Deployment of an unreliable robotic sensor network for spaséih®tion

Jorge Cors

Abstract— This paper studies an optimal deployment prob- sensors and the data fusion center can be understood as an
lem for a network of robotic sensors moving in the real erasure channel, where packets are either dropped or eeceiv
line. Consider the scenario where each sensor is to take a oyt error. Many works have considered erasure channels

measurement of a spatial process of interest and send it back . bl f trol and estimati 101, M1
to a data fusion center. Assume only a specific fraction of in problems of control and estimation, see e.g, [10], [11],

the messages containing the measurements will arrive at the [12], [13], [14], and in particular, in the context of sensor
center. We show that, for several fraction values, the optimal networks [15], [16], [17], [18], [19]. The work [20] conside

deployment configurations have the following features: agents a scenario similar to ours for a network of static sensors
are grouped into clusters, the clusters are deployed optimally 4t take noisy measurements and characterizes the tradeof

as if at least a message from each cluster was guaranteed tob ¢ t . ¢ d estimati litv. Einall
reach the center, and for each fraction value, there is a specific C€WEeN ransmission raté and estimation quality. Finally

optimal cluster size. The technical approach combines convex the work [21] deals with the optimization of the location
analysis, nonsmooth analysis, and combinatorics. of controllers when sensors and actuators are connected by

an array of unreliable links.

Satement of contributions. We define an aggregate objec-
An important motivation for the use of multiple robotstive function that, to each configuration ofrobot positions,
is the robustness that robotic networks can provide agairggsociates the expected performance of the network under
individual malfunctions. This paper is a contribution t@th » — k stochastic packet drops. Although some of our results
growing body of research in cooperative control that seekgould be presented in arbitrary dimensions, we restrict our
to understand how individual failures affect the networlattention to a closed segment of the real line. We charaeteri
performance and how to best account for these failures the convexity, smoothness, and invariance properties @f th
designing robust and adaptive robotic networks. objective function. This study is key as it allows us to
We consider the following problem. A group of roboticrestrict our search for minimizers to a subset of the space
sensors is to be deployed over a region to sample a Spaﬁm network configurations, more specifically, those that are
process. Each sensor will take a point measurement alfyariant under the symmetric projection around the midpoi
report it back to a data fusion center. However, because 8f the segment and whose positions are ordered in increasing
the features of the medium and the limited communicatiofrder according to the agent identifier. We provide closed-
capabilities of the agents, it is known that only a fractiofform expressions for the minimizers for several subfarilie
of these packets will arrive at the center. Because of tHf problems.
stochastic nature of the packet drops, it is not known a

I. INTRODUCTION

priori which measurements will arrive. Our objective is to __ n = 2m agents

h terize the deployment configurations that maxinhige t Successiul transmissions| 1 | 2 S (n-lim
Charac ‘ _p y g ) Optimal number of clusterg 1 2 2 n/2 | n
expected information content of the measurements rettieve Optimal cluster size n | nj2 | n/2 2 1
at the data fusion center. Specifically, we seek to minimize TABLE |

the eXpeCted maXimUm prediCtion error Of the beSt Iir1ear|\/|INIMIZERS FOR NETWORKS WITH EVEN NUMBER OF AGENTSTHE
unbiased predictor of the spatial field computed by the fusio
center. We are also interested in quantifying the perfomaan
degradation of the network as a function of the fraction of
packets that are successfully transmitted.

Literature review: The problem considered in this paper
combines elements from facility location [1], [2], optimal

gstimation ‘?f SPa“a' fields in statistics ,[3]' [4]. and disias grouped into clusters, and the resulting clusters are gledlo

in communications theory [5], [6]. Without packet drops,, yimaly as if at least a message from each cluster was
our scenario corresponds to the disk-covering geometrig, anteed to reach the data fusion center. Our results show
optimization problem studied in [7], whose solutions tutt 0 -+ there is an optimal tradeoff between grouping agents

to be Opt'mé_‘l for mmw_mzmg the postenor pred_lctl\_/e VAt i clysters to increase the likelihood of measurements from
of the best linear unbiased predictor of a spatial field, ghe[those location arriving at the center and having as many

[9]. Our model for the communication between the robotigjitrarent clusters as possible to increase the number of
Jorge Coits is with the Department of Mechanical and Aerospacé:“St”"Ct measurements. We establish this tr.adeOff for EhSp
Engineering, University of California, San Diegopr t es@icsd. edu  {(n,k) | k € {1,2,3,n—1,n}}. Table | provides a summary

MINIMIZERS CORRESPOND TO DEPLOYING THE CLUSTERS AS IF AT
LEAST A PACKET FROM EACH ONE WAS GUARANTEED TO REACH THE
CENTER

A common feature of the minimizers is that agents are



of these results when is even. For space reasons, the proofs A final technical notion that we need to introduce is that

of the results are omitted and will appear elsewhere.

of regular function.f is regular at = € R if for all v € R,

Organization: Section Il introduces some useful notationthe right directional derivative off at = in the direction
and presents some basic facts on nonsmooth ana|y5i5_ S@E.U exists and coincides with the generalized directional
tion |1l states the problem considered here and introdunes tderivative of f atz in the direction ofv. Precise definitions
objective function. Section IV studies in detail its smoothOf these directional derivatives can be found in [22].
ness, convexity, and invariance properties. Section V-char

acterizes the solutions to the optimal deployment problem .
in a range of situations. We conclude by discussing the
implications of our results and ideas for future work in
Section VI. Some of the proofs are omitted for space reaso

Il. PRELIMINARIES

We letey,...,eq denote the Euclidean basis Bff. Let
co(S) denote the convex closure of a sgtc R? and let

B(z,e) = {y € RY | |y — z| < &} denote the open

ball in R¢ with centerz and radiuss. For k < n, we let
C(n, k) denote the set of-combinations from{1, ..., n}.
Given {sy, ..
generality thats; < ... < sy.

A. Computational geometric notions

The \oronoi partition of @ < R? generated by

p1,...,pn € Q is the collection of set§Vy,...,V,,},
Vi={qeQlllg—pill <llg —p;ll forj # i},
for i € {1,...,n}. Note that the union of the Voronoi cells

n

., sk} € C(n,k), we assume without loss of

PROBLEM STATEMENT

Consider a scenario where a group of robotic sensors are
to be optimally deployed in order to take point measurements
bF a spatial random field. Assume that, once taken, the
measurements will be sent to a data fusion center that
will construct the estimate with the information received.
Because of the features of the environment and the limited
communication capabilities of the sensors, assume that it i
known that only a fraction of those measurements will arrive

Our main objective is to characterize the optimal deploy-
ment configurations for the group of robotic sensors in the
scenario described above. The fact that the identity of the
agents whose measurements arrive at the data fusion center
is not known a priori is what makes the problem challenging.
Let us make precise the notion of what a good deployment
is. Let @ = [a,b] C R be a closed interval. Givem € Z,
consider thedisk-covering function Hpg : Q™ — R,

1)

,Qm) = max min

H e
DC(QI qeQ ie{l,....m

q—qifl-
}II |

is the whole sef) and that the intersection of the interiors of The value of Hpc corresponds to the smallest radius such

any two cells is empty. On the real liné = 1, the notion of
Voronoi partition is particularly simple. Give® = [a,b] C

R and (p1,...,pn) € Q" leto : {1,...,n} — {1,...,n}
denote a permutation such that;) < ... < pg(,). The
Voronoi partition of@ determined by, ..., p, is given by
Po(1 +p¢72 Po(n—1 +pa n
Va‘(l):|:aa ()2 ()i|7Vo'(n):|: ( )2 ()7b7
Vo — Do(i—1) t Po(i) Po(i) + Po(i+1)
““_[ 2 ’ 2 }

wherei € {2,...,n —1}.

B. Nonsmooth analysis

Let f be a function of the forny : R — R. f is locally
Lipschitz at = € R? if there existL,,s € R+, such that

If(y) = FW)] < Lelly — o/,

for y,y' € B(z,¢). f is locally Lipschitz on S c R? if it is
locally Lipschitz atx, for all z € S.

The generalized gradient of a locally Lipschitz functionf
is defined by

of(z) = co{iliinoodf(xi) |z, — o, x; € SUQL,

where Q; C R? is the set of points wherg fails to be

differentiable, andS denotes any other set of measure zero.

that the union of balls centered at the poigts. .., ¢, € Q

with radius Hpc(q1,--.,¢n) covers the whole environ-
ment(. The reason why we consider#p¢ is as follows:

one can show [9] that, under certain technical conditidms, t
minimization of this function is equivalent to the minimiza
tion of the maximum uncertainty about the estimation of the
spatial random field. We emphasize that if all measurements
were guaranteed to arrive at the fusion center, thés:
would be the objective function to optimize. However, this
is in general not the case, as we describe next.

Consider now a group of mobile robotic sensors with
positionspy, ..., p, € @ that can take point measurements
of the spatial random field. Let us refer to a sensomarking
if once the network has been deployed and the measurements
have been taken, its message arrives at the data fusiom.cente
Of course, the identity of these sensors is a priori unknown.
Assume that only; < n sensors are working. Since oriyof
the sensors are working and their identity is unknown, axste

of the objective function(py,...,pn) — Hpc(®1s---,Pn)
defined above, we consider the objective function
Hn,k(Pl, e ,pn) =
1
(n) Z HDC (pn PR 7psk)7 (2)
k {s1,....,sk}€C(n,k)

A point 2z € R? which verifies thatd € df(z) is called a which corresponds to the expected performance of the dveral

critical point of f. Minimizers and maximizers of are of
course critical points of in the sense of this definition.

group. Note thatt, ,, is exactly’Hpc, i.e., both functions
coincide if all sensors are working.



Remarks 3.1: (i) The problem described above couldThese maps are not invariant under permutations. Their
also be formulated in arbitrary dimensions. We haveelationship withHpc andH,, i is given by
found that the problem is challenging enough on the
) real Iine.to. de§erve attention on its own; ' Hoc(qr, ..\ gm) = 7/1\135(%(1), e (),
(i) The optimization of H,, , can be given alternative —
interpretations that involve the capability of servicing Hon k(P15 -3 Pn) = Hu i (Dpa)s -5 Pp(n)):
events in the environment, but we do not get into the
details here for simplicity. o fOrqgi,....qm,p1,...,pn € Q, Wwhereo andp are permuta-
tion such thatqa(l) <...< Ao (m) andpp(l) <...< Po(n)-
IV. ANALYSIS OF THE OBJECTIVE FUNCTION The following result states the convexity properties oftladl
functions mentioned so far.
In this section, we study the properties f, ;. This Lemma 4.2: The functionsHpc and,, 1 & are convex on
analysis will be most useful to characterize its minimizers gm and ", respectively. Consequently, the functiohsc
andH,, , are convex or)”? and Q%, respectively.

The minimizers ofH, , over Q% might belong to the

We begin by noting that(p and™,, ;, are invariant under boundary of the set, and hence, in spite of Lemma 4.2, not
permutations. be fully described with gradient information only. As we

will explain later in Section V-B, the following result will
be most helpful to overcome this hurdle.

Proposition 4.3: The minimizers ofﬁgg over Q7 are
Hpc(do(1)s - - -5 do(m)) = Hpelqrs -, Gm).- also/rn/inimizers oﬂf{]\DE overQm™. Likewig_e\,/the minimizers
of Hy, 1 over Q< are also minimizers oH,, ;, over Q™.

A. Convexity properties

Lemma 4.1: For any permutations : {1,...,m} —
{1,...,m} and anyq,...,qm € Q,

Consequently},, ;. is also invariant under permutations.

The invariance ofH,, ;, under permutations allows us to
restrict our search for minimizers to B. Nonsmooth properties

QL ={(p1,--,pn) €Q" |p1 <...<pu} CQ". (3) We review some basic facts about the disk-covering func-
tion Hpc following [7]. Given a seti C @ andp € W,

Regarding the study of the critical points, it is importantet 1g,,, : W — R be the largest distance fromto W,
to note thatHpc andH,, , arenot convex onQ™ andQ",

respectively. This fact is related with their invariancedan
permutations, cf. Lemma 4.1. Let us illustrate it faipc.
Letqi,...,qm € Q With g1 < --+ < g, Such that

] — —ll.
gw(p) gggllq Pl

This definition allows us to rewrité{pc as follows

42 —q1 qm — gm—1
ql—a>max{ 5 ,...,f,b—qm}.
HDC(Qh .o an) = ,e{I{laX }lgV, oﬂ-i(qlv v 7Qm) (4)
Then we have that{pc(qi, g2,q3, .- Gm) = @ — a = S
Hpo(g2, 41,43, -+ 4m). Moreover, wherer; : Q" — Q, i € {1,...,m}, denotes the projection
1 1 (¢1,---,9m) — q;- The individual objective functions in (4)
HDC(i(ql +ta) 5@ +a2): 03, dm) can take three different forms. To write them explicitly,
1 assume, without loss of generality th@at, ..., ¢,) € Q%
> — - - I . <
- 2(q1 ta)-e>q-a (if this is not the case, then the expressions below need
1 1 only to be rearranged according to the increasing order of
:77—{ ) 9 gy 7,}_{ ) 343y )
5 Hoc(a1,42, 35+ gm) + 5Hpo(d2: 01,435+ dm) d1.. . ). Then, we have
and henceHpc is not convex onQ™. P
Interestingly, bothHpc andH,, , are convex on conve- lgy, om1(q1, -, ¢m) = max {Ch -4 }7
nient subsets of their domain of definition. To show this, let G — Qi1 Git1 — i
us define the map&{pc : Q™ — R andH,, 1, : Q" — R, Igy, omi(qr, - qm) = maX{ B) ) B) }’
— 1 _ 9m — dm-1 b
Hpc(qi, - qm) = v, omm(q1, - -+, qm) = max 5 '~ dm (5
max{ —a 42 —q1 dm — dm—1 h— }
Q=g 2 0 dm s wherei € {2,...,m—1}. The following result states explicit
m(ph i pn) = expressions for the generalized gradients of these furtio
1 — Lemma 4.4: The functionslgy om; : Q" — R, i €
(T) Z HDC(Psys -+ s Psic)- {1,...,m}, are locally Lipschitz and regular Furthermore,
k/ {s1

~~~~~ sk}EC(n.k) for (ql, -+, qm) € QZ, their generalized gradients take one



of the following forms forall gi,...,q¢m,p1,...,Pn € Q.

Inspired by Lemma 4.7, we define the set of configurations

d(lgy, om ey = . . .
(gv, o ™)@ 4m) in Q" that are invariant underas,

e1 if g1 —a> 2548,
cofer, L(ea —en)} if g —a = L5L, v =1P € Q" [{p1,-..,pn} = {i(p1), .., i(pn)}-
1 H — . .
3(e2 —e1) if 1 —a < 9250, Note that a configuratiotys, ..., p,) € Q™ belongs toQz,
gy, omi)(qrs -+ qm) = if pr =i(pn)y...,0n =1i(p1). f n = 2bm—|— 1, m e Zsg, is
Lie; — es_1) if g > Grition odd, then this implies that,, 1 = “£°.
1 . Gia b The following result narrows down the search for the
5c0{e; —ei_1,ei11 — e} If g = TG ; ;
% ) q-+1~2kqf71 solutions to our optimal deployment problem.
5(eiv1 —e;) if g < FH57 Proposition 4.8: The minimizers ofHpc over @iy, N QY
a1 are minimizers ofHpc over Q7. Likewise, the minimizers
(lgv,, ©mm)(g1s- -5 am) = o of H,, . overQp, N Q™ are minimizers ofH,, , over Q™.
%(em - emfl) if 4 gm_l >b— qm;
co{—€m, L(em — em_1)} If E2=In=t —p_g V. CHARACTERIZATION OF THE OPTIMAL DEPLOYMENT
e G —Gm1 CONFIGURATIONS
—€m if s — <b-— qm-

Given the fact that the maximum of locally Lipschitz and Here, we characterize the solutions to the optimal de-
regular functions is itself locally Lipschitz and regulaee ployment problem formulated in Section Ill for a range of
e.g., [22], one has the following result. situations depending on the relative value of the nunibefr

Lemma 4.5: The functions Hpc and Hpc are locally Working agents with respect to the total numbeof agents.

Lipschitz and regular, and their generalized gradients are
A. Performance bounds

OH seeosqm = co{0(l ; i s ey @y . . ..
peld 4m) = cotdley, o) (a1 am) | Here, we formalize the intuition that, from a performance

/i\S/UCh thatpe(qr, - - -5 gm) =18y, omilqr, - - am) } viewpoint, a network composed af agents withk of them
OHpe(q1, -y gm) = co{S(q1s- - qm)}s working whose identity is unknown is worse than a network

composed ofk working agents. We have only been able to
prove this result fork < |n/2] + 1, although we suspect it
er € Siff ¢1 —a=Hpc(q, -\ qm), to be true in general. We start with a characterization of the
minimizers when all agents are working.

Lemma 5.1: The function’,,,, has as unique minimizer

whereS = S(q1,...,qmn) is the set defined by

—em € S iff bi(bn :7/'[)56@17~~7(1m);

%(eiﬂ —¢;) € S iff %(Qiﬂ — ;) =Hpc(a, - am), the configuration
forie{1,...,m—1}. . (2n—1Da+b
Using the fact that a sum of locally Lipschitz functions p1= m ’
is locally Lipschitz and the fact that a linear combination . (2n—3)a+3b
of regular functions with positive coefficients is also riegu P2 = m ’
see e.g., [22], we deduce the following useful result.
Lemma 4.6: The functions™,,; and H, ; are locally '
Lipschitz and regular, and their generalized gradients are P = w
" 2n ’
1
OHn k(P15 Pn) = T) Z OHDC(Psys -5 Psi ), o= a+(2n—1)b
k) sy, sk eC(n,k) " 2n ’
—— 1 —— H * * b—a
aHn,k(pla-~~apn): N Z 8HDC(psl7---apsk)~ with ValueH”’"(pl""’pn): 2n -
(k){sl,...,sk}ecm,k) The following result shows that the minimizers of the

problem when all agents are working bound the location of

the minimizers when only a fraction of the agents work.
Next, we study the invariance properties’f, ;. for the Theorem5.2: For n > 2 and k < |n/2] + 1, let

symmetric projection with respect to the midpoint@f= (5 . . ,P,,) be a minimizer ofH,,; and let(ps,...,p})

[a,b]. Consider the bijective maip Q — @, i(q) =b+a—q.  pe the minimizer ofH,, ;. Then
The following result makes precise our claim of invariance.

C. Invariance properties

Lemma 4.7: The functionsHpc : Q™ — R and H,,, : P1 =i,  Pn <D
Q" — R are invariant undet, that is, We suspect that Theorem 5.2 holds for any 2 andk <
) ) n. The next result states that a network composed afents
Hpc(i(q1), -+, 1(gm)) = Hpc(qr, - -+, @m), with k of them working whose identity is unknown performs

Ho e (((p1)s -+ i(Pn)) = Hn k(P15 Pn), worse than a network composed lofvorking agents.



Corollary 5.3: Forn > 2 andk < [n/2], let(p;,...,D,) Proposition 5.6: For n > 4, the minimizer of H,, 5 is
be a minimizer ofH,, ,, and let(p7, ..., p;) be the minimizer given by (6).
of Hi k. ThenHy ik (py, ..., pf) < Hnk(Prs-- -, Dy)- Our final result shows that, when all agents but one are
o o working, clustering in groups of two is optimal.
B. Proof strategy for the characterization of minimizers Proposition 5.7: Forn > 2, the minimizer ofH,.._, is

Our next step is to study the location of the minimizers

. . . 2m —

of H, x. In this section, we describe our strategy to do so. Ph = Php1 = w,
Because of the invariance under permutations, it is sufficie _ m _
to characterize the minimizers o, over Q2. These forke {1,3,...,2m — 1}, if n=2m is even,
minimizers, however, are not necess.arily described plypper L 2(m+1) — k)a + kb
by the equatior) € OH,, 1 (p1, - .., pn) if they belong to the Pk = P41 = 2(m 1 1) ;
boundary onS. . . ' ) (m +2)a + mb

The combination of the results presented in Section IV Pm = "% 1)

. ) (m+1)

allows us to adopt the following strategy to find these atb
solutions. On the one hand, Proposition 4.8 states that we Dg1 = 5
can restrict our search @, Q<. .On the other hand, since ) ma + (m + 2)b
H.,.i. and’H,, ;, are the same function ové)g, they have the P42 = W’

same minimizers ove®”. Noting that minimizers of)/-(;;

must belong to the interior ap™, and using Lemma 4.2 an
Proposition 4.3, we deduce that the minimizers6f . over
Q" are described by

gfork e {1,3,....m—2,m+4,m+6,....2m + 1}, if
n = 2m + 1 is odd withm odd, and
(2(m+1) —k)a+ kb
2(m+1) ’

Pr = DPky1 =
0 € THo (P, Pn). (5) C a+b
. . . pm+1 = )
Therefore, our strategy to find the solutions is to look for 2
(p1,---.pn) € Qp, N Q% that satisfy (5). Lemma 4.6 fork e {1,3,....m—1,m+1,...,2m+1},if n =2m+1
provides us with the tools to characterize these minimizerss odd withm even.

The idea is to understand the geometric conditions on the Figure 1 illustrates the performance with regards-g,
critical configurations imposed by this description. We makof its minimizer against the solution with all agents woxkin
extensive use of this strategy next. cf. Lemma 5.1, fork = 2, 3, andn — 1.

Remark 5.8: (Conjecture for arbitrary number of working
agents): Interestingly, all the results in this section point

Here, we show that the agent clustering turns out to hie the same direction: grouping agents into clusters and
optimal for our deployment problem, and specify the optimabptimally deploying the resulting clusters is the solution
size of the clusters in a range of situations. Our proofegrat our optimal deployment problem. Grouping agents increases
is that of Section V-B. We start with the case of a singléhe chances of each cluster having at least a working agent,

C. Optimally-sized-and-positioned agent clusters

working agent. and hence being able to produce a measurement. The larger
Lemma 5.4: Forn € N, the minimizer ofH,, 1 is the size of the clusters is, the most likely it is that they
’ will work. However, the larger the size, the smaller the
* »_atb number of clusters, and hence the worse the performance
pl T e e . — pn fr— . ) 1 X p | .
2 These observations lead us to conjecture that, in general,

Next, we examine the case of two working agents. the minimizers ofH, ; for arbitrary k& < n correspond to

Proposition 5.5: Forn > 2, the minimizer ofH,, 5 is agent clusters optimally deployed according to its number,
. . 3a4+0b and that there is a precise formula that determines the numbe
Pr=r=Pm = T of clusters and their size for givenandk. We also believe
. . a4+ 3b the conjecture to hold in higher dimensions since the triideo
Pmy1 = "= Pam = 7 (63)  petween size and number of clusters is independent of the
if = 2m is even, and dimensi'on, although t'he specific formula might be different
depending of the environment. °
. . 3a+0b . a+b
P=""=Pm= " Pmp1T 79 VI. CONCLUSIONS
Prio = " = Doma1 = %‘%, (6b) We have analyzed a deployment problem for an unreliable
robotic sensor network taking point measurements of a
if n=2m +1is odd. spatial process and relying them back to a data fusion center

The following result shows that the solution with threeWe have shown that grouping sensors not only makes sense
working agents is the same as when there are only two. as a 'play-it-safe’ strategy, but that, surprisingly, wirout



X
3
E

© oo o000 oo
BN WA 00 N

n

4 6 8

@ k=2

10 12 14 4 6 8

() k=3

10

Fig. 1.

12 14 4 6 8

C©k=n-1

10

Performance comparison between deployment solutimaistake (solid line) and do not take (dashed line) into antorespectively, packet

drops. In each plot, the solid curve corresponds to the optwalae of 7, ;,, while the dashed curve corresponds to the valué{qf;, at the optimal
configuration ofH,, . Sincek is constant in (a) and (b) (i.e., a fixed number of sensors wdik) difference in performance becomes largen agows.
However, sincek = n — 1 in (c) (i.e., all but one sensor work), the difference in perfance decreases asgrows.

to be optimal. From our study, we have conjectured thati]
the right amount of grouping depends upon the proportion
of working sensors with respect to the total number of;
agents. We have shown this conjecture to be true in a
number of cases. Our analysis has required a blend of
nonsmooth analysis, convex analysis, and combinatortes. T
results presented here offer guidance as to how to desigs]
coordination algorithms to achieve optimal deploymentwit
failing sensors. Future work will be devoted to this topic ag, 4
well as to establish the validity of the conjecture in alless
and examine the connection of the solutions presented he[{g]
with dynamic scenarios with randomly failing sensors tgkin

multiple measurements.
[16]
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