labels discovered in its
neighbors data, to finally discover the full LG. Each robot i ∈ {1, . . . , n} maintains a label vector Li(t) with
the different labels discovered by itself up to time t. Additionally, it maintains the variables iiG(t) ∈ RMi(t)

and Ii
G(t) ∈ RMi(t)×Mi(t), whereMi(t) is the size of its estimated global map at time t,Mi(t) = |Li(t)| szf.

At t = 0, robot i initializes these variables with its own local information,

Li(0) = Li, Ii
G(0) = Σ−1

i , iiG(0) = Σ−1
i x̂i. (38)

At each iteration t, the robot incorporates into its label vector Li(t + 1) the new labels discovered from its
neighbors data Lj(t), with j ∈ Ni ∪ {i},

Li(t + 1) = Γ(. . . (Γ(Lj1(t), Lj2(t)), . . . ), LjNi+1(t)) . . . ), (39)

where {j1, . . . , jNi+1} = Ni∪{i}. Then, it arranges the variables Ii
G(t) and iiG(t) accordingly, and computes

the new values,

Ii
G(t + 1) =

n∑
j=1

Wi,j(H
j,t
i,t+1)

T Ij
G(t)Hj,t

i,t+1, iiG(t + 1) =
n∑

j=1

Wi,j(H
j,t
i,t+1)

T ijG(t), (40)

where Hj,t
i,t+1 = H(Lj(t), Li(t + 1)).
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Proposition 5.1. The outcomes of the algorithms (38)-(40) and (B.2) are related as follows: for all t ≥ 0
and all i ∈ {1, . . . , n},

Îi
G(t) = (Hi,t

G )T Ii
G(t)Hi,t

G , îiG(t) = (Hi,t
G )T iiG(t), (41)

where Hi,t
G = H(Li(t), LG). Furthermore, after diam(G) iterations, the result of both algorithms is exactly

the same, i.e., for all t ≥ 0 and all i ∈ {1, . . . , n},

Îi
G(diag(G) + t) = Ii

G(diag(G) + t), îiG(diag(G) + t) = iiG(diag(G) + t). (42)

Proof. We only present the proof for the information matrices Ii
G(t) (the reasoning is analogous for the

information vectors iiG(t)). We reason by induction. At t = 0, equation (41) is satisfied since

Îi
G(0) = HT

i Σ−1
i Hi = (Hi,0

G )T Ii
G(0)Hi,0

G , (43)

for all i ∈ {1, . . . , n}. Assuming that (41) is true for a given t, then for all i ∈ {1, . . . , n},

Îi
G(t + 1) =

n∑
j=1

Wi,j Î
j
G(t) =

n∑
j=1

Wi,j(H
j,t
G )T Ij

G(t)Hj,t
G = (Hi,t+1

G )T

 n∑
j=1

(Hj,t
i,t+1)

T Ij
G(t)Hj,t

i,t+1

Hi,t+1
G

= (Hi,t+1
G )T Ii

G(t + 1)Hi,t+1
G , (44)

where we have used the facts that for all t ≥ 0 and all i, j ∈ {1, . . . , n}, Hj,t
G = Hj,t

i,t+1H
i,t+1
G and

∑n
j=1 Wi,j =

1. This concludes the proof of (41). Regarding (42), note that after diam(G) iterations of the algorithm (38)-
(40), each robot i ∈ {1, . . . , n} has already incorporated into its label vector information from all the initial
label vectors Lj , for j = 1, . . . , n. Therefore, for all t ≥ 0, Li(diam(G) + t) = LG, where LG is the global
vector in (37). Then, H

i,diam(G)+t
G = H(LG, LG) = I, and the result follows.

Using the previous algorithm, the robots compute the same global map than if they were given Hi from
the beginning, with the additional benefit that the information matrices Ii

G(t) can be inverted for any t ≥ 0
and i ∈ {1, . . . , n}, since they do not contain any non informative zero columns or rows. Note that in the
basic map merging algorithm (Appendix B), the information matrices Îi

G(t) are initialized with zero rows
and columns for the features which are not local to robot i. Therefore, they cannot be inverted until robot i
has received informative (non zero) data for all the features. In case all the robots have observed at least one
exclusive feature, the robots have to wait for t = diam(G) iterations for inverting their information matrices
and recovering a temporal estimate of the global map. However, when the robots use the algorithm (38)-
(40), their information matrices Ii

G(t) can be inverted for any t ≥ 0 and i ∈ {1, . . . , n} and thus the global
map can be computed at any step. In the next sections, we will analyze the presented algorithm in terms of
its theoretical and experimental performance. From now on, we let xi

G(t) ∈ RMi(t), Σi
G(t) ∈ RMi(t)×Mi(t)

be the global map estimated by a robot i executing algorithm (38)-(40),

xi
G(t) =

(
Ii
G(t)

)−1
iiG(t), Σi

G(t) =
(
Ii
G(t)

)−1
. (45)

6. COMPLEXITY ANALYSIS

In the previous sections, we have presented the parts that compose the distributed map merging algo-
rithm. Here, we analyze the algorithm complexity regarding execution time, amount of communication, and
memory space required. LetMmax be the highest size of the local map of any robot,

Mmax = max
i∈{1,...,n}

Mi,
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and dmax be the highest number of neighbors of any robot,

dmax = max
i∈{1,...,n}

|Ni|.

For time-varying topologies G(t) = (V, E(t)), dmax is defined as

dmax = max
i∈{1,...,n},t≥0

|Ni(t)|.

Computational complexity per iteration and robot
The consensus initialization operations in the map merging algorithm (Section 5) have a computational

complexity per iteration and robot of O(M3
max) that exclusively depends on the local map size. During the

general iterations, the cost is O(dmaxM2
G) to perform the matrix additions.

Communication complexity per iteration and robot
Along the consensus iterations, each robot i exchanges its information matrix Ii

G(t) with its neighbors,
with a communication cost of O(dmaxM2

G). Note that each Ii
G(t)s is a sparse information matrix, where

the significant coefficients are grouped around the main diagonal. Therefore, if a compression algorithm is
used, the cost of exchanging Ii

G(t) can be expressed as O(nM2
max). Alternatively, it can be expressed as

O(n+m) if we consider the local map sizes as constants, giving rise to a total communication cost per robot
of, respectively, O(dmaxnM2

max) or O(dmax(n + m)). In addition, the robots exchange the label vectors of
the features, with a total cost of O(dmaxm).

Space complexity per iteration and robot
Along the consensus algorithm, the maximal space complexity for each robot is associated to the matrix

Ii
G(t) that, as discussed above, can be considered O(nM2

max) or O(n + m). Additionally this algorithm
requires extra storage for the label vectors, although it does not have influence in the worst-case space
complexity measure.

Time complexity until completion
As we mentioned before, the consensus is asymptotically reached, which means that the time until

completion is infinite. However, the convergence speed of the averaging algorithm presents a geometric rate
for fixed graphs [33], [34] which depends on the second eigenvalue with the largest absolute value |λ2(W )|
in the Metropolis weight matrix (A.3). If we denote γ = |λ2(W )|, it can be shown that each entry [Ii

G(t)]r,s,
[iiG(t)]r in the information matrices and vectors estimated by the robots evolve according to

|[Ii
G(t)]r,s − [IG]r,s| ≤ (γ)t

√
n max

j

{∣∣∣[Ij
G(0)]r,s − [IG]r,s

∣∣∣} ,

|[iiG(t)]r − [iG]r| ≤ (γ)t
√

n max
j

{∣∣∣[ijG(0)]r − [iG]r
∣∣∣} , (46)

for all i ∈ {1, . . . , n}, all r, s ∈ {1, . . . ,Mi(t)}, and all t ≥ 0.
For graphs with switching topology G(t) = (V, E(t)), the convergence speed is geometric if the graph has

an interval of joint connectivity τ such that every subsequence

{G(t0 + 1), . . . G(t0 + τ)}

of length τ is jointly connected for all t0 [34]. In these graphs, the τ -index of joint contractivity δ < 1 is
given by

δ = max
W∈Wτ

{|λ2(W)| | W primitive paracontractive} (47)
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where Wτ is the set of all products of, at most, τ Metropolis matrices W (t) that can be obtained in the
communication graph. The convergence speed of each entry [Ii

G(t)]r,s, [iiG(t)]r in the information matrices
and vectors estimated by the robots depends on the τ -index of joint contractivity,

|[Ii
G(t)]r,s − [IG]r,s| ≤ (δ)x t

τ y√n max
j

{∣∣∣[Ij
G(0)]r,s − [IG]r,s

∣∣∣} ,

|[iiG(t)]r − [iG]r| ≤ (δ)x t
τ y√n max

j

{∣∣∣[ijG(0)]r − [iG]r
∣∣∣} , (48)

where x t
τ y is the largest integer less than or equal to t

τ .
Therefore, the convergence speed depends on the topology of the communication graph. For a complete

graph the convergence is reached in one iteration, whereas for networks with lower connectivity like string and
circular graphs it is necessary to execute order n2 log(ε−1) iterations for achieving a precision (see Appendix
A).

7. EXPERIMENTS

7.1. Simulations
In order to show the performance of the algorithm, we have carried out several simulations with a team

composed by 7 robots exploring an environment of 20 × 20 m2 with 300 features, see Fig. 2. Each robot
executes 70 motion steps along a path of approximately 30 m. The robots estimate their motion based
on odometry information that is corrupted with a noise of standard deviation σx, σy = 0.4 cm for the
translations and σθ = 1 degree for the orientations. They sense the environment using an omnidirectional
camera that gives bearing measurement to features within 360 degrees around the robot (to better reproduce
real situations, marks at distances greater than 6 m are not observed by the robots). The measurements
are corrupted with a noise of 0.5 degrees standard deviation.
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Figure 2: A team of 7 robots explore an environment of 20 × 20 m2. Gray areas are walls and red dots are the ground-truth
location of landmarks. Initially, the robots are placed in the black box region. From these initial poses, they reach consensus
on the global reference frame. After that, they explore the environment and build their maps according this global reference
frame. We display the trajectories followed by robots 2, 3, and 5, together with the final poses of the 7 robots.

Initially, the robots are placed within the black rectangle in Fig. 2. We assume that a pair of robots
can exchange information and compute their relative poses if they are within a distance of 3 m. The robots
execute the consensus on the global reference frame algorithm (Section 3) using the initial communication
graph G0 (Fig. 3 (a)). Based on local interactions with its neighbors, each robot i computes the position
and orientation of the center of mass (Fig. 4) of the robot team. The estimates (T i

G(t), Ri
G(t)) of each robot

(gray triangles) converge very fast to the correct center of mass (T w
G, Rw

G) (red triangle). The robots execute
5n2 = 245 iterations to reach estimation errors smaller than a one percent of the initial error. Note that this
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Figure 3: Communication graphs associated to the initial (a) and final (b) robot poses in Fig. 2. There is a link (blue solid
line) between any pair of robot poses (red triangles) that are within a distance of 3 m.

is a worst-case bound and for this experiment, after the first 10 iterations the robots have already reached
this precision (see Fig. 5). The errors in the x− and y−coordinates (Fig. 5 (a), (b)) are less than 0.11 cm
and 2.12 cm respectively, and the error in the estimated orientation (Fig. 5 (c)) is less than 0.43 degrees.
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Figure 4: From the initial poses within the black box in Fig. 2, the robots reach a consensus on the global reference frame.
Initially (t = 0), each robot i estimates the center of mass (T i

G(t), Ri
G(t)) as its own pose (black triangles). During successive

iterations, they update (T i
G(t), Ri

G(t)) based on their neighbors estimates and their relative poses (T i
j (t), Ri

j(t)). We display the

center of mass estimated by the 7 robots (gray triangles), transformed into a common reference frame, for iterations t = 1, 3, 7.
Their estimates after 7 iterations are very close to the ground truth center of mass (T w

G, Rw
G) (red triangle).
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Figure 5: Position and orientation of the center of mass estimated by the 7 robots (blue dashed) compared to the true center
of mass (red solid), along 10 iterations.

After that, each robot explores the environment and builds its local map expressed into the global
reference frame (Fig. 6). Due to the presence of obstacles (gray areas), each robot may have not observed
some landmarks. Besides, the precision of the estimated positions (blue crosses and ellipses) of the landmarks
depends on the trajectory followed by each robot.

When they finish the exploration, they execute the consistent data association algorithm (Section 4)
under the communication graph in Fig. 3 (b). The local data associations F(Si,Sj) are obtained by applying
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Figure 6: Local map estimated by robot 2. The landmarks close to its trajectory (red line) have been estimated (blue crosses
and ellipses) with a high precision. Besides, its estimated positions (blue crosses) are very close to the ground truth locations
(red dots). Due to the presence of obstacles (gray areas) some of the landmarks have not been observed, or have been estimated
with high uncertainty.

the JCBB method [15] to the local maps of any pair of neighboring robots (i, j) ∈ V. Since all the trajectories
followed by the robots traverse the main corridor (Fig. 2) there is a high overlapping between their local
maps (Table 2). Given any 2 local maps with approx. 122 features, there are approximately 89 true matches
(ground truth). We can see that, although the local data association method has found a high amount of
the ground truth links (good links or true positives), it has also missed a few of them (missing links or
false negatives). In addition, some additional links have been detected that link together different features
(spurious links or false positives).

The 858 features within all the local maps are observations of 300 different landmarks in the ground truth
sense (association sets). From them, 184 were observed by a single robot (ground truth exclusive features),
and the remaining where observed by around 6 robots (ground truth size of the remaining association sets).
As previously stated, there is a high overlapping between the maps, and each non-exclusive feature has been
observed by almost every robot. In the data association graph Gda however, only 296 association sets have
been obtained, which means that different features have been mixed up together. There are 184 exclusive
features (ground truth exclusive features), although the local data association algorithm has found 187
exclusive features. These additional 3 exclusive features appear due to the presence of the three outliers,
the features with high covariance ellipses in Fig. 7. Since their positions have been wrongly estimated, the
local data association method has failed to correctly associate them.

The robots execute Algorithm 4.1 on the non-exclusive features to detect and solve any inconsistent
associations. From the 109 non exclusive association sets, 102 of them are consistent, and its associated 591
features are classified as consistent (Table. 3). The remaining 7 sets are conflictive, and they have associated
80 conflictive features. After executing the resolution algorithm on the 80 conflictive features, all of them are
resolved and the process finishes. The original 7 conflictive sets (association sets resolved) are partitioned
into 14 consistent sets (association sets resulting). Due to these additional sets, the number of non-exclusive
association sets which initially was 109 (Table 2) is increased into 116 (109 − 7 + 14) after executing the
algorithm (Table 4).

The comparison between the final data association graph and the ground truth information can be seen
in Table 4. Since the resolution algorithm is based on link deletion, the number of links here is lower than
in Table 2. However, the number of association sets is closer to the ground truth results. From the 303
obtained association sets, 3 of them are due to the three outliers in Fig. 7. Thus, there are 300 remaining
association sets, which is exactly the same number of association sets in the ground truth data. The same
behavior is observed regarding their sizes. This means that the resulting associations are similar to the
ground truth ones in spite of the fact that they have less links. From the 26 links erased from Gda, 22 were
spurious links, and only 4 where good links that now are missing.
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Table 2: Local data associations.

Features Per local map Total

Features observed 122 858

Data associations Per pair of Total

local maps

Links (ground truth) 89 2860

Links 88 2820

Good links 85 2750

Missing links 3 110

Spurious links 2 70

Association sets Obtained Ground truth

Association sets 296 300

Exclusive features 187 184

Non-exclusive assoc. 109 116

Size of non-exclusive 6.1 5.8

Table 3: Detection and resolution of inconsistent associations.

Detection Conflictive Consistent

Association sets 7 102

Features 80 591

Resolution Resolved Resulting

Association sets 7 14

Features 80 80

After associating their features, the 7 robots compute the global map as described in Section 5, under
the communication graph in Fig. 3 (b). Here, we just display the global map xi

G(t),Σi
G(t) of robot 2 after

5 iterations. We provide a deeper analysis of the performance of the map fusion algorithm under real
data and different communication networks in Section 7.2 below. Since the communication graph has a high
connectivity, in a few iterations each robot has received information from any other robot. After 5 iterations,
the global map at robot 2 already contains precise estimates of the whole explored environment (Fig. 7).

7.2. Real Experiments
In this section, we illustrate the performance of our algorithm under real data and different communica-

tion schemes. We use a data set from [35] with bearing information obtained with vision in an environment
of 60 × 45 m2 performing 3297 steps. It is an indoor scenario where the robot moves along corridors and
rooms. The data set contains real odometry data and images captured at every step (Fig. 8). The images
are processed and measurements to natural landmarks are provided. The natural landmarks are vertical
lines extracted from the images and processed in the form of bearing-only data. The observations in the
dataset are labeled so that we have the ground-truth data association. This dataset is very challenging for
a conventional visual map building algorithm due to the limited field of view of the camera (Sony EVI-
371DG). Furthermore, the camera is pointing forward in the same direction of robot motion and the robot
traverses rooms and corridors with few features in common. Notice that this situation is much more complex
than situations where the camera can achieve big parallax, or systems with omnidirectional cameras, where
features within 360 degrees around the robot are observed.

We have carried out these experiments with 9 robots. The total area covered by the robots is a square
of 30× 30 m2 (Fig. 9). We run a separate SLAM in each robot and obtain 9 maps. We use a bearing-only
SLAM algorithm with features parameterized in inverse-depth [36] followed by a transform to Cartesian
coordinates (not discussed here) before the merging process. The reader is referred to [37] to find a detailed
explanation of the SLAM algorithm we used. We express the local maps in global coordinates according to
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Table 4: Results after detecting and solving the inconsistencies.

Features Per local map Total

Features observed 122 858

Data associations Per pair of Total

local maps

Links (ground truth) 89 2860

Links 87 2794 (-26)

Good links 85 2746 (-4)

Missing links 3 114 (+4)

Spurious links 2 48 (-22)

Association sets Obtained Ground truth

Association sets 303 300

Exclusive features 187 184

Non-exclusive assoc. 116 116

Size of non-exclusive 5.7 5.8
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Figure 7: Global map xi
G(t), Σi

G(t) estimated by robot 2 after t = 5 iterations. Red dots are the ground truth position of the
features while blue crosses and ellipses are their estimated positions. Red triangles are the ground truth poses of the 7 robots
after the exploration, and blue triangles are their estimated poses in the global map of robot 2. The three landmarks with
high covariance ellipses are outliers that have been wrongly estimated by one of the robots. They have been classified by the
algorithm as exclusive, giving rise to the presence of 3 additional exclusive sets in the final association map (303) compared to
the ground truth information (300).

the relative robot poses seen in Fig. 9, obtaining the results shown in Fig. 10. Note that this is the result
of putting the maps together, without applying a merging method. The team of robots execute the fusion
algorithm presented in Section 5 to merge the local maps.

We study the behavior of the map merging method under three different scenarios: a fixed communication
graph, a graph with switching topology and a graph with link failures (Fig. 11). We illustrate the performance
of our algorithm by comparing the global map estimated by the robots along the iterations with the actual
global map. We use two features to do this: F23, which has been observed by several robots, and F368,
which belongs to a room visited exclusively by robot 4. In Figs. 12, 13 we show the estimated information
matrices Ii

G(t) and vectors iiG(t) (colored lines) during 40 iterations, compared to the global map IG, iG
(black line). We display the subcomponent associated to the x-coordinate of features F23 and F368. As
can be observed, in all cases the estimates converge to the average value very fast. However, for F368, the
consensus is reached faster than for F23. This happens because only robot 4 possess an initial value for
F368 (Fig. 13, iteration 0). As the other robots receive information of F368, their estimates are displayed in
colors. We can see that, since this initial value is the unique source of information for F368, the other robots
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Figure 8: An example of the images used by the 9 robots during the navigation to test the proposed method [35]. Although
the data set also provides artificial landmarks (white circles on the floor), we test the algorithm using the lines extracted from
natural landmarks (in yellow).
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Figure 9: Trajectories followed by the 9 robots. They cover a region of 30× 30 m2 of the whole dataset map. In order to give
an idea of the scene structure, we display in black the path in the dataset and a set of artificial landmarks (black dots) placed
on both sides of the trajectory, which are not used in the experiment. Here, the rooms can be identified since robots enter and
leave them describing short trajectories. The long, straight motions correspond to corridors.

do not disagree with this information and they just incorporate it into their estimates. In a few iterations,
all the robots possess an estimate for F368 very close to the average value. However, for F23 there exist
many initial values at iteration 0 (Fig. 12) from robots 1,7,8,9. The robots receive different information
for F23 from different sources and, therefore, they must reach an agreement. As a result, there is a higher
discrepancy in their estimates.

We analyze the evolution of the mean xi
G(t) and covariance Σi

G(t) (45) for F23 and F368 estimated by
each robot i (Figs. 14, 15). We compare them with the mean xG and covariance ΣG of the global map,
and with the numerical covariance Qi

G(t) at each iteration. It can be seen that xi
G(t) converges to xG, and

Σi
G(t) converges to nΣG. Besides, it can also be seen that the numerical covariance Qi

G(t) remains bounded
by Σi

G(t) for all the iterations (Figs. 14, 15). When we analyzed the estimates in the information form, we
observed that only robot 4 was providing information for F368. However, when we study the evolution of the
estimates in the mean and covariance form (Fig. 14, 15), we can see that robots which did not observe F368
are providing estimates which disagree with those from robot 4. This is due to the effect of the correlations
between F368 and the other features. Therefore, modifications in the estimates of features correlated with
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Figure 10: Local maps obtained by robots 2 (green), 6 (yellow), and 9 (pink) after following their trajectories in Fig. 9. The
feature F23 within the black box will be used for testing purposes within this section.
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Figure 11: Communication graphs. (a) The topology is a string, with robots 1 and 9 in the extremes. Each robot has two
neighbors, except the extreme robots, that have a single neighbor. This graph remains fixed for all the iterations of the
algorithm. (b) For each iteration t, there exists a single edge linking robots ((t − 1) mod 9) + 1 and (t mod 9) + 1. (c) A
connected communication graph where at each iteration one of its link fails.

F368 produce modifications in the estimate of F368.
We analyze the effects of the communication topology on the performance of the algorithm. In the fixed

and the switching communication graphs (Fig. 12, first and second column), the convergence is slower than
for the link failure graph (Fig. 12, third column). In this fixed graph (Fig. 11 (a)) the topology is a string,
with robots 1 and 9 in the extremes. This is a specially bad configuration since the time needed to propagate
information from the extreme robots to the whole network is maximal. The per step convergence factor
γ = |λ2(W )| (Section 6) depends on the Metropolis weight matrix, which is

W =
1

3

26666664

2 1 0 . . . 0
1 1 1 0 0

0
. . .

. . .
. . . 0

... 0 1 1 1
0 0 0 1 2

37777775 . (49)

We obtain a value for γ = 0.96 close to 1. This produces a slow convergence. The convergence bounds are
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Figure 12: Estimated position (x−coordinate) of F23 at each robot along 40 iterations. We display its associated components
within the information matrices Ii

G(t) (first row) and vectors iiG(t) (second row). We analyze the results for the fixed (first
column), the switching (second column) and the link failure (third column) communication graphs.
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Figure 13: Feature F368, information matrices Ii
G(t) and vectors iiG(t). We display the entry within the information matrix

Ii
G(t) associated to the x−coordinate of F368, along 40 iterations. For the three network topologies, the estimates at each robot

(color solid lines) remain within the theoretical bounds (black dashed lines) while they asymptotically approach the global map
IG (black solid line).

displayed in black dashed lines (Figs. 12, 13, first column). In the switching graph case (Fig. 11 (b)), at every
time instant, only one communication link exists in the graph and this sequence takes place in a circular
fashion. This is a very extreme communication scheme where, although the conditions for convergence are
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Figure 14: Estimated position (x−coordinate) of F23 at each robot along 40 iterations. We display its associated components
within the mean xi

G(t) (first row) and covariance Σi
G(t) (second row) estimated by each robot i. We analyze the results for

the fixed (first column), the switching (second column) and the link failure (third column) communication graphs. All the
mean estimates xi

G(t) (color solid lines) approach the average value (black solid line). The numerical covariance matrix Qi
G(t)

(color dashed lines) asymptotically approaches the covariance matrix ΣG (black solid line) of the global map. The numerical
covariance Qi

G(t), which cannot be computed by the robots using local information, is bounded by the locally computed

covariance matrix Σi
G(t) (color solid lines). This matrix converges to nΣG.

satisfied, the converge speed is expected to be slow. We can see that (Figs. 12, 13, second column) for
each robot, estimates remain unchanged during long periods of time, then they experiment two consecutive
changes, and then they remain unchanged again. Each robot remains isolated during 7 iterations, main-
taining its estimates unchanged. Then, it exchanges information with its previous neighbor and, in the next
iteration, with its next neighbor. In our case, at each iteration t, there exists a single edge linking robots
((t − 1) mod 9) + 1 and (t mod 9) + 1. The index of joint connectivity is τ = 8 since every 8 iterations
the joint graph is connected. There are only 9 different Metropolis weight matrices W (t), depending on the
linked robots at time t, that are repeated successively. We obtained a value for δ = 0.89 using (47). We draw
the bounds using black dashed lines (Figs. 12, 13, second column). In the link-failure graph (Fig. 11 (c)), at
each iteration one of the links in the graph fails although the graph remains connected. Thus, we obtain an
index of joint connectivity of τ = 1. Evaluating all the possible Metropolis weight matrices in this graph,
we obtain δ = 0.80. We show the convergence speed bounds (Figs. 12, 13, third column) using black dashed
lines. This communication scheme exhibits the fastest convergence speed, since 0.80t ≤ 0.96t ≤ 0.89xt/8y for
all t ≥ 0. This faster convergence can also be observed in the estimated mean and covariance (Figs. 14, 15),
where the estimates approach the global map faster for the link failure graph (third column). It is noted
that regardless of the presence of link failures or changes in the communication topology, the numerical
covariance remains bounded by the locally computed covariance matrix (Figs. 14, 15).

In addition, we display (Fig. 16) the global map estimated by robot 1 after 5, and 20 iterations (colored
lines) of the merging algorithm, and under the fixed communication graph (Fig. 11 (a)). The maps estimated
by the 9 robots are similar. We compare the estimates at robot 1 to the global map in (4) (black lines).
Due to the network configuration, after 5 iterations robot 1 has received information from the initial local
maps of robots 1 to 6. However, it still knows nothing of the local maps of robots 7 to 9 (Fig. 16 (a)). As
previously stated, this fixed communication graph has a slow convergence speed. However, after 20 iterations
the map estimated by robot 1 is very close to the global map (Fig. 16 (b)). In addition, it is observed that
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Figure 15: Estimated position (x−coordinate) of F368 at each robot along 40 iterations. We display its associated components
within the mean xi

G(t) (first row) and covariance Σi
G(t) (second row) estimated by each robot i. We analyze the results for

the fixed (first column), the switching (second column) and the link failure (third column) communication graphs. All the
mean estimates xi

G(t) (color solid lines) approach the average value (black solid line). The numerical covariance matrix Qi
G(t)

(color dashed lines) asymptotically approaches the covariance matrix ΣG (black solid line) of the global map. The numerical
covariance Qi

G(t), which cannot be computed by the robots using local information, is bounded by the locally computed

covariance matrix Σi
G(t) (color solid lines). This matrix converges to nΣG.

the information fusion leads to a great improvement in the map quality, where not only the uncertainty is
greatly decreased, but also the local maps are corrected.
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Figure 16: Global map estimated by robot 1 after 5 (a) and 20 (b) iterations of the merging algorithm, and under the fixed
communication graph (Fig. 11 (a)). Different colors identify the source local map. Although the global map contains a single
estimate per feature, the features observed by more than one robot are displayed by multiple colored ellipses. The global map
xG, ΣG is displayed in black. Although there is a slow convergence speed associated to the fixed communication graph used
here, the estimated global map after 20 iterations is very close to the global map.
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Finally, we have studied the performance of the map merging algorithm in terms of its execution
times (Fig. 17). During the first iterations, the peaks on the execution times are due to the expansion
and arrangement of the information matrices and vectors Ii

G(t) and iiG(t) that are performed by the robots
whenever they discover new features in its neighbors’ information. These memory allocation operations,
which are computationally expensive, give rise to this behavior. In the fixed graph case (in blue solid) this
situation continues until iteration 5, when robot 5, the robot in the central position within the string graph,
has received information from all the robots. Its information matrix Ii

G(5) reaches its maximum size and,
from here to the end of the experiment, its global map estimate changes but its size remains unchanged.
The execution times reach a peak at iteration 5 and from here on, it decreases. From iterations 5 to 9
other robots achieve the maximal size of their matrices Ii

G(t), and finally, from iteration 9 to the end of the
experiment, the global map size remains unchanged for all the robots. For this reason, we can see that the
execution times are drastically reduced from iteration 9 to the end of the experiment. For the switching
graph (in black dashed), the first robots that receive information from all the others are 8 and 9, at iteration
8, and from iterations 9 to 15 robots 1 to 7 successively expand their maps to the maximum size. Finally,
from iteration 16 to the end, all the robot’s global map estimates present the maximal size and only its
contents change. For this reason, the execution times decrease. Finally, for the link failure graph (in dotted
red), due to its higher connectivity, all the expansion operations are carried out during the first 4 iterations,
giving rise to the larger peak observed in the plot. After these expansion operations, the execution times
are similar for the three communication graphs.
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Figure 17: Execution times per iteration and robot exhibited by the merging algorithm under the three tested communication
graphs (times obtained with a Q9550 processor and 3.24 GB RAM).

8. CONCLUSIONS

We have presented a new method for merging stochastic feature-based maps acquired by a team of
robots with heterogeneous visual sensors for scenarios with limited communication. Each robot explores
an unknown environment and builds a local stochastic map of the explored region. The robots are placed
at unknown poses and before fusing their maps, they must reach a consensus on a global reference frame.
This can be executed either before or after the exploration. Once they have transformed their local maps
into the global frame, the robots solve a consistent data association that produces a conflict-free global
association graph. Additionally, each robot obtains a global labeling for its features. Then, they fuse their
local maps and build a global map according to this conflict-free data association. The whole method is fully
decentralized, relying exclusively on local interactions between neighboring robots. Under the mild condition
that the communication graphs must be connected, the estimates at each robot asymptotically converge to
the global map. Moreover, the intermediate estimates at each robot present interesting properties that
allow their use at any time: (i) the mean of the global map estimated by each robot is unbiased at each
iteration; (ii) the numerical covariance of the global map estimated by each robot, which cannot be locally
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computed, is bounded by the locally computed covariance. Experimental results show the performance of
the method for robots equipped with omnidirectional and conventional cameras. The robustness of the map
fusion algorithm under link failures and changes in the communication topology has been demonstrated
both theoretically and experimentally. To the best of our knowledge this is the first method that solves the
map merging problem in a fully decentralized way.
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Appendix A. Averaging algorithms and Metropolis weights

Throughout this paper, we frequently refer to averaging algorithms. They have become very popular in
sensor networks due to their capability to reach agreement in a distributed way. Let us assume that each
robot i ∈ V has initially a scalar value zi(0) ∈ R. Let W ∈ Rn×n

≥0 be a doubly stochastic matrix such that
Wi,j > 0 if (i, j) ∈ E and Wi,j = 0 when j /∈ Ni. This matrix is such that Wi,i ∈ [α, 1], Wi,j ∈ {0} ∪ [α, 1]
for all i, j ∈ V, for some α ∈ (0, 1]. Assume the communication graph G is connected. If each robot i ∈ V
updates zi(t) at each time step t ≥ 0 with the following averaging algorithm,

zi(t + 1) =
n∑

j=1

Wi,j zj(t), (A.1)

then, as t→∞, the variables zi(t) reach the same value for all i ∈ V, i.e., they reach a consensus. Moreover,
the consensus value is the average of the initial values,

lim
t→∞

zi(t) = z? =
1
n

n∑
j=1

zj(0), (A.2)

for all i ∈ V [32, 38]. Observe that each robot i updates its variables zi(t) using local information
since the weight matrix has zero entries for non-neighboring nodes, Wi,j = 0 when j /∈ Ni. Let e(t) =
(z1(t), . . . , zn(t))T − (z?, . . . , z?)

T be the error vector at iteration t. The number of iterations t necessary for
reaching ||e(t)||2/||e(0)||2 < ε ranges between a single iteration for complete graphs, and order n2 log(ε−1)
iterations for networks with lower connectivity like string and circular graphs [32, Theorems 1.79 and 1.80].

A common choice for the matrix W ∈ Rn×n is given by the Metropolis weights given by [28],

Wi,j =


1

1+max{|Ni|,|Nj |} if j ∈ Ni, j 6= i,

0 if j /∈ Ni, j 6= i,
1−

∑
j∈Ni

Wi,j , if j = i,
(A.3)

for i, j ∈ V, j 6= i, where |Ni|, |Nj | are the number of neighbors of nodes i, j. Note that each agent can
compute the weights that affect its evolution using only local information. The algorithm (A.1) using the
Metropolis weights W converges to the average of the inputs.

Appendix B. Sensor fusion based on averaging

In the sensor fusion algorithm proposed in [28], each robot i maintains the variables Îi
G(t) ∈ RMG×MG ,

îiG(t) ∈ RMG , initialized as

Îi
G(0) = HT

i Σ−1
i Hi, îiG(0) = HT

i Σ−1
i x̂i, (B.1)
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and updated at each time step t ≥ 0 by

Îi
G(t + 1) =

n∑
j=1

Wi,j Î
j
G(t), îiG(t + 1) =

n∑
j=1

Wi,j î
j
G(t), (B.2)

where x̂i, Σi is the local map of robot i and Wi,j are the Metropolis weights (A.3) of G. This is a dis-
tributed averaging algorithm that, for a connected communication graph G, guarantees that the estimates
asymptotically converge to the average of the initial states,

lim
t→∞

Îi
G(t) =

1
n

IG, lim
t→∞

îiG(t) =
1
n
iG, (B.3)

being IG, iG the information matrix and vector of the global map (3). Then, the variables x̂i
G(t) ∈ RMG

and Σ̂i
G(t) ∈ RMG×MG at each robot i ∈ V and each t ≥ 0, defined as

x̂i
G(t) =

(
Îi
G(t)

)−1

îiG(t), Σ̂i
G(t) =

(
Îi
G(t)

)−1

, (B.4)

asymptotically converge to

lim
t→∞

x̂i
G(t) = x̂G, lim

t→∞
Σ̂i

G(t) = nΣG, (B.5)

where x̂G, ΣG are the mean and covariance of the global map in (4).
This algorithm is fully distributed because the nodes only use information about its direct neighbors in

the communication graph (Wi,j = 0 if j /∈ Ni). Besides, under mild connectivity conditions, it converges
to the average even if the communication graph is time-varying, G(t) = (V, E(t)). The convergence is
asymptotic, and hence the global map is obtained by each robot i in the limit as t → ∞. However, for
complete communication graphs, the strategy converges in a single iteration. For general networks, the
intermediate estimates (B.4) have interesting properties that allow their use at any time t:

(i) the intermediate estimates x̂i
G(t) are unbiased,

E
[
x̂i

G(t)
]

= x, (B.6)

for all t ≥ 0 and all i ∈ V such that the information matrix Îi
G(t) can be inverted [28, Theorem 3];

(ii) the numerical covariance Qi
G(t) ∈ RMG×MG of x̂i

G(t) is bounded by the locally estimated global map
covariance Σ̂i

G(t),

Qi
G(t) = E

[(
x̂i

G(t)− x
) (

x̂i
G(t)− x

)T
]

=
(
Îi
G(t)

)−1

 n∑
j=1

([W t]i,j)2HT
j Σ−1

j Hj

 (
Îi
G(t)

)−1

, (B.7)

for all t ≥ 0 and all i ∈ V such that Îi
G(t) can be inverted. Since 0 ≤ [W t]i,j ≤ 1 for all i, j ∈ V and all

t ≥ 0, then ([W t]i,j)2 ≤ [W t]i,j and

Qi
G(t) �

(
Îi
G(t)

)−1

= Σ̂i
G(t), (B.8)

where � means that Σ̂i
G(t) − Qi

G(t) is a positive semidefinite matrix [27, Lemma 2.1]. Therefore,
the numerical covariance Qi

G(t) is bounded by the locally estimated global map covariance Σ̂i
G(t). In

particular, since Σ̂i
G(t) − Qi

G(t) is a positive semidefinite matrix, the elements in the main diagonal
satisfy [Σ̂i

G(t) −Qi
G(t)]r,r ≥ 0, and thus [Σ̂i

G(t)]r,r ≥ [Qi
G(t)]r,r. Therefore, any decision taken by the

robots based on the entries in the main diagonal of the covariance matrix, can also be taken based on
Σ̂i

G(t).

Those properties of the intermediate estimates allow the robots to make decisions based on their global
map estimates at every time instant.
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