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Evolution of players’ misperceptions

in hypergames under perfect observations

Bahman Gharesifard Jorge Cortés

Abstract

This paper considers games of incomplete information and studies the evolution of the (not nec-

essarily consistent) perceptions of the players using the framework of hypergames. The focus is on

developing methods to modify the players’ perception aboutother players’ preferences by incorporating

the lessons learned from observing their actions. If players are rational, our first update mechanism,

called swap learning, is guaranteed to decrease the mismatch between a player’s perception and the

true payoff structure of other players. However, this method can lead to inconsistencies in the stability

properties of the resulting perception. This motivates theintroduction of a second update mechanism,

called modified swap learning, that is guaranteed to producea consistent perception. We also identify a

class of hypergames for which modified swap is also guaranteed to decrease the mismatch in a player’s

perception. We introduce the novel notion of H-digraph as a useful tool to encode the information in a

hypergame, and fully characterize how this digraph is affected by changes in the players’ beliefs.

I. I NTRODUCTION

Belief manipulation plays a key role in many strategic situations. A proper understanding of

the evolution of the perceptions of players about the game they are involved in is key to unravel

how belief manipulation and deception may arise. In adversarial scenarios, it is common to

encounter situations where the specific objective of any given individual are unknown or only

partially known to the other players.

The goal of this paper is to develop methods that players can implement to modify their

perception about other players’ ultimate objectives and reason about the actions they take. In
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this context, the actions taken by a player and the implicit information they contain can be thought

of as inputs to the dynamical system describing the evolution of the perceptions of other players.

In that regard, controllability and reachability questions (i.e., is there a sequence of actions by

one player that would make another player achieve certain perception) become relevant. We are

also interested in characterizing how the stability properties of the game outcomes are affected

by the evolution of the perceptions. Domains where these questions are relevant include social

networks, modeling of human cultural behavior, cybersecurity, and financial markets.

Literature review:Deception and belief manipulation are rooted at an incorrect perception by

a player about the true intentions or state of other players.Within the context of games, these

situations can be modeled as games of either incomplete or imperfect information. In a game

of incomplete information, players do not know the payoff structure of the other players and

have an imprecise understanding about their objectives andtrue intentions. The usual approach,

see e.g., [2], consists of transforming the game into one of imperfect information, where Nature

decides the true type of the players according to some probability distribution that is known to all.

This approach gives rise to Bayesian games [3], [4], where players try to learn from observations

the true type of the opponents. Although games with incomplete information facilitate the

modeling of uncertainty in players’ beliefs, they do not account for a variety of asymmetric

situations, such as some players being absolutely certain about other players’ types and these

certainties being mutually inconsistent, or scenarios where the full set of actions available to the

opponents may not be known by some of the players. These restrictions have been pointed out

in [5] for a nonzero sum game where players have subjective information structures, and the

inconsistent structure of beliefs leads to counterintuitive behaviors. Furthermore, the differences

in beliefs may in general not be smoothed out if the game is repeated infinitely many times. [6]

demonstrates that there exist games with incomplete information in which players almost never

learn to predict their opponents’ behavior. Within the context of games of incomplete information,

deception has not been studied in a systematic way with the exception of a few references. [7]

studies deception via strategic communication, in which a ‘sophisticated’ player sends either

truthful or false messages to the opponents. [8] investigates the vulnerability of strategic decision

makers to persuasion. The recent work [9] constructs a theory of deception for games with

incomplete information using the analogy-based sequential equilibrium approach [10], in which

players form expectations about the average behavior of theother players based on past histories.
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In this work, deception arises because boundedly rational players make incorrect inferences about

the type of other players. Instead, in hypergames, deception arises because the players choose

to believe that their perceptions are correct.

In games of imperfect information, players observe only partially the actions taken by other

players and therefore have uncertainty about the true stateof the game, see e.g., [11], [12]. Early

references on deception and deception-robustness in dynamic games with imperfect information

include [13], [14]. The work [15] illustrates, in a particular example of a non-cooperative

stochastic game, how a player has the potential of manipulating the information available to the

opponent and can strategically deceive her. In [16], it is shown that asymmetric information has

the potential to inject deception in a non-zero sum game. Thework [17] presents an example of

deception in a two-person zero-sum dynamic game with imperfect information. The works [18],

[19] study deception and provide deception-robust schemesfor a class of discrete dynamic

stochastic games under imperfect observations.

Here, we consider games of incomplete information and, morespecifically, the framework of

hypergames [20], [21], [22], [23]. This approach allows us to consider situations where a player

believes, whether it is true or not, that other players are ofa certain type or have a specific set

of actions available to them. This is in contrast with the explicit consideration of uncertainty

about other players’ types as typically done in games of incomplete information, see e.g. [2].

The introduction to the notion of hypergames goes back to [20] and was originally used to model

conflicts [24]. An advantage of using hypergames instead of games with imperfect information

is that they allow the possibility of explicitly modeling incorrect perceptions by some players

about the intent of other players. Moreover, in hypergames,players can benefit from many levels

of perception, in the sense that they can have perceptions about the other players’ interpretations

of the game, and also about the opponents’ perception of their game and so on, see [21], [23].

Hypergames are also well suited to model scenarios where players play security strategies or

when the cost of risky actions is high, such as wartime negotiation [25] and cybersecurity [26].

In the context of hypergames, few works [27], [28] have addressed the study of learning from

observations. Throughout the paper, we make the simplifying assumption that the actions taken

by the opponents are perfectly observed by the players.

Statement of contributions:The first contribution of the paper is the introduction of thebasic

notions of partial order, preference vector, rank, and H-digraph. These notions simplify the
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determination of the equilibria of hypergames and their stability analysis. We also introduce the

H-digraph construction algorithm which provides a procedure for computing H-

digraphs and characterize its complexity. The second contribution is the introduction of the

swap learning method, which allows a player to update her ownperception based on the

information contained in the actions taken by other players. We use the misperception function

as a measure of the mismatch between a player’s perception and the true payoff structure of

the other players. Assuming all players are rational, we show that the swap learning method

ensures that the misperception function will decrease and that the players’ perceptions will

converge if they repeatedly use this strategy. On the other hand, we show that other plausible

learning strategies, such as right-shift and left-shift learning, are not guaranteed to decrease the

misperception function. The third contribution is the introduction of the notion of inconsistency in

perceptions. Specifically, we show that the swap learning method can yield preference vectors that

are inconsistent with the modified stability properties of the outcomes determined by the actions

of other players. This leads us to propose a modified version of the swap learning method which

is guaranteed to prevent any inconsistency in the perceptions. We establish a class of hypergames

for which the modified strategy is also guaranteed to decrease the misperception function. Finally,

the last contribution is the characterization of the evolution of the H-digraph under the swap

learning method. We study the effect that the changes in the players’ perceptions, determined

by swap learning, have in the structure of their respective H-digraphs. These results provide a

fast and inexpensive way for detecting outcomes which are not affected by a certain action and,

more importantly, open the way to construct algorithmic procedures for belief manipulation.

Throughout the paper, we illustrate our discussion with several examples.

Organization: Section II introduces a new framework for studying hypergames. In Section III,

the settlement game serves the dual purpose of illustratingthe basic hypergame definitions

and motivating the questions on learning that are addressednext. Section IV introduces the

swap learning method to modify a player’s perception by incorporating observations from other

players’ actions and studies its properties. Section V discusses the inconsistencies in perception

that might arise under the swap update method and proposes a modified version. Section VI

discusses the effect that the changes in the players’ perceptions have in the structure of their

respective H-digraphs. Section VII contains our conclusions and ideas for future work.
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II. H YPERGAME THEORY

In this section, we review the basic notions of hypergame theory. Although most of the

concepts can be found in [22], [21], [20], we have revised thediscussion to provide a smooth

presentation of the main ideas. We also introduce and analyze the novel concept of H-digraph.

A. Basic notions

A 0-level hypergame is a finite game, i.e., a tripletG = (V,Soutcm,P), whereV is a set ofn

players;Soutcm = S1 × . . .×Sn is the outcome set, whereSi is a finite set of strategies available

to player vi ∈ V , i ∈ {1, . . . , n}; and P = (P1, . . . , Pn), with Pi = (x1, . . . , xN)T ∈ SN
outcm,

N = |Soutcm| and i ∈ {1, . . . , n}, is called the preference vector of playervi. Each preference

vectorPi is equipped with a preorder�Pi
such that, ifx has a lower entry index thaty in Pi,

then x �Pi
y. In this way, the emphasis is put on the order of preferences among outcomes,

rather than on the actual payoff that players obtain for eachspecific outcome.

Definition 2.1: (1-level hypergame):A 1-leveln-person hypergameis a setH1 = {G1, . . . ,Gn},

whereGi = (V, (Soutcm)i,Pi), i ∈ {1, . . . , n}, is the subjective finite game of playervi ∈ V , and

(i) V is a set ofn players;

(ii) (Soutcm)i = S1i × . . . × Sni, whereSji is the finite set of strategies available tovj, as

perceived byvi;

(iii) Pi = (P1i, . . . , Pni), wherePji is the preference vector ofvj, as perceived byvi.

In a1-level hypergame, each playervi ∈ V plays the 0-level hypergameGi with the perception

that she is playing a game with complete information, which is not necessarily true. The definition

of a1-level hypergame can be extended to high-level hypergames,where some of the players have

access to some additional information that allow them to form perceptions about other players’

beliefs, other players’ perceptions about them, and so on. The following inductive definition

allows modeling of multiple levels of perception.

Definition 2.2 (High-level hypergame):A k-level n-person hypergame, k ≥ 1, is a setHk =

{Hk1
1 , . . . , Hkn

n }, whereki ≤ k − 1 and at least oneki is equal tok − 1. The hypergameHk is

calledhomogeneousif ki = k − 1 for all i ∈ {1, . . . , n}.

Assumption 2.3 (2-person1-level hypergames):In this paper, we focus on2-person1-level

hypergames. The results are extensible to1-level hypergames with an arbitrary number of players,

see Remark 2.13 later.1-level hypergames are the simplest class where players haveperceptions
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about their opponents’ preferences. As the ensuing discussion shows, this scenario is already

quite challenging, even though the perception about the opponent’s preference is the only element

susceptible of change. In high-level hypergames, however,players have to deal with multiple

possibilities, including changing the perception that a player A has about the perception that

another playerB has about the original playerA, and so on. •

B. Equilibria and stability

Next, we recall the notion of equilibria for hypergames [21]. Let us start by introducing some

notation. For a1-level hypergameH1, we denote byH0
A = (PAA, PBA) the0-level hypergame for

A, wherePAA andPBA are, respectively, the preferences ofA andB perceived byA. Similarly,

we defineH0
B = (PAB, PBB). Here, we assume that players have no misperception in theirown

preferences and that all the0-level hypergames have the same set of outcomesSoutcm. Throughout

the paper, we letSP ⊂ SN
outcm, N = |Soutcm|, denote the set of all elements ofSN

outcm with pairwise

different entries. We denote by�PIJ
the binary relation onSoutcm corresponding toPIJ , where

I, J ∈ {A,B} and byπI the projection ofSoutcm to the strategy set of playerI ∈ {A,B}. For

convenience, we define the restricted outcome setSoutcm|πI(x) = {y ∈ Soutcm | πI(y) = πI(x)}.

We also find it useful to useI ′ to denote the opponent ofI in {A,B}. The next definitions

introduce the concepts of improvement and rational outcome.

Definition 2.4 (Improvement and rational outcome):Given two distinct outcomesx, y ∈ Soutcm,

y is an improvementfrom x for I ∈ {A,B}, perceived byJ ∈ {A,B} in H0
J , if and only if

πI′(y) = πI′(x) andy �PIJ
x. An outcomex ∈ Soutcm is rational for I ∈ {A,B}, perceived by

J ∈ {A,B} in H0
J , if there exists no improvement fromx for this player.

An outcomex ∈ Soutcm is a pure Nash equilibrium ofH1 if it is perceived as rational by

A in H0
A and byB in H0

B. This notion of equilibrium does not take into account the different

perceptions of the players. This is best illustrated with anexample. Suppose playerA has some

perception aboutB’s game and supposeA has an improvementy from x. According to the

definition above,x is not a Nash equilibrium of the hypergame. However, ifA believes thatB

has an improvementz from y such thatx ≻PAA
z, then taking the action associated with the

improvementy could leadA to an outcome less preferred thanx. This mismatch can be addressed

by extending the notion of Nash equilibrium using the concept of sequential rationality [22].

Definition 2.5 (Sequential rationality):Consider a1-level hypergameH1 between playersA

and B. An outcomex ∈ Soutcm is sequentially rationalfor I ∈ {A,B} with respect toH0
J ,
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J ∈ {A,B}, if and only if for each improvementy for I, perceived byJ in H0
J , there exists an

improvementz for I ′, perceived byJ in H0
J , such thatx ≻PIJ

z. Whenever this holds, we say

that the improvementz from y for I ′ sanctionsthe improvementy from x for I in H0
J .

Note that the sanctionz might itself not be sanction free forB. One could restrict sanctions to

have this property at the cost of a more complex notion of sequential rationality. By definition,

a rational outcome is also sequentially rational. We denoteby SeqI(H
0
J) ⊂ Soutcm the set of all

sequentially rational outcomes for playerI ∈ {A,B}, as perceived by playerJ ∈ {A,B} in H0
J .

An outcomex ∈ Soutcm is unstablefor I with respect toH0
J if x ∈ Seqc

I(H
0
J) = Soutcm\SeqI(H

0
J)

and is anequilibrium ofH0
J if x ∈ SeqJ(H0

J)∩SeqJ ′(H0
J). For brevity, we sometimes omit the

wording ‘with respect toH0
J ’ when it is clear from the context. An outcomex is anequilibrium

of H1 if x ∈ SeqA(H0
A) ∩ SeqB(H0

B). An outcomex can be an equilibrium forH1 and not an

equilibrium of H0
A. Also, note that pure Nash equilibria ofH1 are equilibria ofH1.

The following results play an important role in the forthcoming discussion. For simplicity,

we present them with respect to the playerB in the gameH0
A. However, one can easily extend

them for playerI in the gameH0
J , I, J ∈ {A,B}.

Lemma 2.6:(Abundance of unstable outcomes):Assumex ∈ Soutcm is perceived as unstable

for B by A in H0
A. Then any other outcomez ∈ Soutcm such thatπA(z) = πA(x) andx ≻PBA

z

is also perceived as unstable forB by A in H0
A.

Lemma 2.7:(Existence of rational outcomes):For x ∈ Soutcm, eitherx is rational forB in H0
A

or there exists an improvementy from x perceived byA for B in H0
A which is rational forB.

Since rational outcomes are also sequentially rational, Lemma 2.7 also shows the existence

of sequentially rational outcomes. It can be shown [21] thatevery 0-level hypergame has an

equilibrium outcome, which may not be unique. However, there exist high-level hypergames

which do not contain any equilibrium outcome. Existence canbe guaranteed, however, if one

extends the notion of equilibria to include mixed strategies, see [29].

Remark 2.8 (Backward induction, subgame perfection, and sequential rationality): It is worth

noting the difference between the notion of sequential rationality defined above and backward

induction and subgame perfection [2]. To illustrate this point, given a player, sayA, and an

outcomex, consider the two-stage game whereA acts first andB acts second. In general, the

Nash subgame perfect equilibria of this game do not correspond to the sequentially rational

outcomes given by Definition 2.5. Essentially, this is because sequential rationality cares about
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providing guarantees no matter the action of the opponent, whereas Nash equilibria cares about

maximizing at each stage the expected payoff. Other notionsof equilibria are also relevant for

hypergames, see [22] for a discussion on the connections among them. The reason why we

focus on sequential rationality is because this notion putsthe emphasis on secure actions and

guaranteed payoff based on the perceptions of the players. •

C. H-digraphs

The stability analysis in hypergames is typically done by means of preference tables, see [21],

[22]. Here, instead, we introduce an alternative method based on the novel notion of H-digraph.

The H-digraph contains the information about the possible improvements from an outcome to

another outcome, the equilibria, and the sanctions in a hypergame.

A digraphG is a pair(V,E), whereV is a finite set, called the vertex set, andE ⊆ V × V ,

called the edge set. Given(u, v) ∈ E, u is an in-neighborof v and v is an out-neighborof u.

The set of in-neighbors and out-neighbors ofv are denoted byN in(v) andN out(v), and their

cardinalities are thein-degreeand out-degreeof v, respectively.A is an adjacency matrix for

G = (V,E) if the following holds:aij > 0 if and only if (vi, vj) ∈ E, for all vi, vj ∈ V . Before

introducing the concept of H-digraph, we define the notion ofrank.

Definition 2.9 (Rank):Let H1 be a1-level hypergame and consider the preference vectorPIJ

in the hypergameH0
J , I, J ∈ {A,B}. We assign to each outcomex ∈ Soutcm a positive number

rank(x, PIJ) ∈ R>0, called therank of outcomex, such that, for eachSoutcm ∋ y 6= x, we have

that rank(y, PIJ) > rank(x, PIJ) if and only if x ≻PIJ
y.

According to this definition, players prefer the outcomes with lower ranks. Throughout the

paper and without loss of generality, we use the set{1, . . . , |Soutcm|} to rank the outcomes. We

are now ready to introduce the notion of H-digraph.

Definition 2.10 (H-digraph):TheH-digraphGH0
A

= (Soutcm, EH0
A
) associated toH0

A is defined

by (x, y) ∈ EH0
A

iff one of the following holds,

• there exists an improvementy from x for A for which there is no sanction ofB in H0
A;

• there exists an improvementy from x for B for which there is no sanction ofA in H0
A.

Moreover, each vertexx ∈ Soutcm is labeled with(rank(x, PAA), rank(x, PBA)).

Similarly, one can associate an H-digraph toH0
B. The next result is an immediate consequence.
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Lemma 2.11:(Stability notions via H-digraph):An outcomex is sequentially rational forA

(respectively forB) if and only if N out(x)∩Soutcm|πB(x) = ∅ (respectivelyN out(x)∩Soutcm|πA(x) =

∅). Moreover, an outcome is an equilibrium for the hypergameH0
A if and only if its out-degree

in the associated H-digraph is zero.

Table 1 presents an algorithm to compute H-digraphs.

Algorithm 1: The H-digraph construction algorithm
Goal: Compute the H-digraphGH0

I

Input: Soutcm, PII andPJI

Output: Adjacency matrixAH of GH0
I

Initialization: associate matricesAimp
I andAimp

J to I andJ , respectively, by assigning1 to

an entry(i, j) if there exists an improvementxj from xi for the

corresponding player inH0
I and zero otherwise; letAH = 0|Soutcm|×|Soutcm|

1 foreach xi ∈ Soutcm do

2 foreach K ∈ {I, J} do

3 foreach xj ∈ Soutcm\ {xi} do

4 if (Aimp
K )ij 6= 0 and ∄l ∈ {1, . . . , |Soutcm|} such that(Aimp

K′ )jl 6= 0, where

xi �PKI
xl then

5 AH
ij = 1

Lemma 2.12:(Computational complexity of theH-digraph construction algorithm):

The computational complexity of theH-digraph construction algorithm is Θ(|Soutcm|
2).

Proof: Note that|Soutcm| = nm, wheren, m are the number of actions of playersI andJ ,

respectively. Choose any action ofI, and let{x1, . . . , xm} be all the outcomes who share this

action. Without loss of generality, letxi ≻PJI
xi+1, for all i ∈ {1, . . . ,m}, m ∈ Z≥1. For eachxi,

the algorithm compares the rank inPJI of all the improvements forI from xk, k < i, in H0
I , to

the rank ofxi in PJI . Note that there are(i− 1) improvements fromxi perceived forJ and for

each of these improvements, there are at mostn = |Soutcm|
m

outcomes that need to be examined in

PII to draw a conclusion about the stability ofxi. As a result, the total number of computations

required for the outcomes inSoutcm|πI(x1) is in Θ(n × m×(m−1)
2

) and sinceπI partitionsSoutcm

into n subsets, the total computation required isΘ(n2 × m×(m−1)
2

) = Θ(|Soutcm|
2).
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Remark 2.13 (n-person hypergames):The notion of H-digraph can be extended to0-level

hypergames with a finite numbern of players. Such H-digraphs aren-dimensional, with one

dimension per individual player’s action set. Sanctions are perceived with respect to all the

opponents and edges correspond to sanction-free improvements. The time complexity grows

with the number of outcomes, which in turn, grows with the number of players. •

Once an H-digraph is calculated with complexity as characterized by Lemma 2.12, if a

change is done to the preference vectors of a player, the complexity of recomputing it decreases

substantially. We will revisit this issue in Remark 6.3.

III. T HE SETTLEMENT GAME

Here, we analyze in detail a hypergame to illustrate the notions introduced in Section II. The

example also serves to motivate the questions addressed in the forthcoming discussion. Suppose

two teamsA andB are trying to deploy some resources in a field partitioned into four regions,

North West (NW), North East (NE), South West (SW), and South East (SE). Each team has its

own perception about the conditions in the field and, based onthat, has some preferences for

deploying the resources. Furthermore, each team has a perception about the opponent’s intentions.

We associateθ = [θA1 , θA2 , θB1 , θB2 ]
T ∈ {0, 1}4 to each outcome, where

• θA1 is 0 if A chooses West and1 otherwise;θA2 is 0 if A chooses North and1 otherwise;

• θB1 is 0 if B chooses West and1 otherwise;θB2 is 0 if B chooses North and1 otherwise.

For example,θ = (0, 0, 1, 1)T is associated to the outcome in which teamA decides to settle in

NW, while teamB goes to SE. We associate a unique identifierInd(θ) ∈ Z≥0 to θ by computing

Ind(θ) = θA1 × 20 + θA2 × 21 + θB1 × 22 + θB2 × 23.

Suppose the players’ preferences and perceptions about each other’s preferences are given by

PAA = (12, 9, 6, 3, 8, 4, 13, 1, 14, 2, 11, 7, 0, 5, 10, 15)T ,

PBA = (0, 5, 15, 10, 1, 2, 3, 7, 4, 6, 14, 13, 8, 11, 12, 9)T ,

PBB = (1, 2, 3, 7, 4, 6, 14, 13, 8, 11, 12, 9, 0, 5, 15, 10)T ,

PAB = (12, 9, 6, 3, 8, 4, 13, 1, 14, 2, 11, 7, 0, 5, 10, 15)T .

We rankSoutcm with the integers{1, . . . , |Soutcm|}.

Figure 1(a) and (b) show the H-digraphs associated to each team’s hypergame. For instance, in
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Fig. 1. H-digraphs for the hypergames (a)(PAA, PBA), (b) (PAB , PBB), and (c)(PAB , P′

BB).

Figure 1(a), there is no outgoing edge from0 to 4, 8, and12, which, according to Lemma 2.11,

means that0 is perceived as sequentially rational forB in H0
A. Let us analyze what happens if

players play this hypergame. TeamA hopes for the equilibrium3 and moves to SE. TeamB

also perceives3 as the best equilibrium and so moves to NW. The result of the game does not

reveal any new information about the misperceptions, in thesense that none of the teams would

do anything differently if they got the chance to play it again.

Next, consider the same setup as above with a new set of preferences forB,

P′
BB = (13, 14, 12, 8, 9, 11, 2, 1, 3, 4, 7, 6, 15, 10, 0, 5)T .

Figure 1(c) shows the new H-digraph associated toB’s hypergame. TeamA hopes for3 and

so plays the actionπA(3). Similarly, B hopes for the equilibrium12 and thus plays the action

πB(12). The result of a one-stage play is15, which is unstable forA in H0
A andB in H0

B. If any

of them got the chance to move again, they could find an improvement to a sequentially rational

outcome and select the action associated to it. For example,B could take the actionπB(11).

We are interested in understanding what the players could have observed, at each round of

play, about their misperception of the opponent’s game. Forexample, considerA’s perception.

Initially, A thinks that15 is (sequentially) rational forB. This can be observed in Figure 1(a),

where15 has no outgoing edge to3, 7, or 11. Based on the actionπB(11), A could learn: (i)

outcome15 is not sequentially rational forB; (ii) B prefers outcome11 to outcome15, i.e.,

15 ≺P′

BB
11. PlayerA could use these observations to improve her perception about B’s game.

These are the kind of questions that motivate our developments below.
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IV. D ECREASING MISPERCEPTION BY OBSERVATIONS

In this section, we investigate methods that allow a player to update her own perception based

on the information contained in the actions taken by other players. Throughout the rest of the

paper, unless otherwise noted, we assume that players are rational.

A. Learning methods

Let H1 be a 1-level hypergame with two playersA and B. In most of the following, we

analyze the hypergame from the viewpoint ofA. An analogous discussion can be carried out

for B. SupposeB takes an action that changes the outcome fromx ∈ Soutcm to y ∈ Soutcm, with

x 6= y. Then,A deduces thatB prefersy over x. Therefore,A can incorporate this information

into her hypergame and update her perception about the preferences ofB. This section explores

the suitability of several methods to incorporate this information.

1) Swap update:In the second part of the settlement example of Section III, the players’

change of actions leads to a shift in the outcomes from15 to 11; thus A concludes thatB

prefers the outcome11 to 15. PlayerA originally has the perception15 ≻PBA
3 ≻PBA

7 ≻PBA
11

aboutSoutcm|πA(15). After moving from outcome15 to 11, it would appear reasonable forA to

interchange the positions of15 and 11 in her belief aboutB’s preferences:11 ≻PBA
3 ≻PBA

7 ≻PBA
15. We call thisswap learning. We formally define this map next.

Definition 4.1 (Swap map):Let V be a set of cardinalityN and letW be the subset ofV Nwith

pairwise different elements. Forx1, x2 ∈ V , defineswapx1 7→x2
: W → W by

(swapx1 7→x2
(v))i =











vj if vi = x1, vj = x2 and i < j,

vi if vi = x1, vj = x2 and i > j,

(swapx1 7→x2
(v))j =











vi if vi = x1, vj = x2 and i < j,

vj if vi = x1, vj = x2 and i > j,

and (swapx1 7→x2
(v))k = vk if vk 6= x1, x2. We refer toswapx1 7→x2

as thex1 to x2 swap map.

Figure 2(a) shows the effect of the swap map for a vectorv with vi = x1, vj = x2, andi < j.

We are now ready to define the swap learning map acting on the preference vectors.

Definition 4.2 (Swap learning):Let H1 be a1-level hypergame with two playersA and B

and supposeB takes an action that changes the outcome fromx ∈ Soutcm to y ∈ Soutcm. Then
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the swap learning mapsSwA
x,y : SP → SP for A is given by

SwA
x,y(P) = swapx 7→y(P)

x1 x2

x1x2

(a)

x1 x2

x1x2

(b)

Fig. 2. Effect of (a) the swap map and (b) the right-shift map on a vector.

2) Right-shift learning: In the second part of the settlement example of Section III, when

the outcomes change from15 to 11, A could instead update her belief aboutB’s preferences as

follows: 11 ≻PBA
15 ≻PBA

3 ≻PBA
7. Note that with this update, unlike the swap learning,A

employs the information11 ≻PBB
15, while still believing thatB prefers15 to outcomes3

and7. We call thisright-shift learning. We formally define this map next.

Definition 4.3 (Right-shift map):Let V be a set of cardinalityN and letW be the subset of

V N with pairwise different elements. Forx1, x2 ∈ V , definer-shiftx1 7→x2 : W → W by

(r-shiftx1 7→x2(v))i =











vj if vi = x1, vj = x2 and i < j,

vi if vi = x1, vj = x2 and i > j,

(r-shiftx1 7→x2(v))l =











vl−1 if vi = x1, vj = x2 and i < l ≤ j,

vl if vi = x1, vj = x2 and j ≤ l < i,

and (r-shiftx1 7→x2(v))k = vk if vi = x1, vj = x2 andk < i or k > j. We refer tor-shiftx1 7→x2 as

the x1 to x2 right-shift map.

Figure 2(b) shows the effect of the right-shift map for a vector v with vi = x1, vj = x2, and

i < j. Next, we show that the right-shift map corresponds to a composition of swap maps.

Lemma 4.4 (Right-shift map as a composition of swap maps):Let V be a set of cardinality

N and letW be the subset ofV N with pairwise different elements. Forx1, x2 ∈ V , we have

r-shiftx1 7→x2(v) = swapvj−(j−i−1) 7→x1
◦ · · · ◦ swapvj−1 7→x1

◦ swapx1 7→x2
(v),

wherevi = x1 andvj = x2.

A right-shift mapr-shiftx1 7→x2 acting onW ⊂ U can be extended to a mapr-shiftx1 7→x2 acting

on U by prescribing thatr-shiftx1 7→x2 fixes all elements ofU \ W .
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Definition 4.5 (Right-shift learning):Let H1 be a 1-level hypergame with two playersA

andB and supposeB takes an action that changes the outcome fromx ∈ Soutcm to y ∈ Soutcm.

The right-shift learning mapsR-ShA
x,y : SP → SP for A is given by

R-ShA
x,y(P) = r-shiftx 7→y(P)

wherer-shiftx 7→y is thex to y right-shift map onSoutcm|πA(x) extended toSoutcm.

It is also possible to define the notion of left-shift learning map, in which the player trusts

that her initial belief about the relative ranks with respect to the second outcome is correct.

B. Effect of learning on misperception

Our objective is to understand the effect of the learning maps introduced above on the

perception of the player. To that goal, we introduce the nextfunction to compare the rank of each

outcome in the preference vector forB in H0
A to its rank inB’s true preference vector inH0

B.

Definition 4.6 (Misperception function):Let H1 be a hypergame with outcome setSoutcm. The

misperception functionLBA : SP → R≥0 of A aboutB’s game is

LBA(P ) =
N

∑

i=1

|rank(xi, PBB) − rank(xi, P )|

An analogous definition can be given for the misperception function LAB of B aboutA’s

game. The next result shows that swap learning can only decrease the misperception.

Theorem 4.7:(The misperception does not increase under swap learning):Consider a1-level

hypergameH1 between playersA andB. SupposeB takes an action such that the outcome of

the hypergame changes fromxi to xj. ThenLBA(SwA
xi,xj

(PBA)) ≤ LBA(PBA).

Proof: Let xi �PBA
xj (otherwise, the swap learning map is trivial and the result follows).

For xk ∈ Soutcm|πA(xi) let rk = rank(xk, PBB) andak = rank(xk, PBA), and, up to relabeling the

outcomes, suppose thatal ≤ ak if and only if l < k. Under the swap learning map,

∆LBA =LBA(SwA
xi,xj

(PBA)) − LBA(PBA) = (|ri − aj| + |rj − ai|) − (|rj − aj| + |ri − ai|).

SinceB is rational and has changed her action such that the outcome shifted from xi to xj, we

haverj ≤ ri. If ai = aj or ri = rj, then∆LBA = 0. Next, supposeai < aj and rj < ri. Then

one of the following cases will happen

• if ri − aj ≥ 0, ri − ai > 0, rj − ai < 0, andrj − aj < 0, then∆LBA = 2(ai − aj) < 0;
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• if ri − aj ≥ 0, ri − ai > 0, rj − ai > 0, andrj − aj ≥ 0, then∆LBA = 0;

• if ri − aj ≥ 0, ri − ai > 0, rj − ai > 0, andrj − aj < 0, then∆LBA = 2(rj − aj) < 0;

• if ri − aj < 0, ri − ai ≥ 0, rj − ai ≥ 0, andrj − aj < 0, then∆LBA = 2(rj − ri) < 0;

• if ri − aj < 0, ri − ai < 0, rj − ai < 0, andrj − aj < 0, then∆LBA = 0;

and the result follows.

However, the misperception can potentially increase underright-shift learning, as shown next.

Proposition 4.8 (The misperception can increase under right-shift learning): Consider a1-level

hypergameH1 between playersA andB. SupposeB takes an action that changes the outcome

from xi to xj. If rank(xj, PBA) < rank(xj, PBB), then

LBA(R-ShA
xi,xj

(PBA)) ≥ LBA(PBA).

Proof: Note that the only part ofSoutcm affected by the right-shift learning are the outcomes

in Soutcm|πA(xi) which do not have ranks lower thanxi or higher thanxi+l. Therefore, without loss

of generality, we can assumeSoutcm|πA(xi) = {xi, xi+1, xi+2, . . . , xi+l}, wherexi ≻PBA
xi+1 ≻PBA

xi+2 ≻PBA
. . . ≻PBA

xi+l, andB takes an action that changes the outcome fromxi to xi+l. For

xk ∈ Soutcm|πA(xi), wherek ∈ Z≥1, let rk = rank(xk, PBB) andak = rank(xk, PBA). We compute

the change inA’s misperception aboutB’s game as follows,

∆LBA = LBA(R-ShA
xi,xj

(PBA)) − LBA(PBA)

=
i+l−1
∑

k=i

(|rk − ak+1| − |rk − ak|) + (|ri+l − ai| − |ri+l − ai+l|).

By assumption, we haveri+l − ai+l > 0. Sinceai < ai+l, we haveri+l − ai > 0. Thus

∆LBA = ai+l − ai +
i+l−1
∑

k=i

(|rk − ak+1| − |rk − ak|).

Moreover,
∑i+l−1

k=i (|rk − ak+1| − |rk − ak|) ≥ ai − ai+l, since for eachi ≤ k ≤ i + l− 1 we have

|rk − ak+1| − |rk − ak| ≥ −|ak − ak+1| = ak − ak+1. As a result,∆LBA ≥ 0 as claimed.

Note that ∆LBA = 0 in the proof of Proposition 4.8 if and only ifrk ≥ ak+1, for all

i ≤ k ≤ i + l − 1. Since the true preference ofB is independent ofA’s perception about it,

it is not difficult to come up with concrete examples for whichthe misperception function will

strictly increase. Even though a right-shift map can be described as a composition of swap maps

(cf. Lemma 4.4), Proposition 4.8 does not contradict Theorem 4.7. This is because only the

first swap map in the description corresponds to a change in outcomes caused by the action
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of the other player, while the rest of swap maps do not. One canprove a similar version of

Proposition 4.8 for left-shift learning. Given these results, we focus on swap learning.

C. Convergence of the perceptions under swap learning

Here we investigate the behavior of the hypergame when players repeatedly use the swap

update map to update their perceptions. We assume that players play the game sequentially, one

after each other, and at each round, each player takes an action that she believes will shift the

outcome to a sequentially rational one for her. Note that this outcome does not necessarily need

to be the best sequentially rational outcome. SupposeA uses the swap learning map to update

her perception aboutB’s game. Then the dynamical system

PBA(l + 1) = SwA
x(l),x(l+1)(PBA(l)),

defines an evolution on the perceptions ofA aboutB, which we denote by(PBA,SwA). Here,

x(l) denotes the outcome at roundl ∈ Z≥0 and PBA(0) = PBA is the initial perception of

player A about playerB’s game. A similar equation characterizes the evolution(PAB,SwB)

for playerB. Our convergence analysis is valid for any initial outcomex(0), and therefore, is

independent of the method used by the players to choose theirinitial actions.

Theorem 4.9:(Convergence of evolutions under swap learning):SupposeA andB are playing

a 1-level hypergame with strict preferences, are rational, and are using the swap learning method

to update their perceptions. Then, the evolutions defined by(PBA,SwA) and(PAB,SwB) for the

hypergamesH0
A andH0

B converge to some preference vectorsP∗
BA andP∗

AB, respectively. Fur-

thermore, the induced sequences{LBA(l) = LBA(PBA(l))}l≥0 and{LAB(l) = LAB(PAB(l))}l≥0

are monotonically convergent.

Proof: Here, we give the proof for the evolution(PBA,SwA); a similar argument proves the

result for(PAB,SwB). Given the definition of misperception function, the sequence{LBA(l)}l≥0

is positive and bounded from below. Thus in order to show convergence, by the monotone

convergence theorem, it is enough to show that the sequence is non-increasing. This follows

from Theorem 4.7. Since the misperception functions are notstrictly decreasing, this does not

necessarily mean that the evolution(PBA,SwA) is convergent. Thus we need to show that, after

a certain number of rounds, the misperception being constant implies thatSwA becomes the

identity. SupposeB takes an action such that the outcome changes fromx(l) to x(l + 1). Then,

rank(x(l), PBB) > rank(x(l + 1), PBB).
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By rationality and since the preferences are strict,B will never take an action which changes the

outcome fromx(l + 1) to x(l) in future rounds. Hence, the set of possible swap learning maps

available to each player is finite, andSwA becomes the identity after finitely many rounds.

Remark 4.10 (Non-strict preferences):Theorem 4.9 can be generalized with minimal changes

to hypergames with non-strict preferences. This is becauseif B takes an action that changes the

outcome fromx(l) to x(l + 1), she will only take an action fromx(l + 1) back tox(l) if these

outcomes are equally preferred.A can easily detect this and not perform further swaps involving

these outcomes. In the rest of the paper, for simplicity, we assume all preferences are strict.•

In general, the final value of the misperception in Theorem 4.9 is not necessarily zero. This

is typical of hypergames whose outcome set has a large cardinality, because the evolution of

the hypergame may finish in an equilibrium where none of the players is willing to change her

action any more, whereas large parts of the outcome set remain unexplored.

Example 4.11 (The settlement game revisited):Recall the settlement game introduced in Sec-

tion III. One can compute the initial misperception of player A aboutB’s game to beLBA(PBA) =

120. After B takes the actionπB(11), player A, using the swap learning map, updates her

perception aboutB to be

SwA
15,11(PBA) = (0, 5, 11, 10, 1, 2, 3, 7, 4, 6, 14, 13, 8, 15, 12, 9)T ,

with LBA(SwA
15,11(PBA)) = 106. This decrease in the value of the misperception function is

consistent with Theorem 4.7. Since outcome11 is an equilibrium ofH1, the evolutions of

perceptions of playerA converge toSwA
15,11(PBA), as predicated by Theorem 4.9.

Observe that, after swap update,11 and 15 are perceived byA as sequentially rational and

unstable forB, respectively. The resulting perception ofA not only correctly reflects the fact

that B prefers11 over 15, but also correctly encodes the stability properties of both outcomes.

The latter, however, may not hold in general. Under swap update, the stability of outcomes may

not be consistent with the action taken by the opponent. Thisis what motivates Section V. •

Remark 4.12 (Extensions ton-person hypergames revisited):Following up on Remark 2.13,

the basis for the extension of the methods and results presented above to ann-person scenario

is the following: when a playerAi observes an action taken by other playerAj, she updates

its perception reasoning on the2-dimensional plane that corresponds toAi andAj, leaving the

edges corresponding to the remaining(n − 2) dimensions unchanged. •
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V. DETECTING THE INCONSISTENCIES IN PERCEPTION

Even though the swap update method introduced in Section IV is guaranteed to decrease the

misperception of a player, it could lead to inconsistenciesin perceptions about the other players’

preferences. To make this point clear, consider the hypergame H0
A and suppose playerB takes

an action which changes the outcome fromxi to xj. If we assume that playerB is rational,

moving from xi to xj implies thatxi is unstable andxj is sequentially rational in playerB’s

hypergameH0
B. These two pieces of information are not captured in generalby the swap update

method, which instead simply takes care of updating the perception ofA to assert thatB prefers

xj to xi. In other words, it is possible that the stability properties of xi and xj as computed

by playerA with her updated perceptions and as observed from the actiontaken byB do not

match. This discussion is also valid for the case whenB does not change its action (because

xi is sequentially rational for her) while at the same timexi is perceived as unstable forB by

playerA. Our objective here is to develop a learning procedure that addresses this problem.

Throughout the section, we present the results from the viewpoint of playerA. An analogous

discussion can be carried out for playerB. We focus primarily on the case whenB changes

its action. Remark 5.9 later discusses the case whenB does not change its action. Recall also

that if xi ≺PBA
xj, the swap map is the identity map and hence no change in perception occurs.

Thus, we deal with the casexi ≻PBA
xj.

A. Inconsistency in perception

Here we study all the cases that can occur under swap learningregarding the consistency

between a player’s perception and the stability propertiesof the outcomes as implied by the

actions taken by the other player. We summarize the possiblescenarios in Table I. For each

case, we refer to the corresponding result.

xi ∈ SeqB(PAA,SwA
xi,xj

(PBA)) xi ∈ Seqc
B(PAA,SwA

xi,xj
(PBA))

xj ∈ SeqB(PAA,SwA
xi,xj

(PBA)) Inconsistent (Lemma 5.4) Consistent (Lemmas 5.2 and 5.3)

xj ∈ Seqc
B(PAA,SwA

xi,xj
(PBA)) Never happens (Lemma 5.1) Inconsistent (Lemma 5.4)

TABLE I

POSSIBLE PERCEPTIONS OFA ABOUT THE STABILITY OF OUTCOMESxi AND xj AFTER APPLYING SWAP LEARNING.

Lemma 5.1:(In a restricted outcome set, an unstable outcome cannot have a rank lower than a

sequentially rational one):Suppose playerB takes an action which changes the outcome from
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xi to xj, wherexi ≻PBA
xj. Thenxi andxj cannot be perceived simultaneously as sequentially

rational and unstable in(PAA,SwA
xi,xj

(PBA)), respectively.

Proof: By virtue of Lemma 2.6, a sequentially rational outcomexi cannot have a higher

rank than an unstable outcomexj wheneverπI(xi) = πI(xj), I ∈ {A,B}.

Next, we characterize two cases for which the swap learning does not create inconsistencies.

Lemma 5.2:(Preservation of correct perception under swap learning):Suppose playerB takes

an action which changes the outcome fromxi to xj, wherexi ≻PBA
xj.

(i) If xi is perceived byA as an unstable outcome forB in H0
A, then it is also perceived as

unstable in(PAA,SwA
xi,xj

(PBA)).

(ii) If xj is perceived byA as a sequentially rational outcome forB in H0
A, then it is also

perceived as sequentially rational forB in (PAA,SwA
xi,xj

(PBA)).

Proof: We show (i) first. Supposexi is perceived as unstable forB in H0
A. By defini-

tion, there exists a perceived improvementy from xi for B without any sanction ofA. Since

rank(xi,SwA
xi,xj

(PBA)) > rank(xi, PBA), y is also a perceived improvement fromxi for B

without any sanction ofA; thus xi remains unstable forB in (PAA,SwA
xi,xj

(PBA)). Next, we

show (ii). Supposexj is perceived as sequentially rational forB in H0
A. By definition, there

exists no perceived improvement forB from the outcomexj without sanction ofA, i.e., there

exists no outcomey, πA(y) = πA(xj), that B can move to fromxj such thatrank(xj, PBA) >

rank(y, PBA) without a sanction ofA. Sincerank(xj,SwA
xi,xj

(PBA)) < rank(xj, PBA), there is

no improvement forB from the outcomexj without sanction ofA.

The next result identifies a case in which the swap learning map for A modifies, correctly, her

perception aboutxi. The proof follows from the notion of sequential rationality and Lemma 2.6.

Lemma 5.3:(Correction of perceptions under swap learning):Suppose playerB takes an

action which changes the outcome fromxi to xj, wherexi ≻PBA
xj. Suppose thatxi is perceived

as sequentially rational forB in H0
A and there exists an outcomey, whereπA(y) = πA(xj),

perceived as unstable forB in H0
A with rank(y, PBA) < rank(xj, PBA). Thenxi is unstable in

the game(PAA,SwA
xi,xj

(PBA)).

The next result captures two interesting situations: one inwhich xj is perceived as unstable

(respectively, one in whichxi is perceived as sequentially rational) inH0
A and remains unstable

(respectively sequentially rational) after applying the swap learning map, thus giving rise to a

contradiction in the perceptions ofA about the game ofB.
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Lemma 5.4:(Inconsistency in perceptions under swap learning):Suppose playerB takes an

action which changes the outcome fromxi to xj, wherexi ≻PBA
xj.

(i) The outcomexj is perceived as unstable in(PAA,SwA
xi,xj

(PBA)) if and only if xi is

unstable forB in H0
A.

(ii) If xi is perceived as sequentially rational forB in H0
A and there exists a sequentially

rational outcomey, whereπA(y) = πA(xj) and rank(y, PBA) > rank(xj, PBA), thenxi

remains sequentially rational forB in (PAA,SwA
xi,xj

(PBA)).

Proof: Both statements follow from Lemma 2.6. We only describe the proof of (i). Suppose

xi is unstable forB in H0
A. By Lemma 2.6,xj is also unstable forB in H0

A. By assumption, there

exists a perceived improvement fromxi to an outcomey for playerB without sanction ofA in

H0
A such thatrank(y, PBA) < rank(xi, PBA). Sincerank(xj,SwA

xi,xj
(PBA)) = rank(xi, PBA),

the outcomexj remains unstable forB in SwA
xi,xj

(PBA). The converse follows similarly.

B. Modified swap learning method

Here, we investigate how a player can include the information gathered from the contradictions

in her perception under swap learning (cf. Lemma 5.4) to learn more about the other player’s game.

We introduce a modified version of the swap leaning method that prevents any inconsistency

in perceptions from happening. Under this learning method,player A assumes that playerB

has perfect information about her game and thus is convincedthat any inconsistency is due to

her lack of knowledge aboutB’s game. To formally define the method, we need to discuss the

existence of two outcomes with a particular set of properties. This is what we do next.

Lemma 5.5:(Existence ofy): Consider a1-level hypergame between playersA andB. Sup-

poseB takes an action that changes the outcome fromxi to xj, wherexi ≻PBA
xj, and suppose

bothxi andxj are perceived as unstable forB in (PAA,SwA
xi,xj

(PBA)). Then there exists an im-

provementy ∈ Soutcm|πA(xj) from xj for B which is sequentially rational in(PAA,SwA
xi,xj

(PBA)).

The proof of this lemma follows from Lemma 2.7.

Lemma 5.6:(Existence ofz): Consider a1-level hypergame between playersA andB. Sup-

poseB takes an action that changes the outcome fromxi to xj, wherexi ≻PBA
xj, and suppose

both xi andxj are perceived as sequentially rational forB in (PAA,SwA
xi,xj

(PBA)). Then there

exists an improvementz ∈ Soutcm|πB(xj) from xj for playerA in (PAA,SwA
xi,xj

(PBA)).
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Proof: Suppose otherwise; thenxj is an improvement fromxi for B in (PAA,SwA
xi,xj

(PBA))

such that there is no sanction ofA against it, i.e.,xi is unstable forB in (PAA,SwA
xi,xj

(PBA)),

which is a contradiction.

We are now ready to introduce the modified swap learning method.

Definition 5.7 (Modified swap learning):Consider a1-level hypergame between playersA

and B. SupposeB takes an action that changes the outcome fromxi ∈ Soutcm to xj ∈ Soutcm,

wherexi ≻PBA
xj. The modified swap learning mapMSwA

xi,xj
: SP → SP is

• if xi ∈ Seqc
B(PAA,SwA

xi,xj
(P)) andxj ∈ SeqB(PAA,SwA

xi,xj
(P)), then

MSwA
xi,xj

(P) = SwA
xi,xj

(P),

• if xi, xj ∈ Seqc
B(PAA,SwA

xi,xj
(P)), then

MSwA
xi,xj

(P) = SwA
y,xj

◦SwA
xi,xj

(P),

wherey ∈ Soutcm|πA(xj) is the outcome with the highest rank, with respect toSwA
xi,xj

(P),

which satisfies the conditions of Lemma 5.5.

• if xi, xj ∈ SeqB(PAA,SwA
xi,xj

(P)), then

MSwA
xi,xj

(P) = SwA
xi,z

◦SwA
xi,xj

(P),

wherez ∈ Soutcm|πB(xj) is the outcome with the highest rank, with respect toSwA
xi,xj

(P),

which satisfies the conditions of Lemma 5.6.

According to Lemma 5.1, the casexi ∈ SeqB(PAA,SwA
xi,xj

(P)) andxj ∈ Seqc
B(PAA,SwA

xi,xj
(P))

will never occur. One can defineMSwB in a similar fashion. In Definition 5.7, the choice ofy

with highest rank makes the perception of playerA consistent with the least amount of change

in its preference vector. However, the choice ofz with the highest rank is necessary for the

following result to hold.

Proposition 5.8: (Modified swap learning results in no inconsistency):Consider a1-level hy-

pergame between playersA and B. SupposeB takes an action which shifts the outcome

from xi to xj, where xi ≻PBA
xj. Then, under the modified swap learning, outcomesxi

and xj are perceived byA, respectively, as unstable and sequentially rational for player B

in (PAA,MSwA
xi,xj

(PBA)).

Proof: By Definition 5.7, we need to consider three cases. Ifxi ∈ Seqc
B(PAA,SwA

xi,xj
(PBA))

andxj ∈ SeqB(PAA,SwA
xi,xj

(PBA)), the result holds trivially. Ifxi, xj ∈ Seqc
B(PAA,SwA

xi,xj
(PBA)),
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then the action ofSwA
y,xj

does not have any impact on the stability ofxi. Moreover, sincey is per-

ceived as sequentially rational forB by playerA andrank(y,SwA
xi,xj

(PBA)) = rank(xj,MSwA
xi,xj

(PBA)),

xj is perceived as sequentially rational forB in (PAA,MSwA
xi,xj

(PBA)). Finally, supposexi, xj ∈

SeqB(PAA,SwA
xi,xj

(PBA)). The action ofSwA
xi,z

does not have any impact on the stability ofxj

(note thatxi, xj are preferred byA to z in SwA
xi,xj

(PBA)). Moreover, sincez is the outcome

with highest rank inSwA
xi,xj

(PBA) which is an improvement fromxj for A, the improvementxj

from xi is perceived as sanction free in(PAA,MSwA
xi,xj

(PBA)) for B. Therefore,xi is unstable

in (PAA,MSwA
xi,xj

(PBA)).

Remark 5.9:(No change of action by the opponent):Consider the case whenB does not

change its action and hencexj = xi. If xi was perceived byA as sequentially rational, then no

inconsistency arises. On the contrary, ifA perceivedxi as unstable forB, then an inconsistency

arises with the observation thatxi is sequentially rational forB. Player A can still use the

modified swap map to make her perception consistent. According to Definition 5.7, this case

corresponds to the second bullet. After the modified swap update, xi is perceived byA as

sequentially rational forB, resolving the inconsistency. •

Example 5.10 (Consistent perception under modified swap update): Consider a1-level hyper-

gameH1 = {H0
A, H0

B} betweenA andB with the outcome setSoutcm = {x1, x2, x3, x4}. Let

PAA = (x2, x3, x1, x4)
T , PBA = (x2, x3, x1, x4)

T ,

PBB = (x1, x3, x2, x4)
T , PAB = PAA

Figures 3(a) and (b) show the H-digraphs associated to thesehypergames. Initially, supposeA

x1

��

// x2

x3 x4

OO

oo

(a)

x1

��

x2
oo

x3 x4

OO

oo

(b)

x1

��

x2
oo

x3 x4

OO

oo

(c)

Fig. 3. H-digraphs associated to (a)H0
A, (b) H0

B , and (c)H0
A after applyingMSwA

x1,x1
, respectively.

takes the actionπA(x2) andB takes the actionπB(x1) and thus the first outcome isx1. Suppose

players play this game sequentially andB is the first one to move. Based on her preferences,B

does not take any action fromx1. Hence,A observes thatx1 is sequentially rational forB, unlike

its initial perception. IfA uses swap learning (the identity map in this case), this willresult in

an inconsistent perception. However, ifA uses modified swap learning, thenMSwA
x1,x1

(PBA) =
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(x1, x3, x2, x4)
T , which is consistent with the action taken byB. Figure 3(c) shows the new

H-digraph forA, which coincidentally matches the one associated toH0
B. •

C. Decreasing misperception via modified swap learning

In general, the modified swap learning method is not guaranteed to decrease the misperception

function. This is a consequence of the fact that playerA is convinced that any inconsistency is due

to her lack of knowledge aboutB’s game, whereas indeed such inconsistencies may entirely be

due toB’s misperception aboutA’s game. The following result shows that, under the assumption

that B has perfect information aboutA’s game and always chooses the sequentially rational

outcome with the lowest rank, thenA, using the modified swap learning method, decreases her

misperception in the sense of Definition 4.6, while preventing inconsistency in her perceptions.

Theorem 5.11:(Misperception function and modified swap learning):Consider a1-level hy-

pergame between playersA and B, where PAB = PAA. SupposeB takes an action which

changes the outcome fromxi to her best sequentially rational outcomexj, wherexi ≻PBA
xj.

Then, under modified swap learning, the misperception function LBA does not increase.

Proof: If xi ∈ Seqc
B(PAA,SwA

xi,xj
(PBA)) and xj ∈ SeqB(PAA,SwA

xi,xj
(PBA)), then the

result follows from Theorem 4.7 since, in this case, the actions of the modified swap map and

the swap map coincide. Next, supposexi, xj ∈ Seqc
B(PAA,SwA

xi,xj
(PBA)), and lety be given

as in Definition 5.7. By Lemma 5.5,y ∈ Soutcm|πA(xj) is an improvement fromxj, sequentially

rational forB in (PAA,SwA
xi,xj

(PBA)). Note that necessarily

rank(y, PBB) > rank(xj, PBB).

If this was not the case, thenB would have an improvementy from xj in H0
B, which, by

Lemma 2.6, should be sequentially rational. This would contradict the fact thatxj ∈ SeqB(H0
B)

is the best sequentially rational outcome. As a result, the swap learning mapSwA
xj ,y does not in-

crease the misperception functionLBA, cf. Theorem 4.7. Finally, ifxi, xj ∈ SeqB(PAA,SwA
xi,xj

(PBA)),

let z be given as in Definition 5.7. By Lemma 5.6,z ∈ Soutcm|πB(xj) is an improvement fromxj

for playerA in (PAA,SwA
xi,xj

(PBA)). Note that necessarily

rank(z,SwA
xi,xj

(PBA)) > rank(xi,SwA
xi,xj

(PBA)),

since otherwise,xj would be perceived as a sanction-free improvement forB from xi in

(PAA,SwA
xi,xj

(PBA)) and thusxi would be unstable forB in (PAA,SwA
xi,xj

(PBA)), a contra-

diction. The outcomexi is unstable forB in H0
B and there exists an improvementxj from xi
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for B in H0
B without any sanction by playerA in H0

B. Since, by assumption,PAB = PAA, we

deduce thatrank(z, PBB) < rank(xi, PBB), otherwisexi would be sequentially rational forB

in H0
B. Thus, by Theorem 4.7, the misperception functionLBA does not increase.

One can also establish the convergence of the perceptions under the modified swap learning

method ifB has perfect information aboutA’s game. The proof of the next result is analogous

to the proof of Theorem 4.9 and is therefore omitted.

Theorem 5.12:(Convergence of evolutions under modified swap learning):Suppose players

A and B are playing a1-level hypergame withPAB = PAA. Suppose playerA uses the

modified swap learning method to update her perceptions andB plays her best sequentially

rational outcome in each round. Then the evolution defined by(PBA,MSwA) converges to some

preference vectorP∗
BA. Furthermore,{LBA(l) = LBA(PBA(l))}l≥0 is monotonically convergent.

VI. H OW DO CHANGES IN PERCEPTION AFFECT THEH-DIGRAPH?

Here, we study the effect that the changes in the players’ perceptions have in the structure of

their respective H-digraphs. In contrast to the previous discussion, we study the impact in the

preferences on the whole set of outcomes, instead of only on the outcomes that are swapped. One

byproduct of this study is computational efficiency for regenerating an H-digraph after changes

have occurred. We only consider changes in the preference vectors due to a swap update since

the effect of any learning mechanism can be described as a composition of swaps.

Let us introduce some notation. We denote byGH0
A
(0) the initial H-digraph associated to player

A’s hypergame. Suppose at roundl ∈ Z≥1 the outcome changes fromx(l) to x(l + 1) by an

action ofB. If A does not change the order of these two outcomes, then the H-digraph remains

the same. If, instead,A swaps the order of the two outcomes to update her perception about B,

then a new H-digraphGH0
A
(l+1) is formed. For convenience, we denote byN in

l (x) andN out
l (x),

respectively, the set of in- and out-neighbors ofx ∈ Soutcm in GH0
A
(l). Throughout the discussion,

the term ‘new hypergame’ refers to the hypergame associatedto A’s new perception once a

change has been done. To study the changes of the H-digraph, it is sufficient to describe how

the in- and out-neighbors of each outcome change. The following result captures the outcomes

whose in-neighbors are not affected by the changes inA’s perception.

Proposition 6.1: (Sufficient conditions for invariance of in-neighboring structure of an out-
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come): Suppose playerB takes an action that changes the outcome fromx(l) to x(l + 1). Let

MBA(x(l), x(l + 1)) = {y ∈ Soutcm | x(l) �PBA(l) y �PBA(l) x(l + 1)}.

If y /∈ (MBA(x(l), x(l + 1)) ∩ Soutcm|πA(x(l))) ∪ Soutcm|πB(x(l)) ∪ Soutcm|πB(x(l+1)), thenN in
l (y) =

N in
l+1(y).

Proof: We start by showing that the statement holds fory /∈ Soutcm|πA(x(l)) ∪Soutcm|πB(x(l)) ∪

Soutcm|πB(x(l+1)). Figure 4(a) shows such an outcomey in a generic H-digraph. Letz ∈ N in
l (y). If

x(ℓ) x(ℓ+1)

z

z

y

(a)

x(ℓ) x(ℓ+1)z zz

zz

yy

(b)

Fig. 4. Part of an H-digraphGH0

A
, where A and B play rows and columns, respectively. (a) shows a case wherey /∈

Soutcm|πA(x(l)) ∪ Soutcm|πB(x(l)) ∪ Soutcm|πB(x(l+1)) and (b) shows cases wherey ∈ Soutcm|πA(x(l)) with y ≻PBA(l) x(l) or

y ≺PBA(l) x(l + 1).

z ∈ Soutcm|πA(y), theny is an improvement fromz for playerB in the hypergame(PAA, PBA(l))

without any sanction of playerA. Since, by assumption,z 6= x(l), x(l + 1), playerB is also

perceived to have an improvementy from z, with respect to the preference vectorPBA(l + 1),

without any sanction from playerA; thus z ∈ N in
l+1(y). Now supposez ∈ Soutcm|πB(y). Since,

by assumption, the ranking of the outcomes inSoutcm|πA(y) is the same with respect toPBA(l)

and PBA(l + 1), player A still has an improvementy from z, with respect to the preference

vectorPAA, without any perceived sanction from playerB; thusz ∈ N in
l+1(y). This proves that

N in
l (y) ⊆ N in

l+1(y). A similar argument shows the converse inclusion; thusN in
l (y) = N in

l+1(y).

To complete the proof, we show that ify ∈ Soutcm|πA(x(l)) such thaty ≻PBA(l) x(l) or y ≺PBA(l)

x(l + 1), thenN in
l (y) ⊆ N in

l+1(y), see Figure 4(b). Letz ∈ N in
l (y). If z ∈ Soutcm|πA(y), since by

assumptiony ≻PBA(l) x(l) or y ≺PBA(l) x(l + 1), the possible sanctions of playerA against the

perceived improvementy of playerB from z stay the same after swappingx(l) andx(l+1), and

thereforez ∈ N in
l+1(y). If z ∈ Soutcm|πB(y), sincey ≻PBA(l) x(l) or y ≺PBA(l) x(l+1), the perceived

sanctions of playerB are the same in hypergames(PAA, PBA(l)) and (PAA, PBA(l + 1)); thus

we conclude thatz ∈ N in
l+1(y). A similar argument shows that the converse holds, yielding

N in
l (y) = N in

l+1(y).
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Next, we identify the outcomes whose out-neighbors in the H-digraph do not change.

Proposition 6.2: (Sufficient conditions for invariance of out-neighboring structure of an out-

come): Suppose playerB takes an action that changes the outcome fromx(l) to x(l + 1). Let

xmin
AA = argminz∈{x(l),x(l+1)}{rank(z, PAA)}, andxmax

AA = argmaxz∈{x(l),x(l+1)}{rank(z, PAA)}. If

y /∈ MBA(x(l), x(l + 1)) and any of the following holds,

(i) y ≻PAA
xmin

AA;

(ii) y ≺PAA
xmax

AA andy /∈ Soutcm|πB(xmin
AA

) ∪ Soutcm|πB(xmax
AA

);

(iii) y ∈ Soutcm|πB(xmax
AA

) andxmax
AA ∈ N out

l (y);

(iv) y ∈ Soutcm|πB(xmin
AA

) andxmin
AA /∈ N out

l (y);

thenN out
l (y) = N out

l+1(y).

Proof: We present the proof for the casex(l) ≻PAA
x(l + 1) (the proof for the case

x(l+1) ≻PAA
x(l) follows similarly). Thusxmin

AA = x(l) andxmax
AA = x(l+1). We begin by noting

that if y /∈ MBA(x(l), x(l+1)), any outcome which is perceived as a sanction-free improvement

from y for B in (PAA, PBA(l)) is also perceived as a sanction-free improvement fromy for this

player in(PAA, PBA(l +1)). Thus, to complete the proof, we need to show that an outcomez is

a sanction-free improvement fromy for A in (PAA, PBA(l)) if and only if z is a sanction-free

improvement fromy for A in (PAA, PBA(l + 1)). We prove this result for each of the cases

identified in the statement. Letz be an improvement fromy for A in (PAA, PBA(l)).

Consider case (i). Ifz /∈ Soutcm|πA(x(l)), since the new perceived improvements forB can only

change inSoutcm|πA(x(l)), B has a perceived sanction against the improvementz from y for A

in (PAA, PBA(l)) if and only if such sanction exists in(PAA, PBA(l + 1)). If z ∈ Soutcm|πA(x(l)),

sincey ≻PAA
x(l), the perceived sanctions ofB against the improvementz from y are the same

in (PAA, PBA(l)) and (PAA, PBA(l + 1)).

Consider case (ii). Sincey /∈ Soutcm|πB(x(l)) ∪ Soutcm|πB(x(l+1)), we have thatz 6= x(l), x(l + 1).

If z ≻PBA(l) x(l) or z ≺PBA(l) x(l + 1), then it is clear that there exists a perceived sanction

against the improvementz of A in (PAA, PBA(l)) if and only if such a sanction exists against

this improvement in(PAA, PBA(l+1)). Next, supposex(l) ≻PBA(l) z ≻PBA(l) x(l+1). Note that

the only new perceived improvement fromz for B is x(l + 1) and sincey ≺PAA
x(l + 1), this

does not affect the set of sanction-free improvements fromy.

Consider case (iii). Ifz 6= x(l + 1), then, since the new perceived improvements ofB can

only change inSoutcm|πA(x(l)), B has a perceived sanction against the improvementz from y
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for A in (PAA, PBA(l)) if and only if such sanction exists in(PAA, PBA(l +1)). By assumption,

x(l+1) ∈ N out
l (y), i.e., there exists no sanction ofB against the improvementx(l+1) from y for

A. Sincerank(x(l+1), PBA(l+1)) < rank(x(l+1), PBA(l)), we conclude thatx(l+1) ∈ N out
l+1(y).

Finally, consider case (iv). Ifz 6= x(l), then, since the new perceived improvements ofB can

only change inSoutcm|πA(x(l)), B has a perceived sanction against the improvementz from y for A

in (PAA, PBA(l)) if and only if such sanction exists in(PAA, PBA(l + 1)). In order to complete

the proof, we need to show thatx(l) /∈ N out
l+1(y). This holds sincerank(x(l), PBA(l + 1)) >

rank(x(l), PBA(l)) andx(l) /∈ N out
l (y).

Propositions 6.1 and 6.2 give necessary conditions for an outcome to have different in- or

out-neighbors under a change inA’s perception aboutB. These results are important in the

sense thatB, without having access to the belief structure ofA, can a priori establish which

outcomes are guaranteed not to be affected inA’s perception by an action ofB. Conversely,

if an outcome belongs to either one of the sets identified in the results, it is possible forA to

update her belief structure in such a way that the neighboring structure of the outcome changes.

Therefore, the results capture the best conclusion thatB can draw without having access to the

belief structure ofA.

Remark 6.3 (Reducing the complexity of recomputing H-digraphs): A consequence of Propo-

sition 6.1 is the simplification in the complexity of computing the new H-digraph that results

from the changes inA’s perception. Assuming the original H-digraph is available, one only

needs to compute the changes in the in-neighboring structure of the outcomes characterized in

Proposition 6.1. The number of these outcomes isO(2n + m), wheren andm are the number

of actions available toA and B, respectively. Therefore, the complexity of modifying theH-

digraph isO(nm(2n + m)), which is smaller that the complexity of computing it from scratch,

cf. Lemma 2.12. •

Next, we turn our attention to the outcomes whose in- and out-neighbors are susceptible of

change. Since the new out-neighbors can be identified via thenew in-neighbors, we only study

how the in-neighboring structure changes.

Theorem 6.4 (Changes of the in-neighboring structure):Suppose playerB takes an action

that changes the outcome fromx(l) to x(l + 1). The following holds,

(i) if y ∈ Soutcm|πB(x(l)), thenN in
l+1(y) ⊆ N in

l (y);

(ii) if y ∈ Soutcm|πB(x(l+1)), thenN in
l (y) ⊆ N in

l+1(y);
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(iii) if y ∈ MBA(x(l), x(l + 1)) ∩ Soutcm|πA(x(l)), then

(a) x(l) ∈ N in
l+1(y) if and only if x(l + 1) ∈ N in

l (y);

(b) for z ∈ Soutcm|πA(y), z ∈ N in
l (y) \ {x(l + 1)} if and only if z ∈ N in

l+1(y) \ {x(l)};

(c) for z ∈ Soutcm|πB(y),

• if z ≻PAA
xmin

AA, thenz /∈ N in
l (y) ∪N in

l+1(y);

• if z ≺PAA
xmax

AA , thenz ∈ N in
l (y) if and only if z ∈ N in

l+1(y);

• if xmin
AA ≻PAA

z ≻PAA
xmax

AA andxmin
AA = x(l), thenz /∈ N in

l+1(y);

• if xmin
AA ≻PAA

z ≻PAA
xmax

AA andxmin
AA = x(l + 1), thenz /∈ N in

l (y).

Proof: We first show (i). Lety ∈ Soutcm|πB(x(l)) andz /∈ N in
l (y). Two things can happen:

• when z ∈ Soutcm|πB(y), two further possibilities might arise. Ify 6= x(l), then eithery

is not an improvement fromz for A or there is a perceived sanction ofB against the

improvementy from z. Either of the cases will still hold after swappingx(l) andx(l + 1)

by A, and thereforez /∈ N in
l+1(y). If y = x(l), the same reasoning plus the fact that

rank(x(l), PBA(l)) < rank(x(l), PBA(l + 1)) implies thatz /∈ N in
l+1(y).

• when z ∈ Soutcm|πA(y), then eithery is not an improvement fromz for B or there is a

perceived sanction byA against the improvementy from z. Either of the cases will still

hold after the swap and thusz /∈ N in
l+1(y).

Next we show (ii). Lety ∈ Soutcm|πB(x(l+1)) and supposez ∈ N in
l (y). Two things can happen:

• when z ∈ Soutcm|πB(y), two further possibilities might arise. Ify 6= x(l + 1), then it is

clear thatz ∈ N in
l+1(y), since there is no new sanction forB for the improvementy from

z of A. If y = x(l + 1), the same reasoning plus the fact thatrank(x(l + 1), PBA(l)) >

rank(x(l + 1), PBA(l + 1)) implies thatz ∈ N in
l+1(y).

• whenz ∈ Soutcm|πA(y), then, since the improvementy from z for B remains free of sanctions,

we conclude thatz ∈ N in
l+1(y).

Finally, we show part (iii). We start by (a). Suppose a perceived improvementy from x(l + 1)

exists forB in the game(PAA, PBA(l)) without sanction ofA. Then, sincerank(x(l), PBA(l +

1)) = rank(x(l+1), PBA(l)), the improvementy from x(l) with respect to the preference vector

PBA(l+1) is also sanction free. The converse follows similarly. Thusx(l) ∈ N in
l+1(y) if and only

if x(l+1) ∈ N in
l (y). A similar argument shows that (b) holds. To end the proof, weshow that (c)

holds. Letz ∈ Soutcm|πB(y). Note that ify ≺PAA
z, all the statements hold trivially, sincey is not

an improvement fromz for A. Thus we need to prove the results fory ≻PAA
z. If z ≻PAA

xmin
AA,
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then any improvementy from z for A is sanctioned by the perceived improvementx(l) from

y for B in the game(PAA, PBA(l)). Similarly, any improvementy from z for A is sanctioned

by the perceived improvementx(l + 1) from y for B in the game(PAA, PBA(l + 1)); thus

z /∈ N in
l (y) ∪ N in

l+1(y). Now, supposez ≺PAA
xmax

AA . The only new perceived improvement from

y for B is x(l + 1). Sincex(l + 1) ≻PAA
z, this improvement does not create any new sanction

against the improvementy from z for A. Similarly, the only removed perceived improvement

from y for B is x(l). Sincex(l) ≻PAA
z, x(l) is not a sanction ofB in (PAA, PBA(l + 1)); thus

z ∈ N in
l (y) if and only if z ∈ N in

l+1(y). Next, supposexmin
AA ≻PAA

z ≻PAA
xmax

AA . If xmin
AA = x(l),

then x(l + 1) is a perceived sanction ofB in (PAA, PBA(l + 1)) and thusz /∈ N in
l+1(y). If

xmin
AA = x(l + 1), thenx(l) is a perceived sanction ofB in (PAA, PBA(l)) and thusz /∈ N in

l (y).

This completes the proof.

If the action taken byB is aligned withB’s game as perceived byA, i.e., if x(l + 1) ≻PBA(l)

x(l), then in Propositions 6.1 and 6.2, and in Theorem 6.4, the sets prescribed by�PBA
are

empty. This is consistent with the fact that no change inA’s perception occurs in this case.

Remark 6.5 (Belief manipulation and deception):If B has complete information aboutA’s

game H0
A, then she can use theH-digraph construction algorithm to study the

changes in the belief structure ofA and possibly manipulate it. The results presented above are

helpful because they narrow down the outcomes on which an action of B would have an effect

on. This opens the way for algorithmic approaches to belief manipulation in hypergames. Also

importantly, the results capture the outcomes thatB does not have direct control over and for

which she may need a sequence of actions, instead of a single one, to manipulateA’s belief. •

Example 6.6 (An example of deception):Here, we present an example in which one of the

players has perfect information about the other player’s game and is aware of this fact, while the

second player is trying to update his misperceptions by observing the actions of her opponent.

We show how the player with perfect information may be able todeceive the opponent. Our

discussion follows the scenario presented in Example 5.10.Note that in the 1-level hypergame

introduced in the example,B has perfect information aboutA but is not aware of it. To model

this fact, we consider instead a 2-level hypergameH2 = {H0
A, H1

B}, with H1
B = {H0

A, H0
B}. In

particular,PABB = PAAB = PAB = PAA, PBAB = PBA. We assume thatA is using a modified

swap learning scheme to update her perceptions aboutB. We show thatB can deceiveA so

that eventuallyA believes that the outcomex1, the best outcome forB, is an equilibrium.
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As in Example 5.10, the initial outcome isx1. B gets the first chance to move and does not

take any action.A observes this and uses modified swap learning to update her perception as

MSwA
x1,x1

(PBA) = (x1, x3, x2, x4)
T . Note thatx1 is unstable forA and hence, in her turn, takes

an action that changes the outcome fromx1 to x3. Outcomex3 is sequentially rational forB

x1

��

x2
oo

x3 x4

OO

oo

(a)

x1 x2

x3
// x4

OO

(b)

x1 x2
oo

x3 x4

OO

(c)

Fig. 5. H-digraph of H0
A after applying (a) MSwA

x1,x1
, (b) MSwA

x3,x4
◦MSwA

x1,x1
, and (c)

MSwA
x2,x1

◦MSwA
x3,x4

◦MSwA
x1,x1

, respectively.

in H0
B, but B prefers the outcomex1 to x3. Therefore, with the intention of deceivingA, B

takes an irrational action that changes the outcome tox4. Using this observation,A updates her

perception aboutB as follows,

MSwA
x3,x4

(

MSwA
x1,x1

(PBA)
)

= (x1, x4, x2, x3)
T .

As a result,x1 becomes sequentially rational forA. Next, A takes an action that changes the

outcome tox2. Finally, B takes an action that changes the outcome tox1. Therefore,A changes

her perception aboutB to

MSwA
x2,x1

(

MSwA
x3,x4

(

MSwA
x1,x1

(PBA)
))

= (x1, x4, x3, x2)
T .

Thus the hypergame converges tox1. This evolution is shown in Figure 5(a)-(c). This example

raises some interesting questions, including the potential use byB of general algorithmic tech-

niques to perform deception and byA of an analysis similar to the one in Section VI to detect

the possibility of deception. •

VII. C ONCLUSIONS

We have studied adversarial situations where players’ perceptions about the game they are

involved in might be inconsistent and evolving. We have introduced the swap learning method

to allow players to incorporate into their beliefs the information gained from observing the

opponents’ actions. A player that uses this method decreases her misperception at the cost of

potentially incurring in inconsistencies in her perception. This has motivated the introduction of
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the modified swap learning method, which yields consistent beliefs and, under the assumption that

the opponent has perfect information and plays her best strategy, also decreases the misperception.

Using the newly introduced notion of H-digraph, we have fully characterized how a player’s

perception is affected by the actions taken by other players.

The methods discussed here attribute the origin of the misperception on the player doing

the update. Numerous avenues for future research appear open, including the exploration of

other learning schemes and extensions to high-level hypergames. Learning methods at the other

extreme of the spectrum, where inconsistencies are blamed on the opponents’ misperceptions, and

in the middle of the spectrum, via the construction of hypergames of higher level, are also worth

exploring. Another direction of research is the study of learning under imperfect observation and

the use of probabilistic methods to update the preference vectors for the opponents. It is also

worth investigating how misperception can be decreased by departing from sequentially rational

outcomes when the cost of such irrational actions is not prohibitive. We also plan to use our

results on the evolution of H-digraphs in the design of deception and deception-robust strategies.
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