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Abstract— This paper studies the evolution of the perceptions
of players about the game they are involved in using the frame-
work of hypergame theory. The focus is on developing methods
that players can implement to modify their perception about
other players’ payoffs by incorporating the lessons learned from
observing their actions. We introduce a misperception function
that measures the mismatch between a player’s perception
and the true payoff structure of the other players. Our first
update mechanism, called swap learning method, is guaranteed
to decrease the value of the misperception function but in
general can lead to inconsistencies in the stability properties
of the resulting perception. This motivates the introduction of
a second mechanism, called modified swap update method, that
is guaranteed to produce a consistent perception. Finally, we
identify a class of hypergames for which the modified strategy
is also guaranteed to decrease the misperception function.

I. INTRODUCTION

The manipulation of perceptions plays a key role in many
strategic situations. Scenarios include military operations,
bargaining, negotiation, investment banking, and card games.
The objective of this paper is to study the evolution of the
perceptions of players about the game they are involved in.
A proper understanding of this evolution is critical in order
to induce deception and design mechanisms that are robust
against deception. Specifically, we focus on developing meth-
ods that players can implement to modify their perception
about other players’ ultimate objectives by observing the
actions they take.

Literature review: The works [1], [2], [3], [4] show
how deception can arise in games of imperfect observation
(i.e., when players do not perfectly observe each others’
actions). Here, instead, we consider the setup of games of
incomplete information, where deception may arise because
of an imprecise understanding about the objectives and true
intentions of other players. We move away from the common
approach in game theory, see e.g., [5], that consists of
transforming a game of incomplete information into one of
imperfect information, e.g., Bayesian games [6]. The reason
for this is that such approach does not consider situations
when a player believes that other players are of a certain
type or have a specific set of actions available to them,
and is not considering that this might not be true because
she is not aware of other possibilities. [7] shows that, by
allowing subjective information structures for players, the
inconsistent structure of beliefs may lead to counterintu-
itive behaviors. Furthermore, differences in beliefs are not
necessarily smoothed out if the game is repeated infinitely
many times. [8] shows that there exist games with incomplete
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information in which players almost never learn to predict
their opponents’ behavior. Our technical approach makes use
of the framework of hypergames [9], [10], [11], [12]. A
hypergame is a generalization of the concept of game that
explicitly models the possibility of different agents having
different perceptions about the scenario they are involved
in. Few works [13], [14], [15] have addressed the study of
learning in hypergames.

Statement of contributions: The first contribution of the
paper is the introduction of the basic notions of partial
order, preference vector, rank, and H-digraph. These notions
simplify the determination of the equilibria of hypergames
and their stability analysis. The second contribution is the
introduction of the swap learning method which allows a
player to update its own perception based on the information
contained in the actions taken by other players. We also
introduce the misperception function to provide a measure
of the mismatch between a player’s perception and the
true payoff structure of the other players. We show that
the swap learning method ensures that the misperception
function will decrease and that the players’ perceptions
will converge if they repeatedly use this strategy. The third
and last contribution is the introduction of the notion of
inconsistency in perceptions. Specifically, we show that the
swap learning method can yield preference vectors that are
inconsistent with the stability properties of the outcomes
implied by the actions of other players. This leads us to
propose a modified version of the swap learning method
which is guaranteed to prevent any inconsistency in the
perceptions. We establish a class of hypergames for which
the modified strategy is also guaranteed to decrease the
misperception function. Throughout the paper, we illustrate
our discussion with several examples.

II. A NEW FRAMEWORK FOR HYPERGAMES

In this section, we review the basic notions from hyper-
game theory [11], [16], [10]. We also introduce the useful
concept of H-digraph for analyzing stability in hypergames.

A. Basic notions

A 0-level hypergame is a finite game, as defined next.
Definition 2.1: A (finite) game is a triplet G =

(V,Soutcome,P), where V is a set of n players; Soutcome =
S1 × . . . × Sn is the outcome set, where Si is a finite set
of strategies available to player vi ∈ V , i ∈ {1, . . . , n};
P = (P1, . . . , Pn), with Pi = (x1, . . . , xN )T ∈ SN

outcome,
N = |Soutcome| and i ∈ {1, . . . , n}, is called the preference
vector of player vi.

A nonempty set X along with a preorder �, i.e., a reflexive
and transitive binary relation, is called a directed set if for



every pair of elements in X there exists an upper bound
with respect to the preorder. Note that the set of outcomes
Soutcome is a directed set under the preorder �Pi induced by
the preference vector Pi of player vi as follows: x �Pi y if
and only if x has a lower entry index that y in Pi.

Definition 2.2: (1-level hypergames): A 1-level hyper-
game with n players is a set H1 = {G1, . . . ,Gn}, where
Gi = (V, (Soutcome)i,Pi), for i ∈ {1, . . . , n}, is the sub-
jective finite game of player vi ∈ V , and V is a set of
n players; (Soutcome)i = S1i × . . . × Sni, where Sji is the
finite set of strategies available to vj , as perceived by vi;
Pi = (P1i, . . . , Pni), where Pji is the preference vector of
vj , as perceived by vi.

In a 1-level hypergame, each player vi ∈ V plays the
game Gi with the perception that she is playing a game
with complete information, which is not necessarily true.
The definition of a 1-level hypergame can be extended to
higher level hypergames, where some of the players have
access to some additional information that allow them to
form perceptions about other players’ beliefs, other players’
perceptions about them, and so on.

Definition 2.3 (Higher-level hypergame): A k-level hy-
pergame, k ≥ 1, with n players is a set Hk =
{Hk−1

1 , . . . ,Hk−1
n } in which each player’s game is a (k−1)-

level hypergame.
Throughout the paper, for simplicity, we restrict our at-

tention to 2-level hypergames H2 = (H1
A,H1

B) with two
players A and B. We do not consider scenarios in which
players are playing in different levels of hypergames.

B. Equilibria and stability

Here we discuss the notion of equilibria for hypergames
making use of the concept of partial order. Let us start by
introducing some notation. For a 2-level hypergame H2, we
denote by H1

A = {GAA,GBA} the 1-level hypergame for
player A, where GAA and GBA are, respectively, the games
of player A and player B perceived by player A. We also
denote by PGAA

and PGBA
, respectively, the preference

vectors corresponding to GAA and GBA. Similarly, we
define H1

B = {GBB ,GAB}. We denote by Soutcome the
outcome set of the hypergame H2. Here, we assume that
players have no misperception in their own preferences. Also
we assume that all the 1-level hypergames have the same set
of outcomes, i.e., the outcomes set Soutcome is observable for
both players. This assumption is common in the literature,
see e.g., [10]. Throughout the paper, we let SP ⊂ SN

outcome,
N = |Soutcome|, denote the set of all elements of SN

outcome
with pairwise different entries. Since, by assumption, both
players have the same outcome sets, we sometimes use the
preference vectors (PGAA

,PGBA
) to refer to the 1-level

hypergame H1
A. We denote by �PGIJ

the binary relation
on Soutcome induced by PGIJ

, where I, J ∈ {A,B}. We
often use the notation Pi

GIJ
to denote the ith entry of PGIJ

.
We denote by πI the natural projection of the outcome set
Soutcome to the strategy set of player I ∈ {A,B}. We also
find it useful to use I ′ to denote the opponent of I in {A,B}.
The next definition introduces two important notions.

Definition 2.4 (Improvement and rational outcome):
Given two distinct outcomes x, y ∈ Soutcome, y is
an improvement from x for player I ∈ {A,B} in
GIJ , perceived by player J ∈ {A,B}, if and only if
πI′(y) = πI′(x) and y �PGIJ

x. An outcome x ∈ Soutcome
is called rational for player I ∈ {A,B} in GIJ , J ∈ {A,B}
if there exists no improvement from x for this player.

The concept of Nash equilibrium is inappropriate in the
context of hypergames because it does not take into account
the different perceptions of the players. This is best illustrated
with an example. Suppose player A has some perception
about player B’s game and suppose A has an improvement
y from x. If A believes that B has an improvement z from
an outcome y such that x �PGAA

z, then A will decide not
to take the action associated with the improvement y, hence
invalidating the basic assumption behind the notion of Nash
equilibrium. This problem can be addressed with the concept
of sequential rationality [17], [18], [11].

Definition 2.5 (Sequential rationality): Consider a 2-level
hypergame H2 between players A and B. An outcome x ∈
Soutcome is sequentially rational for player I ∈ {A,B} in the
game GIJ with respect to H1

J , J ∈ {A,B}, if and only if for
all improvements y for player I in the game GIJ , perceived
by player J , there exists an improvement z for player I ′ in
the game GI′J , perceived by player J , such that x �PGIJ

z.
Whenever this holds, we say that the improvement z from y
for player I ′ in the game GI′J sanctions the improvement
y from x for player I in the game GIJ .

By definition, a rational outcome is also sequentially
rational. We denote by Seq(PGIJ

,PGJJ
) ⊂ Soutcome the set

of all sequentially rational outcomes for player I ∈ {A,B},
as perceived by player J ∈ {A,B}, in the game GIJ with
respect to H1

J . An outcome x ∈ Soutcome is unstable in the
game GIJ with respect to H1

J if x ∈ Seqc(PGIJ
,PGJJ

)
(Here, for S ⊂ U , Sc = {x ∈ U | x /∈ S} denotes the com-
plement of S with respect to U ) and is an equilibrium of H1

J

if x ∈ Seq(PGJJ
,PGJ′J

)∩Seq(PGJ′J
,PGJJ

). For brevity,
we sometimes omit the wording ‘with respect to H1

J ’ when it
is clear from the context. An outcome x is an equilibrium of
H2 if x ∈ Seq(PGAA

,PGBA
) ∩ Seq(PGBB

,PGAB
). Note

that an outcome x can be an equilibrium for H2 while it is
not an equilibrium of H1

A.
The following result plays an important role in the forth-

coming discussion. For simplicity, we present it for GBA,
however, one can easily extend it to GIJ , for I, J ∈ {A,B}.

Lemma 2.6: (Existence of rational outcomes): For each
x ∈ Soutcome, either x is rational for player B in the game
GBA or there exists an improvement y ∈ Soutcome from x
for player B in the game GBA which is rational for B in
the game GBA.

Since all rational outcomes are also sequentially rational,
Lemma 2.6 also shows the existence of sequential rational
outcomes. The following result guarantees the existence of
equilibria in hypergames. A proof can be found in [10].

Theorem 2.7 (Existence of an equilibrium in hypergames):
Every hypergame has an equilibrium outcome.



C. The H-digraph

The stability analysis in hypergames is typically done
by means of preference tables, see [10], [11]. Here we
introduce a novel digraph, termed H-digraph, that contains
the information about the possible improvements from an
outcome to another outcome, the equilibria, and the sanctions
in a hypergame. We start by introducing the notion of rank.

Definition 2.8 (Rank): Let H2 be a 2-level hypergame and
consider the game GIJ , I, J ∈ {A,B}. We assign to each
outcome x ∈ Soutcome a positive number rank(x,PGIJ

) ∈
R>0, called the rank of outcome x, such that, for each
Soutcome 3 y 6= x, we have that rank(y, PGIJ

) ≥
rank(x,PGIJ

) if and only if x �PGIJ
y.

By this definition, players prefer the outcomes with lowest
rank. Throughout the paper, we use the set {1, . . . , |Soutcome|}
to rank the outcomes. Note that, by this assignment, two
outcomes with the same payoffs will have different ranks.

A digraph by G is a pair (V,E), where V is a finite set,
called the vertex set, and E ⊆ V × V , called the edge
set. Given an edge (u, v) ∈ E, u is the in-neighbor of v
and v is the out-neighbor of u. The set of in-neighbors and
out-neighbors of v are denoted, respectively, by N in(v) and
N out(v). The in-degree and out-degree of v are the number
of in-neighbors and out-neighbors of v, respectively.

Definition 2.9 (H-digraph): The digraph GH1
A

=
(Soutcome, EH1

A
) is the H-digraph associated to player

A’s hypergame H1
A, where x ∈ Soutcome is labeled with

(rank(x,PGAA
), rank(x,PGBA

))

and there exists an edge (x, y) ∈ EH1
A

iff one of the following
holds with respect to H1

A,
• there exists an improvement y from x for player A in the

game GAA for which there exists no perceived sanction
of B in the game GBA;

• there exists a perceived improvement y from x for
player B in the game GBA for which there exists no
sanction of A in the game GAA.

It is clear from the definition that an outcome is an
equilibrium for H1

A iff its out-degree in the associated H-
digraph is zero. Similarly, one can associate a H-digraph to
H1

B . Furthermore, we define a H-digraph associated to H2

by using the true players’ games GAA and GBB .

III. THE SETTLEMENT GAME

Here, we describe in detail a hypergame to illustrate the
notions introduced in the previous section. The example will
also serve us to motivate the questions addressed in the
forthcoming discussion. Suppose two teams A and B are
trying to launch some troops in a field partitioned into four
regions, North West (NW), North East (NE), South West
(SW) and South East (SE). Each team has its own perception
about the conditions in the field and, based on that, has
some preferences for launching the troops. Furthermore, each
team has a perception about the opponent’s intentions. We
associate a vector θ = [θA1 , θA2 , θB1 , θB2 ]

T ∈ {0, 1}4 to
each outcome of the settlement game, where θA1 (resp. θB1)

is 0 if A (resp. B) chooses West and 1 otherwise, and
θA2 (resp. θB2) is 0 if A (resp. B) chooses North and 1
otherwise. We associate a unique identifier Ind(θ) ∈ Z≥0 to
each outcome of the settlement game by computing

Ind(θ) = θA1 × 20 + θA2 × 21 + θB1 × 22 + θB2 × 23.

Suppose the players’ preferences and perceptions about
each other’s preferences are given by

PGAA
= (12, 9, 6, 3, 8, 4, 13, 1, 14, 2, 11, 7, 0, 5, 10, 15)T ,

PGBA
= (0, 5, 15, 10, 1, 2, 3, 7, 4, 6, 14, 13, 8, 11, 12, 9)T ,

PGBB
= (1, 2, 3, 7, 4, 6, 14, 13, 8, 11, 12, 9, 0, 5, 15, 10)T ,

PGAB
= (12, 9, 6, 3, 8, 4, 13, 1, 14, 2, 11, 7, 0, 5, 10, 15)T ,

where entries with lower index are preferred. Recall that the
preferences of player J ∈ {A,B}, as perceived by player I ∈
{A,B}, induce a preorder on the set of outcomes Soutcome.

We rank the set of outcomes with the integers
{1, . . . , |Soutcome|}. The H-digraph associated to each team’s
hypergame are shownm in Figure 1. For instance, the out-
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Fig. 1. H-digraphs for the hypergame (a) H1
A with (PGAA

, PGBA
) and

(b) H1
B with (PGBB

, PGAB
).

come 0 is ranked 13 in GAA and 1 in GBA (this corresponds
to the subindex (13, 1) for the node 0 in Figure 1(a)).
Moreover, there is no outgoing edge from this outcome to
outcomes 4, 8, and 12, which means that 0 is sequentially
rational for player B in GBA with respect to H1

A.
Let us analyze what happens if players play this hy-

pergame. Team A will hope for the equilibrium 3 and so
they move to SE. Team B also perceives 3 as their best
equilibrium and so will move to NW. The result does not
reveal any new information about the misperceptions, in the
sense that none of the players would do anything differently
if she got the chance to play this hypergame again knowing
the previous outcome.

Next, consider the same setup as above with a new set of
preferences for the game GBB ,

P′GBB
= (13, 14, 12, 8, 9, 11, 2, 1, 3, 4, 7, 6, 15, 10, 0, 5)T .

The new H-digraph associated to player B’s 1-level hyper-
game is shown in Figure 2. Team A hopes for the outcome
3 and so plays the action πA(3). Similarly, player B hopes
for the perceived equilibrium 12 and thus plays the action
πB(12). Thus the result of a one-stage play of this hypergame
is outcome 15, which is unstable for both players in their
games GAA and GBB . If players got the chance to move
away from this unstable outcome, they could indeed find an
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improvement to a sequentially rational outcome and hence
select the action associated to it. One can compute the
sequence {15, 8, 12} as the result of these improvements.
The final outcome 12 is an equilibrium for the corresponding
2-level hypergame.

We are interested in understanding what each of the
players could have observed, at each round of playing the
hypergame, about her misperception. For example, consider
player B’s game as perceived by player A. Player A orig-
inally thinks that the outcome 15 is rational for player B.
This can be observed in Figure 1(a), where outcome 15 has
no incoming edges from 3, 7, or 11. Based on the action
πB(8), player A could learn that

1) outcome 15 is not sequentially rational for player B;
2) player B prefers outcome 11 to outcome 15, i.e.,

15 ≺GBB
11 = (πA(15), πB(8)).

Thus player A wants to include these observations to improve
her perception about B’s game.

IV. DECREASING MISPERCEPTION BY OBSERVATIONS

In this section, we develop a method that allows a player to
update its own perception based on the information contained
in the actions taken by other players.

A. Swap learning method

Let H2 be a 2-level hypergame with two players A and B.
In most of the following, we analyze the hypergame from
the view point of player A. An analogous discussion can
be carried out for player B. Suppose players take some
actions which changes the outcome from x ∈ Soutcome to
y ∈ Soutcome with x 6= y. Then if player A believes that
the opponent is rational, concludes that player B prefers
the outcome (πA(x), πB(y)) over the outcome x. Therefore,
player A can incorporate this information into her hypergame
and update her perception. This section introduced the swap
update method to incorporate this information.

Definition 4.1 (swap map): Let V be a set of cardinality
N and let W be the subset of V N with pairwise different
elements. For x1, x2 ∈ V , define gswap

x1 7→x2 : W → W by

(gswap
x1 7→x2

(v))k = vk if vk 6= x1, x2

(gswap
x1 7→x2

(v))i =

{
vj if vi = x1, vj = x2 and i < j

vi if vi = x1, vj = x2 and i > j

(gswap
x1 7→x2

(v))j =

{
vi if vi = x1, vj = x2 and i < j

vj if vi = x1, vj = x2 and i > j

We refer to gswap
x1 7→x2 as the x1 to x2 swap map.

The swap learning map acts on the preference vectors.

Definition 4.2 (swap learning): Let H2 be a 2-level hy-
pergame with two players A and B and suppose players take
some actions that changes the outcome from x ∈ Soutcome to
y ∈ Soutcome. Then the swap learning map for player A is
the map TA,swap

x7→(πA(x),πB(y)) : SP → SP, given by

TA,swap
x7→(πA(x),πB(y))(P) = gswap

x7→(πA(x),πB(y))(P),

where gswap
x7→(πA(x),πB(y)) is the x to (πA(x), πB(y)) swap

map.
Similarly, one can define TB,swap

x7→(πA(y),πB(x)) for player B.
In the rest of this section, for simplicity and since πA(y) has
no impact on player A’s swap learning map, we assume that
πA(x) = πA(y), i.e., player B is the only one changing her
action. Thus we can write TA,swap

x7→(πA(x),πB(y)) = TA,swap
x7→y .

Next, our objective is to understand whether the effect
caused by the swap learning map on the perception of
the player is positive or negative. To that goal, let us
introduce the following function to compare the rank of each
outcome in the perceived game GBA to its rank in the true
game GBB .

Definition 4.3 (Misperception function): Let H2 be a hy-
pergame with outcome set Soutcome. The function LBA :
SP × SP → R≥0, given by

LBA(P1,P2) =
N∑

i=1

|rank(xi, P2)− rank(xi, P1)|,

where P2 is the preference vector of B and P1 is the
preference vector of player B perceived by player A, is the
misperception function of player A about player B’s game.

The following result demonstrates that the swap learning
map decreases the misperception.

Theorem 4.4: (The misperception does not increase under
swap learning): Consider a 2-level hypergame H2 between
players A and B. Suppose player B takes a rational action
such that the outcome of the hypergame changes from xi to
xj , where πA(xi) = πA(xj). Then

LBA(TA,swap
xi 7→xj

(PGBA
),PGBB

) ≤ LBA(PGBA
,PGBB

).

B. Convergence of the perceptions

Here we investigate the behavior of the hypergame when
players repeatedly use the swap update map to update their
perceptions. Consider a 2-level hypergame H2 between two
players A and B. Suppose at round l ∈ Z≥0, each player
takes an action that she believes will shift the outcome to a
sequentially rational one for her. Suppose that the outcome
changes from x(l) to x(l + 1) by an action of player B.
Suppose player A uses the swap learning map to update her
perception about player B’s game. Then,

PGBA
(l + 1) = TA,swap

xl 7→xl+1
(PGBA

(l)),

defines an evolution on the perceptions of A about B, which
we denote by (PGBA

,TA,swap). Here PGBA
(0) = PGBA

is
the initial perception of player A about player B’s game. A
similar equation characterizes the evolution (PGAB

,TB,swap)
for player B. We have the following result.



Theorem 4.5: (Convergence of evolutions under swap
learning): Suppose players A and B are playing a 2-level
hypergame, are rational, and are using the swap learning
method to update their perceptions. Then, the evolutions de-
fined by (PGBA

,TA,swap) and (PGAB
,TB,swap) for the games

GBA and GAB converge to some preference vectors P∗GBA

and P∗GAB
, respectively. Furthermore, the induced sequences

{LBA(l) = LBA(PGBA
(l),PGBB

)}l≥0 and {LAB(l) =
LAB(PGAB

(l),PGAA
)}l≥0 are monotonically convergent.

In general, the final value of the misperception in Theo-
rem 4.5 is not necessarily zero. This is typical of hypergames
whose outcome set has a large cardinality, because the
evolution of the hypergame may finish in an equilibrium
where none of the players is willing to change her action any
more, whereas parts of the outcome set remain unexplored.

V. DETECTING THE INCONSISTENCIES IN PERCEPTION

Remarkably, even though the swap update method intro-
duced in Section IV is guaranteed to decrease the misper-
ception of a player, it could lead to inconsistencies in its
belief about the other players’ preferences. To make this
point clear, consider the game GBA and suppose player B
takes an action which shifts the outcome from xi to xj .
If we assume that player B is rational, moving from xi

to xj implies that xi is unstable in player B’s true game
GBB . Furthermore, xj should be sequentially rational for
player B. These two pieces of information are not captured
in general by the swap update method, that only takes care
of asserting that B prefers xj to xi. Our objective in this
section is to introduce a modified learning procedure that
takes into account these observations.

A. Inconsistency in perception

Here we formalize the different inconsistencies that might
arise when A and B are playing a 2-level hypergame. As
before, we assume that player B takes an action that shifts
the outcome from xi to xj , and that rank(xi,PGBA

) <
rank(xj ,PGBA

). The following results show two cases for
which the swap learning does not create inconsistencies.

Lemma 5.1: (Preservation of correct perception under
swap learning): Suppose player B takes an action which
changes the outcome from xi to xj , where xi �GBA

xj .
1) If xi is perceived by player A as an unstable outcome

for player B in the game GBA then it is also perceived
as unstable in the game (PGAA

,TA,swap
xi 7→xj (PGBA

)).
2) If xj is perceived by player A as a sequentially rational

outcome for player B in the game GBA then it is also
perceived as sequentially rational for player B in the
game (PGAA

,TA,swap
xi 7→xj (PGBA

)).
The next result captures an interesting situation in which

xj is perceived to be unstable in the game GBA and it
remains unstable after imposing the swap learning map, thus
giving rise to a contradiction in the belief of A about the
game of player B.

Lemma 5.2: (Inconsistency in perceptions under swap
learning): Suppose player B takes an action which changes
the outcome from xi to xj , where xi �GBA

xj .

1) The outcome xj is perceived as unstable in the game
(PGAA

,TA,swap
xi 7→xj (PGBA

)) if and only if xi is unstable
in the game GBA.

2) If xi is perceived as sequentially rational in the game
GBA and that there exists a sequentially rational
outcome y with rank(y, PGBA

) > rank(xj ,PGBA
).

Then xi remains sequentially rational in the game
(PGAA

,TA,swap
xi 7→xj (PGBA

)).
The following lemma captures another scenario which

leads to contradiction in beliefs of player A about the game
played by player B.

Lemma 5.3: (Correction of perceptions under swap learn-
ing): Suppose player B takes an action which changes the
outcome from xi to xj . Suppose that xi is perceived as
sequentially rational in the game GBA and there exists an un-
stable outcome y with rank(y, PGBA

) < rank(xj ,PGBA
).

Then xi is unstable in the game (PGAA
,TA,swap

xi 7→xj (PGBA
)).

B. Modified swap learning method

In this section, we investigate how a player can include
the information gathered from the contradictions in her
belief update under swap learning (cf. Lemma 5.2) to learn
more about the other player’s true game. Note that the
contradictions in the perception of player A about B’s game
are not necessarily due to the misperception of player A and
may entirely be due to the misperception of B about A’s
game. Consequently, in spite of the inconsistencies that may
arise, player A may still decide to employ the swap learning
method described in Section IV.

Here, we introduce a modified version of the swap leaning
method that prevents any inconsistency in perceptions from
happening. Under this learning method, player A assumes
that player B has perfect information about her game and
thus is convinced that any misperception is due to her lack of
knowledge about the game played by B (interestingly, this
assumption can be modeled in a third-level hypergame by
specifying GABA = GAAA). In order to formally define the
method, we need the discuss the existence of two outcomes
with a particular set of properties. This is what we do next.

Lemma 5.4: (Existence of y): Consider a 2-level hyper-
game between two players A and B. Suppose player B
takes an action such that the outcome changes from xi to
xj and suppose both xi and xj are perceived as unstable
in TA,swap

xi 7→xj (PGBA
). Then there exists an outcome y ∈

Soutcome|πA(xj) such that y is sequentially rational in the
hypergame (PGAA

,TA,swap
xi 7→xj (PGBA

)).
The proof of this lemma follows from Lemma 2.6.
Lemma 5.5: (Existence of z): Consider a 2-level hyper-

game between two players A and B. Suppose player B takes
an action such that the outcome changes from xi to xj and
suppose both xi and xj are perceived as sequentially rational
in TA,swap

xi 7→xj (PGBA
). Then there exists an improvement z ∈

Soutcome|πB(xj) from xj for player A in GAA.
Next, we introduce the modified swap learning method.
Definition 5.6 (Modified swap learning): Consider a 2-

level hypergame between two players A and B. Suppose



players take actions such that the outcome changes from
xi ∈ Soutcome to xj ∈ Soutcome. The modified-swap learning
map TA,mod-swap

xi 7→(πA(xi),πB(xj))
: SP → SP is defined by

• if xi ∈ Seqc(TA,swap
xi 7→(πA(xi),πB(xj))

(P),PGAA
) and xj ∈

Seq(TA,swap
xi 7→(πA(xi),πB(xj))

(P),PGAA
) then

TA,mod-swap
xi 7→(πA(xi),πB(xj))

(P) = TA,swap
xi 7→(πA(xi),πB(xj))

(P).

• if xi, xj ∈ Seqc(TA,swap
xi 7→(πA(xi),πB(xj))

(P),PGAA
) then

TA,mod-swap
xi 7→(πA(xi),πB(xj))

(P) = TA,swap
(πA(xi),πB(xj)) 7→y

◦TA,swap
xi 7→(πA(xi),πB(xj))

(P),

where y ∈ Soutcome|πA(xi) is the outcome with the
lowest rank, with respect to TA,swap

xi 7→(πA(xi),πB(xj))
(P),

which satisfies the conditions of Lemma 5.4.
• if xi, xj ∈ Seq(TA,swap

xi 7→(πA(xi),πB(xj))
(P),PGAA

) then

TA,mod-swap
xi 7→(πA(xi),πB(xj))

(P) = TA,swap
xi 7→z ◦T

A,swap
xi 7→(πA(xi),πB(xj))

(P),

where z ∈ Soutcome|πB(xj) is the outcome with the
highest rank, with respect to TA,swap

xi 7→(πA(xi),πB(xj))
(P),

which satisfies the conditions of Lemma 5.5.
The following result follows from Lemmas 5.4 and 5.5 and

highlights an important property of modified swap learning.
Proposition 5.7: (Modified swap learning results in no in-

consistency): Consider a 2-level hypergame between two
players A and B. Suppose players A and B take actions
which shift the outcome from xi to xj . Then under the
modified-swap learning, outcomes xi and (πA(xi), πB(xj))
are perceived by A, respectively, as unstable and se-
quentially rational in TA,mod-swap

xi 7→(πA(xi),πB(xj))
(PGBA

). Simi-
larly, outcomes xi and (πA(xj), πB(xi)) are perceived by
B, respectively, as unstable and sequentially rational in
TB,mod-swap

xi 7→(πA(xj),πB(xi))
(PGAB

).

C. Decreasing the misperception via modified swap learning

In general, the modified swap learning method is not guar-
anteed to decrease the misperception function. The following
result shows that, under the assumption that B has perfect
information about A’s game and always chooses the sequen-
tially rational outcome with the best payoff, the modified
swap leaning method for A decreases her misperception
function in the sense of Definition 4.3, while preventing
inconsistency in her beliefs.

Theorem 5.8: (Misperception function and modified swap
learning): Consider a 2-level hypergame between two players
A and B where GAB = GAA. Suppose player B takes
an action which changes the outcome from xi to her best
sequentially rational outcome xj . Then, under the modified-
swap learning method, the misperception function LBA does
not increase.

VI. CONCLUSIONS

We have studied how players’ perceptions about the game
they are involved in change in adversarial situations adopting
the framework of hypergames. We have introduced the swap

learning method to allow players to incorporate into their
beliefs the information gained from observing the opponents’
actions. We have shown that a player that uses this method
decreases her misperception at the cost of potentially in-
curring in inconsistencies in her beliefs. This has motivated
the introduction of a modified version which always yields
consistent beliefs, and, under the assumption that the oppo-
nent has perfect information and plays her best strategy, also
decreases the misperception. The methods discussed here put
all the burden of the misperception on the player doing the
update. Future work will relaxe this assumption and explore
the setup of higher-level hypergames.
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