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Abstract— This paper studies the learning of equilibria in
adversarial situations when players may have misperceptions
about the game they are involved in with their opponents.
We use the concept of high-level hypergames to model these
scenarios. By drawing connections with the theory of ordinal
potential games, we establish that players in a hypergame
can individually learn their perceived equilibria using any
improving adjustment scheme. We investigate how players can
incorporate the information gained from observing the oppo-
nents’ actions by updating different levels of her perception.
We introduce high-level perception updating algorithms for
resolving inconsistencies in perception using self-blaming or
opponent-blaming strategies. Finally, we establish that when all
players are rational and have perfect observation about past
outcomes, repeated play converges to an equilibrium.

I. INTRODUCTION

In adversarial situations, imperfect or incomplete infor-
mation may lead to misperception about the opponent’s
true intentions. Imperfect information refers to the fact that
players may only partially observe the actions taken by other
players. Incomplete information refers to the fact that the true
payoffs of the opponents may be only partially known to the
players. In this paper, we deal with a special class of games
of incomplete information called hypergames. Our goal is
to study learning of equilibria and analyze the dynamics of
the repeated play of hypergames, when players are rational,
perfectly observe the actions taken by other players, and use
their perceptions to select their actions.

Literature review: The notion of hypergame goes back
to [1] and is mostly used in the context of conflict anal-
ysis [2], [3]. The benefit of using hypergames lies in the
capability to model the perceptions of individual players.
Hypergames are particularly useful in scenarios where play-
ers are absolutely certain about their opponents’ perceptions,
while these certainties may be mutually inconsistent. In a
hypergame, players can have different levels of perception
about their opponents’ game, in the sense that they might
have perceptions about the opponents’ preferences or about
what the opponents think about their preferences and so on.

In game theory, learning typically refers to the synthesis
and analysis of equilibria, used introspectively by a player
presuming that the opponent is using a certain strategy.
Players are, instead, playing a game when they individu-
ally make decisions about their next action based on their
perception of the game state and the strategy they have
chosen to follow. The literature on learning is vast (we refer
the interested readers to [4], [5] and references therein). In
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most of the existing learning methods, it is assumed that
complete information is available when players learn the
equilibria. These equilibria can be different from the outcome
of actually playing the game if players have misperceptions
about the payoffs of the opponents or when the opponents
use a strategy different from the one used to learn the
equilibria. Learning has also been studied in the framework
of Bayesian games, see [5], [6], where games of incomplete
information are studied as games of imperfect information.
To our knowledge, with a few exceptions [7], [8], learning
strategies and their convergence have not been formally
studied in the framework of hypergames. In particular, we
are interested in characterizing the properties that make a
strategy successfully converge to equilibria, and the features
enjoyed by these equilibria.

Statement of contributions: Our contributions pertain to
the learning of equilibria when players reason introspectively
about the hypergame and to the convergence to equilib-
ria when players play repeatedly, observe the opponents’
actions, and update their perceptions. Regarding learning,
we show that players can learn the equilibria using any
improving adjustment scheme, i.e., any strategy in which
players take a feasible action if it improves their payoff. Our
technical approach is based on studying the graph-theoretic
properties of H-digraphs, a concept that captures the stability
properties of hypergames. Specifically, we show that the H-
digraph associated to the perceived game of each player
contains no weak improvement cycle. This observation draws
an interesting analogy with ordinal potential games, and
plays an instrumental role in deriving the contributions on
convergence to equilibria. Regarding the repeated play of hy-
pergames, we introduce the high-order perception
update algorithm, which prescribes how players em-
ploy the information obtained by observing the opponents’
actions to update their perceptions. We show that players
may run into inconsistencies in their perceptions and, based
on their understanding of the opponents, can use self-blaming
or opponent-blaming strategies to make them consistent.
We demonstrate that the repeated play of the hypergame
defines a dynamical system in the space of outcomes which
converges to an equilibrium if players are rational, are able to
perfectly observe past outcomes, and use the high-order
perception update algorithm.

II. PRELIMINARIES

We denote the set of real numbers by R. We denote by
R≥k and Z≥k the set of real numbers and positive integers
greater than or equal to k ∈ R, respectively. We denote by
In×n the identity matrix in Rn×n, n ∈ Z≥1. A nonempty



set X along with a preorder �, i.e., a reflexive and transitive
binary relation, is called a directed set if for every pair of
elements in X there exists an upper bound with respect to the
preorder. A string σ on X is a finite sequence of elements
in X . The length of σ is the number of elements in σ.

A. Basic graph notions

A directed graph, or simply digraph, G is a pair (V,E),
where V is a finite set, called the vertex set, and E ⊆ V ×V ,
called the edge set. Given (u, v) ∈ E, u is an in-neighbor
of v and v is an out-neighbor of u. A directed path in a
digraph, or in short path, is an ordered sequence of vertices so
that any two consecutive vertices are an edge of the digraph.
A vertex u is reachable from v if there exists a path starting
at v and ending at u. A cycle in a digraph is a directed
path that starts and ends at the same vertex and has no other
repeated vertex. A digraph without any cycle is acyclic.

B. Ordinal potential games and strategic paths

A (finite) game [9], [4] is a triplet G = (V,Soutcome,P)
with the following elements: V is a set of n ∈ Z≥1 players,
Soutcome = S1× . . .×Sn is the outcome set with cardinality
N = |Soutcome| ∈ Z≥1, where Si is a finite set of actions
available to player vi ∈ V , and P = (P1, . . . , Pn), with
Pi = (x1, . . . , xN )T ∈ Sp, the preference vector of player
vi, i ∈ {1, . . . , n}. Here, Sp ⊂ SN

outcome denotes the set
of all elements of SN

outcome with pairwise different entries.
We denote by πi the natural projection of Soutcome onto the
strategy set Si of the ith player. We also use π−i to denote the
natural projection of Soutcome onto S−i = S1×S2×· · ·×Ŝi×
· · · ×Sn, where the hat notation denotes that Si is excluded
from the product. Note that, for each i ∈ {1, . . . , n}, the
outcome set Soutcome is a directed set under the preorder �Pi

induced by the preference vector Pi of player vi as follows:
x �Pi

y iff x has a lower entry index that y in Pi.
A strategic path in Soutcome is a sequence of outcomes

S = (x1, x2, . . .), with xj ∈ Soutcome, such that, for each
j ∈ Z≥1, there exists i(j) ∈ {1, . . . , n} with vi(j) ∈ V ,
πi(j)(xj) 6= πi(j)(xj+1), and π−i(j)(xj) = π−i(j)(xj+1).
A strategic path S = (x1, x2, . . .) is nondeteriorating if
xj+1 �Pi(j) xj , for all j ∈ Z≥1 and is a better reply
path if xj+1 �Pi(j) xj , for all j ∈ Z≥1. A finite strategic
path S = (x1, x2, . . . , xm, x1), m ∈ Z≥1, is called a weak
improvement cycle if it is nondeteriorating and xj+1 �Pi(j)

xj for some j ∈ {1, . . . ,m− 1}.
For later use, we also recall the notion of ordinal potential

games [10]. A game G = (V,Soutcome,P) is called an
ordinal potential game if there exists a real-valued function
P : Soutcome → R such that for all vi ∈ V and ai, bi ∈ Si,
we have (ai, a−i) �Pi (bi, a−i) if and only if P(ai, a−i) >
P(bi, a−i). The function P is called the ordinal potential
function for G. One can establish [10] that G is ordinal
potential iff it does not have any weak improvement cycle.

III. HYPERGAME THEORY

In this section, we review the basic notions of hyper-
game theory [3], [11], [1]. Our exposition follows [12].
Some well-known examples of the application of hypergame

analysis include the Normandy invasion and the Cuban
missile crisis, see [3]. A 0-level hypergame is simply a
finite game. A 1-level hypergame with n players is a set
H1 = {G1, . . . ,Gn}, where Gi = (V, (Soutcome)i,Pi), for
i ∈ {1, . . . , n}, is the subjective finite game of player vi ∈ V ,
and V is a set of n players; (Soutcome)i = S1i×. . .×Sni, with
Sji the finite set of strategies available to vj , as perceived
by vi; Pi = (P1i, . . . , Pni), with Pji the preference vector
of vj , as perceived by vi.

In a 1-level hypergame, each player vi ∈ V plays the
game Gi with the perception that she is playing a game
with complete information, which is not necessarily true.
This is in sharp contrast with Bayesian games [5], [6], where
a ‘nature’ player determines, according to some probability
distribution a priori known to all players, the preferences
of each one. The definition of a 1-level hypergame can be
extended to higher-level hypergames, where some of the
players have access to additional information that allow
them to form perceptions about other players’ perceptions,
other players’ perceptions about them, and so on. One can,
inductively, extend the definition of 1-level hypergame as
follows: a k-level hypergame with n players, k ≥ 1, is a set
Hk = {Hk1

1 , . . . ,Hkn
n }, where ki ≤ k−1 and at least one ki

is equal to k−1. The hypergame Hk is called homogeneous
if ki = k − 1 for all i ∈ {1, . . . , n}.

A. Equilibria and stability

Here, we discuss the notions of equilibria and stabil-
ity. Consider a k-level hypergame Hk between players
{A1, . . . , An} with outcome set Soutcome. Without loss of
generality and for simplicity, we assume that Hk is homo-
geneous. For x ∈ Soutcome, we denote by Soutcome|πAi

(x) the
set of outcomes y ∈ Soutcome such that πAi(y) = πAi(x).
For a string σ of length k on the set {A1, . . . , An}, let
PAiσ , i ∈ {1, . . . , n}, denote the preferences of Ai as
perceived by σ in Hk. For instance, PA1A2A1 corresponds to
what player A1 perceives that player A2 thinks about player
A1’s preferences in a 2-level hypergame H2. We use the
preference vectors (PA1σ, . . . ,PAnσ) to denote the 0-level
hypergame H0

σ , often referred to as the subjective hypergame
perceived by σ. With a slight abuse of notation, �Aiσ denotes
the binary relation �PAiσ

on Soutcome induced by PAiσ .
Given two distinct outcomes x, y ∈ Soutcome, y is an

improvement from x for player Ai perceived by σ in H0
σ if

and only if πA−i
(y) = πA−i

(x) and y �Aiσ x. An outcome
x ∈ Soutcome is rational for player Ai in H0

σ if there exists
no improvement from x for this player. Finally, x ∈ Soutcome
is sequentially rational for Ai in H0

σ if and only if for each
improvement y from x for Ai in H0

σ there exists z ∈ Soutcome
which sanctions y, i.e., πi(z) = πi(y) and x �Aiσ z such
that for all j ∈ {1, . . . , n} with j 6= i, either πj(z) = πj(y),
or the outcome zAj

∈ Soutcome|πi(y), where πj(zAj ) = πj(z)
and πl(zAj ) = πl(y), for all l ∈ {1, . . . , n}, l 6= j, is
an improvement from y in Soutcome|πi(y) for Aj . By this
definition, any sanction against the improvement y from x is
due to actions taken by some players {Aj1 . . . Ajl

}, where
{j1, . . . , jl} ⊂ {1, . . . , n}, jp 6= i, for all p ∈ {1, . . . , l}. A
rational outcome is also sequentially rational.



A player is rational if she only takes actions associated to
sanction-free improvements. It turns out that all 0-level hy-
pergames have at least one sequentially rational outcome [3],
[11]. An outcome x ∈ Soutcome is unstable for Ai, perceived
by σ, in H0

σ , i ∈ {1, . . . , n} if it is not sequentially rational
and is an equilibrium of H0

σ if it is sequentially rational for
all players Ai, i ∈ {1, . . . , n}, with respect to H0

σ . Note that
more than one equilibrium might exist. An outcome is called
an equilibrium of Hk if it is sequentially rational in all H0

σ ,
where σ = AiAi . . . Ai, i ∈ {1, . . . , n} is a string of length
k on {A1, . . . , An}. One can similarly define the notion of
equilibrium for any intermediate level Hk1

η , where k1 < k
and η is sequence of length at most k− 1 on {A1, . . . , An}.
For brevity, we sometimes omit the wording ‘with respect to
H0

σ’ and ‘perceived by σ’ when it is clear from the context.

B. H-digraphs

The notion of H-digraph [12], generalized here to n
players, contains the information about the possible im-
provements from an outcome to another outcome, the equi-
libria, and the sanctions. Consider a homogeneous k-level
hypergame Hk between players {A1, . . . , An}. Given σ
and i ∈ {1, . . . , n}, we assign to each x ∈ Soutcome a
positive number rank(x,PAiσ) ∈ R>0, called rank, such
that, for each Soutcome 3 y 6= x, we have rank(y, PAiσ) >
rank(x,PAiσ) if and only if x �Aiσ y. The n-dimensional
digraph GH0

σ
= (Soutcome, EH0

σ
) is the H-digraph associated

to the 0-level hypergame H0
σ , where each vertex x ∈ Soutcome

is labeled with (rank(x,PA1σ), . . . , rank(x,PAnσ)), and
(x, y) belongs to EH0

σ
iff πi(x) 6= πi(y), i ∈ {1, . . . , n},

π−i(x) = π−i(y), and there exists a perceived improvement
y from x for player Ai in H0

σ for which there exists no
sanction of players A−i, perceived by σ.

IV. ACYCLIC STRUCTURE OF H-DIGRAPHS

We study the structure of H-digraphs and examine the
implications on the equilibria of hypergames. This allows us
to draw an interesting analogy with ordinal potential games.
The following definitions adapt the notions of nondeteriorat-
ing paths and weak improvement cycles for hypergames.

Definition 4.1: (Nondeteriorating paths and weak im-
provement cycles in subjective hypergames): A strategic path
S = (x1, x2, . . .) in Soutcome is nondeteriorating for H0

σ if
(xj , xj+1) ∈ EH0

σ
, for all j ∈ Z≥1. A finite strategic path

S = (x1, x2, . . . , xm, x1), m ∈ Z≥1, is a weak improvement
cycle for H0

σ if it is nondeteriorating and xj+1 �Aiσ xj for
some j ∈ {1, . . . ,m− 1} and i ∈ {1, . . . , n}.

An improving adjustment scheme in H0
σ is any method

that, given an initial outcome x1 ∈ Soutcome, generates a
nondeteriorating strategic path S = (x1, x2, . . .). A best-
response scheme is a special case of this notion, see [13] for
more details. Next, we present our first result.

Theorem 4.2: (Subjective hypergames with two players
contain no weak improvement cycle): Consider a k-level
hypergame Hk between players A1 and A2. Let H0

σ be a
0-level subjective hypergame perceived by σ, a string of
length at most k on {A1, A2}. Then H0

σ contains no weak
improvement cycle.

Proof: We reason by contradiction. Suppose S =
(x1, x2, x3, . . . , xp, x1) is a weak improvement cycle for H0

σ .
Without loss of generality, we assume that players take
alternate turns to take actions along the path. In other words,
for 1 ≤ j ≤ p − 2, if πA1(xj) 6= πA1(xj+1) (resp.
πA2(xj) 6= πA2(xj+1)), then πA2(xj+1) 6= πA2(xj+2) (resp.
πA1(xj+1) 6= πA1(xj+2)). Our assumption is justified by the
fact that, if πA1(xj) 6= πA1(xj+1) 6= πA1(xj+2), then xj+2

is a perceived improvement from xj for player A1 and thus
the outcome xj+1 can be removed from the path S, which
still would correspond to a weak improvement cycle for H0

σ .
Note that, in particular, our assumption implies p ∈ 2Z≥2.

Suppose A2 is the first player to take an action, i.e.,
πA2(x1) 6= πA2(x2) (the reasoning for the case when the first
player is A1 is analogous). Since S is a weak improvement
cycle, x2 �A2σ x1. Moreover, since πA1(x2) 6= πA1(x3),
we have that x3 �A1σ x2. As a result, we deduce that
x3 �A2σ x1; otherwise, A2’s perceived improvement x2

from x1 is not sanction-free. With a similar argument, one
can deduce that, for j ∈ {1, . . . , p−2

2 },

(i) x2j , x2j+1 �A2σ x2j−1;
(ii) x2j+1, x2j+2 �A1σ x2j ;

(iii) xp, x1 �A2σ xp−1 and x1, x2 �A1σ xp.

Since S is an improvement cycle, there must exist at least
one l ∈ {1, . . . , p − 1} such that either xl+1 �A1σ xl with
πA1(xl) 6= πA1(xl+1) or xl+1 �A2σ xl with πA2(xl) 6=
πA2(xl+1). Assume we are in the first case, i.e., l is odd,
(the argument for the second case, i.e., l is even, is the
same). Then, using (ii), one concludes that xp �A1σ x2,
which contradicts (iii).

We generalize the result above to the case of an arbitrary
number of players using an inductive procedure.

Theorem 4.3: (Subjective hypergames contain no weak
improvement cycle): Consider a k-level hypergame Hk with
n players {A1, . . . , An}. Then none of the subjective 0-level
hypergame H0

σ , where σ is a string of length at most k on
{A1, . . . , An}, contains a weak improvement cycle.

Proof: Let {A1, A2, . . . , An} be a set of n ∈ Z≥3

players and H0
σ = (PA1σ, . . . ,PAnσ). We denote by

Sreachable
outcome |πAi

(x) ⊆ Soutcome|πAi
(x) the set of all outcomes in

Soutcome|πAi
(x) which can be reached from x ∈ Soutcome in

the digraph GH0
σ

by a directed path in Soutcome|πAi
(x).

Consider a strategic path S = (x1, x2, . . . , xm) for H0
σ ,

with m ∈ Z≥1. Similar to the two players’ case, without loss
of generality, we assume that if player Ai takes an action that
changes the outcome from xj to xj+1, then player Al takes
an action next, where i, l ∈ {1, . . . , n} and i 6= l.

Without loss of generality, we assume that player A2 is
the first player that takes an action that changes the outcome
from x1 to x2. Note that S induces a sequence of outcomes,
denoted by S ⊇ S|πA2

= {x1, x2, . . . , xm′}, m′ ∈ Z≥1,
with πA2(xj′) 6= πA2(xj′+1), for all j′ ∈ {1, . . . ,m′ − 1}.

We proceed with the proof by induction on n. By Theo-
rem 4.2, the claim holds for n = 2. Suppose that the claim
holds for any subjective 0-level hypergame with n = N − 1
players, and let us show that it also holds when n = N . If
we fix the action of one player, say Ai, then players A−i



are playing a 0-level hypergame with N − 1 players, which
contains no weak improvement cycle by the assumption of
induction. Thus it is enough to show that S|πA2

cannot be
a weak improvement cycle.

We claim that xj′+1 �A2σ xj′ , for all xj′ , xj′+1 ∈ S|πA2
.

For any outcome xl ∈ S ∩ Sreachable
outcome |πA2 (xj′ )

, we have that
xl �A2σ xj . In particular, there exists an outcome x∗l ∈
S ∩ Sreachable

outcome |πA2 (xj′ )
such that πA−2(x

∗
l ) = πA−2(xj′+1),

xj′+1 �A2σ x∗l , and x∗l �A2σ xj . Thus we conclude that
xj′+1 �A2σ xj′ , as claimed. By a similar argument, one can
conclude that x1 �A2σ xm′ . But since S|πA2

is a weakly
improvement cycle, there exists at least two consecutive
outcomes x, y ∈ S|πA2

, such that player A2 is perceived
to strictly prefer y to x. But this gives a contradiction, with
an argument similar to the one in Theorem 4.2.

Remark 4.4: (Connection to ordinal potential games):
Suppose GH0

σ
is the H-digraph associated to a subjective

hypergame H0
σ with n players V = {A1, . . . , An} and let

G = (V,Soutcome,P) be the game defined by x2 �Pi
x1

with π−i(x1) = π−i(x2), πi(x1) 6= πi(x2) for vi ∈ V if
and only if (x1, x2) ∈ GH0

σ
. Then, G is an ordinal potential

game since, by Theorem 4.3, the digraph GH0
σ

is acyclic. •
We state an immediate consequence of Theorem 4.3 which

captures how each individual player learns the equilibrium
of her subjective hypergame.

Corollary 4.5: (Learning in subjective hypergames): Any
improving adjustment scheme used for learning the hyper-
game H0

σ will converge to an equilibrium.
We finish this section by revealing some interesting struc-

tural properties of the H-digraphs as a corollary of Theo-
rem 4.3. In particular, we present a necessary condition for
a digraph to be associated to a subjective hypergame.

Corollary 4.6: (Necessary conditions for a digraph to be
an H-digraph): Suppose G is a H-digraph associated to
a subjective hypergame with player set V and outcome
set Soutcome. Then all the eigenvalues of Adj(G) + In×n,
where Adj(G) is the adjacency matrix associated to G, are
equal to 1. If Ssub-hyp(Soutcome) is the space of all subjective
hypergames of a player in V , with outcome set Soutcome, then
|Ssub-hyp(Soutcome)| ≤ Nacyclic(|Soutcome|), where

Nacyclic(n) =
n∑

i=1

(−1)i−1

(
n

i

)
2i(n−i)Nacyclic(n− i).

Proof: By Theorem 4.3, G is acyclic. Thus all eigen-
values of Adj(G)+In×n are equal to 1, see [14]. The second
part follows from a combinatorial result on the number of
acyclic digraphs with labeled vertices [15, Corollary 2].

Note that there are, however, acyclic digraphs which
cannot be associated to a hypergame. In fact, when each
player action set has at least cardinality 2, the inequality in
Corollary 4.6 is strict. We demonstrate this by an example.

Example 4.7: (An acyclic digraph which is not an H-
digraph): Consider the following digraph,

x1 −→ x2

x3 x4

Suppose this digraph can be associated to H0
σ , where σ is

a string on {A1, A2}, with Soutcome = {x1, x2, x3, x4} and
two players, where A1 plays rows and A2 plays columns.
First, note that x4 �A1σ x2, since otherwise, there must
exist an edge (x4, x2), because the improvement x2 from
x4 is sanction free for A1. Since there exists a perceived
sanction by A2 against the improvement x4 from x2 for
A1, one also concludes that x2 �A1σ x3. Next, notice that
x3 �A1σ x1, since otherwise, there exists a sanction-free
improvement x1 from x3 for A1. If x4 �A2σ x3, then
the improvement x4 from x3 is perceived as sanction-free
for A2, since the outcome x4 is perceived as rational for
A1. This is a contradiction with the nonexistence of the
edge (x3, x4). Conversely, suppose x3 �A2σ x4. Then the
perceived improvement x3 from x1 for A1 is sanction free,
since x3 is rational for A2, but this is also a contradiction
to the nonexistence of the edge (x1, x3). Thus this digraph
cannot be associated to a subjective hypergame H0

σ with two
players A1 and A2. •

V. CONVERGENCE OF THE REPEATED PLAY OF
HYPERGAMES UNDER PERFECT OBSERVATION

In this section, we study the equilibria of k-level, n-
player homogeneous hypergames when players are playing
repeatedly and perfectly observe the actions taken by the
opponents. We assume that players take their actions sequen-
tially, one after each other. This assumption is consistent
with the notions of sequential rationality and improving
adjustment schemes. In our scenario, each player updates
her perception about the opponents’ preferences using the
information contained in the actions taken by them.

A. High-order perception update algorithm

Here, we introduce the high-order perception
update algorithm. Before getting into the specific de-
tails, we make a few observations to motivate the discussion.
Consider a 3-level hypergame between A1 and A2. Notice
that PA1A2A2A1 in H0

A2A2A1
and PA1A1A2A1 in H0

A1A2A1

are the same vector. However, the stability properties of an
outcome for A1 can actually be different in H0

A2A2A1
and

H0
A1A2A1

. Any change in one preference vector also affects
the other one. This observation motivates the following
definitions. For a string σ of length k on {A1, . . . , An},
let σ̃ the string that results from replacing any repeated
sequence of adjacent characters in σ by only one such
character. We refer to σ̃ as the associated reduced string. For
instance, the associated reduced string of σ = A1A2A2A1 is
σ̃ = A1A2A1. Two strings σ and η are equivalent, denoted
σ ∼= η, if and only if σ̃ = η̃. Note that the preference vectors
associated to two equivalent strings are equal.

Let us now discuss the elements that come into play when
updating players’ perceptions. Suppose Ai∗ , i∗ ∈ {1, . . . , n},
takes an action that changes the outcome from x1 to x2. If
Ai, i 6= i∗, believes that Ai∗ is rational, then she will update
her perception to reflect the fact that Ai∗ prefers x2 to x1.
In a k-level hypergame, Ai updates her perception PAk

i∗Ai
,



with Ak
i∗ = Ai∗ . . . Ai∗ (k copies), to reflect

x2 �Ak
i∗Ai

x1. (1)

The choice of Ak
i∗Ai is determined by the

fact that Ak
i∗Ai is the unique string in

{σAi∗Ai | σ is a string of length k − 1 on {A1, . . . , An}}
which is equivalent to Ai∗Ai.

The update (1) does not guarantee that x1 will be perceived
as unstable for Ai∗ by Ai, which is the additional piece
of information contained in the action taken by Ai∗ . Since
players are rational, Ai needs to adjust her perception to
make it compatible with this observation. In this case, it
would be enough for Ai to update her perception such that
the improvement x2 from x1 is perceived as sanction free. In
general, we do not infer any information on the stability of
x2, since, according to the H-digraph, Ai∗ can take an action
that changes the outcome to any sanction-free improvement,
even though this outcome might be unstable for her.

The above discussion motivates the design of the
high-order perception update algorithm in
Table I. This strategy allows each player to incorporate the
observations about the opponent’s actions into her prefer-
ences and remove the inconsistencies.

Name: high-order perception update algorithm

Goal: Incorporate observations into perceptions of Ai in a
consistent manner

Input: Action of Ai∗ , observed by Ai, changing the outcome
from x1 ∈ Soutcome to x2 ∈ Soutcome, with i ∈
{1, . . . , n} \ {i∗}

Output: Updated H0
σAi

, σ sequence of length k − 1

1: update PAk
i∗Ai

with x2 �Ak
i∗Ai

x1

2: if improvement x2 form x1 is sanction-free for Ai∗ in H0

Ak−1
i∗ Ai

then

3: no update is required
4: else
5: for each sanction z ∈ Soutcome against x2 do
6: if self-blaming then
7: update perception with z �Ak

i∗Ai
x1

8: else if opponent-blaming then
9: set {Aj1 . . . Aj`

} ⊂ {A1, . . . , An} with πjp (z) 6= πjp (x2)
and jp 6= i∗, for p ∈ {1, . . . , `}

10: select non-empty M⊂ {1, . . . , `}
11: for each p ∈M do
12: let zjp be the unique outcome given by πjp (zjp ) = πjp (z)

and πl(zjp ) = πl(x2), for all l ∈ {1, . . . , n} \ {jp}
13: update P

Ajp Ak−1
i∗ Ai

with x2 �Ajp Ak−1
i∗ Ai

zjp

14: end for
15: end if
16: end for
17: end if

TABLE I
THE HIGH-ORDER PERCEPTION UPDATE ALGORITHM

Remark 5.1 (Preference update mechanism): There are
many methods to change a player’s preference to make (1)
hold. Let us describe the formal requirements that such
methods should satisfy. Let σ be a string on {A1, . . . , An}
and let PσAi∗Ai be a preference vector of player Ai∗ ,
perceived by player Ai. We define the observation set
OσAi∗Ai as the set of all binary relations observed by player
Ai about player Ai∗ . We say that the preference vector
PσAi∗Ai is compatible with an observation set OσAi∗Ai

if all the binary relations in OσAi∗Ai
hold with the order

�σAi∗Ai
. A preference update mechanism compatible with

an observation set OσAi∗Ai
is a map ΨOσAi∗Ai

: Sp → Sp

such that ΨOσAi∗Ai
(P) is compatible with OσAi∗Ai

for
P ∈ Soutcome. Throughout this section, when we say a
player updates her preferences with some binary relation,
we mean that this player adds this binary relation to her
associated observation set and uses a preference update
mechanism to generate a preference vector compatible with
the observation set. Particular instances of such updating
mechanisms are given for instance in [12]. •

The next example shows how players can use the
high-order perception update algorithm.

Example 5.2: (Algorithm execution): Let A1 and A2 play
a 2-level hypergame with Soutcome = {x1, x2, x3, x4} and

PA1A1A1 = (x3, x2, x4, x1)T ,

PA2A1A1 = (x1, x4, x3, x2)T = PA2A2A1 ,

PA1A2A1 = (x2, x4, x1, x3)T ,

PA2A2A2 = (x4, x2, x3, x1)T ,

PA1A2A2 = (x4, x3, x2, x1)T = PA1A1A2 ,

PA2A1A2 = (x1, x4, x2, x3)T .

Let x3 be the initial outcome. Observe that x3 is perceived
as unstable for A2 in H0

A2A2
. Thus A2 takes an action

which changes the outcome to x4 and this is observed by
A1. This action is aligned with A1’s perception about the
ranking of x3 and x4 since x4 �A2A1A1 x3, but not with
the fact that A1 perceives x3 as sequentially rational for A2

in H0
A2A1

. According to the high-order perception
update algorithm, A1 can either conclude that the
inconsistency is due to her misperception about A2’s true
game; or conclude that A2 has an incorrect perception about
A1’s true game. In the former case, A1 updates her percep-
tion using the partial order x2 �A2A2A1 x3, for example,
by swapping the order of these outcomes in PA2A2A1 ; in
the latter case, A1 updates her perception with the partial
ordering x4 �A1A2A1 x2. •

B. Analysis of the high-order perception update
algorithm

Here we analyze the properties of the high-order
perception update algorithm and its impact on
the stability of the outcomes. The following result is an
immediate consequence of the definition of the algorithm.

Lemma 5.3: (high-order perception update
algorithm removes the inconsistencies): If player Ai∗ ,
i∗ ∈ {1, . . . , n}, takes an action that changes the outcome
of a k-level, n-player hypergame from x1 to x2 and Ai,
i ∈ {1, . . . , n}\{i∗}, updates her perception about A∗

i using
the high-order perception update algorithm,
then x1 is perceived as unstable for Ai∗ in H0

Ak−1
i∗ Ai

.
The next results describe in detail those parts of the

perception of each player that are affected by the updates
of the algorithm. We begin with the case where the incon-
sistencies are perceived to arise because of a player’s own
misperception, and consequently, she only uses 6: in Table I.



Proposition 5.4: (Self-blaming the inconsistencies): Sup-
pose Ai∗ , i∗ ∈ {1, . . . , n}, takes an action that changes
the outcome of a k-level, n-player hypergame from x1 to
x2 and Ai, i ∈ {1, . . . , n} \ {i∗}, updates her perception
about A∗

i using the high-order perception update
algorithm resolving the inconsistencies via 6: Table I.
Then, the only subjective hypergames whose stability can
change are H0

σ with σ ∼= Ai∗Ai or σ = Ak
i .

Proof: By assumptions and by the high-order
perception update algorithm, Ai only updates the
ranks of the outcomes in PAk

i∗Ai
. Such updates affect the

stability of the outcomes in H0
σ , σ a string of length k, where

σ ∼= Ai∗Ai or σ = Ak
i . This is because for any such σ, the

ordering in the preference vector PAi∗σ changes as PAk
i∗Ai

changes. Moreover, the changes in the rankings in PAk
i∗Ai

do not have any impact on the stability of outcomes in H0
η ,

η 6= σ a string on {A1, . . . , An} of length k, since Alη is
not equivalent to Ak

i∗Ai for any l ∈ {1, . . . , n}.
The next result characterizes the case in which a player

believes that inconsistencies arise because of the mispercep-
tion of other players about her game, and consequently, only
uses 8: Table I. The proof is similar to the one for the
previous result and is omitted here.

Proposition 5.5: (Opponent-blaming for the inconsisten-
cies): Suppose Ai∗ , i∗ ∈ {1, . . . , n}, takes an action that
changes the outcome of a k-level, n-player hypergame from
x1 to x2 and Ai, i ∈ {1, . . . , n}\{i∗} updates her perception
about A∗

i using the high-order perception update
algorithm resolving the inconsistencies via only 8: Ta-
ble I, by assuming that Ai∗ ’s perception about players
{Aj1 , . . . , Aj`

} ⊂ {A1, . . . , An}, where πjp
(z) 6= πjp

(x2)
and jp 6= i∗, for all p ∈ {1, . . . , `}, is incorrect. Then, the
only subjective hypergames whose stability can change are
H0

σ with σ ∼= Ai∗Ai, σ ∼= AjpAi∗Ai, or σ = Ak
i .

Our final result states that the repeated play of a
hypergame in which all players use the high-order
perception update algorithm to update their per-
ceptions is guaranteed to converge to an equilibrium.

Theorem 5.6: (Convergence to an equilibrium under the
high-order perception update algorithm):
Consider a k-level, n-player hypergame. Suppose all players
are rational, can fully observe the actions of their opponents,
play sequentially, and update their perceptions according to
the high-order perception update algorithm.
Then the repeated play of this hypergame converges to an
equilibrium.

Proof: Since we assumed that the outcome set is a finite
set and all players are playing a rational game, each player
Ai, i ∈ {1, . . . , n}, will eventually fully learn the preferences
of her opponents’ in PAk

i∗Ai
, for all i∗ ∈ {1, . . . , n} \ {i},

unless the evolution of the hypergame finishes in an equilib-
rium. If the evolution of PAk

i∗Ai
converges to PAk+1

i∗
, for all

i ∈ {1, . . . , n}, then any equilibrium of the 0-level subjective
hypergame H0

Ak
i

of Ai is also, by definition, an equilibrium
of Hk. Since players are rational and play sequentially, the
repeated play of the hypergame is an improving adjustment
scheme for the subjective hypergame of Ai, which by Corol-

lary 4.5 converges to an equilibrium.

VI. CONCLUSIONS

We have studied the learning of equilibria in hypergames.
By drawing a connection with ordinal potential games,
we have shown that the H-digraph associated to a finite
subjective hypergame contains no weak improvement cycle.
This property has allowed us to show that players can use any
improving adjustment scheme to learn the equilibria of their
subjective hypergames. We have designed the high-order
perception update algorithm that allows players
to consistently update their perceptions with the information
contained in their observations and using either self-blaming
or opponent-blaming strategies. We have characterized the
properties of the high-order perception update
algorithm and, more importantly, we have proved that
if players are rational, have perfect observation about the
past outcomes of the game, and use this information to
update their perceptions about the opponents’ preferences,
any repeated play of the hypergame will converge to an
equilibrium. Future work will explore the extension of the
results of the paper to situations with imperfect observations,
and their application to deception.
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