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Abstract— This work deals with trajectory optimization for a
network of robotic sensors sampling a spatio-temporal random
field. We examine the problem of minimizing over the space of
network trajectories the maximum predictive variance of the
estimator. This is a high-dimensional, multi-modal, nonsmooth
optimization problem, known to be NP-hard even for static
fields and discrete design spaces. Under an asymptotic regime of
near-independence between distinct sample locations, we show
that the solutions to a novel generalized disk-covering problem
are solutions to the optimal sampling problem. This result trans-
forms the search for the optimal trajectories into a geometric
optimization problem. Constrained versions of the latter are
also of interest as they can accommodate trajectories that satisfy
a maximum velocity restriction on the robots. We characterize
the solution for the unconstrained and constrained versions of
the problem as generalized multicircumcenter trajectories, and
provide distributed algorithms to find them.

I. I NTRODUCTION

Intelligent data collection is an exciting field with many
scientific, industrial, and safety applications. Path planning,
either a priori or online, is an important part of any data
collection mission. In this paper, we examine optimal trajec-
tories for sampling a spatio-temporal random field modeled
as a Gaussian process. We assume that the mean and covari-
ance of the field are known, and concentrate on minimizing
the maximum predictive variance.

Literature review: There is a rich literature on the use
of model uncertainty to drive the placement of sensing
devices, e.g., [1], [2], [3]. Most of this research has focused
on choosing from discrete sets of hypothetical sampling
locations, and until recently all of it has made use of
centralized computational techniques. Even choosing a fixed
number of sampling locations from a discrete set has been
shown to be NP-hard [4]. In cooperative control, various
works consider mobile sensor networks performing spatial
estimation tasks. [5], [6] consider deterministic models with
a stochastic measurement error term. [7] addresses the mul-
tiple robot path planning problem by choosing way points
from a discrete set of possible sensing locations. In [8],
a deterministic model is used, where the random elements
come as unknown model parameters, and localization error
is included. The work [9] uses a Gaussian process model
where all information is globally available via all-to-all
communication. [10] considers optimal sampling trajectories
from a parameterized set of paths. [11] discusses the tracking
of level curves in a noisy scalar field.

Rishi Graham is with the Department of Applied Mathematics andStatis-
tics, University of California, Santa Cruz,rishig@ams.ucsc.edu

Jorge Cort́es is with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego,cortes@ucsd.edu

Statement of contributions:Our first contribution pertains
to the characterization of the solutions of the optimal sam-
pling problem for minimizing the prediction variance. We
introduce a weighted distance metric called the correlation
distance and define a novel generalized disk-covering func-
tion based on it. We show that its minimization is equivalent
to minimizing the maximum prediction variance in the limit
of near-independence, thus turning the optimization problem
into a geometric one. Our next contributions all pertain to
the solution of this geometric problem. We first introduce a
form of generalized Voronoi partition based on the maximal
correlation between a given predictive location and the sam-
ples. Assuming a fixed network trajectory, we show that this
partition minimizes the maximal correlation distance over
all partitions. We next define multicircumcenter trajectories,
which minimize the maximal correlation distance over all
trajectories, for a fixed partition. The combination of these
two results gives rise to the optimal trajectories for the
correlation distance disk-covering problem. The final stage
of our solution is to define an extension of the maximal
correlation partition which takes into account the positions
of consecutive samples taken by the same robotic agent. We
show that these constrained multicenter trajectories optimize
the correlation distance disk-covering problem over the set
of distance-constrained trajectories. Finally, we present a
version of Lloyd’s algorithm which enables the network to
arrive at locally optimal trajectories. This may be performed
at any step of the experiment to optimize the remainder of
the trajectories as new information arrives. For reasons of
space, all proofs are omitted and will appear elsewhere.

II. PRELIMINARIES

We present here some useful notation. LetR, R>0 and
R≥0 denote the set of reals, positive reals and nonnegative
reals, respectively. GivenD ⊂ R

d, d ∈ N, we use the
shorthand notationDe = D×R≥0. Forp ∈ R

d andr ∈ R>0,
let B(p, r) denote theclosed ballof radius r centered at
p. For a setW , we denote by|W |, bnd(W ), int(W ), and
co(W ) its cardinality, boundary, interior, and convex hull,
respectively. Aconvex polytopeis the convex hull of a finite
point set. For a bounded setW ⊂ R

d, CC(W ) denotes the
circumcenterof W , i.e., the center of the smallest-radiusd-
sphere enclosingW . Finally, P(W ) denotes the collection
of subsets ofW .

A. Nonsmooth analysis

Here we present some useful notions from nonsmooth
analysis following [12]. A functionf : R

d → R is locally
Lipschitz ats ∈ R

d if there exist positive constantsLs andǫ



such that|f(y)−f(y′)| ≤ Ls‖y−y′‖ for all y, y′ ∈ B(s, ǫ).
f is locally Lipschitz onW ⊆ R

d if it is locally Lipschitz
at s, for all s ∈ W . f : R

d → R is regular at s ∈ R
d if for

all v ∈ R
d, the right and generalized directional derivatives

of f at s in the direction ofv, coincide. For a given closed,
convex setG ⊂ R

d, let NG(x) = {y ∈ R
d | < y, x− z >≥

0, ∀z ∈ G} be the normal cone ofG at x.

B. Spatio-temporal simple kriging

Let Z denote a spatio-temporal process taking values on
a convex polytopeD ⊂ R

d of the form

Z(s, t) = µ(s, t) + ω(s, t), (s, t) ∈ De, (1)

where µ is a known mean value function, andω is a
zero mean random space-time process with known separa-
ble covariance, which exhibits second-order stationarityand
isotropy in the spatial dimensions, i.e.,

Cov[ω(si, ti), ω(sj , tj)] = g0 gs(‖si − sj‖)gt(ti, tj),

for correlation functionsgs : R≥0 → (0, 1], and gt :
R≥0 × R≥0 → [0, 1], and constantg0 ∈ R>0. We assume
that gs is strictly decreasing and continuously differentiable
with nonzero derivative except possibly at0.

Let n ∈ Z>0 sensing agents take samples at a sequence
of discrete timesteps{1, . . . , kmax}, kmax ∈ Z>0. Let Si =

(s
(1)
i , . . . , s

(kmax)
i )T ∈ Dkmax denote the spatial locations of

samples taken over the course of the experiment by the
ith agent, and letS = (ST

1 , . . . , ST
n )T ∈ (Dkmax)n denote

the locations of all samples taken by the network. Let
Isamp= {1, . . . , n}×{1, . . . , kmax}. We refer often to vectors
of elements indexed by both agent and timestep, such as
the elements ofS. To save space, we use the notation
(a

(1)
1 , . . . , a

(kmax)
n ) = (a

(1)
1 , . . . , a

(kmax)
1 , . . . , a

(1)
n , . . . , a

(kmax)
n ).

Let Y = (y
(1)
1 , . . . , y

(kmax)
n )T ∈ (Rkmax)n denote the values

of all samples taken at locationsS. We assume that the data
are corrupted with a measurement error so that,

y
(k)
i = Z(s

(k)
i , k) + ǫi, ǫi

iid
∼ Normal

(
0, τ2

)
, (2)

whereτ2 > 0. The covariance betweeny(k)
i andy

(l)
j is

Cov[y
(k)
i , y

(l)
j ] =

{
g0 gs(0)gt(k, k) + τ2, if (i, k) = (j, l)

g0 gs(‖si − sj‖)gt(k, l), otherwise.

Let Σ = Σ(S) denote the covariance matrix ofY , where
bold face is used to denote explicit dependence onS.

The simple kriging predictorat (s, t) ∈ De minimizes
the error varianceσ2(s, t;S) = Var(Z(s, t) − p(s, t;Y ))
among all unbiased predictors of the formp(s, t;Y ) =∑n

i=1

∑kmax

k=1 l
(k)
i y

(k)
i +a, a ∈ R. The simple kriging predictor

at (s, t) ∈ De corresponds then to the Linear Unbiased
Minimum Variance Estimator (LUMVE),

p̂SK(s, t;Y ) = µ(s, t) + c
T
Σ

−1(Y − µ), (3)

with µ = (µ(s
(1)
1 , 1), . . . , µ(x

(kmax)
n , kmax))

T , c =
Cov[Z(s, t), Y ] ∈ (Rkmax)n, and error variance,

σ2(s, t;S) = g0gs(0)gt(t, t) − c
T
Σ

−1
c. (4)

σ2 only depends on the location of the samples and is invari-
ant under permutations of the space-time sample locations.

III. PROBLEM STATEMENT

Here we describe the model for the robotic network and
provide the objective function for optimal sampling.

A. Robotic network model

Consider a group{R1, . . . , Rn} of n ∈ Z>0 robotic
sensing agents taking measurements of a spatio-temporal
process of interest over a convex polytopeD ⊂ R

d, for
d > 1. The robots take point measurements of the random
process at discrete instants of time inZ>0. Our results below
are independent of the particular robot dynamics, so long as
each agent is able to move up to a distanceumax ∈ R>0

between consecutive sampling times.

B. Objective function for spatial estimation

A natural objective is to design sampling trajectories in
such a way as to minimize the uncertainty of an estimate of
the field at timekmax generated from samples taken up to that
time. Here, we consider an objective function inspired by the
notion of G-optimality from optimal design [13], [2]. The
maximum error varianceM : (Dkmax)n → R of estimates
made at timekmax over the regionD is

M(S) = max
s∈D

σ2((s, kmax);S)

= g0gs(0)gt(kmax, kmax) − min
s∈D

{
c

T
Σ

−1
c
}
. (5)

Note thatM corresponds to a “worst-case scenario,” where
we deal with locations at which the error variance of the
LUMVE is maximal. Our goal is to find the sampling tra-
jectoriesS ∈ (Dkmax)n that minimize this objective function.

IV. OPTIMAL SOLUTIONS UNDER NEAR-INDEPENDENCE

The objective functionM is not convex and nonsmooth.
The problem of finding an explicit characterization for its op-
timizers is especially hard: even forkmax = 1, the optimiza-
tion of M is known to be NP-hard over discrete spaces [4].
In this section we consider instead the optimization ofM
when the correlation function is raised to the powerα ∈
R>0, i.e., (gsgt)

α. This correlation function retains much
of the shape of the original correlation (e.g., smoothness,
range, etc). This asymptotic regime of increasingly smaller
correlation between distinct points asα grows is known
as near-independence, see [14]. To ease the exposition, we
denote byc{α}, resp.Σ{α}, the vectorc, resp. the matrix
Σ, with the correlation in each element raised to the power
α. Similarly, letM{α} : (Dkmax)n → R be defined as

M{α}(S) = g0

(
gs(0)gt(kmax, kmax)

)α
−

− min
s∈D

{
(c{α})T (Σ{α})−1

c
{α}

}
.

Therefore, our objective is to characterize the asymptotic
minimizers of this function. To do so, we need to introduce a
family of weighted distance measures based on correlation.
Defineφ : R≥0 → R≥0 andw : {1, . . . , kmax} → R≥0 by,

φ(d) = − log(gs(d)), w(k) = − log(gt(kmax, k)).

The functionφ is strictly increasing and continuously dif-
ferentiable with strictly positive derivative except possibly at



zero. It therefore admits an inverse,φ−1 : R≥0 → R≥0. The
correlation between a sample at stepk and prediction at step
kmax induces the weighted distance,δk : D ×D → R≥0,

δk(s1, s2) = φ(‖s1 − s2‖) + w(k). (6)

We refer toδk as thecorrelation distanceassociated with
sample timek, and note thatδk(s, s

(k)
i ) = − log

(
gs(‖s −

s
(k)
i ‖)gt(kmax, k)

)
.

Let Sunique be the following set of possible trajectories,
which ensures the spatio-temporal uniqueness of any samples
that achieve the maximal correlation distance from any
predictive location,

Sunique =
{

S = (s
(1)
1 , . . . , s(kmax)

n )T ∈ (Dkmax)n | 6 ∃(i, k)

6= (j, l) ∈ Isampands ∈ D, s.t.δk(s, s
(k)
i ) =

min
(i′,k′)∈Isamp

δk(s, s
(k′)
i′ ) , δk(s′, s

(k)
i ) = δl(s

′, s
(l)
j ), ∀s′ ∈ D

}
.

Note that for sampless(k)
i and s

(l)
j to have identical cor-

relation distance to all predictive locations requires that
s
(k)
i = s

(l)
j and gt(kmax, k) = gt(kmax, l). We are now ready

to characterize the minimizers ofM{α} asα grows.

Theorem IV.1 (Global minimizers of M under near-
independence)LetH : (Dkmax)n → R denote thecorrelation
distance disk-coveringfunction, defined by

H(S) = max
s∈D

{
min

(i,k)∈Isamp

{δk(s, s
(k)
i )}

}
. (7)

For Ω ⊂ (Dkmax)n compact, letSmcc ∈ Ω be a global
minimizer of the correlation disk-covering functionH over
Ω. Further assume thatSmcc ∈ Sunique. Then, asα → ∞,
Smcc asymptotically globally optimizesM{α} over Ω, that
is, M{α}(Smcc) approaches a global minimum overΩ.

The generality ofΩ in Theorem IV.1 allows us to apply
the result to two situations of particular importance. First,
we may restrict the samples to feasible trajectories based on
limitations on the agents’ motion, and their initial positions,
which we call anchor points. We define the range-based
constraint set,ΩRg ⊂ (Dkmax)n as,ΩRg =

∏n

i=1 ΩRg
i
, where

ΩRg
i
=

{
(s

(1)
i , . . . , s

(kmax)
i )T ∈ Dkmax

∣∣

‖s
(1)
i − pi(0)‖ ≤ umax and

‖s
(k)
i − s

(k−1)
i ‖ ≤ umax, ∀k ∈ {2, . . . , kmax}

}
. (8)

Second, a change in mission parameters at timek − 1,
k ∈ {2, . . . , kmax}, might prompt optimization over just those
locations not yet sampled, i.e.,Ω

(≥k)
Rg =

∏n

i=1 Ω
(≥k)
Rg

i

, where

Ω
(≥k)
Rg

i

=
{
(s

(k)
i , . . . , s

(kmax)
i )T ∈ Dkmax−k+1

∣∣

‖s
(k)
i − p(k − 1)‖ ≤ umax and

‖s
(k′)
i − s

(k′−1)
i ‖ ≤ umax, ∀k′ ∈ {k + 1, . . . , kmax}

}
. (9)

Theorem IV.1 shows that the optimization of the maximum
error variance is equivalent to a geometric optimization
problem in the near-independence range.

V. M AXIMAL CORRELATION PARTITION

Here, we introduce the maximal correlation partition as-
sociated to a network trajectory. A partition ofD is a
collection of compact subsets,W = {W

(1)
1 , . . . ,W

(kmax)
n }

with disjoint interiors whose union isD. For any S ∈
Sunique, let MC(S) = (MC(1)

1 (S), . . . , MC(kmax)
n (S)) denote

the maximal correlation partitiondefined by

MC(k)
i (S) =

{
s ∈ D

∣∣ δk(s, s
(k)
i ) ≤ δl(s, s

(l)
j ),

∀(j, l) 6= (i, k)
}
. (10)

This partition corresponds to a generalized Voronoi parti-
tion [15] for distance measureφ and weights given byw. In
general, the maximal correlation regions are neither convex
nor star-shaped. Depending on the weights and locations,
MC(k)

i (S) might be empty for somei. Let I : P(D) →
{1, . . . , n∗kmax} map a partition to the number of nonempty
cells it contains, which we term theindexof the partition.

For S ∈ Sunique, the correlation distance disk-covering
function can be restated as,

H(S) = max
(i,k)∈Isamp

{
max

s∈MC(k)
i

(S)

{δk(s, s
(k)
i )}

}
. (11)

This expression is important because it shows howH has
a double dependence on the network trajectoryS: through
the value of the correlation distance and through the maximal
correlation partition. This motivates us to define an extension
of H as follows: for a given sample vectorS ∈ (Dkmax)n

and a partitionW = {W
(1)
1 , . . . ,W

(kmax)
n } ⊂ P(D) of the

predictive space, defineHW : (Dkmax)n → R by

HW(S) = max
(i,k)∈Isamp

W
(k)
i

6=∅

{
max

s∈W
(k)
i

{
δk(s, s

(k)
i )

}}
. (12)

Note that if S ∈ Sunique, then H(S) = HMC(S)(S). This
function is particularly useful in our search for the optimizers
of H because it allows us to decouple the two dependencies
of this function on the network trajectory.

Proposition V.1 (H-optimality of the maximal correlation
partition) For anyS ∈ Sunique and any partitionW ⊂ P(D)
ofD with I(W) ≤ I(MC(S)), one has thatH(S) ≤ HW(S),
that is, the maximal correlation partitionMC(S) is optimal
for H among all partitions ofD of less than or equal index.

Proposition V.1 implies that, in order to fully charac-
terize the optimizers ofH, it is sufficient to characterize
the optimizers ofHW for a fixed arbitrary partition. The
latter formulation is advantageous because of the single
dependence of the value ofHW on the network trajectory.

VI. U NCONSTRAINED OPTIMAL TRAJECTORIES FOR A

GIVEN PARTITION

Our objective is to characterize the optimal network tra-
jectories ofHW for a fixed partitionW of D. Rewrite (12) as

HW(S) = max
(i,k)∈Isamp, W

(k)
i

6=∅

MCD(k)
i (s

(k)
i ).



In the following result, letCC(W, s) = CC(W ) if W 6=
∅, and CC(W, s) = s otherwise, and letCC(W, S) =(
CC(W

(1)
1 , s

(1)
1 ), . . . ,CC(W

(kmax)
n , s

(kmax)
n )

)T
denote a vec-

tor of such circumcenter locations.

Proposition VI.1 (HW -optimal trajectories) For
S = (s

(1)
1 , . . . , s

(kmax)
n )T ∈ Sunique, a partition

W = {W
(1)
1 , . . . ,W

(kmax)
n } ⊂ P(D) of D, and

S̃ = (s̃
(1)
1 , . . . , s̃

(kmax)
n )T ∈ (Dkmax)n, one has that

HW

(
CC(W, S̃)

)
≤ HW(S), i.e., the circumcenter

locationsCC(W, S̃) are optimal forHW .

The combination of Propositions V.1 and VI.1 allows us
provide the following characterization of the optimizers of H.

Proposition VI.2 (Generalized multicircumcenter trajec-
tories optimize H) Consider S = (s

(1)
1 , . . . , s

(kmax)
n )T ∈

(Dkmax)n such thats(k)
i = CC

(
MC(k)

i (S)
)

for each(i, k) ∈

Isamp with MC(k)
i (S) 6= ∅. ThenS is a local minimizer ofH

over (Dkmax)n. We call such a network trajectory ageneral-
ized multicircumcenter trajectory. Moreover, ifI(MC(S)) =
n ∗ kmax, thenS is a global minimizer ofH over (Dkmax)n.

VII. R ANGE-CONSTRAINED OPTIMAL TRAJECTORIES

FOR A GIVEN PARTITION

Here, our objective is to characterize the optimizers
of HW over ΩRg for a fixed partition W. Let Wi =

{W
(1)
i , . . . ,W

(kmax)
i } denote the elements ofW assigned to

the samples in the trajectory ofRi. We may write

HW(S) = max
i∈{1,...,n}, Wi 6=∅

HWi
(Si),

whereHWi
(Si) = max

k∈{1,...,kmax}, W
(k)
i

6=∅

{
MCD(k)

i (s
(k)
i )

}
.

The conditionWi 6= ∅ indicates that there is at least one
nonemptyW (k)

i ∈ Wi. The above expression shows that, for
a fixed partition, minimizingHW over the space of network
trajectories is equivalent to (independently) minimizingeach
HWi

over the space of trajectories of the robotRi. Hence,
we structure our discussion in three parts. First, we deal
with the single sample problem. Then, we find an optimal
sampling trajectory for asingle agent. Finally, we combine
individual agent trajectories into a network trajectory.

A. Single sample constrained problem

We consider the single sample problem over a general
closed convex constraint set.

Proposition VII.1 (Constrained minimizers of MCD (k)
i )

Assume thatW (k)
i 6= ∅. Let Γ ⊂ R

d be closed and convex.
Then a points∗ ∈ Γ is the unique minimizer ofMCD(k)

i over
Γ iff 0 ∈ ∂MCD(k)

i (s∗) + NΓ(s∗).

Let us now specify the range based constraint set fors
(k)
i .

The set of constraining locationsof (i, k) ∈ Isamp are the
locations of robotRi at sample timesk − 1 andk + 1,

Scs(k, Si) = {p(k′) | k′ ∈ Kcs(k)}, where

Kcs(k) = {k − 1, k + 1} ∩ {0, . . . , kmax}.

Note that in all but the initial anchor point, this set corre-
sponds to the sample locations immediately preceding and
following the (i, k)th sample. DefineΓ(k) : Dkmax → P(Rd),

Γ(k)(Si) =
⋂

s∈Scs(k,Si)

B(s, umax). (13)

The setΓ(k)(Si) corresponds toΩRg with all other samples
fixed in space. RestrictingS(k)

i to Γ(k)(Si) ensures thatRi

does not violate the maximum distance requirementumax.
To state the main result of this section, we find it useful to

introduce an extension of the setW
(k)
i which incorporates

the position of sample(i, k) relative toΓ(k)(Si). To that end,
let EPt(k:k′) : Dkmax → R

d, (i, k) ∈ Isamp, k′ ∈ Kcs(k),

EPt(k:k′)(Si) = s
(k)
i + rk(HWi

(Si))
s
(k′)
i − s

(k)
i

umax
, (14)

The reason for the use ofHWi
(Si) will be made ap-

parent in Section VII-B. For now, it is only important
that HW(Si) ≥ MCD(k)

i (s
(k)
i ). The location EPt(k:k′)(Si)

can be seen as the projection ofs
(k′)
i onto the surface

of B(s
(k)
i , rk(HWi

(Si))
‖s

(k
′)

i
−s

(k)
i

‖
umax

). Then, we extend the
predictive set by the extended constraint points as follows.
Let W̃

(k)
i : Dkmax → P(Rd), (i, k) ∈ Isamp be theconstraint

extended predictive set,

W̃
(k)
i (Si) = co

(
W

(k)
i , {EPt(k:k′)(Si) | k′ ∈ Kcs(k)}

)
.

A point s ∈ W̃
(k)
i (Si) is active in centeringif there is no

neighborhood ofs which might be added tõW (k)
i (Si) with-

out changing the circumcenter. Figure 1 shows an example
of the extended predictive set.

W
(2)
1

ESet
(2)
1

Γ
(2)
1

s
(2)
1

s
(1)
1

EPt
(2:1)
1

s
(3)
1

EPt
(2:3)
1

Fig. 1. A two-dimensional example of the extended center representation
of a critical point of the constrained problem. The dashed circle is the
circumcircle of fW

(2)
1 , with circumcenters(2)

1 . Note thats(2)
1 is on the

boundary ofΓ(2) formed bys
(1)
1 , and thus EPt(2:1) is active in centering.

The next result gives a geometric interpretation of the
constrained optimum in terms of̃W .

Proposition VII.2 (Extended circumcenter minimizes
MCD (k)

i over Γ(k)(Si)) Assume thatΓ(k)(Si) and W
(k)
i

are nonempty. Further assume that the scaling factor for
the extended constraints satisfiesHWi

(Si) = MCD(k)
i (s

(k)
i ).

Thens
(k)
i is the unique minimizer ofMCD(k)

i over Γ(k)(Si)

iff s
(k)
i = CC

(
W̃

(k)
i (Si)

)
.



B. Multiple sample single agent constrained problem

Here we extend the constrained solution above to a single
agent optimizing its own trajectory and characterize the
optima of HWi

over the constraint setΩRg
i

in (8) in
terms ofcenteredsub-sequences. To ease the exposition, let
d(k:k′) : Dkmax → R≥0, d(k:k′)(Si) = ‖s

(k)
i − s

(k′)
i ‖. We use

W̃
(k)
i (Si;KC) = co

(
W

(k)
i , {EPt(k:k′)(Si) | k′ ∈ Kcs(k) ∩

KC}
)

to denote constraint extended sets as calculated with
a subset of the constraint points.

Lemma VII.3 (Centered sequences satisfy range con-
straint) Let Si ∈ Dkmax, and letKC ⊆ {1, . . . , kmax} define a
sequence of consecutive samples fromSi such that each is at
the circumcenter of the extended set formed by consecutive
neighbors in the sequence, i.e.,

s
(k)
i = CC

(
W̃

(k)
i (Si; {0} ∪ KC)

)
, for all k ∈ KC ,

Thend(k:k′)(Si) ≤ umax, for all k ∈ KC and k′ ∈ ({0} ∪
KC) ∩ Kcs(k). We call such a sequencecentered.

Define the constrained objective function for an agent,

HfWi

(Si) = max
k∈{1,...,kmax}

MCD(k)
fW

(Si),

where MCD(k)
fW

(Si) = max
s∈fW

(k)
i

(Si)
δk

(
s, s

(k)
i

)
. Note that

HfWi

may be calculated entirely byRi. Moreover, forSi ∈
ΩRg

i
, it holds thatHfWi

(Si) = HWi
(Si).

We next characterize the critical points ofHfWi

in terms
of a special case of centered sequences.

Lemma VII.4 (Maximal elements define sub-sequences
within centered sequences)Let KC ⊆ {1, . . . , kmax}
define a centered sequence of samples inSi with
max
k∈KC

MCD(k)
i (s

(k)
i ) = HWi

(Si). Then there is a sub-

sequence,KMC ⊆ KC which is centered and such that every
k ∈ KMC satisfiesMCD(k)

fW
(s

(k)
i ) = HWi

(Si). We refer to
a sequence such asKMC as maximally centered.

Proposition VII.5 (Global minimizers of HfWi

on ΩRg
i

contain maximally centered sequences)A trajectorySi ∈
ΩRg

i
is a critical point ofHfWi

iff it contains at least one
maximally centered sequence of samples. Furthermore, any
such critical point globally minimizesHWi

on ΩRg
i
.

C. Multiple agent constrained problem

Finally, we combine agent trajectories into a network
trajectory to find the constrained optimizers ofHW . First,
defineHfW

: (Dkmax)n → R by

HfW
(S) = max

i∈{1,...,n}
HfWi

(Si). (15)

Note that HfW
(S) = HW(S) for S ∈ ΩRg. Next, we

characterize the critical points ofHfW
.

Proposition VII.6 (Global minima of HfW
on ΩRg contain

maximally centered sequences)A trajectoryS ∈ ΩRg is a
critical point of HfW

if and only if there is at least onei ∈

argmaxi∈{1,...,n} HWi
(Si) such thatSi contains at least one

maximally centered sequence. Furthermore, any such critical
point is a global minimum ofHW over ΩRg

Proposition VII.6 allows us to think of the optimization of
HW independently for each agent. If each agent optimizes
their own trajectory (cf. Proposition VII.5), then the resulting
network trajectory is optimal. Along with Proposition V.1,
this allows the following result on the optimal trajectories of
the correlation disk-covering functionH over ΩRg.

Proposition VII.7 (Range-constrained generalized multi-
circumcenter trajectory) LetS = (ST

1 , . . . , ST
n ) ∈ (Dkmax)n

such that eachSi contains at least one maximally centered
sequence with respect to the partitionW = MC(S). ThenS

is a local minimizer ofH over ΩRg. We call such a network
trajectory arange-constrained generalized multicircumcenter
trajectory. Furthermore, ifI(MC(S)) = n ∗ kmax, thenS is
a global minimizer ofH over ΩRg.

The following results allows for partial optimization of tra-
jectories which are already under way, based on minimizing
the maximum errorover the remainder of the experiment.

Proposition VII.8 (Partially fixed range-constrained gen-
eralized multicircumcenter trajectory) Let k∗ ∈
{2, . . . , kmax}, and assume that samples{1, . . . , k∗−1} have
been taken (thus the locations are now fixed). LetS =
(ST

1 , . . . , ST
n ) ∈ (Dkmax)n such that, for eachi ∈ {1, . . . , n},

∃Ki ⊆ {k∗, . . . , kmax} which defines a maximal sequence of
samples inSi, with anchor pointpi(k

∗ − 1). ThenS is a
local minimizer of the map(s(k∗)

1 , . . . , s
(kmax)
n ) 7→ H(S) over

Ω
(≥k∗)
Rg . Furthermore, ifI(MC(S)) = n ∗ kmax, thenS is a

global minimum of the constrained problem.

VIII. T HE GENERALIZED MULTICIRCUMCENTER ALGORITHM

Given our discussion in the previous sections, here we
synthesize coordination algorithms to find the optimal trajec-
tories of the correlation disk-coveringH with and without
range-constraints. Table I presents theGENERALIZED MULTI -
CIRCUMCENTERALGORITHM, based on the well-known Lloyd
algorithm for data clustering, by which the network may find
a minimizer ofH overΩ(≥k∗)

Rg for somek∗ ∈ {1, . . . , kmax}.
With slight adjustments, the same algorithm works for the
unconstrained case. Figure 2 shows results of a simulation of
theGENERALIZED MULTICIRCUMCENTERALGORITHM, leaving
out the initial anchor points to illustrate optimization over the
set of all initial positions. The convergence properties ofthe
algorithm are characterized in the following result.

Proposition VIII.1 The GENERALIZED MULTICIRCUMCEN-
TER ALGORITHM is distributed over the partitionMC(S{j}),
meaning that at stepj + 1, Ri need only communicate with
Ri′ for each i′ ∈ {1, . . . , n} such that MC(k)

i (S{j}) adja-

cent to MC(k
′)

i′ (S{j}) for somek, k′. Furthermore,S{j} ∈

Ω
(≥k∗)
Rg , for all j ∈ Z>0. As j → ∞, S{j} approaches a

S∗ ∈ (Dkmax)n, and if S∗ 6∈ Sunique, thenS∗ is a minimizer
of H over Ω

(≥k∗)
Rg .



Goal: Find a minimum ofH over Ω
(≥k∗)
Rg

Input: (i) Sample interval[k∗, kmax]
(ii) Anchor points,pi(k

∗ − 1), i ∈ {1, . . . , n}

(ii) Initial trajectory,S{0} = (S
{0}
1 , . . . , S

{0}
n )T ∈

Ω
(≥k∗)
Rg , with S

{0}
i the ith agent trajectory

For j ∈ Z>0, each robot Ri, i ∈ {1, . . . , n} executes
synchronously

1: send all future elements ofS{j−1}
i to robots within a distance

of Rcom

2: calculate MC(k)
i (S{j−1}) for k ∈ {k∗, . . . , kmax}

3: run gradient descent ofHfWi
on future samples onlyto find

a centered agent trajectory,S
{j}
i ∈ Ω

(≥k∗)
Rgi

TABLE I

GENERALIZED MULTICIRCUMCENTER ALGORITHM.
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Fig. 2. Simulation of20 iterations of theGENERALIZED MULTICIR-
CUMCENTERALGORITHM with no initial anchor points. (a) Shows the
initial trajectoryS{0}. (b) Shows the final trajectoryS{20}. In each case,
the associated maximal correlation partition is drawn, with the different
colors representing different agents and different intensities of each color
representing the timestep at which the given sample is to be taken (more
intense colors represent later timesteps). The dashed linesshow the path
each agent will take. (c) Shows the value ofH(S{j}) as a function ofj.

We finish by discussing an adaptive approach to optimal
path planning. Before moving to take thekth sample, the
network might receive new information from an external
source (a change in the environment or network composition,
or even human input). One or more of the agents may switch
from sensing mode to actuation mode, or back. TheGEN-
ERALIZED MULTICIRCUMCENTER ALGORITHM directly applies
to such a situation, because it optimizes over only those
sample locationsnot yet fixed. The network will arrive at
a trajectory which minimizes the maximum error variance
over all trajectories feasible to the network moving forward.
Figure 3 depicts an illustrative example of this procedure.

IX. CONCLUSIONS

We have considered a robotic sensor network taking
samples of a spatio-temporal process. The criteria for op-
timization has been the maximum error variance of the
prediction made at the end of the experiment. Under the
asymptotic regime of near-independence, we have shown that
minimizing this error is equivalent to minimizing the correla-
tion distance disk-covering function, thus allowing geometric
solutions. We have introduced the maximal correlation par-
tition and established its optimality properties with respect
to the disk-covering function. We have introduced the novel
notion of multicircumcenter trajectories and establishedtheir
optimality for unconstrained and constrained versions of the
disk-covering optimization problem. On the design front,
we have synthesized distributed strategies that allow the
network to calculate an optimal trajectory. Future work will
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Fig. 3. Sequential implementation ofGENERALIZED MULTICIRCUM-
CENTERALGORITHM with n = 8 robots,kmax = 5 steps, and Gaussian
correlation. In (a), the trajectory is calculated from the initial anchor points.
In (b), the first set of samples have been taken, andR6 has dropped
out to perform another task (for this simulation,R6 remains stationary
during this task). The plot shows the result of theGENERALIZED
MULTICIRCUMCENTERALGORITHM as run by the remaining7 agents
over timesteps{2, . . . , kmax}. In (c), after the second set of samples have
been taken,R6 joins the network again. The figure shows the result of
optimizing over steps{3, . . . , kmax} with all agents. In all three plots,
the anchor points and any past samples are shown as solid triangles, with
solid lines connecting the initial anchors to the first samples, the optimized
samples at steps{k∗, . . . , kmax} are empty triangles, with dashed lines
connecting each agent trajectory. The last sample location of the dropped
agent is circled. The color convention is the same as in Figure2.

include the study of more complex predictive regions and of
alternative optimality criteria.
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