Evolution of players’ misperceptions

In hypergames under perfect observations
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Abstract

This paper considers games of incomplete information andiest the evolution of the (not nec-
essarily consistent) perceptions of the players using thmdwork of hypergames. The focus is on
developing methods to modify the players’ perception alotier players’ preferences by incorporating
the lessons learned from observing their actions. If pkyee rational, our first update mechanism,
called swap learning, is guaranteed to decrease the misrbateveen a player’s perception and the
true payoff structure of other players. However, this mdthan lead to inconsistencies in the stability
properties of the resulting perception. This motivatesitiieoduction of a second update mechanism,
called modified swap learning, that is guaranteed to producensistent perception. We also identify a
class of hypergames for which modified swap is also guardrttedecrease the mismatch in a player's
perception. We introduce the novel notion of H-digraph asefuwl tool to encode the information in a

hypergame, and fully characterize how this digraph is &df@dy changes in the players’ beliefs.

. INTRODUCTION

Belief manipulation plays a key role in many strategic sitwat. A proper understanding of
the evolution of the perceptions of players about the gareg #ne involved in is key to unravel
how belief manipulation and deception may arise. In adveisacenarios, it is common to
encounter situations where the specific objective of angrgimdividual are unknown or only
partially known to the other players.

The goal of this paper is to develop methods that players ogiement to modify their

perception about other players’ ultimate objectives arasoa about the actions they take. In
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this context, the actions taken by a player and the imphédrimation they contain can be thought
of as inputs to the dynamical system describing the evaiuticthe perceptions of other players.
In that regard, controllability and reachability quessafne., is there a sequence of actions by
one player that would make another player achieve certaicepéon) become relevant. We are
also interested in characterizing how the stability propserof the game outcomes are affected
by the evolution of the perceptions. Domains where thesestoures are relevant include social
networks, modeling of human cultural behavior, cyberséguand financial markets.

Literature review: Deception and belief manipulation are rooted at an incogecception by
a player about the true intentions or state of other play#fithin the context of games, these
situations can be modeled as games of either incomplete perfect information. In a game
of incomplete information, players do not know the payofusture of the other players and
have an imprecise understanding about their objectivedraiedntentions. The usual approach,
see e.g., [2], consists of transforming the game into onenpkifect information, where Nature
decides the true type of the players according to some piid@alistribution that is known to all.
This approach gives rise to Bayesian games [3], [4], whengepéatry to learn from observations
the true type of the opponents. Although games with incotapleformation facilitate the
modeling of uncertainty in players’ beliefs, they do not @aat for a variety of asymmetric
situations, such as some players being absolutely certantaother players’ types and these
certainties being mutually inconsistent, or scenariosre/tilee full set of actions available to the
opponents may not be known by some of the players. Thesectests have been pointed out
in [5] for a nonzero sum game where players have subjectifgnmation structures, and the
inconsistent structure of beliefs leads to counterintaittehaviors. Furthermore, the differences
in beliefs may in general not be smoothed out if the game isatgal infinitely many times. [6]
demonstrates that there exist games with incomplete irdbom in which players almost never
learn to predict their opponents’ behavior. Within the exhbf games of incomplete information,
deception has not been studied in a systematic way with tbep&on of a few references. [7]
studies deception via strategic communication, in whicts@phisticated’ player sends either
truthful or false messages to the opponents. [8] invesfgtte vulnerability of strategic decision
makers to persuasion. The recent work [9] constructs a yhebideception for games with
incomplete information using the analogy-based sequestailibrium approach [10], in which

players form expectations about the average behavior afttier players based on past histories.
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In this work, deception arises because boundedly ratidagkps make incorrect inferences about
the type of other players. Instead, in hypergames, deceptizes because the players choose
to believe that their perceptions are correct.

In games of imperfect information, players observe onltiglly the actions taken by other
players and therefore have uncertainty about the true stdtee game, see e.qg., [11], [12]. Early
references on deception and deception-robustness in dymames with imperfect information
include [13], [14]. The work [15] illustrates, in a partieul example of a non-cooperative
stochastic game, how a player has the potential of manipgl#te information available to the
opponent and can strategically deceive her. In [16], it ®aghthat asymmetric information has
the potential to inject deception in a non-zero sum game. Wt [17] presents an example of
deception in a two-person zero-sum dynamic game with inegérhformation. The works [18],
[19] study deception and provide deception-robust schefoes class of discrete dynamic
stochastic games under imperfect observations.

Here, we consider games of incomplete information and, mpeeifically, the framework of
hypergames [20], [21], [22], [23]. This approach allows asonsider situations where a player
believes, whether it is true or not, that other players ara oértain type or have a specific set
of actions available to them. This is in contrast with the lexpconsideration of uncertainty
about other players’ types as typically done in games ofrlete information, see e.g. [2].
The introduction to the notion of hypergames goes back tp4ad was originally used to model
conflicts [24]. An advantage of using hypergames insteadaofes with imperfect information
is that they allow the possibility of explicitly modelingdarrect perceptions by some players
about the intent of other players. Moreover, in hypergamksjers can benefit from many levels
of perception, in the sense that they can have perceptiang #ie other players’ interpretations
of the game, and also about the opponents’ perception af gfaene and so on, see [21], [23].
Hypergames are also well suited to model scenarios whegenglglay security strategies or
when the cost of risky actions is high, such as wartime nagoti [25] and cybersecurity [26].
In the context of hypergames, few works [27], [28] have adsled the study of learning from
observations. Throughout the paper, we make the simpfjfgssumption that the actions taken
by the opponents are perfectly observed by the players.

Statement of contributionsThe first contribution of the paper is the introduction of thesic

notions of partial order, preference vector, rank, and ¢taph. These notions simplify the
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determination of the equilibria of hypergames and theibifitg analysis. We also introduce the
H di graph construction al gorithmwhich provides a procedure for computing H-
digraphs and characterize its complexity. The second itotiton is the introduction of the
swap learning method, which allows a player to update her perception based on the
information contained in the actions taken by other play#fe use the misperception function
as a measure of the mismatch between a player's perceptwrthantrue payoff structure of
the other players. Assuming all players are rational, wewstiat the swap learning method
ensures that the misperception function will decrease &ad the players’ perceptions will
converge if they repeatedly use this strategy. On the othadhwe show that other plausible
learning strategies, such as right-shift and left-shidirhéng, are not guaranteed to decrease the
misperception function. The third contribution is the aduction of the notion of inconsistency in
perceptions. Specifically, we show that the swap learnindpatecan yield preference vectors that
are inconsistent with the modified stability propertiesttd butcomes determined by the actions
of other players. This leads us to propose a modified verdidimeoswap learning method which
is guaranteed to prevent any inconsistency in the peraeptife establish a class of hypergames
for which the modified strategy is also guaranteed to deerrgsmisperception function. Finally,
the last contribution is the characterization of the evotutof the H-digraph under the swap
learning method. We study the effect that the changes in kingeps’ perceptions, determined
by swap learning, have in the structure of their respectivéigfiaphs. These results provide a
fast and inexpensive way for detecting outcomes which ataffected by a certain action and,
more importantly, open the way to construct algorithmicgedures for belief manipulation.
Throughout the paper, we illustrate our discussion witlessvexamples.

Organization: Section Il introduces a new framework for studying hyperganin Section I,
the settlement game serves the dual purpose of illustratiegbasic hypergame definitions
and motivating the questions on learning that are addressgtl Section IV introduces the
swap learning method to modify a player’s perception by ipocating observations from other
players’ actions and studies its properties. Section Vutdises the inconsistencies in perception
that might arise under the swap update method and proposexddied version. Section VI
discusses the effect that the changes in the players’ p@osphave in the structure of their

respective H-digraphs. Section VIl contains our conclasiand ideas for future work.
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I[I. HYPERGAME THEORY

In this section, we review the basic notions of hypergamertheAlthough most of the
concepts can be found in [22], [21], [20], we have reviseddiseussion to provide a smooth

presentation of the main ideas. We also introduce and amahg novel concept of H-digraph.

A. Basic notions

A 0-level hypergame is a finite game, i.e., a triplet= (V, Souem, P), WhereV' is a set ofn
players;Souem = S1 X ... X S, is the outcome set, wherg is a finite set of strategies available
to playerv; € V,i € {1,...,n}; andP = (P,..., P,), with P, = (z1,...,2x)" € SY e
N = |Soutem| @ndi € {1,...,n}, is called the preference vector of player Each preference
vector P, is equipped with a preorder p, such that, ifx has a lower entry index thatin P,
thenz =p y. In this way, the emphasis is put on the order of preferenoesng outcomes,
rather than on the actual payoff that players obtain for esuetific outcome.

Definition 2.1: (1-level hypergame)A 1-leveln-person hypergamis a setH! = {G, ..., G,},
whereG; = (V, (Souem)i» Pi), @ € {1,...,n}, is the subjective finite game of playerc V, and

(i) V is a set ofn players;

(i) (Soutem)i = S1i % ... x Sypi, WhereS;; is the finite set of strategies available ¢, as
perceived byv;;
(i) P, = (Pu,..., Py;), wherePj; is the preference vector of, as perceived by;.

In a 1-level hypergame, each playere V plays the O-level hyperganm@; with the perception
that she is playing a game with complete information, whechat necessarily true. The definition
of al-level hypergame can be extended to high-level hypergamtes,e some of the players have
access to some additional information that allow them tonfgerceptions about other players’
beliefs, other players’ perceptions about them, and so de. fdllowing inductive definition
allows modeling of multiple levels of perception.

Definition 2.2 (High-level hypergame} k-level n-person hypergame: > 1, is a setl* =
{H¥ ... H'} wherek; < k —1 and at least ong; is equal tok — 1. The hypergamédi* is
calledhomogeneous k; =k — 1 for all : € {1,...,n}.

Assumption 2.32(personl-level hypergames)in this paper, we focus og-personl-level
hypergames. The results are extensiblé-tevel hypergames with an arbitrary number of players,

see Remark 2.13 latel:level hypergames are the simplest class where playersgeceptions
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about their opponents’ preferences. As the ensuing dissushows, this scenario is already
quite challenging, even though the perception about themgnut’s preference is the only element
susceptible of change. In high-level hypergames, howelayers have to deal with multiple

possibilities, including changing the perception that aypl A has about the perception that

another playeB has about the original playet, and so on. °

B. Equilibria and stability

Next, we recall the notion of equilibria for hypergames [218t us start by introducing some
notation. For a-level hypergaméi®, we denote by = (P 44, Ppa) the0-level hypergame for
A, whereP 4,4 andPp,4 are, respectively, the preferencessdtind B perceived byA. Similarly,
we defineHY = (Pap, Pp). Here, we assume that players have no misperception inateir
preferences and that all tibdlevel hypergames have the same set of outcdsggs,. Throughout
the paper, we le8p C S)cmw NV = [Souten|, denote the set of all elements 8§ .., with pairwise
different entries. We denote byp,, the binary relation or8ucm corresponding td;;, where
I,J € {A, B} and by, the projection ofSoucm to the strategy set of playdre {A, B}. For
convenience, we define the restricted outcomeSg@tm|~,(x) = {¥ € Soutem | T1(y) = 71(x)}.
We also find it useful to usé’ to denote the opponent df in {A, B}. The next definitions
introduce the concepts of improvement and rational outcome

Definition 2.4 (Improvement and rational outcome3iven two distinct outcomes, y € Souterm
y is animprovementirom z for I € {A, B}, perceived byJ € {A, B} in HY, if and only if
mr(y) = mp(x) andy >=p,, x. An outcomez € Squicm iS rational for I € {A, B}, perceived by
J € {A, B} in HY, if there exists no improvement from for this player.

An outcomex € Syuem IS @ pure Nash equilibrium ofi! if it is perceived as rational by
A'in HY and by B in H%. This notion of equilibrium does not take into account thffedént
perceptions of the players. This is best illustrated witreaample. Suppose player has some
perception abouf3’s game and supposd has an improvemeny from z. According to the
definition above; is not a Nash equilibrium of the hypergame. Howeverd ibelieves thatB
has an improvement from y such thatr >p,, 2, then taking the action associated with the
improvement, could leadA to an outcome less preferred thanThis mismatch can be addressed
by extending the notion of Nash equilibrium using the conadpsequential rationality [22].

Definition 2.5 (Sequential rationality)Consider al-level hypergame{! between playerst
and B. An outcomez € Souem IS Sequentially rationalfor 7 € {A, B} with respect toHY ,
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J € {A, B}, if and only if for each improvemeny for I, perceived by/ in HY, there exists an
improvementz for I’, perceived byJ in HY, such thatr =p,, 2. Whenever this holds, we say
that the improvement from y for I’ sanctionsthe improvemeny from z for I in HY.

Note that the sanction might itself not be sanction free fd8. One could restrict sanctions to
have this property at the cost of a more complex notion of eetjal rationality. By definition,
a rational outcome is also sequentially rational. We debgt8eq,(HY) C Souem the set of all
sequentially rational outcomes for playee { A, B}, as perceived by playef € {A, B} in HY.
An outcomer € SouemiS unstablefor 7 with respect taHY if = € Seq(HY) = Soutem\ Seq; (HY)
and is arequilibrium of HY if = € Seq;(HY) N Seq,(HY). For brevity, we sometimes omit the
wording ‘with respect taH9 when it is clear from the context. An outcomeis anequilibrium
of H' if x € Seq,(HY) N Seqz(HY). An outcomer can be an equilibrium foF/! and not an
equilibrium of HY. Also, note that pure Nash equilibria éf' are equilibria of .

The following results play an important role in the forthdam discussion. For simplicity,
we present them with respect to the playgin the gameH . However, one can easily extend
them for player! in the gameHY, I, J € {A, B}.

Lemma 2.6:(Abundance of unstable outcomegyssumez € Syucm IS perceived as unstable
for B by A in HY. Then any other outcome € Sqyem Such thatra(z) = m4(z) andz =p,, 2
is also perceived as unstable fBrby A in HY.

Lemma 2.7:(Existence of rational outcomedjor x € Souem €itherz is rational forB in HY
or there exists an improvemeptfrom x perceived byA for B in HS which is rational forB.

Since rational outcomes are also sequentially rationamrha 2.7 also shows the existence
of sequentially rational outcomes. It can be shown [21] #nadry 0-level hypergame has an
equilibrium outcome, which may not be unique. However, ¢hexist high-level hypergames
which do not contain any equilibrium outcome. Existence banguaranteed, however, if one
extends the notion of equilibria to include mixed strategsee [29].

Remark 2.8 (Backward induction, subgame perfection, andesdal rationality): It is worth
noting the difference between the notion of sequentiabnatity defined above and backward
induction and subgame perfection [2]. To illustrate thisnpogiven a player, sayl, and an
outcomez, consider the two-stage game wheteacts first andB acts second. In general, the
Nash subgame perfect equilibria of this game do not corresgo the sequentially rational

outcomes given by Definition 2.5. Essentially, this is beseasequential rationality cares about
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providing guarantees no matter the action of the opponeméyeas Nash equilibria cares about
maximizing at each stage the expected payoff. Other notdrejuilibria are also relevant for
hypergames, see [22] for a discussion on the connectionsgtieem. The reason why we
focus on sequential rationality is because this notion plutsemphasis on secure actions and

guaranteed payoff based on the perceptions of the players. °

C. H-digraphs

The stability analysis in hypergames is typically done byanseof preference tables, see [21],
[22]. Here, instead, we introduce an alternative methoedbas the novel notion of H-digraph.
The H-digraph contains the information about the possitsiprovements from an outcome to
another outcome, the equilibria, and the sanctions in arggpee.

A digraph G is a pair(V, E), whereV is a finite set, called the vertex set, ahdC V' x V,
called the edge set. Givgl, v) € E, u is anin-neighborof v and v is anout-neighborof .
The set of in-neighbors and out-neighborswvofire denoted byV™"(v) and A°'(v), and their
cardinalities are thén-degreeand out-degreeof v, respectively.4 is an adjacency matrix for
G = (V, E) if the following holds:a;; > 0 if and only if (v;,v,) € E, for all v;,v; € V. Before
introducing the concept of H-digraph, we define the notiomawik.

Definition 2.9 (Rank):Let H! be al-level hypergame and consider the preference veetor
in the hypergamé{Y, I, J € {A, B}. We assign to each outcomec Syycm @ positive number
rank(z, Pr;) € R, called therank of outcomer, such that, for eacBouicm > v # =, we have
that rank(y, P7;) > rank(z, P;;) if and only if z >p,, .

According to this definition, players prefer the outcomeshwower ranks. Throughout the
paper and without loss of generality, we use the{det. ., |Soucm|/} t0 rank the outcomes. We
are now ready to introduce the notion of H-digraph.

Definition 2.10 (H-digraph):The H-digraph G = (Soutems SHg) associated td7Y is defined
by (z,y) € Exo iff one of the following holds,

« there exists an improvementfrom x for A for which there is no sanction a8 in HY;

. there exists an improvemeptfrom z for B for which there is no sanction of in HY.

Moreover, each vertex € Souem IS 1abeled with(rank(z, Pa4), rank(z, Pga)).

Similarly, one can associate an H-digraphft. The next result is an immediate consequence.
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Lemma 2.11:(Stability notions via H-digraph)An outcomez is sequentially rational ford
(respectively forB) if and only if V() NSoutem x5 () = @ (respectivelyNV°"(z) NSoutcmln s (z) =
(). Moreover, an outcome is an equilibrium for the hypergafiieif and only if its out-degree
in the associated H-digraph is zero.

Table 1 presents an algorithm to compute H-digraphs.

Algorithm 1: TheH di graph construction al gorithm
Goal: Compute the H-digraply ;o

Input: Soutemy P77 @and Py

Output: Adjacency matrixA™ of G

Initialization: associate matricesil,rnp and Ai}“p to 7 and J, respectively, by assigningto
an entry(¢, j) if there exists an improvement; from z; for the

corresponding player it/{ and zero otherwise; letl™ = 05, /% Souen

2 foreach K € {I,J} do

3 foreach z; € Souiem \ {z;} do

4 if (A7) £0and?l € {1,...,|Souern|} Such that(AMP),, # 0, where
x; =p,,  then

5 ‘ AZ- =1

Lemma 2.12:(Computational complexity of the di gr aph construction al gorithm:
The computational complexity of thé di gr aph constructi on al gori t hmis ©(|Soucm?).
Proof: Note that|Soucm| = nm, wheren, m are the number of actions of playefsand J,
respectively. Choose any action bf and let{z,...,z,,} be all the outcomes who share this
action. Without loss of generality, let >p,, z;41, foralli € {1,...,m}, m € Z>,. For eachr;,
the algorithm compares the rankity; of all the improvements fof from z;, k < i, in H?, to
the rank ofz; in P;;. Note that there aré& — 1) improvements fromx; perceived forJ and for
each of these improvements, there are at rm)st‘s‘;“l—tcml outcomes that need to be examined in
P;; to draw a conclusion about the stability of As a result, the total number of computations
required for the outcomes iBoutcm|x; () IS IN O(n x %’”_”) and sincer; partitions Soutem

into n subsets, the total computation requiredign? x ™*=1) — ©(|Syem?).- ]
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Remark 2.13¢-person hypergames)he notion of H-digraph can be extended (idevel
hypergames with a finite number of players. Such H-digraphs aredimensional, with one
dimension per individual player's action set. Sanctions perceived with respect to all the
opponents and edges correspond to sanction-free improdemehe time complexity grows
with the number of outcomes, which in turn, grows with the bemof players. .

Once an H-digraph is calculated with complexity as charasd by Lemma 2.12, if a
change is done to the preference vectors of a player, thelegitypof recomputing it decreases

substantially. We will revisit this issue in Remark 6.3.

[11. THE SETTLEMENT GAME

Here, we analyze in detail a hypergame to illustrate theonstintroduced in Section Il. The
example also serves to motivate the questions addresshd forthcoming discussion. Suppose
two teamsA and B are trying to deploy some resources in a field partitioned fatr regions,
North West (NW), North East (NE), South West (SW), and South E88). Each team has its
own perception about the conditions in the field and, basethaty has some preferences for
deploying the resources. Furthermore, each team has gfiercabout the opponent’s intentions.
We associaté = [04,,04,,05,,05,]" € {0,1}* to each outcome, where

e 04,150 If A chooses West and otherwise;f 4, is 0 if A chooses North and otherwise;

« Op, is 0 if B chooses West ant otherwise;fp, is 0 if B chooses North andl otherwise.

For examplef = (0,0, 1,1)7 is associated to the outcome in which teantecides to settle in
NW, while teamB goes to SE. We associate a unique identifiel(#) € Z-, to § by computing

Ind(0) = 04, x 2° + 04, x 2" +0p, x 2> + 0p, x 2°.
Suppose the players’ preferences and perceptions abduto#iaer’'s preferences are given by
Paa=(12,9,6,3,8,4,13,1,14,2,11,7,0, 5, 10,15)T,
Ppa = (0,5,15,10,1,2,3,7,4,6,14,13,8,11,12,9)7,
Ppp =(1,2,3,7,4,6,14,13,8,11,12,9,0,5,15,10)7,
= (12,9,6,3,8,4,13,1,14,2,11,7,0,5, 10, 15)7"

We rankSyuiem With the integers{1, .. ., |Soutem| }-
Figure 1(a) and (b) show the H-digraphs associated to eaohsdnypergame. For instance, in
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(@) (b) (©

Fig. 1. H-digraphs for the hypergames (®.44,P54), (b) (Pas,Pgrg), and (c)(Pag,Pxp).

Figure 1(a), there is no outgoing edge fronto 4, 8, and12, which, according to Lemma 2.11,
means that) is perceived as sequentially rational fBrin HS. Let us analyze what happens if
players play this hypergame. Teamhopes for the equilibriun3 and moves to SE. Tea®
also perceives as the best equilibrium and so moves to NW. The result of tmeegdoes not
reveal any new information about the misperceptions, insdrese that none of the teams would
do anything differently if they got the chance to play it agai

Next, consider the same setup as above with a new set of pnets forB,

Py = (13,14,12,8,9,11,2,1,3,4,7,6,15,10,0,5)".

Figure 1(c) shows the new H-digraph associated3t® hypergame. Teamil hopes for3 and
so plays the actiom4(3). Similarly, B hopes for the equilibriuni2 and thus plays the action
75(12). The result of a one-stage play1s, which is unstable ford in H% and B in HY. If any
of them got the chance to move again, they could find an impnev¢ to a sequentially rational
outcome and select the action associated to it. For examptnuld take the actiomp(11).

We are interested in understanding what the players could bhserved, at each round of
play, about their misperception of the opponent’s game.dxample, consideA’s perception.
Initially, A thinks that15 is (sequentially) rational fo3. This can be observed in Figure 1(a),
where 15 has no outgoing edge t& 7, or 11. Based on the actionp(11), A could learn: (i)
outcomel5 is not sequentially rational foB; (i) B prefers outcomd1 to outcomelbs, i.e.,
15 <p, . 11. PlayerA could use these observations to improve her perceptiontasigame.

These are the kind of questions that motivate our develofsriziow.
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IV. DECREASING MISPERCEPTION BY OBSERVATIONS

In this section, we investigate methods that allow a plagargdate her own perception based
on the information contained in the actions taken by othaygis. Throughout the rest of the

paper, unless otherwise noted, we assume that playerstameata

A. Learning methods

Let H' be al-level hypergame with two playerd and B. In most of the following, we
analyze the hypergame from the viewpoint 4f An analogous discussion can be carried out
for B. SupposeB takes an action that changes the outcome flioeh Soyiem 10 ¥ € Soutem With
x # y. Then, A deduces thaB prefersy over z. Therefore,A can incorporate this information
into her hypergame and update her perception about therpnefes ofB. This section explores
the suitability of several methods to incorporate this iinfation.

1) Swap update:ln the second part of the settlement example of Section h#, players’
change of actions leads to a shift in the outcomes frignto 11; thus A concludes thatB
prefers the outcomeél to 15. PlayerA originally has the perceptiotb >=p,, 3 =p,, 7 >p,, 11
aboutSoutem|~, (15)- After moving from outcomel5 to 11, it would appear reasonable fe to
interchange the positions db and 11 in her belief aboutB’s preferencesil >p,, 3 >p,,

7 >p,, 15. We call thisswap learning We formally define this map next.
Definition 4.1 (Swap map)Let V be a set of cardinalityy and letlV be the subset df Vwith

pairwise different elements. Far,z, € V, defineswap, , ., : W — W by

p
Uj if Vy = 1,V = T2 andi<j,
(Swaplezg (U))Z =
\Ui if V; = T1,V; = X2 andi>j,
(
V; if Vy = 1,V = X2 andi<j,
(swap,, .., (v)); =

Uj if V; = X1,V = T2 andi>j,

and (swap,,, ., (v))r = vg if v, # 21, 20. We refer toswap, , .. as thex; to z, swap map
Figure 2(a) shows the effect of the swap map for a vectamith v; = x4, v; = 25, andi < j.

We are now ready to define the swap learning map acting on #ferpnce vectors.
Definition 4.2 (Swap learning)Let H' be al-level hypergame with two playerd and B

and supposés takes an action that changes the outcome ftom Soyiem 10 ¥ € Soutem Then
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the swap learning mapSw_,ﬁy : Sp — Sp for A is given by

Sw, (P) = swap,_, (P)

T,y

QOO0 QU000
QOO0 QOLOLOO

(@) (b)

Fig. 2. Effect of (a) the swap map and (b) the right-shift map on a vecto
2) Right-shift learning: In the second part of the settlement example of Section IHenv

the outcomes change froi to 11, A could instead update her belief abdis preferences as
follows: 11 >p,, 15 >p,, 3 >p,, 7. Note that with this update, unlike the swap learnirg,
employs the informatioril >p,, 15, while still believing thatB prefers15 to outcomes3
and7. We call thisright-shift learning We formally define this map next.

Definition 4.3 (Right-shift map)Let VV be a set of cardinalityv and letIV be the subset of

VN with pairwise different elements. Far, z, € V, definer-shift,,, .., : W — W by
(

) Uj if Vy = T1,V; = T2 andi<j,
(r-shift,, ., (v)); =
\UZ' if Vi = 1,V = T2 and’i>j,
(
) V-1 if Vi = 1,V = T2 andi<l§j,
(r-shift,, ., (v)); =
U1 if Ui:$1,Uj:l’2andj§l<i,

\
and (r-shift,, ., (v))r = vg If v; = x1,v; = 29 andk < i or k > j. We refer tor-shift,,.,, as

the z; to xz, right-shift map
Figure 2(b) shows the effect of the right-shift map for a eeet with v; = 24, v; = z,, and
1 < j. Next, we show that the right-shift map corresponds to a @mitipn of swap maps.
Lemma 4.4 (Right-shift map as a composition of swap maps):VV be a set of cardinality

N and letWW be the subset of ¥ with pairwise different elements. Far, z, € V, we have

r-shifty, o, (V) = sWap, | ., 00 0SWap, | ., 0sWap,, ., (v),

wherev; = z; andv; = .
A right-shift mapr-shift,,,.,, acting onW C U can be extended to a maghift,,..,, acting

on U by prescribing that-shift,,, .,, fixes all elements ot/ \ V.
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Definition 4.5 (Right-shift learning)Let H! be a 1-level hypergame with two players
and B and suppose3 takes an action that changes the outcome from Soyiem 10 ¥ € Soutem
The right-shift learning mapsR—Shﬁy : Sp — Sp for A is given by

R-Shy,(P) = r-shift,, ., (P)

wherer-shift,. ., is thez to y right-shift map onSoutem|~,(x) €Xxtended tdSoyicm
It is also possible to define the notion of left-shift leagimap, in which the player trusts

that her initial belief about the relative ranks with redpiecthe second outcome is correct.

B. Effect of learning on misperception

Our objective is to understand the effect of the learning snajiroduced above on the
perception of the player. To that goal, we introduce the fgaxttion to compare the rank of each
outcome in the preference vector fBrin HY to its rank in B’s true preference vector if/}.

Definition 4.6 (Misperception function).et 4! be a hypergame with outcome &}, The

misperception functiorz4 : Sp — R of A aboutB’s game is

N
Lpa(P) = Z [rank(z;, Ppp) — rank(z;, P)|

=1

An analogous definition can be given for the misperceptianction £,z of B about A’s
game. The next result shows that swap learning can only deerte misperception.

Theorem 4.7:(The misperception does not increase under swap learn@g)sider al-level
hypergamelH ' between playerst and B. SupposeB takes an action such that the outcome of
the hypergame changes framto z;. ThenEBA(Swaj(PBA)) < Lpa(Ppa).

Proof: Let z; ~p,, z; (otherwise, the swap learning map is trivial and the resallos).
For z1, € Soutcm|rs(z;) 1€t 71 = rank(xy, Ppp) anda, = rank(zy, Ppa), and, up to relabeling the

outcomes, suppose that < a, if and only if [ < k. Under the swap learning map,
ALps =Lpa(SW, . (Ppa)) — La(Ppa) = (Iri — a;| + |r; — ai]) — (Irj — a;| + |ri — ail).

Since B is rational and has changed her action such that the outcbiftedsfrom z; to z;, we
haver; <r;. If a; = a; or r; = r;, thenALp, = 0. Next, suppose,; < a; andr; < r;. Then
one of the following cases will happen

o If Ty — @ >0,r;—a; >0, ri —a; < 0, ande —a; < 0, thenAEBA = 2((1Z — Clj) < 0;
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e ifr,—a;>0,7—a; >0,7;, —a; >0, andr; —a; > 0, thenALp, = 0;

o ifr,—a; >0,7,—a;>0,r; —a; >0, andr; —a; <0, thenALps =2(r; —a;) <O0;

o ifrj—a;<0,r,—a;>0,r;—a;, >0, andr; —a; <0, thenALps =2(r; —r;) <0;

o if ry—a; <0,7r,—a; <0,r; —a; <0, andr; —a; <0, thenALpy = 0;
and the result follows. [ |
However, the misperception can potentially increase undét-shift learning, as shown next.

Proposition 4.8 (The misperception can increase undertrgifift learning): Consider al -level
hypergamel/! between playerst and B. SupposeB takes an action that changes the outcome

from x; to ;. If rank(z;, Ppa) < rank(z;,Pgg), then
EBA(R‘Shi@j(PBA)) > Lpa(Ppa).

Proof: Note that the only part o8, affected by the right-shift learning are the outcomes
iN Soutem| = ;) Which do not have ranks lower than or higher thane; ;. Therefore, without loss
of generality, we can assuuicm|x 4 (z;) = {%is Tit1; Titas - - - Titi ), Wherex; =p,, x4 >py,
Tiva =Py - -+ —Ppa Titl, @Nd B takes an action that changes the outcome frgrto x;,;. For
Tk, € Soutemlra(z:)» Wherek € Zq, letry, = rank(zy, Ppp) anda;, = rank(x;, Ppa). We compute

the change iMd’s misperception abouB’s game as follows,

ALps = »CBA(R'Sh?M;j(PBA)) — Lpa(Ppa)
i+l—1
= > (e = awnrl = Ik = agl) + (s = asl = 7o = @)
k=i

By assumption, we have ., — a;; > 0. Sincea; < a;,;, we haver;,; — a; > 0. Thus

i+1—1

ALpa=ai—ai+ Y (Ire — aro| — i — ax)).

k=i
Moreover, > (ry — apya| — |re — ax]) > a; — a;4, since for each < k <i+1— 1 we have
|k — agy1| — |mk — ak| > —|ag — ags1| = ar — agy1. AS aresult,ALgs > 0 as claimed. ®

Note that ALz, = 0 in the proof of Proposition 4.8 if and only if, > a1, for all

1 < k <i+1—1. Since the true preference &f is independent ofd’s perception about it,
it is not difficult to come up with concrete examples for whitie misperception function will
strictly increase. Even though a right-shift map can be rilesd as a composition of swap maps
(cf. Lemma 4.4), Proposition 4.8 does not contradict Theore7. This is because only the

first swap map in the description corresponds to a change tcomes caused by the action
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of the other player, while the rest of swap maps do not. Oneprame a similar version of

Proposition 4.8 for left-shift learning. Given these résulve focus on swap learning.

C. Convergence of the perceptions under swap learning

Here we investigate the behavior of the hypergame when pasepeatedly use the swap
update map to update their perceptions. We assume thatrplplgy the game sequentially, one
after each other, and at each round, each player takes am dlctit she believes will shift the
outcome to a sequentially rational one for her. Note tha ¢litcome does not necessarily need
to be the best sequentially rational outcome. Suppbseses the swap learning map to update

her perception abouB’s game. Then the dynamical system
Ppa(l +1) = SWiy) sy (Pra(l),

defines an evolution on the perceptionsAdfbout B, which we denote byP g4, SWA). Here,
x(l) denotes the outcome at rouhide Z-, and Pp4(0) = Pp, is the initial perception of
player A about playerB’s game. A similar equation characterizes the evoluti®nz, Sw”)
for player B. Our convergence analysis is valid for any initial outcon{8), and therefore, is
independent of the method used by the players to chooseititgt actions.

Theorem 4.9:(Convergence of evolutions under swap learnirg))pposed and B are playing
a 1-level hypergame with strict preferences, are rational, @ using the swap learning method
to update their perceptions. Then, the evolutions define@hy, Sw*) and (P 45, Sw?) for the
hypergamed7¢ and HY, converge to some preference vectdis, andP* 5, respectively. Fur-
thermore, the induced sequend@sa(l) = Lpa(Ppa(l))}izo and{Lag(l) = Lap(Par(l))}i>0
are monotonically convergent.

Proof: Here, we give the proof for the evolutidi® 54, Sw*); a similar argument proves the

result for(P 45, SwB). Given the definition of misperception function, the seqeeiCs4 (1) }1>0
is positive and bounded from below. Thus in order to show eayence, by the monotone
convergence theorem, it is enough to show that the sequengentincreasing. This follows
from Theorem 4.7. Since the misperception functions arestrattly decreasing, this does not
necessarily mean that the evolutigfy 4, Sw"‘) is convergent. Thus we need to show that, after
a certain number of rounds, the misperception being congtapiies thatSw* becomes the

identity. Suppose3 takes an action such that the outcome changes fr@gnto x(! + 1). Then,

rank(x(l), Ppp) > rank(z(l + 1), Ppp).
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By rationality and since the preferences are stiittyill never take an action which changes the
outcome fromz (I + 1) to z(1) in future rounds. Hence, the set of possible swap learningsma
available to each player is finite, alfdv* becomes the identity after finitely many rounds

Remark 4.10 (Non-strict preferencesheorem 4.9 can be generalized with minimal changes
to hypergames with non-strict preferences. This is becduBetakes an action that changes the
outcome fromz(() to z(I + 1), she will only take an action from(l + 1) back tox(l) if these
outcomes are equally preferred.can easily detect this and not perform further swaps innglvi
these outcomes. In the rest of the paper, for simplicity, ssuime all preferences are strios.

In general, the final value of the misperception in Theorethig.not necessarily zero. This
is typical of hypergames whose outcome set has a large editgirbecause the evolution of
the hypergame may finish in an equilibrium where none of tlagqats is willing to change her
action any more, whereas large parts of the outcome set memmaixplored.

Example 4.11 (The settlement game revisiteigcall the settlement game introduced in Sec-
tion 11l. One can compute the initial misperception of playkaboutB’s game to beLp4(Ppa) =
120. After B takes the actionrp(11), player A, using the swap learning map, updates her
perception abouB to be

Swis 11 (Ppa) = (0,5,11,10,1,2,3,7,4,6,14,13,8,15,12,9)7,

with EBA(Sw‘f‘E,,H(PBA)) = 106. This decrease in the value of the misperception function is
consistent with Theorem 4.7. Since outcorke is an equilibrium of #!, the evolutions of
perceptions of playeA converge toSw{‘&H(PBA), as predicated by Theorem 4.9.

Observe that, after swap updatd, and 15 are perceived byl as sequentially rational and
unstable forB, respectively. The resulting perception dfnot only correctly reflects the fact
that B prefers11 over 15, but also correctly encodes the stability properties ohlmitcomes.
The latter, however, may not hold in general. Under swap tgydhe stability of outcomes may
not be consistent with the action taken by the opponent. iBhighat motivates Section V. e

Remark 4.12 (Extensions teperson hypergames revisitedfollowing up on Remark 2.13,
the basis for the extension of the methods and results pgessatove to am-person scenario
is the following: when a playerl; observes an action taken by other playef, she updates
its perception reasoning on tizedimensional plane that correspondsApand A;, leaving the

edges corresponding to the remainipng— 2) dimensions unchanged. °
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V. DETECTING THE INCONSISTENCIES IN PERCEPTION

Even though the swap update method introduced in Sectios uaranteed to decrease the
misperception of a player, it could lead to inconsistenmgserceptions about the other players’
preferences. To make this point clear, consider the hypeegd’, and suppose playes takes
an action which changes the outcome framto z;. If we assume that playeB is rational,
moving fromz; to z; implies thatz; is unstable and; is sequentially rational in playeB’s
hypergameH . These two pieces of information are not captured in gerirdhe swap update
method, which instead simply takes care of updating thegpi@n of A to assert tha3 prefers
z; to z;. In other words, it is possible that the stability propestef z; and x; as computed
by player A with her updated perceptions and as observed from the ati@an by B do not
match. This discussion is also valid for the case wiitdoes not change its action (because
x; 1S sequentially rational for her) while at the same times perceived as unstable fét by
player A. Our objective here is to develop a learning procedure tHdtesses this problem.

Throughout the section, we present the results from thepoaw of playerA. An analogous
discussion can be carried out for playBr We focus primarily on the case whes changes
its action. Remark 5.9 later discusses the case whealoes not change its action. Recall also
that if z; <p,, x;, the swap map is the identity map and hence no change in pencecurs.

Thus, we deal with the casg >p,, z;.

A. Inconsistency in perception

Here we study all the cases that can occur under swap learagayding the consistency
between a player’'s perception and the stability propeniethe outcomes as implied by the
actions taken by the other player. We summarize the possit#earios in Table I. For each

case, we refer to the corresponding result.

z; € Seqp(Paa, Sw2, . (Ppa))

xi € SeqCB (PAAa SW?LTJ (PBA))

z; € Seqp(Paa, Swi,

; (PBa))

J

Inconsistent (Lemma 5.4)

Consistent (Lemmas 5.2 and 5.3

A

zj € Seqp(Paa,Swi,

z;(PBa))

Never happens (Lemma 5.1)

Inconsistent (Lemma 5.4)

TABLE |

POSSIBLE PERCEPTIONS OFl ABOUT THE STABILITY OF OUTCOMESz; AND xj AFTER APPLYING SWAP LEARNING

Lemma 5.1:(In a restricted outcome set, an unstable outcome cannetaheank lower than a

sequentially rational one)Suppose playeB takes an action which changes the outcome from
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z; to z;, wherez, >~p,, z;. Thenz, andz; cannot be perceived simultaneously as sequentially
rational and unstable iP 44, Sw; «,(Ppa)), respectively.
Proof: By virtue of Lemma 2.6, a sequentially rational outcomecannot have a higher
rank than an unstable outcome wheneverr;(z;) = n;(x;), I € {A, B}. u
Next, we characterize two cases for which the swap learno®s ahot create inconsistencies.
Lemma 5.2:(Preservation of correct perception under swap learni@gppose playeB takes

an action which changes the outcome frepto z;, wherez; >p,, z,.

(i) If x; is perceived byA as an unstable outcome fét in HY, then it is also perceived as
unstable in(P 4, Sw7. , (Ppa)).

(i) If z; is perceived byA as a sequentially rational outcome fBrin HY, then it is also
perceived as sequentially rational fBrin (P44, Swﬁi@j(PBA)).

Proof: We show (i) first. Suppose; is perceived as unstable fds in HY. By defini-
tion, there exists a perceived improvemenfrom z; for B without any sanction ofd. Since
rank(wi,Sngj(PBA)) > rank(z;,Pga), vy is also a perceived improvement from for B
without any sanction of4; thus x; remains unstable foB in (PAA,SWQ_’%(PBA))- Next, we
show (ii). Supposer; is perceived as sequentially rational f&rin H9. By definition, there
exists no perceived improvement fér from the outcomer; without sanction of4, i.e., there
exists no outcome, m4(y) = ma(z;), that B can move to frome; such thatrank(z;,Pga) >
rank(y, Pp4) without a sanction ofd. Sincerank(z;, Sw;‘wj(PBA)) < rank(z;,Ppa), there is
no improvement forB from the outcomer; without sanction ofA. [

The next result identifies a case in which the swap learning foaA modifies, correctly, her
perception about;. The proof follows from the notion of sequential rationaitnd Lemma 2.6.

Lemma 5.3:(Correction of perceptions under swap learnin§uppose playerB takes an
action which changes the outcome fragto z;, wherez; >p,, x;. Suppose that; is perceived
as sequentially rational foB in HY and there exists an outcomg wheren,(y) = ma(x;),
perceived as unstable fd in HY with rank(y, Ppa) < rank(x;,Pga). Thenz; is unstable in
the game(P 44, Sw;‘i’xj(PBA)).

The next result captures two interesting situations: onhich x; is perceived as unstable
(respectively, one in which; is perceived as sequentially rational) iff; and remains unstable
(respectively sequentially rational) after applying thveap learning map, thus giving rise to a

contradiction in the perceptions of about the game oBb.
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Lemma 5.4:(Inconsistency in perceptions under swap learnitf@))ppose playe3 takes an
action which changes the outcome framto z;, wherex; ~p,, z,.

(i) The outcomez; is perceived as unstable i@PAA,Sw;‘W(PBA)) if and only if x; is
unstable forB in HY.

(i) If z; is perceived as sequentially rational fé&r in H9 and there exists a sequentially
rational outcomey, wherern4(y) = ma(x;) andrank(y, Ppa) > rank(z;,Ppa), thenz,
remains sequentially rational fd8 in (P4, Sw7, , (Pga)).

Proof: Both statements follow from Lemma 2.6. We only describe tlumpof (i). Suppose
z; is unstable foB in HY. By Lemma 2.6;z; is also unstable foB in HY. By assumption, there
exists a perceived improvement fram to an outcomey for player B without sanction ofA in
HY such thatrank(y, Pg4) < rank(x;, Ppa). Sincerank(xj,Swfwj(PBA)) = rank(z;, Pga),

the outcomer; remains unstable foB in SW;‘W(PBA). The converse follows similarly. m

B. Modified swap learning method

Here, we investigate how a player can include the infornmagi@thered from the contradictions
in her perception under swap learning (cf. Lemma 5.4) talleaore about the other player’s game.
We introduce a modified version of the swap leaning methotl phevents any inconsistency
in perceptions from happening. Under this learning methpddyer A assumes that playeB
has perfect information about her game and thus is convitizagidany inconsistency is due to
her lack of knowledge abouB’s game. To formally define the method, we need to discuss the
existence of two outcomes with a particular set of properfiehis is what we do next.

Lemma 5.5:(Existence ofy): Consider al-level hypergame between playefsand B. Sup-
poseB takes an action that changes the outcome figrto z;, wherex; >p,, =;, and suppose
bothz, andz; are perceived as unstable Brin (P 44, Swfi’x‘j(PBA)). Then there exists an im-
provementy € Soutem|,(z,) from z; for B which is sequentially rational ifP 44, Swfmj(PBA)).

The proof of this lemma follows from Lemma 2.7.

Lemma 5.6:(Existence ot): Consider al-level hypergame between playefsand B. Sup-
poseB takes an action that changes the outcome figno z;, wherez; >p,, z;, and suppose
both z; andx; are perceived as sequentially rational rin (P 44, Swfiﬁxj(PBA)). Then there

exists an improvement € Soutemr(2;) from x; for player A in (P g, SWQ,%(PBA))-
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Proof: Suppose otherwise; ther is an improvement from; for B in (P 44, Swg‘i’zj(PBA))
such that there is no sanction dfagainst it, i.e.;r; is unstable forB in (P 44, SWi,zj(PBA)),
which is a contradiction. [ |

We are now ready to introduce the modified swap learning naetho

Definition 5.7 (Modified swap learning)Consider al-level hypergame between players
and B. SupposeB takes an action that changes the outcome frQn& Souiem 10 2 € Soutem
wherez; =, =;. Themodified swap learning maMSw;?Mj :Sp — Sp is

o If x; € Sech(PAA,SWiJj (P)) and.lfj € Squ(PAA,SW?Z_’xj(P)), then

MSw? (P) =Sw? _(P),

Ti,&j X, g
; c A
o if 2,25 € Seqi(Paa, Swy, , (P)), then

MSw? (P)=Sw? oSw? _ (P),

Tjy T Y,xTj Tj, T4

wherey € Soutemlr, () IS the outcome with the highest rank, with respecSto_ijmj(P),
which satisfies the conditions of Lemma 5.5.
o if @, 2; € Seqp(Paa, Sw,. , (P)), then

MSw: , (P) =Swi _oSw, . (P),

Ti,Tj T, T

where z € Soutem|r(2;) IS the outcome with the highest rank, with respecsmaf‘i’%(P),
which satisfies the conditions of Lemma 5.6.

According to Lemma 5.1, the casec Seqgz(P a4, Swfm(P)) andz; € Seqi(Paa, Swfmj(P))
will never occur. One can defieISw” in a similar fashion. In Definition 5.7, the choice ¢f
with highest rank makes the perception of playeconsistent with the least amount of change
in its preference vector. However, the choice zofvith the highest rank is necessary for the
following result to hold.

Proposition 5.8: (Modified swap learning results in no inconsistendgpnsider al-level hy-
pergame between playetd and B. SupposeB takes an action which shifts the outcome
from z;, to z;, wherexz; >p,, x;. Then, under the modified swap learning, outcomgs
and z,; are perceived byA, respectively, as unstable and sequentially rational taygy B
in (Pax, MSW,, . (Ppa)).

Proof: By Definition 5.7, we need to consider three cases; ¥ Seq; (P a4, Swi,xj (Pga))

andz; € Seqg(Paa, Swfi@j(PBA)), the result holds trivially. Ife;, z; € Seq%(Paa, Swi,xj<PBA))’
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then the action oSwﬁm]_ does not have any impact on the stabilityrpf Moreover, since is per-
ceived as sequentially rational férby playerA andrank(y, Sw7. , (Ppa)) = rank(z;, MSw;. , (Ppa)),
x; is perceived as sequentially rational #81in (P 44, MSWJ’i@j(PBA))- Finally, suppose;, z; €
Seqp(Paa,SW7, .. (Ppa)). The action ofSw?. _ does not have any impact on the stability:gf
(note thatz;, =, are preferred byA to z in SW;‘MJ_(PBA)). Moreover, since: is the outcome
with highest rank irSwfi,xj(PBA) which is an improvement from; for A, the improvement;
from z; is perceived as sanction free (R 44, MSW;‘Z_JJ_(PBA)) for B. Therefore; is unstable
in (Paa, MSW,, . (Ppa)). u
Remark 5.9:(No change of action by the opponenflonsider the case wheB does not
change its action and henee = z;. If x; was perceived byl as sequentially rational, then no
inconsistency arises. On the contraryAifperceivedr; as unstable fo3, then an inconsistency
arises with the observation that is sequentially rational for3. Player A can still use the
modified swap map to make her perception consistent. Aaagrth Definition 5.7, this case
corresponds to the second bullet. After the modified swapatgpd; is perceived byA as
sequentially rational fo3, resolving the inconsistency. °
Example 5.10 (Consistent perception under modified swap epd@bnsider & -level hyper-

gameH' = {HY, H%} betweenA and B with the outcome se&®,ycm = {1, T2, ¥3, 74}. Let
Paa = ($2,$3,5617$4)T7 Ppa = ($2,SE379€1,$4)T,
Ppp = (1,73,72,74)", Pap="Paa

Figures 3(a) and (b) show the H-digraphs associated to tmgsergames. Initially, supposé

] —> T2 ] <— T2 ] <— T2
T3 <—— o4 T3 <—— 24 T3 <—— 24

@ (b) (c)

Fig. 3. H-digraphs associated to (&)}, (b) H%, and (c)HY after applyingMSwz. ., respectively.

takes the actiom 4(z2) and B takes the actiomz(x;) and thus the first outcome is. Suppose
players play this game sequentially aBds the first one to move. Based on her preferenées,
does not take any action from. Hence,A observes that; is sequentially rational foB, unlike
its initial perception. IfA uses swap learning (the identity map in this case), this negult in

an inconsistent perception. HoweverAfuses modified swap learning, thMSWfl’:El(PBA) =
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(w1, 23,79, 24)T, Which is consistent with the action taken B Figure 3(c) shows the new

H-digraph for A, which coincidentally matches the one associated/{o °

C. Decreasing misperception via modified swap learning

In general, the modified swap learning method is not guaeai® decrease the misperception
function. This is a consequence of the fact that playe convinced that any inconsistency is due
to her lack of knowledge abou®’s game, whereas indeed such inconsistencies may entieely b
due toB’s misperception about’s game. The following result shows that, under the asswnpti
that B has perfect information about’s game and always chooses the sequentially rational
outcome with the lowest rank, thef, using the modified swap learning method, decreases her
misperception in the sense of Definition 4.6, while prevepinconsistency in her perceptions.

Theorem 5.11:(Misperception function and modified swap learnin@pnsider al-level hy-
pergame between player$ and B, where P,z = Pa4. SupposeB takes an action which
changes the outcome from to her best sequentially rational outcomg wherex; >p,, ;.
Then, under modified swap learning, the misperception fondof ;4 does not increase.

Proof: If z; € Seqy(Paa,Sw}, , (Ppa)) and z; € Seqg(Paa, Swi. , (Ppa)), then the
result follows from Theorem 4.7 since, in this case, theoastiof the modified swap map and
the swap map coincide. Next, suppose z; € SeqCB(PAA,SwQ’x]_(PBA)), and lety be given
as in Definition 5.7. By Lemma 5.9 € Soucm|x,(z;) IS @an improvement fronx;, sequentially

rational for B in (P44, Sw;‘i’xj(PBA)). Note that necessarily
rank(y, Ppp) > rank(z;, Ppp).

If this was not the case, theB would have an improvemeni from z; in H%, which, by
Lemma 2.6, should be sequentially rational. This would iaafitt the fact that; € Seqz(HY)

is the best sequentially rational outcome. As a result, Wagpdearning ma}Sw;“j

, does not in-
crease the misperception functiéi 4, cf. Theorem 4.7. Finally, if;, x; € Seqgz(P 44, Swfijxj(PBA)),
let z be given as in Definition 5.7. By Lemma 5.6, Soutcm|x(z;) IS @n improvement from;

for player A in (P14,Sw7. , (Pga)). Note that necessarily

rank(z, Swfi@j (Ppa)) > rank(x;, Swfhxj (Pga)),
since otherwise; would be perceived as a sanction-free improvement Bofrom z; in
(Paa,Sw7. . (Pga)) and thusz; would be unstable for3 in (P44, Sw7. , (Ps4)), @ contra-

diction. The outcomer; is unstable forB in HY, and there exists an improvement from z;
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for B in HY without any sanction by played in H%. Since, by assumptio®} g = P4, We
deduce thatank(z, Ppp) < rank(z;, Pgg), otherwisex; would be sequentially rational faB
in HY%. Thus, by Theorem 4.7, the misperception functits, does not increase. [ |

One can also establish the convergence of the perceptiates tiee modified swap learning
method if B has perfect information about’s game. The proof of the next result is analogous
to the proof of Theorem 4.9 and is therefore omitted.

Theorem 5.12:(Convergence of evolutions under modified swap learniigyppose players
A and B are playing al-level hypergame withP, 5z = P44. Suppose playerd uses the
modified swap learning method to update her perceptions farays her best sequentially
rational outcome in each round. Then the evolution definetPay,, MSw) converges to some

preference vectoPy; ,. Furthermore{Lg4(l) = Lpa(Pra(l))}i>0 is monotonically convergent.

VI. HOwW DO CHANGES IN PERCEPTION AFFECT THH-DIGRAPH?

Here, we study the effect that the changes in the playergepéions have in the structure of
their respective H-digraphs. In contrast to the previossulsion, we study the impact in the
preferences on the whole set of outcomes, instead of onlg@putcomes that are swapped. One
byproduct of this study is computational efficiency for negeating an H-digraph after changes
have occurred. We only consider changes in the prefererttergedue to a swap update since
the effect of any learning mechanism can be described as aasition of swaps.

Let us introduce some notation. We denoteggM(O) the initial H-digraph associated to player
A’s hypergame. Suppose at rouhd: Z-, the outcome changes from(l) to z(I + 1) by an
action of B. If A does not change the order of these two outcomes, then thgrepth remains
the same. If, insteadd swaps the order of the two outcomes to update her percepbiout &,
then a new H-digraply o (/+1) is formed. For convenience, we denote o (x) and NP"(z),
respectively, the set of in- and out-neighborseaf Sgyiem Iin gHg(l). Throughout the discussion,
the term ‘new hypergame’ refers to the hypergame associatetls new perception once a
change has been done. To study the changes of the H-digtaghsufficient to describe how
the in- and out-neighbors of each outcome change. The foipwesult captures the outcomes
whose in-neighbors are not affected by the changed’snperception.

Proposition 6.1: (Sufficient conditions for invariance of in-neighboringstture of an out-
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come): Suppose playeB takes an action that changes the outcome frgh to x(/ + 1). Let
Mpa(z(l), z(l+ 1)) = {y € Soutem | (1) ZPpal) Y ZPpa(l) z(l+1)}.

If y & (Mpa(z(l), 2(l + 1)) N Soutemra(x(1))) YU Soutemrp (2(1)) U Soutemlms w41y, then N (y) =
ziil(?/)-
Proof: We start by showing that the statement holdsy@t Soutcm|x ., (2(1)) U Soutem| x5 (2(1)) U
Souteml = (=(1+1))- Figure 4(a) shows such an outcome a generic H-digraph. Let € " (y). If

I~/
@) (b)
Fig. 4. Part of an H-digrapthg, where A and B play rows and columns, respectively. (a) shows a case whege

Soutemln 4 ((1)) U Soutem| x5 (1)) U Souteml 5 (z(1+1)) @and (b) shows cases whege€ Soucm| x4 (2(1)) With ¥ =p , ) x(l) or

Y <Ppa(l) z(l+1).

2 € Soutem| x4 (), theny is an improvement from for player B in the hypergameP 44, Ppa(l))
without any sanction of played. Since, by assumption, # z(l), z(l + 1), player B is also
perceived to have an improvementrom z, with respect to the preference vectg,(l + 1),
without any sanction from played; thus z € Nl‘il(y). Now supposer € Soutemlry(y)- Since,
by assumption, the ranking of the outcomesSifyicn|- () IS the same with respect ©z.4(/)
and Pg4(l + 1), player A still has an improvemeny from z, with respect to the preference
vector P 44, without any perceived sanction from playBr thus z € }L(y). This proves that
N"(y) €N (y). A similar argument shows the converse inclusion; th{s(y) = N7, (y).
To complete the proof, we show thatyife Soutem| x4 (z(1y) SUCh thaty >p,, o) (1) Or y <p,.q)
z(l+1), thenN"(y) C N (y), see Figure 4(b). Let € N"(y). If z € Souteml=4(y), SiNCE by
assumptiory >p,, o) =(l) or y <p,, o) z(l + 1), the possible sanctions of playdragainst the
perceived improvement of player B from z stay the same after swappin¢/) andx(/+1), and
thereforex ¢ Nl‘_’; (y). If 2 € Soutemlp()» SINCEY >=p,, ) (1) Ory <py,) x(1+1), the perceived
sanctions of playe3 are the same in hypergam@B,4,Ppa(l)) and (Paa,Ppa(l + 1)); thus

we conclude that € NziL(y)- A similar argument shows that the converse holds, yielding
N"(y) = N1 (y)- |
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Next, we identify the outcomes whose out-neighbors in thdigdaph do not change.
Proposition 6.2: (Sufficient conditions for invariance of out-neighboringusture of an out-

come): Suppose playeB takes an action that changes the outcome frdi to z(I + 1). Let

2 = argmin, ¢, ) .oy {rank(z, Paa)}, and 23 = argmax.c ) ,qp1y;{rank(z, Paa)}. If

y & Mpa(xz(l),z(l + 1)) and any of the following holds,
() y>=p,, 200
(i) y <p,, 233 andy & Soucm|ry(@min) U Soutemnp (22);
(ii) Y € Soutemlny(amey andz3 € NPY(y);
(V) Y € Soutermlry@mn) @ndaRi ¢ NPM(y);
then \?(y) = N4 ().

Proof: We present the proof for the cas€l) ~p,, x(l + 1) (the proof for the case
z(l4+1) =p,, z(l) follows similarly). ThuszM = z(l) andz& = x(I+1). We begin by noting
that if y ¢ Mpa(z(l),z(I+1)), any outcome which is perceived as a sanction-free impremém
from y for B in (P4a,Ppa(l)) is also perceived as a sanction-free improvement fydior this
player in(Pa4,Ppa(l+1)). Thus, to complete the proof, we need to show that an outcorme
a sanction-free improvement fromfor A in (P44,Ppa(l)) if and only if z is a sanction-free
improvement fromy for A in (Pa4,Ppa(l + 1)). We prove this result for each of the cases
identified in the statement. Letbe an improvement frony for A in (Paa,Pga(l)).

Consider case (i). It ¢ Souem|=.(z(1)), Since the new perceived improvements fdcan only
change inSouen| =4 (2(1)), B has a perceived sanction against the improvemefiom y for A
in (Paa, Ppa(l)) if and only if such sanction exists (P14, Ppa(l +1)). If 2 € Soutemra ()
sincey >p,, z(l), the perceived sanctions &f against the improvementfrom y are the same
in (P4a,Ppa(l)) and (Paa, Ppa(l+1)).

Consider case (ii). SINCE ¢ Soutem| x5 (x(1)) U Soutem s (z(141)), We have that # (1), z(1 4 1).
If 2 >p,,q) z(l) Or z <p,, @) (Il + 1), then it is clear that there exists a perceived sanction
against the improvement of A in (P44,Ppa(l)) if and only if such a sanction exists against
this improvement inP 44, Ppa(l+1)). Next, suppose (1) =p,, 1) # =ps.a) (1 +1). Note that
the only new perceived improvement fromfor B is z(l + 1) and sincey <p,, (I + 1), this
does not affect the set of sanction-free improvements fyom

Consider case (iii). Ifz # z(l + 1), then, since the new perceived improvementsBotan

only change inSoutcmlx, , B has a perceived sanction against the improvemefrom y
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for Ain (P4a,Ppa(l)) if and only if such sanction exists ifP 4.4, Pa(l+ 1)). By assumption,
z(l+1) € NP(y), i.e., there exists no sanction Bfagainst the improvement(/+ 1) from y for
A. Sincerank(z(I+1), Ppa(l+1)) < rank(z(I+1),Ppa(l)), we conclude that(I+1) € N2 (y).

Finally, consider case (iv). If # (), then, since the new perceived improvement®ofan
only change irSquem|=, (1)), B has a perceived sanction against the improveméram y for A
in (P4a,Ppa(l)) if and only if such sanction exists itP 44, Ppa(l + 1)). In order to complete
the proof, we need to show thatl) ¢ N2 (y). This holds sincerank(z(l), Pga(l + 1)) >
rank(z(1), Ppa(l)) andz(l) ¢ NP"(y). ]

Propositions 6.1 and 6.2 give necessary conditions for daoome to have different in- or
out-neighbors under a change #is perception aboui3. These results are important in the
sense thatB, without having access to the belief structure Af can a priori establish which
outcomes are guaranteed not to be affected!’m perception by an action oB. Conversely,
if an outcome belongs to either one of the sets identified énrésults, it is possible foA to
update her belief structure in such a way that the neighgairucture of the outcome changes.
Therefore, the results capture the best conclusionBhean draw without having access to the
belief structure ofA.

Remark 6.3 (Reducing the complexity of recomputing H-gigs® A consequence of Propo-
sition 6.1 is the simplification in the complexity of commgi the new H-digraph that results
from the changes iM’s perception. Assuming the original H-digraph is avaiégbbne only
needs to compute the changes in the in-neighboring steictuthe outcomes characterized in
Proposition 6.1. The number of these outcome® (8n + m), wheren andm are the number
of actions available tod and B, respectively. Therefore, the complexity of modifying tHe
digraph isO(nm(2n +m)), which is smaller that the complexity of computing it fronratch,
cf. Lemma 2.12. .

Next, we turn our attention to the outcomes whose in- andneighbors are susceptible of
change. Since the new out-neighbors can be identified viag¢hein-neighbors, we only study
how the in-neighboring structure changes.

Theorem 6.4 (Changes of the in-neighboring structu®)ppose player3 takes an action

that changes the outcome franml) to z(I + 1). The following holds,

() if ye Soutcm’rrg(x(l))’ then liL(y) - Min(?/);
(ii) if y € Soutemlrp(2(+1)) then V{"(y) C li-T-l(y);
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(iii) if y € Mpa(x(l),z(l + 1)) N Soutem x4 (=), then

@) z(l) € M, (y) if and only if (I + 1) € M{"(y);

(b) for = € Sauerlna: 2 € N{"(y) \ {(l + 1)} if and only if = € M7, (1) \ {z(1)};

(c) for z € Soutemlrs(y)»
o if z>p,, 270, thenz ¢ N"(y) UN, (v);
o if 2 <p,, 9% thenz € NM{"(y) if and only if = € N7, (y);
o if 20 -p,, 2 p,, 252 and 2 = (1), thenz ¢ N7, (y);
o if M =p, , 2 =p,, 2T andzW = z(I + 1), thenz ¢ N"(y).

Proof: We first show (i). Lety € Soutem|xy(2q)) @and z ¢ N{"(y). Two things can happen:

o When z € Souemlry(y), two further possibilities might arise. I # xz(l), then eithery
is not an improvement from for A or there is a perceived sanction &f against the
improvementy from z. Either of the cases will still hold after swappingl) andz(l + 1)
by A, and thereforez ¢ A", (y). If y = =z(I), the same reasoning plus the fact that
rank(z (1), Ppa(l)) < rank(z(l), Psa(l + 1)) implies thatz ¢ N, (y).

o When z € Souemlr,(y). then eithery is not an improvement from for B or there is a
perceived sanction byl against the improvement from z. Either of the cases will still
hold after the swap and thus¢ A7, (y).

Next we show (ii). Lety € Soutcml=s(z+1)) @nd suppose € N"(y). Two things can happen:

o When z € Souemlrs(y), two further possibilities might arise. lj # «(l + 1), then it is
clear thatz € V7, (y), since there is no new sanction fé for the improvementy from
z of A. If y = z(l + 1), the same reasoning plus the fact thatk(z(l + 1),Ppa(l)) >
rank(z(l + 1),Ppa(l + 1)) implies thatz € V7, (y).

o Whenz € Souiemlr, (), then, since the improvementrom z for B remains free of sanctions,
we conclude that € N7, (y).

Finally, we show part (iii). We start by (a). Suppose a pemeiimprovement from z(l + 1)
exists for B in the game(P 44, P4 (1)) without sanction ofA. Then, sincerank(x (1), Ppa(l +
1)) = rank(z(l+1),Ppa(l)), the improvemeny from z(l) with respect to the preference vector
Pya(l+1) is also sanction free. The converse follows similarly. Th(ig € A", (y) if and only

if z(1+1) € M"(y). A similar argument shows that (b) holds. To end the proofshaw that (c)
holds. Letz € Souteml=, (). NoOte that ify <p,, 2, all the statements hold trivially, singeis not

min

an improvement fromx for A. Thus we need to prove the results for-p,, 2. If z >p,, 20",
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then any improvemeng from z for A is sanctioned by the perceived improvemeifit) from

y for B in the game(P 44, Ppa(l)). Similarly, any improvemeny from = for A is sanctioned
by the perceived improvement(! + 1) from y for B in the game(Pa4,Pga(l + 1)); thus

z & N"(y) UN, (y). Now, suppose: <p,, 253 The only new perceived improvement from
y for B is (I +1). Sincexz(l + 1) >p,, 2, this improvement does not create any new sanction
against the improvement from z for A. Similarly, the only removed perceived improvement
from y for B is x(l). Sincez(l) >=p,, 2, z(l) is not a sanction of3 in (P44,Ppa(l+1)); thus

z € Nj"(y) if and only if z € N7, (y). Next, supposeli =p,, 2 =p,, 253 If 277 = z(1),
then z(l + 1) is a perceived sanction aB in (P44, Pga(l + 1)) and thusz ¢ N7 (y). If
M = 2(I + 1), thenz(l) is a perceived sanction d8 in (P44,Ppa(l)) and thusz ¢ N"(y).
This completes the proof. [ ]

If the action taken byB is aligned withB’s game as perceived by, i.e., if z(I+1) >p, ()
x(l), then in Propositions 6.1 and 6.2, and in Theorem 6.4, the metscribed by-p_, are
empty. This is consistent with the fact that no changelis perception occurs in this case.

Remark 6.5 (Belief manipulation and deceptioff): B has complete information about’s
game HY, then she can use thié- di graph construction al gorithmto study the
changes in the belief structure df and possibly manipulate it. The results presented above are
helpful because they narrow down the outcomes on which aaracf B would have an effect
on. This opens the way for algorithmic approaches to beli@hipulation in hypergames. Also
importantly, the results capture the outcomes thatloes not have direct control over and for
which she may need a sequence of actions, instead of a singleé@ manipulated’s belief.

Example 6.6 (An example of deceptiofjere, we present an example in which one of the
players has perfect information about the other playemagyand is aware of this fact, while the
second player is trying to update his misperceptions by rebsg the actions of her opponent.
We show how the player with perfect information may be ablel¢éceive the opponent. Our
discussion follows the scenario presented in Example Nb@e that in the 1-level hypergame
introduced in the example€? has perfect information about but is not aware of it. To model
this fact, we consider instead a 2-level hypergaffre= { HY, H}}, with H}, = {HY, H%}. In
particular,P sz = Paag = Pag = Paa, Peap = Ppa. We assume thatl is using a modified
swap learning scheme to update her perceptions aBoWe show thatB can deceived so

that eventuallyA believes that the outcome;, the best outcome for3, is an equilibrium.
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As in Example 5.10, the initial outcome is. B gets the first chance to move and does not
take any actionA observes this and uses modified swap learning to update hezgt®n as
MSwg‘wl(PBA) = (z1, 73,72, 24)T. Note thatz, is unstable forA and hence, in her turn, takes

an action that changes the outcome framto z3. Outcomexs is sequentially rational fo3

Tl =—— 29 1 T2 L1 <——22
T3 <=—— T4 T3 —— T4 T3 T4
(@) (b) (©
Fig. 5. H-digraph of HY after applying (a) MSwi .., (b) MSwZ, ., oMSwi .., and (c)

MSwZ, ., o MSwZ, .. o MSwz ., respectively.

in HY, but B prefers the outcome; to xs;. Therefore, with the intention of deceiving, B
takes an irrational action that changes the outcome, tdJsing this observation4d updates her

perception abouf3 as follows,

MSw4 (1\/ISW;?173£1 (PBA)) = (21, 24, T, T3)" .

Z3,T4

As a result,z; becomes sequentially rational far. Next, A takes an action that changes the
outcome taz,. Finally, B takes an action that changes the outcome;tdlr'herefore,A changes

her perception abouB to

MSw2 . (MSw; (MSW?IM(PBA))):(xl,m,xg,xg)T.

Z2,21 T3,T4

Thus the hypergame convergesato This evolution is shown in Figure 5(a)-(c). This example
raises some interesting questions, including the potemsia by B of general algorithmic tech-
nigues to perform deception and byof an analysis similar to the one in Section VI to detect

the possibility of deception. °

VIl. CONCLUSIONS

We have studied adversarial situations where players’epséians about the game they are
involved in might be inconsistent and evolving. We haveaddtrced the swap learning method
to allow players to incorporate into their beliefs the imf@tion gained from observing the
opponents’ actions. A player that uses this method decsdase misperception at the cost of

potentially incurring in inconsistencies in her perceptidhis has motivated the introduction of
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the modified swap learning method, which yields consistehefs and, under the assumption that
the opponent has perfect information and plays her besegiraalso decreases the misperception.
Using the newly introduced notion of H-digraph, we haveyfutharacterized how a player’s
perception is affected by the actions taken by other players

The methods discussed here attribute the origin of the maspdon on the player doing
the update. Numerous avenues for future research appear mptuding the exploration of
other learning schemes and extensions to high-level hgpseg. Learning methods at the other
extreme of the spectrum, where inconsistencies are blaméteampponents’ misperceptions, and
in the middle of the spectrum, via the construction of hypargs of higher level, are also worth
exploring. Another direction of research is the study oféag under imperfect observation and
the use of probabilistic methods to update the preferenceorsefor the opponents. It is also
worth investigating how misperception can be decreasedepgrting from sequentially rational
outcomes when the cost of such irrational actions is notipiible. We also plan to use our

results on the evolution of H-digraphs in the design of déoapand deception-robust strategies.
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