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Abstract— This paper studies an optimal deployment prob-
lem for a network of robotic sensors moving in the real
line. Consider the scenario where each sensor is to take a
measurement of a spatial process of interest and send it back
to a data fusion center. Assume only a specific fraction of
the messages containing the measurements will arrive at the
center. We show that, for several fraction values, the optimal
deployment configurations have the following features: agents
are grouped into clusters, the clusters are deployed optimally
as if at least a message from each cluster was guaranteed to
reach the center, and for each fraction value, there is a specific
optimal cluster size. The technical approach combines convex
analysis, nonsmooth analysis, and combinatorics.

I. I NTRODUCTION

An important motivation for the use of multiple robots
is the robustness that robotic networks can provide against
individual malfunctions. This paper is a contribution to the
growing body of research in cooperative control that seeks
to understand how individual failures affect the network
performance and how to best account for these failures in
designing robust and adaptive robotic networks.

We consider the following problem. A group of robotic
sensors is to be deployed over a region to sample a spatial
process. Each sensor will take a point measurement and
report it back to a data fusion center. However, because of
the features of the medium and the limited communication
capabilities of the agents, it is known that only a fraction
of these packets will arrive at the center. Because of the
stochastic nature of the packet drops, it is not known a
priori which measurements will arrive. Our objective is to
characterize the deployment configurations that maximize the
expected information content of the measurements retrieved
at the data fusion center. Specifically, we seek to minimize
the expected maximum prediction error of the best linear
unbiased predictor of the spatial field computed by the fusion
center. We are also interested in quantifying the performance
degradation of the network as a function of the fraction of
packets that are successfully transmitted.

Literature review: The problem considered in this paper
combines elements from facility location [1], [2], optimal
estimation of spatial fields in statistics [3], [4], and dataloss
in communications theory [5], [6]. Without packet drops,
our scenario corresponds to the disk-covering geometric
optimization problem studied in [7], whose solutions turn out
to be optimal for minimizing the posterior predictive variance
of the best linear unbiased predictor of a spatial field, see [8],
[9]. Our model for the communication between the robotic
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sensors and the data fusion center can be understood as an
erasure channel, where packets are either dropped or received
without error. Many works have considered erasure channels
in problems of control and estimation, see e.g, [10], [11],
[12], [13], [14], and in particular, in the context of sensor
networks [15], [16], [17], [18], [19]. The work [20] considers
a scenario similar to ours for a network of static sensors
that take noisy measurements and characterizes the tradeoff
between transmission rate and estimation quality. Finally,
the work [21] deals with the optimization of the location
of controllers when sensors and actuators are connected by
an array of unreliable links.

Statement of contributions: We define an aggregate objec-
tive function that, to each configuration ofn robot positions,
associates the expected performance of the network under
n− k stochastic packet drops. Although some of our results
could be presented in arbitrary dimensions, we restrict our
attention to a closed segment of the real line. We characterize
the convexity, smoothness, and invariance properties of the
objective function. This study is key as it allows us to
restrict our search for minimizers to a subset of the space
of network configurations, more specifically, those that are
invariant under the symmetric projection around the midpoint
of the segment and whose positions are ordered in increasing
order according to the agent identifier. We provide closed-
form expressions for the minimizers for several subfamilies
of problems.

n = 2m agents
Successful transmissions 1 2 3 n − 1 n

Optimal number of clusters 1 2 2 n/2 n
Optimal cluster size n n/2 n/2 2 1

TABLE I

M INIMIZERS FOR NETWORKS WITH EVEN NUMBER OF AGENTS. THE

MINIMIZERS CORRESPOND TO DEPLOYING THE CLUSTERS AS IF AT

LEAST A PACKET FROM EACH ONE WAS GUARANTEED TO REACH THE

CENTER.

A common feature of the minimizers is that agents are
grouped into clusters, and the resulting clusters are deployed
optimally as if at least a message from each cluster was
guaranteed to reach the data fusion center. Our results show
that there is an optimal tradeoff between grouping agents
in clusters to increase the likelihood of measurements from
those location arriving at the center and having as many
different clusters as possible to increase the number of
distinct measurements. We establish this tradeoff for the pairs
{(n, k) | k ∈ {1, 2, 3, n−1, n}}. Table I provides a summary



of these results whenn is even. For space reasons, the proofs
of the results are omitted and will appear elsewhere.

Organization: Section II introduces some useful notation
and presents some basic facts on nonsmooth analysis. Sec-
tion III states the problem considered here and introduces the
objective function. Section IV studies in detail its smooth-
ness, convexity, and invariance properties. Section V char-
acterizes the solutions to the optimal deployment problem
in a range of situations. We conclude by discussing the
implications of our results and ideas for future work in
Section VI. Some of the proofs are omitted for space reasons.

II. PRELIMINARIES

We let e1, . . . , ed denote the Euclidean basis ofRd. Let
co(S) denote the convex closure of a setS ⊂ Rd and let
B(x, ε) = {y ∈ Rd | ‖y − x‖ < ε} denote the open
ball in Rd with centerx and radiusε. For k ≤ n, we let
C(n, k) denote the set ofk-combinations from{1, . . . , n}.
Given {s1, . . . , sk} ∈ C(n, k), we assume without loss of
generality thats1 < . . . < sk.

A. Computational geometric notions

The Voronoi partition of Q ⊂ Rd generated by
p1, . . . , pn ∈ Q is the collection of sets{V1, . . . , Vn},

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ for j 6= i},

for i ∈ {1, . . . , n}. Note that the union of the Voronoi cells
is the whole setQ and that the intersection of the interiors of
any two cells is empty. On the real line,d = 1, the notion of
Voronoi partition is particularly simple. GivenQ = [a, b] ⊂
R and (p1, . . . , pn) ∈ Qn, let σ : {1, . . . , n} → {1, . . . , n}
denote a permutation such thatpσ(1) ≤ . . . ≤ pσ(n). The
Voronoi partition ofQ determined byp1, . . . , pn is given by

Vσ(1) =
[

a,
pσ(1) + pσ(2)

2

]

, Vσ(n) =
[pσ(n−1) + pσ(n)

2
, b

]

,

Vσ(i) =
[pσ(i−1) + pσ(i)

2
,
pσ(i) + pσ(i+1)

2

]

,

wherei ∈ {2, . . . , n − 1}.

B. Nonsmooth analysis

Let f be a function of the formf : Rd → R. f is locally
Lipschitz at x ∈ Rd if there existLx, ε ∈ R>0 such that

|f(y) − f(y′)| ≤ Lx‖y − y′‖,

for y, y′ ∈ B(x, ε). f is locally Lipschitz on S ⊂ Rd if it is
locally Lipschitz atx, for all x ∈ S.

Thegeneralized gradient of a locally Lipschitz functionf
is defined by

∂f(x) = co{ lim
i→+∞

df(xi) | xi → x , xi 6∈ S ∪ Ωf},

where Ωf ⊂ Rd is the set of points wheref fails to be
differentiable, andS denotes any other set of measure zero.
A point x ∈ Rd which verifies that0 ∈ ∂f(x) is called a
critical point of f . Minimizers and maximizers off are of
course critical points off in the sense of this definition.

A final technical notion that we need to introduce is that
of regular function.f is regular at x ∈ Rd if for all v ∈ Rd,
the right directional derivative off at x in the direction
of v exists and coincides with the generalized directional
derivative off at x in the direction ofv. Precise definitions
of these directional derivatives can be found in [22].

III. PROBLEM STATEMENT

Consider a scenario where a group of robotic sensors are
to be optimally deployed in order to take point measurements
of a spatial random field. Assume that, once taken, the
measurements will be sent to a data fusion center that
will construct the estimate with the information received.
Because of the features of the environment and the limited
communication capabilities of the sensors, assume that it is
known that only a fraction of those measurements will arrive.

Our main objective is to characterize the optimal deploy-
ment configurations for the group of robotic sensors in the
scenario described above. The fact that the identity of the
agents whose measurements arrive at the data fusion center
is not known a priori is what makes the problem challenging.
Let us make precise the notion of what a good deployment
is. Let Q = [a, b] ⊂ R be a closed interval. Givenm ∈ Z,
consider thedisk-covering functionHDC : Qm → R,

HDC(q1, . . . , qm) = max
q∈Q

min
i∈{1,...,m}

‖q − qi‖. (1)

The value ofHDC corresponds to the smallest radius such
that the union of balls centered at the pointsq1, . . . , qm ∈ Q
with radius HDC(q1, . . . , qm) covers the whole environ-
mentQ. The reason why we consider isHDC is as follows:
one can show [9] that, under certain technical conditions, the
minimization of this function is equivalent to the minimiza-
tion of the maximum uncertainty about the estimation of the
spatial random field. We emphasize that if all measurements
were guaranteed to arrive at the fusion center, thenHDC

would be the objective function to optimize. However, this
is in general not the case, as we describe next.

Consider now a group ofn mobile robotic sensors with
positionsp1, . . . , pn ∈ Q that can take point measurements
of the spatial random field. Let us refer to a sensor asworking
if once the network has been deployed and the measurements
have been taken, its message arrives at the data fusion center.
Of course, the identity of these sensors is a priori unknown.
Assume that onlyk ≤ n sensors are working. Since onlyk of
the sensors are working and their identity is unknown, instead
of the objective function(p1, . . . , pn) 7→ HDC(p1, . . . , pn)
defined above, we consider the objective function

Hn,k(p1, . . . , pn) =

1
(

n
k

)

∑

{s1,...,sk}∈C(n,k)

HDC(ps1
, . . . , psk

), (2)

which corresponds to the expected performance of the overall
group. Note thatHn,n is exactlyHDC, i.e., both functions
coincide if all sensors are working.



Remarks 3.1: (i) The problem described above could
also be formulated in arbitrary dimensions. We have
found that the problem is challenging enough on the
real line to deserve attention on its own;

(ii) The optimization of Hn,k can be given alternative
interpretations that involve the capability of servicing
events in the environment, but we do not get into the
details here for simplicity. •

IV. A NALYSIS OF THE OBJECTIVE FUNCTION

In this section, we study the properties ofHn,k. This
analysis will be most useful to characterize its minimizers.

A. Convexity properties

We begin by noting thatHDC andHn,k are invariant under
permutations.

Lemma 4.1: For any permutationσ : {1, . . . ,m} →
{1, . . . ,m} and anyq1, . . . , qm ∈ Q,

HDC(qσ(1), . . . , qσ(m)) = HDC(q1, . . . , qm).

Consequently,Hn,k is also invariant under permutations.

The invariance ofHn,k under permutations allows us to
restrict our search for minimizers to

Qn
≤ = {(p1, . . . , pn) ∈ Qn | p1 ≤ . . . ≤ pn} ⊂ Qn. (3)

Regarding the study of the critical points, it is important
to note thatHDC andHn,k arenot convex onQm andQn,
respectively. This fact is related with their invariance under
permutations, cf. Lemma 4.1. Let us illustrate it forHDC.
Let q1, . . . , qm ∈ Q with q1 < · · · < qm such that

q1 − a > max
{q2 − q1

2
, . . . ,

qm − qm−1

2
, b − qm

}

.

Then we have thatHDC(q1, q2, q3, . . . , qm) = q1 − a =
HDC(q2, q1, q3, . . . , qm). Moreover,

HDC

(1

2
(q1 + q2),

1

2
(q1 + q2), q3, . . . , qm

)

≥
1

2
(q1 + q2) − a > q1 − a

=
1

2
HDC(q1, q2, q3, . . . , qm) +

1

2
HDC(q2, q1, q3, . . . , qm),

and henceHDC is not convex onQm.

Interestingly, bothHDC andHn,k are convex on conve-
nient subsets of their domain of definition. To show this, let
us define the maps̃HDC : Qm → R andH̃n,k : Qn → R,

H̃DC(q1, . . . , qm) =

max
{

q1 − a,
q2 − q1

2
, . . . ,

qm − qm−1

2
, b − qm

}

,

H̃n,k(p1, . . . , pn) =

1
(

n
k

)

∑

{s1,...,sk}∈C(n,k)

H̃DC(ps1
, . . . , psk

).

These maps are not invariant under permutations. Their
relationship withHDC andHn,k is given by

HDC(q1, . . . , qm) = H̃DC(qσ(1), . . . , qσ(m)),

Hn,k(p1, . . . , pn) = H̃n,k(pρ(1), . . . , pρ(n)),

for q1, . . . , qm, p1, . . . , pn ∈ Q, whereσ andρ are permuta-
tion such thatqσ(1) ≤ . . . ≤ qσ(m) andpρ(1) ≤ . . . ≤ pρ(n).
The following result states the convexity properties of allthe
functions mentioned so far.

Lemma 4.2: The functionsH̃DC andH̃n,k are convex on
Qm andQn, respectively. Consequently, the functionsHDC

andHn,k are convex onQm
≤ andQn

≤, respectively.

The minimizers ofHn,k over Qn
≤ might belong to the

boundary of the set, and hence, in spite of Lemma 4.2, not
be fully described with gradient information only. As we
will explain later in Section V-B, the following result will
be most helpful to overcome this hurdle.

Proposition 4.3: The minimizers ofH̃DC over Qm
≤ are

also minimizers of̃HDC overQm. Likewise, the minimizers
of H̃n,k over Qn

≤ are also minimizers of̃Hn,k over Qn.

B. Nonsmooth properties

We review some basic facts about the disk-covering func-
tion HDC following [7]. Given a setW ⊂ Q and p ∈ W ,
let lgW : W → R be the largest distance fromp to W ,

lgW (p) = max
q∈W

‖q − p‖.

This definition allows us to rewriteHDC as follows

HDC(q1, . . . , qm) = max
i∈{1,...,m}

lgVi
◦πi(q1, . . . , qm). (4)

whereπi : Qm → Q, i ∈ {1, . . . ,m}, denotes the projection
(q1, . . . , qm) 7→ qi. The individual objective functions in (4)
can take three different forms. To write them explicitly,
assume, without loss of generality that(q1, . . . , qm) ∈ Qm

≤

(if this is not the case, then the expressions below need
only to be rearranged according to the increasing order of
q1, . . . , qm). Then, we have

lgV1
◦π1(q1, . . . , qm) = max

{

q1 − a,
q2 − q1

2

}

,

lgVi
◦πi(q1, . . . , qm) = max

{qi − qi−1

2
,
qi+1 − qi

2

}

,

lgVm
◦πm(q1, . . . , qm) = max

{qm − qm−1

2
, b − qm

}

,

wherei ∈ {2, . . . ,m−1}. The following result states explicit
expressions for the generalized gradients of these functions.

Lemma 4.4: The functions lgVi
◦πi : Qn → R, i ∈

{1, . . . ,m}, are locally Lipschitz and regular. Furthermore,
for (q1, . . . , qm) ∈ Qm

≤ , their generalized gradients take one



of the following forms

∂(lgV1
◦ π1)(q1, . . . , qm) =










e1 if q1 − a > q2−q1

2 ,

co{e1,
1
2 (e2 − e1)} if q1 − a = q2−q1

2 ,
1
2 (e2 − e1) if q1 − a < q2−q1

2 ,

∂(lgVi
◦ πi)(q1, . . . , qm) =










1
2 (ei − ei−1) if qi > qi+1+qi−1

2 ,
1
2co{ei − ei−1, ei+1 − ei} if qi = qi+1+qi−1

2 ,
1
2 (ei+1 − ei) if qi < qi+1+qi−1

2 ,

∂(lgVm
◦ πm)(q1, . . . , qm) =










1
2 (em − em−1) if qm−qm−1

2 > b − qm,

co{−em, 1
2 (em − em−1)} if qm−qm−1

2 = b − qm,

−em if qm−qm−1

2 < b − qm.

Given the fact that the maximum of locally Lipschitz and
regular functions is itself locally Lipschitz and regular,see
e.g., [22], one has the following result.

Lemma 4.5: The functionsHDC and H̃DC are locally
Lipschitz and regular, and their generalized gradients are

∂HDC(q1, . . . , qm) = co{∂(lgVi
◦πi)(q1, . . . , qm) |

i such thatHDC(q1, . . . , qm) = lgVi
◦πi(q1, . . . , qm)},

∂H̃DC(q1, . . . , qm) = co{S(q1, . . . , qm)},

whereS = S(q1, . . . , qm) is the set defined by

e1 ∈ S iff q1 − a = H̃DC(q1, . . . , qm),

−em ∈ S iff b − qm = H̃DC(q1, . . . , qm),

1
2 (ei+1 − ei) ∈ S iff 1

2 (qi+1 − qi) = H̃DC(q1, . . . , qm),

for i ∈ {1, . . . ,m − 1}.

Using the fact that a sum of locally Lipschitz functions
is locally Lipschitz and the fact that a linear combination
of regular functions with positive coefficients is also regular,
see e.g., [22], we deduce the following useful result.

Lemma 4.6: The functionsHn,k and H̃n,k are locally
Lipschitz and regular, and their generalized gradients are

∂Hn,k(p1, . . . , pn) =
1

(

n
k

)

∑

{s1,...,sk}∈C(n,k)

∂HDC(ps1
, . . . , psk

),

∂H̃n,k(p1, . . . , pn) =
1

(

n
k

)

∑

{s1,...,sk}∈C(n,k)

∂H̃DC(ps1
, . . . , psk

).

C. Invariance properties

Next, we study the invariance properties ofHn,k for the
symmetric projection with respect to the midpoint ofQ =
[a, b]. Consider the bijective mapi : Q → Q, i(q) = b+a−q.
The following result makes precise our claim of invariance.

Lemma 4.7: The functionsHDC : Qm → R andHn,k :
Qn → R are invariant underi, that is,

HDC(i(q1), . . . , i(qm)) = HDC(q1, . . . , qm),

Hn,k(i(p1), . . . , i(pn)) = Hn,k(p1, . . . , pn),

for all q1, . . . , qm, p1, . . . , pn ∈ Q.

Inspired by Lemma 4.7, we define the set of configurations
in Qn that are invariant underi as,

Qn
inv = {P ∈ Qn | {p1, . . . , pn} = {i(p1), . . . , i(pn)}.

Note that a configuration(p1, . . . , pn) ∈ Qn
≤ belongs toQn

inv
if p1 = i(pn), . . . , pn = i(p1). If n = 2m + 1, m ∈ Z≥0, is
odd, then this implies thatpm+1 = a+b

2 .

The following result narrows down the search for the
solutions to our optimal deployment problem.

Proposition 4.8: The minimizers ofHDC overQm
inv ∩Qm

≤

are minimizers ofHDC over Qm
≤ . Likewise, the minimizers

of Hn,k over Qn
inv ∩ Qn

≤ are minimizers ofHn,k over Qn
≤.

V. CHARACTERIZATION OF THE OPTIMAL DEPLOYMENT

CONFIGURATIONS

Here, we characterize the solutions to the optimal de-
ployment problem formulated in Section III for a range of
situations depending on the relative value of the numberk of
working agents with respect to the total numbern of agents.

A. Performance bounds

Here, we formalize the intuition that, from a performance
viewpoint, a network composed ofn agents withk of them
working whose identity is unknown is worse than a network
composed ofk working agents. We have only been able to
prove this result fork ≤ ⌊n/2⌋ + 1, although we suspect it
to be true in general. We start with a characterization of the
minimizers when all agents are working.

Lemma 5.1: The functionHn,n has as unique minimizer
the configuration

p∗1 =
(2n − 1)a + b

2n
,

p∗2 =
(2n − 3)a + 3b

2n
,

...

p∗n−1 =
3a + (2n − 3)b

2n
,

p∗n =
a + (2n − 1)b

2n
,

with valueHn,n(p∗1, . . . , p
∗
n) = b−a

2n
.

The following result shows that the minimizers of the
problem when all agents are working bound the location of
the minimizers when only a fraction of the agents work.

Theorem 5.2: For n ≥ 2 and k ≤ ⌊n/2⌋ + 1, let
(p1, . . . , pn) be a minimizer ofHn,k and let (p∗1, . . . , p

∗
k)

be the minimizer ofHk,k. Then

p1 ≥ p∗1, pn ≤ p∗k.

We suspect that Theorem 5.2 holds for anyn ≥ 2 andk ≤
n. The next result states that a network composed ofn agents
with k of them working whose identity is unknown performs
worse than a network composed ofk working agents.



Corollary 5.3: For n ≥ 2 andk ≤ ⌊n/2⌋, let (p1, . . . , pn)
be a minimizer ofHn,k and let(p∗1, . . . , p

∗
k) be the minimizer

of Hk,k. ThenHk,k(p∗1, . . . , p
∗
k) < Hn,k(p1, . . . , pn).

B. Proof strategy for the characterization of minimizers

Our next step is to study the location of the minimizers
of Hn,k. In this section, we describe our strategy to do so.
Because of the invariance under permutations, it is sufficient
to characterize the minimizers ofHn,k over Qn

≤. These
minimizers, however, are not necessarily described properly
by the equation0 ∈ ∂Hn,k(p1, . . . , pn) if they belong to the
boundary ofQn

≤.

The combination of the results presented in Section IV
allows us to adopt the following strategy to find these
solutions. On the one hand, Proposition 4.8 states that we
can restrict our search toQn

inv∩Qn
≤. On the other hand, since

Hn,k andH̃n,k are the same function overQn
≤, they have the

same minimizers overQn
≤. Noting that minimizers of̃Hn,k

must belong to the interior ofQn, and using Lemma 4.2 and
Proposition 4.3, we deduce that the minimizers of̃Hn,k over
Qn

≤ are described by

0 ∈ ∂H̃n,k(p1, . . . , pn). (5)

Therefore, our strategy to find the solutions is to look for
(p1, . . . , pn) ∈ Qn

inv ∩ Qn
≤ that satisfy (5). Lemma 4.6

provides us with the tools to characterize these minimizers.
The idea is to understand the geometric conditions on the
critical configurations imposed by this description. We make
extensive use of this strategy next.

C. Optimally-sized-and-positioned agent clusters

Here, we show that the agent clustering turns out to be
optimal for our deployment problem, and specify the optimal
size of the clusters in a range of situations. Our proof strategy
is that of Section V-B. We start with the case of a single
working agent.

Lemma 5.4: For n ∈ N, the minimizer ofHn,1 is

p∗1 = · · · = p∗n =
a + b

2
.

Next, we examine the case of two working agents.

Proposition 5.5: For n ≥ 2, the minimizer ofHn,2 is

p∗1 = · · · = p∗m =
3a + b

4
,

p∗m+1 = · · · = p∗2m =
a + 3b

4
, (6a)

if n = 2m is even, and

p∗1 = · · · = p∗m =
3a + b

4
, p∗m+1 =

a + b

2
,

p∗m+2 = · · · = p∗2m+1 =
a + 3b

4
, (6b)

if n = 2m + 1 is odd.

The following result shows that the solution with three
working agents is the same as when there are only two.

Proposition 5.6: For n ≥ 4, the minimizer ofHn,3 is
given by (6).

Our final result shows that, when all agents but one are
working, clustering in groups of two is optimal.

Proposition 5.7: For n ≥ 2, the minimizer ofHn,n−1 is

p∗k = p∗k+1 =
(2m − k)a + kb

2m
,

for k ∈ {1, 3, . . . , 2m − 1}, if n = 2m is even,

p∗k = p∗k+1 =
(2(m + 1) − k)a + kb

2(m + 1)
,

p∗m =
(m + 2)a + mb

2(m + 1)
,

p∗m+1 =
a + b

2
,

p∗m+2 =
ma + (m + 2)b

2(m + 1)
,

for k ∈ {1, 3, . . . ,m − 2,m + 4,m + 6, . . . , 2m + 1}, if
n = 2m + 1 is odd withm odd, and

p∗k = p∗k+1 =
(2(m + 1) − k)a + kb

2(m + 1)
,

p∗m+1 =
a + b

2
,

for k ∈ {1, 3, . . . ,m−1,m+1, . . . , 2m+1}, if n = 2m+1
is odd withm even.

Figure 1 illustrates the performance with regards toHn,k

of its minimizer against the solution with all agents working,
cf. Lemma 5.1, fork = 2, 3, andn − 1.

Remark 5.8: (Conjecture for arbitrary number of working
agents): Interestingly, all the results in this section point
in the same direction: grouping agents into clusters and
optimally deploying the resulting clusters is the solutionto
our optimal deployment problem. Grouping agents increases
the chances of each cluster having at least a working agent,
and hence being able to produce a measurement. The larger
the size of the clusters is, the most likely it is that they
will work. However, the larger the size, the smaller the
number of clusters, and hence the worse the performance.
These observations lead us to conjecture that, in general,
the minimizers ofHn,k for arbitrary k ≤ n correspond to
agent clusters optimally deployed according to its number,
and that there is a precise formula that determines the number
of clusters and their size for givenn andk. We also believe
the conjecture to hold in higher dimensions since the tradeoff
between size and number of clusters is independent of the
dimension, although the specific formula might be different
depending of the environment. •

VI. CONCLUSIONS

We have analyzed a deployment problem for an unreliable
robotic sensor network taking point measurements of a
spatial process and relying them back to a data fusion center.
We have shown that grouping sensors not only makes sense
as a ’play-it-safe’ strategy, but that, surprisingly, turns out
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Fig. 1. Performance comparison between deployment solutions that take (solid line) and do not take (dashed line) into account, respectively, packet
drops. In each plot, the solid curve corresponds to the optimal value of Hn,k, while the dashed curve corresponds to the value ofHn,k at the optimal
configuration ofHn,n. Sincek is constant in (a) and (b) (i.e., a fixed number of sensors work), the difference in performance becomes larger asn grows.
However, sincek = n − 1 in (c) (i.e., all but one sensor work), the difference in performance decreases asn grows.

to be optimal. From our study, we have conjectured that
the right amount of grouping depends upon the proportion
of working sensors with respect to the total number of
agents. We have shown this conjecture to be true in a
number of cases. Our analysis has required a blend of
nonsmooth analysis, convex analysis, and combinatorics. The
results presented here offer guidance as to how to design
coordination algorithms to achieve optimal deployment with
failing sensors. Future work will be devoted to this topic as
well as to establish the validity of the conjecture in all cases
and examine the connection of the solutions presented here
with dynamic scenarios with randomly failing sensors taking
multiple measurements.
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