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Abstract

This paper studies an optimal deployment problem for a network of robotic sen-
sors moving in the real line. Given a spatial process of interest, each individual
sensor sends a packet that contains a measurement of the process to a data
fusion center. We assume that, due to communication limitations or hardware
unreliability, only a fraction of the packets arrive at the center. Using con-
vex analysis, nonsmooth analysis, and combinatorics, we show that, for various
fractional rates of packet arrival, the optimal deployment configuration has the
following features: agents group into clusters, clusters deploy optimally as if at
least one packet from each cluster was guaranteed to reach the center, and there
is an optimal cluster size for each fractional arrival rate.

1. Introduction

An important motivation for the use of multiple robots in cooperative control
is the robustness that robotic networks can provide against individual malfunc-
tions. This paper is a contribution to the growing body of research in coop-
erative control that seeks to understand how individual failures affect network
performance and how to best account for these failures in designing robust and
adaptive robotic networks.

We consider the following problem. A group of robotic sensors is to be
deployed over a region to sample an environmental process of interest. Each
sensor will take a point measurement and report it back to a data fusion center.
However, because of the features of the medium and the limited communication
capabilities of the agents, it is known that only a fraction of these packets will ar-
rive at the center. Because of the stochastic nature of the packet drops, it is not
known a priori which measurements will arrive. Our objective is to characterize
deployment configurations that maximize the expected information content of
the measurements retrieved at the data fusion center. We are also interested
in quantifying the performance degradation of the network as a function of the
fraction of packets that are successfully transmitted.
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Literature review. The problem considered in this paper combines elements
from facility location [1, 2], optimal estimation of spatial fields in statistics [3, 4],
and data loss in communications theory [5]. Without packet drops, our scenario
corresponds to the disk-covering geometric optimization problem studied in [6],
whose solutions turn out to be optimal for minimizing the posterior predictive
variance of the best linear unbiased predictor of a spatial field, see [7, 8]. Our
model for the communication between the sensors and the data fusion center
can be understood as an erasure channel, where packets are either dropped or
received without error. Many works have considered erasure channels in prob-
lems of control and estimation, see e.g, [9–12], and in particular, in the context
of sensor networks [13–16]. The work [17] considers a scenario similar to the
one in this paper for a network of static sensors that take noisy measurements
and characterizes the trade-off between transmission rate and estimation qual-
ity. Finally, [18] deals with the optimization of the location of controllers when
sensors and actuators are connected by an array of unreliable links.

Statement of contributions. We define an aggregate objective function that, to
each configuration of n robot positions, associates the expected performance
of the network under n − k packet drops (or, alternatively, under k a priori
unknown successful packet transmissions). Although some of our results could
be presented in arbitrary dimensions, we restrict our attention to a closed seg-
ment of the real line. We characterize the convexity, smoothness, and invariance
properties of the objective function. This study is key as it allows us to restrict
our search for the minimizers to a subset of the space of network configura-
tions, more specifically, those that are invariant under the symmetric projection
around the midpoint of the segment and whose positions are sorted in increas-
ing order according to the agent identifier. We provide closed-form expressions
for the minimizers for several subfamilies of problems. A common feature of

n = 2m agents
Successful transmissions 1 2 3 n − 1 n

Optimal number of clusters 1 2 2 n/2 n
Optimal cluster size n n/2 n/2 2 1

Table 1: Minimizers for networks with even number of agents. Minimizers correspond to
deploying clusters as if at least one packet from each cluster was guaranteed to reach the center.

the minimizers is that agents are grouped into clusters, and the resulting clus-
ters are deployed optimally as if at least one message from each cluster was
guaranteed to reach the data fusion center. Our results show that there is an
optimal trade-off between grouping agents in clusters to increase the likelihood
of measurements from those location arriving at the center and having as many
different clusters as possible to increase the number of distinct measurements.
We establish this trade-off for the pairs {(n, k) | k ∈ {1, 2, 3, n− 1, n}}. Table 1
provides a summary of the results when n is even.

Organization. Section 2 introduces some useful notation and presents some ba-
sic facts on nonsmooth analysis. Section 3 states the problem considered here
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and introduces the objective function. Section 4 studies in detail the smooth-
ness, convexity, and invariance properties of the objective function. Section 5
characterizes the solutions to the optimal deployment problem in a range of
situations. We conclude by discussing the implications of our results and ideas
for future work in Section 6.

2. Preliminaries

We let {e1, . . . , ed} denote the canonical Euclidean basis of Rd. Let co(S)
denote the convex closure of a set S ⊂ Rd and let B(x, ε) = {y ∈ Rd | ‖y−x‖ <
ε} denote the open ball in Rd with center x and radius ε. For k ≤ n, we let
C(n, k) denote the set of k-combinations from {1, . . . , n}. Given {s1, . . . , sk} ∈
C(n, k), we assume without loss of generality that s1 < . . . < sk.

2.1. Computational geometric notions

The Voronoi partition of Q ⊂ Rd generated by p1, . . . , pn ∈ Q is the collec-
tion of sets {V1, . . . , Vn} defined by

Vi = {q ∈ Q | ‖q − pi‖ ≤ ‖q − pj‖ for j 6= i},

for i ∈ {1, . . . , n}. Note that the union of the Voronoi cells is the whole set
Q and that the intersection of the interiors of any two cells is empty. On the
real line, d = 1, the notion of Voronoi partition is particularly simple. Given
Q = [a, b] ⊂ R and (p1, . . . , pn) ∈ Qn, let σ : {1, . . . , n} → {1, . . . , n} denote
a permutation such that pσ(1) ≤ . . . ≤ pσ(n). The Voronoi partition of Q
determined by p1, . . . , pn is given by

Vσ(1) =
[
a,

pσ(1) + pσ(2)

2

]
, Vσ(n) =

[pσ(n−1) + pσ(n)

2
, b

]
,

Vσ(i) =
[pσ(i−1) + pσ(i)

2
,
pσ(i) + pσ(i+1)

2

]
,

where i ∈ {2, . . . , n − 1}.

2.2. Nonsmooth analysis

Let f be a function of the form f : Rd → R. f is locally Lipschitz at x ∈ Rd if
there exist Lx, ε ∈ R>0 such that |f(y)−f(y′)| ≤ Lx‖y−y′‖, for y, y′ ∈ B(x, ε).
f is locally Lipschitz on S ⊂ Rd if it is locally Lipschitz at x, for all x ∈ S. The
generalized gradient of a locally Lipschitz function f is defined by

∂f(x) = co{ lim
i→+∞

df(xi) | xi → x , xi 6∈ S ∪ Ωf},

where Ωf ⊂ Rd is the set of points where f fails to be differentiable, and S
denotes any other set of measure zero. A point x ∈ Rd which verifies that
0 ∈ ∂f(x) is called a critical point of f . Minimizers and maximizers of f are
of course critical points of f in the sense of this definition. A technical notion
that we need to introduce is that of regular function. f is regular at x ∈ Rd

3



if for all v ∈ Rd, the right directional derivative of f at x in the direction of v
exists and coincides with the generalized directional derivative of f at x in the
direction of v. Precise definitions of these directional derivatives can be found
in [19]. We end this section with a result that will be useful later.

Lemma 2.1. Let f, g, h : Rd → R be convex, locally Lipschitz, and regular
functions with h = f + g. Let X ⊂ Rd containing a minimizer of h and assume
there exists P∗ ∈ X such that

∂f(P ) ⊂ ∂f(P∗) and ∂g(P ) ⊂ ∂g(P∗), for all P ∈ X.

Then, P∗ is a minimizer of h.

Proof. Let P ∈ X be a minimizer of h. Then, 0 ∈ ∂h(P ) = ∂f(P ) + ∂g(P ) ⊂
∂f(P∗) + ∂g(P∗), and hence P∗ is a minimizer of h.

3. Problem statement

Consider a team of robotic sensors with the ability of taking point measure-
ments of a spatial random field of interest. Once taken, the data will be sent
to a fusion center that constructs the estimate with the information received.
In this scenario, it makes sense to optimize the network deployment in order to
construct estimates with minimum uncertainty. Further complicating the prob-
lem, assume that because of the features of the environment and the limited
capabilities of the sensors, it is known that only a fraction of the measurements
will arrive at the center. Our main objective is then to characterize the optimal
deployment configurations for this unreliable sensor network. The fact that the
identity of the agents whose measurements arrive at the fusion center is not
known a priori makes the problem challenging.

The notion of optimal deployment depends of course on the specific objective
function. We describe this point in detail next. Let Q = [a, b] ⊂ R be a closed
interval. Given m ∈ Z, consider the disk-covering function HDC : Qm → R,

HDC(q1, . . . , qm) = max
q∈Q

min
i∈{1,...,m}

‖q − qi‖. (1)

The value of HDC corresponds to the smallest radius such that the union of
balls centered at the points q1, . . . , qm ∈ Q with radius HDC(q1, . . . , qm) cov-
ers the whole environment Q. Under an asymptotic regime known as near-
independence [8], the minimization of HDC is equivalent to the minimization of
the maximum uncertainty about the estimation of the spatial random field.

Consider now a group of n mobile robotic sensors with positions p1, . . . , pn ∈
Q that can take point measurements of the spatial random field. Let us refer
to a sensor as working if once the network has been deployed and the mea-
surements have been taken, its message arrives at the data fusion center. Of
course, the identity of these sensors is a priori unknown. Assume that only
k ≤ n sensors are working. If all of the sensors were working properly, then
the objective function to optimize would be (p1, . . . , pn) 7→ HDC(p1, . . . , pn).
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However, since only k of the sensors work and their identity is unknown, we
consider the expected performance of the overall group. This corresponds to
considering all the possibilities of what k sensors might be working, computing
its performance, and doing the average, i.e.,

Hn,k(p1, . . . , pn) =
1(
n
k

)
∑

{s1,...,sk}∈C(n,k)

HDC(ps1
, . . . , psk

), (2)

Note that Hn,n is exactly HDC. The minimizers of Hn,k correspond then to the
optimal network configurations of the unreliable sensor network.

Remarks 3.1. (i) The problem described above could also be formulated
in arbitrary dimensions. We have found that, even on the real line, the
problem is challenging enough to deserve attention on its own. Section 5
below illustrates the challenging analysis involved in its solution;

(ii) The optimization of Hn,k can be given other alternative interpretations
that involve the capability of servicing events in the environment, but we
do not get into the details here for simplicity. •

4. Analysis of the objective function

Here, we unveil some of the properties of Hn,k. Our strategy to characterize
the minimizers of Hn,k, outlined later in Section 5.2, is based on this analysis.
Specifically, the invariance properties will allow us to restrict the search for
minimizers to a subspace, the convexity properties will allow us to characterize
the minimizers as critical points of a suitable function, and the nonsmooth
properties will allow us to obtain a geometric description of these critical points.

4.1. Convexity properties

Here we establish some important facts regarding the convexity properties
of the objective function Hn,k. We begin by noting that HDC and Hn,k are
invariant under permutations.

Lemma 4.1. For any permutation σ : {1, . . . ,m} → {1, . . . ,m} and any
q1, . . . , qm ∈ Q, HDC(qσ(1), . . . , qσ(m)) = HDC(q1, . . . , qm). Consequently, Hn,k

is also invariant under permutations.

The invariance of Hn,k under permutations allows us to restrict our search
for minimizers to configurations that satisfy p1 ≤ . . . ≤ pn. For convenience, we
use the shorthand notation Qn

≤ to denote the set of such configurations, i.e.,

Qn
≤ = {(p1, . . . , pn) ∈ Qn | p1 ≤ . . . ≤ pn} ⊂ Qn. (3)

Regarding the study of the critical points, it is important to observe that HDC

and Hn,k are not convex on the whole spaces Qm and Qn, respectively, but only
on Qm

≤ and Qn
≤. This fact is related with the invariance of these functions under
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permutations, cf. Lemma 4.1. Let us illustrate that HDC is not convex. Let
q1, . . . , qm ∈ Q with q1 < · · · < qm such that

q1 − a > max
{q2 − q1

2
, . . . ,

qm − qm−1

2
, b − qm

}
.

Then we have that HDC(q1, q2, q3, . . . , qm) = q1 − a = HDC(q2, q1, q3, . . . , qm).
Moreover,

HDC

(1

2
(q1 + q2),

1

2
(q1 + q2), q3, . . . , qm

)
≥

1

2
(q1 + q2) − a

> q1 − a =
1

2
HDC(q1, q2, q3, . . . , qm) +

1

2
HDC(q2, q1, q3, . . . , qm),

and hence HDC is not convex on Qm.
To establish that both HDC and Hn,k are convex on convenient subsets

of their domain of definition, let us define the maps H̃DC : Qm → R and

H̃n,k : Qn → R,

H̃DC(q1, . . . , qm) = max
{
q1 − a,

q2 − q1

2
, . . . ,

qm − qm−1

2
, b − qm

}
,

H̃n,k(p1, . . . , pn) =
1(
n
k

)
∑

{s1,...,sk}∈C(n,k)

H̃DC(ps1
, . . . , psk

).

These maps are not invariant under permutations. Their relationship with HDC

and Hn,k is given by

HDC(q1, . . . , qm) = H̃DC(qσ(1), . . . , qσ(m)),

Hn,k(p1, . . . , pn) = H̃n,k(pρ(1), . . . , pρ(n)),

for q1, . . . , qm, p1, . . . , pn ∈ Q, where σ and ρ are permutations such that qσ(1) ≤
. . . ≤ qσ(m) and pρ(1) ≤ . . . ≤ pρ(n). The following result states the convexity
properties of all the functions mentioned so far.

Lemma 4.2. The functions H̃DC and H̃n,k are convex on Qm and Qn, respec-
tively. Consequently, the functions HDC and Hn,k are convex on Qm

≤ and Qn
≤,

respectively.

Proof. The result follows from these basic facts on convex functions [20]: the
nonnegative weighted sum of convex functions is convex, the maximum of a set
of convex functions is convex, and affine functions are convex.

The minimizers of Hn,k over Qn
≤ might belong to the boundary of the set, and

hence, in spite of Lemma 4.2, not be fully described with gradient information
only. As we will explain later in Section 5.2, the following result will be most
helpful to overcome this hurdle.

Proposition 4.3. The minimizers of H̃DC over Qm
≤ are also minimizers of

H̃DC over Qm. Likewise, the minimizers of H̃n,k over Qn
≤ are also minimizers

of H̃n,k over Qn.
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Proof. For the result regarding H̃DC, it is enough to show that given q1, . . . , qm ∈
Q and a permutation σ such that qσ(1) ≤ . . . ≤ qσ(m), then

H̃DC(q1, . . . , qm) ≥ H̃DC(qσ(1), . . . , qσ(m)). (4)

We consider three cases, according to whether H̃DC(qσ(1), . . . , qσ(m)) is equal to

(a) qσ(1) − a, (b) b− qσ(m), or (c) 1
2 (qσ(i+1) − qσ(i)) for some i ∈ {1, . . . ,m− 1}:

• In case (a), note that qσ(1)−a ≤ q1−a ≤ H̃DC(q1, . . . , qm), and (4) follows;

• In case (b), denote k = σ(i). Again, two subcases may occur. If qk+1 ≥
qσ(i+1), then the result follows from qσ(i+1) − qσ(i) ≤ qk+1 − qk. If in-
stead qk+1 < qσ(i+1), we look at the position of agent k + 2. Since qσ(i)

and qσ(i+1) are, by definition, consecutive, we have qk+1 ≤ qσ(i). Again,
two subcases may occur. If qk+2 ≥ qσ(i+1), then the result follows from
qσ(i+1) − qσ(i) ≤ qk+2 − qk+1. If instead qk+2 < qσ(i+1), this argument
can be iterated if necessary until k + (m − k) = m. In such case, if
qm ≥ qσ(i+1), then the result follows from qσ(i+1) − qσ(i) ≤ qm − qm−1.
If instead qm < qσ(i+1), then qm ≤ qσ(i) and the result follows from
qσ(i+1) − qσ(i) ≤ b − qm;

• Finally, the treatment of case (c) is analogous to that of case (a).

The result for H̃n,k follows by noting that (4) implies that H̃n,k(p1, . . . , pn) ≥

H̃n,k(pρ(1), . . . , pρ(n)) for any permutation ρ such that pρ(1)≤ . . .≤pρ(n).

4.2. Nonsmooth properties

Let us start by reviewing some basic facts about the disk-covering function
HDC following [6]. Given a set W ⊂ Q, define lgW : W → R by

lgW (p) = max
q∈W

‖q − p‖.

Note that lgW (p) is the largest distance from p to the boundary of W . This
definition allows us to rewrite HDC as follows

HDC(q1, . . . , qm) = max
i∈{1,...,m}

lgVi
◦πi(q1, . . . , qm). (5)

where πi : Qm → Q, i ∈ {1, . . . ,m}, denotes the projection (q1, . . . , qm) 7→ qi.
The individual objective functions in (5) can take three different forms. To
write them explicitly, assume, without loss of generality that (q1, . . . , qm) ∈ Qm

≤

(if this is not the case, then the expressions below need only to be rearranged
according to the increasing order of q1, . . . , qm). Then, we have

lgV1
◦π1(q1, . . . , qm) = max

{
q1 − a,

q2 − q1

2

}
,

lgVi
◦πi(q1, . . . , qm) = max

{qi − qi−1

2
,
qi+1 − qi

2

}
,

lgVm
◦πm(q1, . . . , qm) = max

{qm − qm−1

2
, b − qm

}
,

with i ∈ {2, . . . ,m − 1}. Next, we compute their generalized gradients.
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Lemma 4.4. The functions lgVi
◦πi : Qn → R, i ∈ {1, . . . ,m}, are locally

Lipschitz and regular. Furthermore, for (q1, . . . , qm) ∈ Qm
≤ , their generalized

gradients take one of the following forms

∂(lgV1
◦π1)(q1, . . . , qm) =






e1 if q1 − a > q2−q1

2 ,

co{e1,
1
2 (e2 − e1)} if q1 − a = q2−q1

2 ,
1
2 (e2 − e1) if q1 − a < q2−q1

2 ,

∂(lgVi
◦πi)(q1, . . . , qm) =






1
2 (ei − ei−1) if qi > qi+1+qi−1

2 ,
1
2co{ei − ei−1, ei+1 − ei} if qi = qi+1+qi−1

2 ,
1
2 (ei+1 − ei) if qi < qi+1+qi−1

2 ,

∂(lgVm
◦πm)(q1, . . . , qm) =






1
2 (em − em−1) if qm−qm−1

2 > b − qm,

co{−em, 1
2 (em − em−1)} if qm−qm−1

2 = b − qm,

−em if qm−qm−1

2 < b − qm,

where recall that {e1, . . . , em} denotes the canonical Euclidean basis of Rm.

Given the fact that the maximum of locally Lipschitz and regular functions
is itself locally Lipschitz and regular, see e.g., [19], one has the following result.

Lemma 4.5. The functions HDC and H̃DC are locally Lipschitz and regular,
and their generalized gradients are

∂HDC(q1, . . . , qm) = co{∂(lgVi
◦πi)(q1, . . . , qm) |

i such that HDC(q1, . . . , qm) = lgVi
◦πi(q1, . . . , qm)},

∂H̃DC(q1, . . . , qm) = co{S(q1, . . . , qm)},

where S = S(q1, . . . , qm) is the set defined by

e1 ∈ S iff q1 − a = H̃DC(q1, . . . , qm),

−em ∈ S iff b − qm = H̃DC(q1, . . . , qm),

1
2 (ei+1 − ei) ∈ S iff 1

2 (qi+1 − qi) = H̃DC(q1, . . . , qm),

for i ∈ {1, . . . ,m − 1}.

Since the sum of locally Lipschitz functions is locally Lipschitz and a linear
combination of regular functions with positive coefficients is also regular, see
e.g., [19], we have the next result.

Lemma 4.6. The functions Hn,k and H̃n,k are locally Lipschitz and regular,
and their generalized gradients are

∂Hn,k(p1, . . . , pn) =
1(
n
k

)
∑

{s1,...,sk}∈C(n,k)

∂HDC(ps1
, . . . , psk

),

∂H̃n,k(p1, . . . , pn) =
1(
n
k

)
∑

{s1,...,sk}∈C(n,k)

∂H̃DC(ps1
, . . . , psk

).
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4.3. Invariance properties

Next, let us study the invariance properties of Hn,k for the symmetric pro-
jection with respect to the midpoint of Q = [a, b]. Consider the bijective map
i : Q → Q given by i(q) = b + a − q. The following result makes precise our
claim of invariance.

Lemma 4.7. The functions HDC : Qm → R and Hn,k : Qn → R are invariant
under i, that is, for all q1, . . . , qm, p1, . . . , pn ∈ Q,

HDC(i(q1), . . . , i(qm)) = HDC(q1, . . . , qm),

Hn,k(i(p1), . . . , i(pn)) = Hn,k(p1, . . . , pn).

Proof. Note that i
2(q) = q, and therefore, if z = i(q), we have q = i(z). We use

this fact in the following set of equalities

HDC(i(q1), . . . , i(qm)) = max
q∈Q

min
i∈{1,...,m}

‖q − i(qi)‖ = max
z∈Q

min
i∈{1,...,m}

‖i(z) − i(qi)‖

= max
z∈Q

min
i∈{1,...,m}

‖z − qi‖ = HDC(q1, . . . , qm).

This fact implies the invariance for Hn,k.

Inspired by Lemma 4.7, we define the set of configurations in Qn that are
invariant under i as,

Qn
inv = {P ∈ Qn | {p1, . . . , pn} = {i(p1), . . . , i(pn)}}.

Note that a configuration (p1, . . . , pn) ∈ Qn
≤ belongs to Qn

inv if p1 = i(pn), . . . , pn =

i(p1). If n = 2m + 1, m ∈ Z≥0, is odd, then this implies that pm+1 = a+b
2 .

The following result narrows down the search for the solutions to our optimal
deployment problem.

Proposition 4.8. The minimizers of HDC over Qm
inv ∩Qm

≤ are also minimizers
of HDC over Qm

≤ . Likewise, the minimizers of Hn,k over Qn
inv

∩ Qn
≤ are also

minimizers of Hn,k over Qn
≤.

Proof. We show the result for Hn,k (the proof for HDC is analogous). Given
(p1, . . . , pn) ∈ Qn

≤, note that

1

2
(p1, . . . , pn) +

1

2
(i(pn), . . . , i(p1)) ∈ Qn

inv ∩ Qn
≤.

Then, we have

Hn,k

(1

2
(p1, . . . , pn) +

1

2
(i(pn), . . . , i(p1))

)

≤
1

2

(
Hn,k(p1, . . . , pn) + Hn,k(i(pn), . . . , i(p1))

)
= Hn,k(p1, . . . , pn),

where the inequality follows from the convexity of Hn,k on Qn
≤, cf. Lemma 4.2,

and the equality follows from the invariance of Hn,k under permutations, cf.
Lemma 4.1, and i, cf. Lemma 4.7. The result now follows from the above
inequality.
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5. Characterization of the optimal deployment configurations

In this section, we characterize the solutions to the optimal deployment
problem formulated in Section 3 for a range of situations depending on the
number of working agents, k, with respect to the total number of agents, n.

5.1. Performance bounds

Here, we formalize the intuition that, from a performance viewpoint, it is
worse to have a network composed of n agents with k of them working whose
identity is unknown than to have a network composed of k working agents. Let
us start with a useful result that characterizes the minimizers of Hn,n, i.e., when
all agents are working.

Lemma 5.1. The function Hn,n has a unique minimizer given by

p∗1 =
(2n − 1)a + b

2n
, p∗2 =

(2n − 3)a + 3b

2n
, . . .

p∗n−1 =
3a + (2n − 3)b

2n
, p∗n =

a + (2n − 1)b

2n
,

with value Hn,n(p∗1, . . . , p
∗
n) = b−a

2n
.

Proof. Recall that Hn,n is equal to HDC. Let (p1, . . . , pn) be a minimizer.
Note that, by definition of HDC, all agents must be active, i.e., lgVi

(pi) =
HDC(p1, . . . , pn) for all i ∈ {1, . . . , n} (if this is not the case, then one can
find arbitrarily close configurations where the value of HDC is strictly smaller,
contradicting the definition of minimum). Moreover, each agent must be at
the midpoint of its own Voronoi cell (if this is not the case, then moving one
non-centered agent to the midpoint of its own cell does not modify the value
of HDC, and hence yields a minimizer configuration where not all agents are
active, which is a contradiction). Both these facts imply that the minimizer of
HDC is necessarily (p∗1, . . . , p

∗
n).

The following result shows that the location of the minimizers of the prob-
lem when all agents are working (cf. Lemma 5.1) bounds the location of the
minimizers when only a fraction of the agents work.

Theorem 5.2. For n ≥ 2 and k ≤ ⌊n/2⌋+ 1, let (p1, . . . , pn) ∈ Qn
inv

∩Qn
≤ be a

minimizer of Hn,k and let (p∗1, . . . , p
∗
k) be the minimizer of Hk,k. Then

p1 ≥ p∗1, pn ≤ p∗k.

Proof. Note that, given the results in Lemma 4.1 and Proposition 4.8, we can
restrict our attention to the set Qn

inv ∩Qn
≤ without loss of generality. Therefore,

both inequalities in the statement are either simultaneously true or simulta-
neously false. We proceed by contradiction. Assume p1 < p∗1 and pn > p∗k.
We divide the proof in two steps. First, we show that (a) a simultaneous in-
finitesimal motion of all agents located at p1 (respectively, pn) in the positive
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(respectively, negative) direction does not increase the value of Hn,k. We prove
this statement for p1 (the proof for pn is analogous). Let N denote the set of
agents at p1 at the optimal configuration, i.e., N = {j ∈ {1, . . . , n} | pj = p1},
and let N c = {1, . . . , n} \ N . Consider the decomposition

(
n

k

)
Hn,k(p1, . . . , pn) =

∑

{s1,...,sk}∈C(n,k)
{s1,...,sk}6⊂N c

HDC(ps1
, . . . , psk

)

+
∑

{s1,...,sk}∈C(n,k)
{s1,...,sk}⊂N c

HDC(ps1
, . . . , psk

). (6)

Note that the second sum is independent of the value of p1, and hence we
can concentrate on the first sum. Consider then {s1, . . . , sk} ∈ C(n, k) with
{s1, . . . , sk} 6⊂ N c. Since by definition s1 < . . . < sk, note that this is equivalent
to saying that at least one element in {s1, . . . , sk} belongs to N . We claim that

p1 − a < HDC(ps1
, . . . , psk

). (7)

Assume this was not the case. Then, we would have

p1 − a ≥
1

2
(psj+1

− psj
), j ∈ {1, . . . , k − 1},

p1 − a ≥ b − psk
.

Summing up these inequalities, we deduce (2k − 1)(p1 − a) ≥ b − p1, where we
have used ps1

= p1. In turn, this implies that 2k(p1 − a) ≥ b − a, i.e., p1 ≥ p∗1,
which contradicts p1 < p∗1. Fact (a) now follows from (6) and (7).

Next, we show that (b) there is at least one combination (s1, . . . , sk) ∈
C(n, k) for which a simultaneous infinitesimal motion of the agents located at
p1 in the positive direction and the agents located at pn in the negative direction
causes a strict decrease in the value of (ps1

, . . . , psk
) 7→ HDC(ps1

, . . . , psk
). Take

{s2, . . . , sk} ⊂ {⌈n/2⌉, . . . , n} (this is possible because k ≤ ⌊n/2⌋ + 1) and
s1 = 1. We claim that, for j ∈ {2, . . . , k − 1},

psj+1
− psj

≤ ps2
− p1, (8)

and that equality can only hold if psj
= ps2

= (a + b)/2 and psj+1
= b + a− p1.

Note that, by symmetry, for all j ∈ {⌈n/2⌉, . . . , n}, we have pj ≥ (a + b)/2
and, moreover, there exists t ∈ {1, . . . , ⌊n/2⌋} such that i(pt) = b + a− pt = pj .
Therefore, psj+1

− psj
= pt′ − pt, for some 1 ≤ t < t′ ≤ ⌊n/2⌋. Since pt′ − pt ≤

ps2
−p1, we conclude (8). If equality holds, then necessarily pt′ = ps2

= (a+b)/2
and pt = p1, and hence psj

= ps2
= (a + b)/2, and psj+1

= i(p1), as claimed.

From (8), we deduce that fact (b) holds. Finally, the combination of (a) and
(b) is a contradiction with (p1, . . . , pn) being a global minimizer of Hn,k, and
therefore the statement of the result follows.

11



We believe the result in Theorem 5.2 holds for any n ≥ 2 and k ≤ n, but the
proof of this general case remains open. We are now ready to formally establish
the result that a network composed of n agents with k of them working whose
identity is unknown performs worse than a network composed of k working
agents.

Corollary 5.3. For n ≥ 2 and k ≤ ⌊n/2⌋, let (p1, . . . , pn) be a minimizer of
Hn,k and let (p∗1, . . . , p

∗
k) be the minimizer of Hk,k. Then

Hk,k(p∗1, . . . , p
∗
k) < Hn,k(p1, . . . , pn).

Proof. If k = 1, then the result follows from Lemma 5.4 below. Assume then
k ≥ 2. For any (s1, . . . , sk) ∈ C(n, k),

HDC(ps1
, . . . , psk

) ≥ ps1
− a ≥ p1 − a ≥ p∗1 − a,

where we have used Theorem 5.2 in the last inequality. From Lemma 5.1, p∗1 −
a = Hk,k(p∗1, . . . , p

∗
k), and we deduce HDC(ps1

, . . . , psk
) ≥ Hk,k(p∗1, . . . , p

∗
k). To

conclude the result, we show that this inequality is strict for any (s1, . . . , sk) ∈
C(n, k) with {s1, . . . , sk} ⊂ {1, . . . , ⌊n/2⌋}. This can be seen as follows. By
symmetry, pj ≤ (a + b)/2 for j ∈ {1, . . . , ⌊n/2⌋}, and hence

HDC(ps1
, . . . , psk

) ≥
b − a

2
>

b − a

2k
= Hk,k(p∗1, . . . , p

∗
k),

as claimed.

5.2. Proof strategy for the characterization of minimizers

Our next step is to study the location of the minimizers of Hn,k. In this
section, we describe our strategy to do so. Because of the invariance under
permutations, it is sufficient to characterize the minimizers of Hn,k over Qn

≤.
These minimizers, however, are not necessarily described properly by the equa-
tion 0 ∈ ∂Hn,k(p1, . . . , pn) if they belong to the boundary of Qn

≤.
The combination of the results presented in Section 4 allows us to adopt

the following strategy to find these solutions. On the one hand, Proposition 4.8
states that we can restrict our search to Qn

inv ∩ Qn
≤. On the other hand, since

Hn,k and H̃n,k are the same function over Qn
≤, they have the same minimizers

over Qn
≤. Noting that minimizers of H̃n,k must belong to the interior of Qn, and

using Lemma 4.2 and Proposition 4.3, we deduce that the minimizers of H̃n,k

over Qn
≤ are described by

0 ∈ ∂H̃n,k(p1, . . . , pn). (9)

Therefore, our strategy to find the solutions of the optimal deployment problem
is to look for (p1, . . . , pn) ∈ Qn

inv ∩ Qn
≤ that satisfy (9). Lemma 4.6 provides us

with the tools to characterize these minimizers. The idea is to understand the
geometric conditions on the critical configurations imposed by this description.
We make extensive use of this strategy in the following section.
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5.3. Optimally-sized-and-positioned agent clusters are minimizers

For the deployment problem formulated in Section 3, given that some sen-
sors are not working and their identity is unknown, it seems reasonable to group
sensors together into clusters so that the likelihood of obtaining a message from
the position covered by the cluster is higher. In this section, we show that,
somehow surprisingly, this ‘play-it-safe’ clustering strategy turns out to be op-
timal, and specify the optimal size of the clusters in a range of situations. Our
proof strategy in each case follows the discussion in Section 5.2. We start with
the case of a single working agent.

Lemma 5.4. For n ∈ N, the minimizer of Hn,1 is

p∗1 = · · · = p∗n =
a + b

2
.

Proof. Note that

∂H̃DC(pi) =






ei if pi − a > b − pi,

co{ei,−ei} if pi − a = b − pi,

−ei if pi − a < b − pi.

From this expression, we deduce that 0 ∈ ∂H̃n,1(p1, . . . , pn) if and only if

pi =
a + b

2
, for all i ∈ {1, . . . , n},

as claimed.

Next, we examine the case when there are two working agents.

Proposition 5.5. For n ≥ 2, the minimizer of Hn,2 is

p∗1 = · · · = p∗m =
3a + b

4
, p∗m+1 = · · · = p∗2m =

a + 3b

4
, (10a)

if n = 2m is even, and

p∗1 = · · · = p∗m =
3a + b

4
, p∗m+1 =

a + b

2
, p∗m+2 = · · · = p∗2m+1 =

a + 3b

4
,

(10b)

if n = 2m + 1 is odd.

Proof. Using Lemma 4.6, we can express the generalized gradient as

(
n

2

)
∂H̃n,2(p

∗
1, . . . , p

∗
n) =

∑

{s1,s2}∈C(n,2)

∂H̃DC(p∗s1
, p∗s2

) =
∑

1≤i<j≤n

∂H̃DC(p∗i , p
∗
j ).

13



Step 1) Consider the case n = 2m even. Then,

(
n

2

)
∂H̃n,2(p

∗
1, . . . , p

∗
n) =

∑

1≤i<j≤m

∂H̃DC(p∗i , p
∗
j ) +

∑

m+1≤i<j≤2m

∂H̃DC(p∗i , p
∗
j ) +

∑

1≤i≤m
m+1≤j≤2m

∂H̃DC(p∗i , p
∗
j ).

Now, using Lemma 4.5, we deduce

(
n

2

)
∂H̃n,2(p

∗
1, . . . , p

∗
n) =

∑

1≤i<j≤m

−ej +
∑

m+1≤i<j≤2m

ei +
∑

1≤i≤m
m+1≤j≤2m

co{ei,
1

2
(ej − ei),−ej}.

We claim that 0 ∈ ∂H̃n,2(p
∗
1, . . . , p

∗
n). To show this, we argue that the terms

in the third sum can be used to offset the first and second sums. We prove
the assertion by induction. Given that 0 = 1

4ei + 1
2

1
2 (ej − ei) + 1

4 (−ej) ∈

co{ei,
1
2 (ej − ei),−ej}, this is trivially true if m = 1. Assume the result is true

for m − 1 and let us show it for m. Note that
(

n

2

)
∂H̃n,2(p

∗
1, . . . , p

∗
n)

= −
m∑

j=2

(j − 1)ej +
2m−1∑

i=m+1

(2m − i)ei +
∑

1≤i≤m
m+1≤j≤2m

co{ei,
1

2
(ej − ei),−ej}

= −(m − 1)em + (m − 1)em+1 + co{em,
1

2
(em+1 − em),−em+1}

+
∑

m+2≤j≤2m

co{em,
1

2
(ej − em),−ej} +

∑

1≤i≤m−1

co{ei,
1

2
(em+1 − ei),−em+1}

−
m−1∑

j=2

(j − 1)ej +

2m−1∑

i=m+2

(2m − i)ei +
∑

1≤i≤m−1
m+2≤j≤2m

co{ei,
1

2
(ej − ei),−ej}.

Now, for m + 2 ≤ j ≤ 2m, we choose the convex combination em = 1em +
0 1

2 (ej − em) + 0(−ej) and for 1 ≤ i ≤ m− 1, we choose the convex combination

−em+1 = 0ei +0 1
2 (em+1 − ei)− em+1. Since 0 ∈ co{em, 1

2 (em+1 − em),−em+1},

we deduce that 0 ∈ ∂H̃n,2(p
∗
1, . . . , p

∗
n) if 0 belongs to

−
m−1∑

j=2

(j − 1)ej +

2m−1∑

i=m+2

(2m − i)ei +
∑

1≤i≤m−1
m+2≤j≤2m

co{ei,
1

2
(ej − ei),−ej},

which follows from the induction hypothesis.
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Step 2) Next, consider the case n = 2m+1 odd. In this case, the generalized

gradient of H̃n,2 can be written as
(

n

2

)
∂H̃n,2(p

∗
1, . . . , p

∗
n) =

∑

1≤i<j≤m

∂H̃DC(p∗i , p
∗
j ) +

∑

m+2≤i<j≤2m+1

∂H̃DC(p∗i , p
∗
j )

+
∑

1≤i≤m
m+2≤j≤2m+1

∂H̃DC(p∗i , p
∗
j ) +

∑

1≤i≤m

∂H̃DC(p∗i , p
∗
m+1) +

∑

m+2≤j≤2m+1

∂H̃DC(p∗m+1, p
∗
j ).

Given the result for n even, in order to show that 0 ∈ ∂H̃n,2(p
∗
1, . . . , p

∗
n) it is

sufficient to establish that

0 ∈
∑

1≤i≤m

∂H̃DC(p∗i , p
∗
m+1) +

∑

m+2≤j≤2m+1

∂H̃DC(p∗m+1, p
∗
j ).

The result now follows from noting that if p < a+b
2 , ∂H̃DC

(
p, p∗m+1

)
= −em+1

and, if p > a+b
2 , ∂H̃DC

(
p∗m+1, p

)
= em+1.

The following result shows that the solution when there are three working
agents is the same as when there are only two.

Proposition 5.6. For n ≥ 4, the minimizer of Hn,3 is given by (10).

Proof. We only prove the result for n even. The proof for n odd is analogous

and we omit it for reasons of space. Let n = 2m. We decompose
(
n
3

)
H̃n,3 into

the sum of the convex functions f and g defined by

f(p1, . . . , pn) =
∑

1≤i<j<k≤m

H̃DC(pi, pj , pk) +
∑

m+1≤i<j<k≤2m

H̃DC(pi, pj , pk),

g(p1, . . . , pn) =
∑

1≤i<j≤m
m+1≤k≤2m

H̃DC(pi, pj , pk) +
∑

1≤i≤m
m+1≤l<k≤2m

H̃DC(pi, pl, pk).

Our proof strategy consists of verifying the hypotheses of Lemma 2.1. Define

X = {(p1, . . . , pn) ∈

[
5a + b

6
,
a + 5b

6

]n

| pm < (a + b)/2 < pm+1} ∩ Qn
inv ∩ Qn

≤,

and let us show that a minimizer of H̃n,3 is contained in X. The continuous

function H̃n,3 attains its minimum over the compact set Qn
inv ∩ Qn

≤. Because

of Theorem 5.2, we deduce that there is at least a minimizer P ∈ Qn
inv ∩ Qn

≤ of

H̃n,3, with p1 = b + a− pn ≥ (5a + b)/6. Let us show that P belongs to X. By
symmetry, it suffices to justify that pm < (a+b)/2. We reason by contradiction.
Assume pm = (a + b)/2. We consider two cases: (i) p1 > (5a + b)/6 and (ii)
p1 = (5a + b)/6. In case (i), we claim that an infinitesimal motion of agent m

in the negative direction will strictly decrease the value of H̃n,3. Note that m

only appears in the definition of H̃n,3 in combinations of type (a) (i, j,m), (b)
(i,m, l), and (c) (m, l, k).
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• For a combination of type a), the value of H̃DC is given by b − pm, and
hence a motion of agent m in the negative direction strictly increases it.

• For a combination of type b), the value of H̃DC does not depend on the
position of agent m in a neighborhood of P because of p1 > (5a + b)/6.

• For a combination of type c), the value of H̃DC is given by pm − a, hence
a motion of agent m in the negative direction strictly decreases it.

Since there are
(
m−1

2

)
different combinations of type a) and

(
m
2

)
different combi-

nations of type c), our claim follows, contradicting the fact that P is a minimizer.
In case (ii), assume there are A agents at position (5a + b)/6 (and hence, by

symmetry, A agents at position (a+5b)/6) and 2B agents at position (a+ b)/2,
with A + B ≤ m. After some computations, one can see that an infinitesimal
motion dx of all A agents at (5a + b)/6 in the positive direction and of all A
agents at (a + 5b)/6 in the negative direction leads to a change in the value of(
n
3

)
H̃n,3 of

2

(
A2B −

(
A

3

)
− A

(
A

2

))
dx.

After this motion has taken place, an infinitesimal motion dy of B agents at
(a + b)/2 in the negative direction and the other B agents at (a + b)/2 in the

positive direction leads to a change in the value of
(
n
3

)
H̃n,3 of −2AB2dy, so long

as dy ≤ 2dx. Putting these two changes together with dy = 2dx, we deduce

that the values of
(
n
3

)
H̃n,3 at the new configuration and at P differ by

−
2

3
A

(
1 + 2A2 + 6B2 − 3A(1 + B)

)
dx.

It is not difficult to see that this quantity is negative for any A,B ∈ Z>0, and
hence we reach a contradiction with the fact that P is a minimizer.

Therefore, we conclude that the minimizer P is contained in X. Moreover,
using Lemma 4.5, we find that

∂f(p∗1, . . . , p
∗
n) = {

∑

1≤i<j<k≤m

−ek +
∑

m+1≤i<j<k≤2m

ei},

and ∂f(p1, . . . , pn) ⊂ ∂f(p∗1, . . . , p
∗
n) for all (p1, . . . , pn) ∈ X. On the other

hand, one can compute

∂g(p∗1, . . . , p
∗
n) =

∑

1≤i<j≤m
m+1≤k≤2m

co{ei,
1

2
(ek − ej),−ek} +

∑

1≤i≤m
m+1≤l<k≤2m

co{ei,
1

2
(el − ei),−ek},

and verify that ∂g(p1, . . . , pn) ⊂ ∂g(p∗1, . . . , p
∗
n) for all (p1, . . . , pn) ∈ X. The

application of Lemma 2.1 now concludes the result.

Our final result shows that, when all agents but one are working, clustering
in groups of two is optimal.
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Proposition 5.7. For n ≥ 2, the minimizer of Hn,n−1 is

p∗k = p∗k+1 =
(2m − k)a + kb

2m
,

for k ∈ {1, 3, . . . , 2m − 1}, if n = 2m is even,

p∗k = p∗k+1 =
(2(m + 1) − k)a + kb

2(m + 1)
,

p∗m =
(m + 2)a + mb

2(m + 1)
, p∗m+1 =

a + b

2
, p∗m+2 =

ma + (m + 2)b

2(m + 1)
,

for k ∈ {1, 3, . . . ,m− 2,m + 4,m + 6, . . . , 2m + 1}, if n = 2m + 1 is odd with m
odd, and

p∗k = p∗k+1 =
(2(m + 1) − k)a + kb

2(m + 1)
, p∗m+1 =

a + b

2
,

for k ∈ {1, 3, . . . ,m − 1,m + 1, . . . , 2m + 1}, if n = 2m + 1 is odd with m even.

Proof. For brevity, we only prove the result for n = 2m. The proof for the case
when n is odd proceeds in an analogous way. Using Lemma 4.6, we can write

(
n

n − 1

)
∂H̃n,n−1(p

∗
1, . . . , p

∗
n) =

∑

{s1,...,sn−1}∈C(n,n−1)

∂H̃DC(p∗s1
, . . . , p∗sn−1

) =
n∑

i=1

∂H̃DC(p∗1, . . . , p̂
∗
i , . . . , p

∗
n),

where the notation p̂∗i means that the point p∗i is removed from the tuple.
Next, we compute each of the individual generalized gradients in the sum using
Lemma 4.5. To simplify the presentation, let us introduce the following notation:
given vectors v1, . . . , vn, define

A(v1, . . . , vn) = {v1,
1

2
(v3 − v2),

1

2
(v5 − v4), . . . ,

1

2
(vn−1 − vn−2),−vn}.

Then, we have

∂H̃DC(p∗1, . . . , p̂
∗
i , . . . , p

∗
n) =

{
co(A(e1, . . . , ei−1, ei−1, ei+1, . . . , en)) i even,

co(A(e1, . . . , ei−1, ei+1, ei+1, . . . , en)) i odd.

Now we are ready to show that 0 ∈ ∂Hn,n−1(p
∗
1, . . . , p

∗
n). For i ∈ {1, . . . , n},

take the following convex combination in ∂H̃DC(p∗1, . . . , p̂
∗
i , . . . , p

∗
n),






1
2e2 −

1
2en i = 1,

1
2 (ei+1 − ei−1) 1 < i < n,
1
2e1 −

1
2en−1 i = n.
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The sum of this convex combination belongs to ∂H̃n,n−1(p
∗
1, . . . , p

∗
n) and equals

1

2
(e2 − en) +

1

2
(e1 − en−1) +

n−1∑

i=2

1

2
(ei+1 − ei−1)

=
1

2
(e2 − en) +

1

2
(e1 − en−1) +

1

2
(en−1 + en − e1 − e2) = 0,

as claimed.

Figure 1 shows the minimizer of Hn,k, denoted Pn,k, over the interval Q =
[−1, 1], for n = 11 and k = 2, 3, 10, and 11.

1

1

55

−1

(a) P11,2

1

1

55

−1

(b) P11,3

111

1

2222

−1

(c) P11,10

11111111111

1−1

(d) P11,11

Figure 1: From left to right, minimizers of H11,k over [−1, 1] for k = 2, 3, 10, and 11. The
superindex of each point represents the number of agents at the specific location.

Figure 2 illustrates the performance of the minimizer of Hn,k against the
solution with all agents working, cf. Lemma 5.1, for k = 2, 3, and n − 1.
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(a) k = 2
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(b) k = 3
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Figure 2: Performance comparison between deployment solutions that take and do not take
into account, respectively, packet drops. The solid curve corresponds to the optimal value
of Hn,k and the dashed curve corresponds to the value of Hn,k at the optimizer of Hn,n.

Remark 5.8. (Conjecture for arbitrary number of working agents): The re-
sults presented in this section point in the same direction: grouping agents into
clusters and optimally deploying the resulting clusters is the solution to the
deployment problem. The strategy of grouping agents increases the chances of
each cluster having at least a working agent, and hence being able to produce
a measurement. The larger the size of the clusters, the more likely that they
will work. However, the larger the size, the smaller the number of clusters,
and hence the worse the performance. So there is a trade-off between grouping
agents to increase the likelihood of them working and having as few groups as
possible to ensure good performance. These observations lead us to conjecture
that the minimizers of Hn,k for arbitrary k ≤ n correspond to agent clusters op-
timally deployed according to its number, and that a precise formula exists that
determines the number of clusters and their size. Table 1 is a partial realization
of this formula. We believe the conjecture to hold in higher dimensions since the
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trade-off between size and number of clusters is independent of the dimension,
although the specific formula might be different for each environment. •

6. Conclusions

We have analyzed a deployment problem for an unreliable robotic sensor
network taking point measurements of a spatial process and relaying them back
to a data fusion center. We have shown that grouping sensors not only makes
sense as a ‘play-it-safe’ strategy, but that, surprisingly, turns out to be optimal.
We have conjectured that the right amount of grouping depends upon the pro-
portion of working sensors with respect to the total number of agents. We have
shown this conjecture to be true in a number of cases. Our analysis has required
a blend of nonsmooth analysis, convex analysis, and combinatorics. The results
presented here offer guidance as to how to design coordination algorithms to
achieve optimal deployment with failing sensors. Future work will be devoted
to this topic as well as to establish the validity of the conjecture and exam-
ine the connection of the solutions presented here with dynamic scenarios with
randomly failing sensors taking multiple measurements.
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