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Abstract— This work deals with trajectory optimization for a Statement of contributiongur first contribution pertains
network of robotic sensors sampling a spatio-temporal random o the characterization of the solutions of the optimal sam-
field. We examine the problem of minimizing over the space of jing problem for minimizing the prediction variance. We
network trajectories the maximum predictive variance of the . . . . .
estimator. This is a high-dimensional, multi-modal, nonsmooth 'n,tmduce N We'g,hted distance mem,c Ca”e,'d the Co_rrmat'o
optimization prob|em, known to be NP-hard even for static distance and define a novel generallzed dlSk-COVGrlng func-
fields and discrete design spaces. Under an asymptotic regime of tion based on it. We show that its minimization is equivalent
near-independence between distinct sample locations, we showto minimizing the maximum prediction variance in the limit
that the solutions to a novel generalized disk-covering problem ¢ near-independence, thus turning the optimization bl
are solutions to the optimal sampling problem. This result trans- . . oo .
forms the search for the optimal trajectories into a geometric into a gefometr'c,one' Our hext contnbuuon; al,' pertain to
optimization problem. Constrained versions of the latter are the solution of this geometric problem. We first introduce a
also of interest as they can accommodate trajectories that safis  form of generalized Voronoi partition based on the maximal
a maximum velocity restriction on the robots. We characterize  correlation between a given predictive location and the-sam
the solution for the unconstrained and constrained versions of 15 Assuming a fixed network trajectory, we show that this
the problem as generalized multicircumcenter trajectories, and o LS . . .
provide distributed algorithms to find them. partition minimizes the maX|maI 'ccl)rrelauon dlstanqe over

all partitions. We next define multicircumcenter trajectsr
I. INTRODUCTION which minimize the maximal correlation distance over all
trajectories, for a fixed partition. The combination of thes

Intelligent data collection is an exciting field with manytwo results gives rise to the optimal trajectories for the
scientific, industrial, and safety applications. Path piag, correlation distance disk-covering problem. The final stag
either a priori or online, is an important part of any dataf our solution is to define an extension of the maximal
collection mission. In this paper, we examine optimal taje correlation partition which takes into account the posiio
tories for sampling a spatio-temporal random field modelegf consecutive samples taken by the same robotic agent. We
as a Gaussian process. We assume that the mean and co\gbw that these constrained multicenter trajectoriesTopei
ance of the field are known, and concentrate on minimiZing']e correlation distance disk-covering prob|em over the se
the maximum predictive variance. of distance-constrained trajectories. Finally, we presen

Literature review: There is a rich literature on the useversion of Lloyd’s algorithm which enables the network to
of model uncertainty to drive the placement of sensingrrive at locally optimal trajectories. This may be perfedn
devices, e.g., [1], [2], [3]. Most of this research has f@zlis at any step of the experiment to optimize the remainder of
on choosing from discrete sets of hypothetical samplinghe trajectories as new information arrives. For reasons of
locations, and until recently all of it has made use ogpace, all proofs are omitted and will appear elsewhere.
centralized computational techniques. Even choosing d fixe
number of sampling locations from a discrete set has been Il. PRELIMINARIES
shown to be NP-hard [4]. In cooperative control, various We present here some useful notation. RetR~, and
works consider mobile sensor networks performing spatia.., denote the set of reals, positive reals and nonnegative
estimation tasks. [5], [6] consider deterministic modeltw reals, respectively. Give c R%, d € N, we use the
a stochastic measurement error term. [7] addresses the mgthorthand notatio®, = D xR~q. Forp € R? andr € R,
tiple robot path planning problem by choosing way pointset B(p,r) denote theclosed ballof radiusr centered at
from a discrete set of possible sensing locations. In [8}. For a seti¥’, we denote by|W|, bnd(W), int(W), and
a deterministic model is used, where the random eleme%(w) its cardinality, boundary, interior, and convex hull,
come as unknown model parameters, and localization errggspectively. Aconvex polytopés the convex hull of a finite
is included. The work [9] uses a Gaussian process modgbint set. For a bounded s8t ¢ R¢, CC(W) denotes the
where all information is globally available via all-to-all circumcenterof 1, i.e., the center of the smallest-radids
communication. [10] considers optimal sampling trajeie®r sphere enclosingl’. Finally, 3(1W) denotes the collection
from a parameterized set of paths. [11] discusses the trgckiof subsets ofiV.
of level curves in a noisy scalar field.

A. Nonsmooth analysis
‘ Rishi‘Graham is Wit_h th(_e Department of Applied Mathematics 8tadis- Here we present some useful notions from nonsmooth
tics, University of California, Santa Cruz,i shi g@ns. ucsc. edu . - . d .

analysis following [12]. A functionf : R* — R is locally
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such that f(y) — f(v/')| < Lg|ly — /| for all y,y’ € B(s,e). I1l. PROBLEM STATEMENT

f is locally Lipschitz onW” € R if it is locally Lipschitz Here we describe the model for the robotic network and

ats, foralls e W. f: R - R is regular at s € R¢ if for  provide the objective function for optimal sampling.
all v € RY, the right and generalized directional derivatives

of f at s in the direction ofv, coincide. For a given closed, A. Robotic network model

convex sel C RY, let Ng(z) ={y e R? | <y, —2z>> Consider a group{R,...,R,} of n € Z-, robotic
0, Vz € G} be the normal cone of at z. sensing agents taking measurements of a spatio-temporal
B. Spatio-temporal simple kriging process of interest over a convex polytope C R¢, for

ocﬁ> 1. The robots take point measurements of the random
process at discrete instants of timeZin,. Our results below
are independent of the particular robot dynamics, so long as
Z(s,t) = u(s,t) +w(s,t), (s,t) € D, (1) each agent is able to move up to a distangg, € R+
between consecutive sampling times.

Let Z denote a spatio-temporal process taking values
a convex polytopeD c R? of the form

where 1 is a known mean value function, and is a
zero mean random space-time process with known sepag- opjective function for spatial estimation
ble covariance, which exhibits second-order stationaitgl

isotropy in the spatial dimensions, i.e., A natural objective is to design sampling trajectories in

such a way as to minimize the uncertainty of an estimate of
Covlw(sisti),w(s;j. tj)] = go gs(llsi — s;5l1)ge(ti ), the field at timeknax generated from samples taken up to that

for correlation functionsg, : Rso — (0,1, and g; : timg. Here, we qonsjder an objeptive fungtion inspired &y th
Rso x Rso — [0,1], and constangy, € R-,. We assume nothn of G—opt|mal_|ty from optimal design [13], [2]. The
that g, is strictly decreasing and continuously differentiabldN@ximum error variancem : (D)™ — R of estimates
with nonzero derivative except possibly Gat made at timekmax over the regiorD is

Lgt n € Z_>O sensing agents take samples at a sequence M(S) =
of discrete timestep$1, ..., kmax}, kmax € Zso. Let S; =
(). glkme\T ¢ phna denote the spatial locations of = 909s(0) gt (kmax, kmax) — rsréizrjl{cTE_lc}. ®)

max 02 (s, Fmax); )

(s;

samples taken over the course of the experiment by the _

ith agent, and les = (ST STYT ¢ (pkms)n denote Note thatM corresponds to a “worst-case scenario,” where
) PR n

the locations of all samples taken by the network. Lefe deal with locations at which the error variance of the
Tsamp= {1, ,n} x {1,...., kimax}. We refer often to vectors UMVE is maximal. Our goal is to find the sampling tra-
of elements indexed by both agent and timestep, such g§toriesS € (D)™ that minimize this objective function.

the elements ofS. To save space, we use the notation|\, opTiMAL SOLUTIONS UNDER NEAR INDEPENDENCE

(1) (kma)y __ ¢, (1) (kmax) (1) (kmax)
(a;”’,...,a =(ay’,...,a B AN ).
Let v :’(221) y%klmaxi);p - ?ka;x)n onote the values . Te objective functionM is not convex and nonsmooth.

The problem of finding an explicit characterization for ifs o
timizers is especially hard: even fép.x = 1, the optimiza-
tion of M is known to be NP-hard over discrete spaces [4].

of all samples taken at locatioris We assume that the data
are corrupted with a measurement error so that,

y® = 7 k) + e, e Normal(0,72), (2) In this section we consider instead the optimization/df
) _ 5 o - when the correlation function is raised to the powere
wherer= > 0. The covariance betweeyf andy;” is R-o, i.e., (gsg9:)¢. This correlation function retains much
. ) of the shape of the original correlation (e.g., smoothness,
Covly®)  y ] = {90 95(0)ge(k, k) + 7%, if (Z’k)_: () range, etc). This asymptotic regime of increasingly smalle
! 90 9s([si = s51)g:(k, 1), otherwise correlation between distinct points as grows is known
Let ¥ = X(S) denote the covariance matrix of, where S near-independencesee [14]. To ease the exposition,.we
bold face is used to denote explicit dependenceSon denote byct?, resp. %™, the vectore, resp. the matrix

The simple kriging predictorat (s,¢) € D. minimizes X, With the correlation in each element raised to the power
the error variancer?(s, t; S) = Var(Z(s,t) — p(s,t;Y)) . Similarly, let Mt} : (D¥m)" — R be defined as
among all unbiased predictors of the forpfs,t;Y) = (o) o
S S ke ), ¢ R, The simple kriging predictor M (5) = 90 (95(0)ge (Kmax Kmax))” —
at (s,t) € D, corresponds then to the Linear Unbiased fmi7131{(c{“})T(Z{“})*lc{a}}.
Minimum Variance Estimator (LUMVE), o S_E . )
Therefore, our objective is to characterize the asymptotic

~ . _ Tws—1

Ps(s,5;Y) = p(s, 1) + ¢ BV — p), () minimizers of this function. To do so, we need to introduce a
with g = (u(sgl), 1),... hu(l,glkmax)’ kmad)T, € = fam_ily of weighted distance measures based on correlation.
Cov[Z(s,t),Y] € (RFm=)" and error variance, Define¢ : R>o — Rxo andw : {1,..., kmax} — R0 by,

02(s,4;5) = gogs(0)ge(t, 1) — T2 te. (4) o(d) = —log(gs(d)),  w(k) = —log(g(kmax k).

o2 only depends on the location of the samples and is invarFhe function¢ is strictly increasing and continuously dif-
ant under permutations of the space-time sample locationgerentiable with strictly positive derivative except pitbg at



zero. It therefore admits an inversg;! : R>o — Rx>q. The V. MAXIMAL CORRELATION PARTITION

correlation between a sample at stepnd prediction at step  are \e introduce the maximal correlation partition as-

kmax induces the weighted distanak, : D x D — Ry, sociated to a network trajectory. A partition @ is a
Su(s1,52) = o(||s1 — s2||) + w(k). (6) collection of compact subset$y = {Wl(l), . .,WT(L’“W)}

with disjoint interiors whose union i$. For any S €

Sunique let MC(S) = (MC{M(9),...,MCm) (5)) denote

the maximal correlation partitiondefined by

We refer tod, as thecorrelation distanceassociated with
sample timek, and note thaﬁk(s,sgk)) = —log (gs(||s —
51191 (kma )) .

Let Sunique b€ the following set of possible trajectories, MC“)(S) —{seD | 5k(878(k)) < 51(5,5(.”),
which ensures the spatio-temporal uniqueness of any sample oo ’

that achieve the maximal correlation distance from any V(D # (k). (10)
predictive location, This partition corresponds to a generalized Voronoi parti-
tion [15] for distance measurg and weights given byv. In
— _ (1) kmax) \T' Kmax\ 1 > . . . .
Sunique = {S = (51 ,...,s; )) € (D™=)"| A(i, k) general, the maximal correlation regions are neither conve
i 1) € Iampands € D, s.t.0 878(k) _ nor star-shaped. Depending on the weights and locations,
7 G0 (k,s)amp ) kl (l’) ) MC{¥)(S) might be empty for some. Let | : B(D) —
. g1)1€nl Or(s,85 '), Ok(s'ys; ) = ai(s',s57), Vs € D}- {1,...,nxkmax} Map a partition to the number of nonempty
7, samp

cells it contains, which we term thadex of the partition.
Note that for samples!” and s\ to have identical cor- ~ For § € Sunque the correlation distance disk-covering
relation distance to all predictive locations requirest thafunction can be restated as,

‘gz) and g¢(kmax, k) = g¢(kmax, [). We are now ready H(S) = max { max  {6u(s s(k))}} (11)
to characterize the minimizers d#1{*} asa grows. (ik)€Lsamp L semc® () R % ’
Theorem IV.1 (Global minimizers of M under near- This expression is important because it shows Hgwhas
independence)Let H : (D*m=)" — R denote thecorrelation & double dependence on the network trajectsrythrough

sl(»k) =35

distance disk-coveringunction, defined by the value of the correlation distance and through the maxima
. *) correlation partition. This motivates us to define an extans
H(S) =max{ min {0(s,s; )}}. (7)  of H as follows: for a given sample vectdt e (DFmex)n

seD i,k)E Isam L.
() frame and a partitionv = {W", .. W™  B(D) of the

For Q@ C (D*m=)" compact, letS,... € Q be a global predictive space, defir®,y : (D)™ — R by

minimizer of the correlation disk-covering functigt over

Q. Further assume thaf,,.. € Sunique Then, asa — oo, Hw(S) = max { max {5k(s,s§k))}}. (12)
S,mcc asymptotically globally optimizes1{®} over €, that (k) Elsamp  sew (")

is, M1}(S,,..) approaches a global minimum over. e

Note that if S € Synique thenH(S) = Hce(s)(S). This
function is particularly useful in our search for the optieris

of H because it allows us to decouple the two dependencies
8f this function on the network trajectory.

The generality of2 in Theorem IV.1 allows us to apply
the result to two situations of particular importance. firs
we may restrict the samples to feasible trajectories based
limitations on the agents’ motion, and their initial posits,
which we call anchor points We define the range-based

constraint setfgg C (DFm)™ as, Qrg = [, Qrg,, Where Proposition V.1 (H-optimality of the maximal correlation

partition) For any S € Sunique @and any partitionV? C (D)
of D with |(W) < I(MC(S)), one has that{(S) < Hw (S),
that is, the maximal correlation partitioMC(S) is optimal
58" = pi(0)]| < umaxand for H among all partitions ofD of less than or equal index.

k k—1
”81(' )_Sﬁ(' )” < tmax, VR € {2, kmax}} (8) Proposition V.1 implies that, in order to fully charac-
Second, a change in mission parameters at time 1, terize the optimizers of, it is sufficient to characterize
k € {2,..., kmax}, might prompt optimization over just those the optimizers ofH,y for a fixed arbitrary partition. The
locations not yet sampled, i_@%’f) — H:’L:lﬂl(?%.k)' where latter formulation is advantageous because of the single
: dependence of the value &f,,, on the network trajectory.

Org, ={(s,..., s{Fm)T & phmax

(>k) _ (k) (kmax)\T Kmax—k+1
g, ={(si -8 ™) €D | VI. UNCONSTRAINED OPTIMAL TRAJECTORIES FOR A
Is§* = p(k = 1)]| < umax and GIVEN PARTITION
kf/ k/7 . . . . . _
5% = s* V| < yna, VE' € {k+ 1, kmad ) (9) Our objective is to characterize the optimal network tra

jectories ofH,, for a fixed partition\V of D. Rewrite (12) as
Theorem IV.1 shows that the optimization of the maximum

error variance is equivalent to a geometric optimization Hw(S) = max MCDE’“)(SZ(’“)).
problem in the near-independence range. (ik) € Lsamp, W, 70



In the following result, 1etCC(W,s) = CC(W) if W #
#, and CC(W,s) = s otherwise, and le{CC(W,S) =
(€O, sM), ... . cC ) sm)T denote a vec-
tor of such circumcenter locations.

Proposition VI.1 (H,y-optimal trajectories) For
S (Sgl)’ EERE) S’Elk’max )T S Sunique, a pal’tition
w {Wfl)a cees Wékm”)} C B(D) of D, and
S = (1)

= (&7,...

me\T ¢ (Dkma)n one has that
Hw (CC(W, S))

7S’n
< Hw(S), i.e., the circumcenter

locations CC(W, S) are optimal forH,y.

The combination of Propositions V.1 and VI.1 allows u

provide the following characterization of the optimizef§-a

Proposition VI.2 (Generalized multicircumcenter trajec-
tories optimize H) Consider S = (s(ll),...,s%kma*))T €
(DFna)m such thats\¥ = cC (MCZ(.’“)(S)) for each (i, k) €
IsampWith MC™) () £ ). Thens is a local minimizer ofH
over (DFm)" We call such a network trajectory general-
ized multicircumcenter trajectorforeover, ifl(MC(S)) =
n * kmax then S is a global minimizer ofH over (Dkma)n,

VIl. RANGE-CONSTRAINED OPTIMAL TRAJECTORIES

FOR A GIVEN PARTITION

Here, our objective is to characterize the optimizers

of Hyy over Qgg for a fixed partition W. Let W
{Wi(l), .. ,Wi(km‘”“)} denote the elements 0% assigned to
the samples in the trajectory @;. We may write

Hw(S) Hw,;(Si%

max
i€{L,eim, Wi

whereHyy, (8;) =maxy 00 {mMeD® (s)1.

Note that in all but the initial anchor point, this set corre-
sponds to the sample locations immediately preceding and
following the (i, k)th sample. Defing (%) : Dkmax — q3(R9),

s€S8es(k,S;)

The setl'*)(S;) corresponds téry with all other samples
fixed in space. Restricting‘i(’“) to T(®)(S;) ensures thaR;
does not violate the maximum distance requiremegy..

To state the main result of this section, we find it useful to
introduce an extension of the sﬁf( ) which incorporates
the position of samplé;, k) relative toF(’“)(Sl-). To that end,

Set EPEFH) . Dhnas — R, (3, k) € Tsamp ¥ € Kes(k),

S _ ()

Umax

The reason for the use oftyy,(S;) will be made ap-
parent in Section VII-B. For now, it is only |mportant
that Hyy(S;) > MCD™ (s{¥)). The location EPF*)(s;)

can be seen as the prolectlon @jk onto the surface
of B(s("), (Mo, (51)) L=

EP(FH)(5,) = s (14)

”) Then, we extend the
predlctlve set by the extended constraint points as follows
Let W™ . Dkmax — (R, (i, k) € Isamp be theconstraint
extended predictive set

W (S) = co (WP, {EPEH)(S,) | K € Kes(k)}).

A point s € Wi( (S;) is active in centeringf there is no
neighborhood of which might be added to"(S;) with-

out changing the circumcenter. Figure 1 shows an example
of the extended predictive set.

The conditionW; # indicates that there is at least one
nonemptle( ) e W;. The above expression shows that, for
a fixed partition, minimizingH,y over the space of network
trajectories is equivalent to (independently) minimizeerh
‘Hyw, over the space of trajectories of the rold®t Hence,

we structure our discussion in three parts. First, we deal
with the single sample problem. Then, we find an optimal
sampling trajectory for aingle agent. Finally, we combine
individual agent trajectories into a network trajectory.

A. Single sample constrained problem

We consider the smgle sample pmblem over a generég 1. A two-dimensional example of the extended center ssm@tion

closed convex constraint set. of a critical point of the constrained problem. The dashedleiis the

circumcircle ofwlm, with circumcentersf). Note thatsf) is on the

Proposition VII.1 (Constrained minimizers of MCDZ(-k)) boundary ofl'(®) formed bys{", and thus EF#:1) is active in centering.

Assume thaWi(k) # 0. LetT' C R? be closed and convex.
Then a points* € I' is the unique minimizer dﬂCng) over

I iff 0 € OMCD™ (%) + Ny (s%).

The next result gives a geometric interpretation of the
constrained optimum in terms &V

Proposition VII.2 (Extended circumcenter minimizes
MCD ™ over T(¥)(3;)) Assume that®)(s;) and W

are nonempty. Further assume that the scaling factor for
the extended constraints satisfiésy, (S;) = MCDE’“)(SZ(.’“)).
Thens!®) is the unique minimizer dICD{*) overI'(¥)(s;)

it &= oc (WM (s,)).

Let us now specify the range based constraint setsj"é?r.
The set of constraining locationsf (i,k) € Isamp are the
locations of robotR; at sample time& — 1 andk + 1,
Ses(k, S;) = {p(K") | k' € Kcs(k)}, where
Kcs(k) == {k - ]., k + ].} ﬂ {O, ey kmax}.



B. Multiple sample single agent constrained problem argmax;c 1,3 Hw, (Si) such thatS; contains at least one

Here we extend the constrained solution above to a singié@ximally centered sequence. Furthermore, any such afitic
agent optimizing its own trajectory and characterize thBOINt is a global minimum of{,y over (rq

optima of My, over the constraint seflrg, In (8) In  prongition VIILG allows us to think of the optimization of
te(zmks) ofcgnteredsub—se(gzgnces. To Ea}gse tp,f) exposition, 14 “independently for each agent. If each agent optimizes
d” o Dfmer — Rxo, d o (5i) = llsi " — ;" "|l- We use  their own trajectory (cf. Proposition VII.5), then the résug

W (85 Ko) = co (W {EPER)(S;) | K € Kes(k) N network trajectory is optimal. Along with Proposition V.1,
K¢}) to denote constraint extended sets as calculated withis allows the following result on the optimal trajectarief

a subset of the constraint points. the correlation disk-covering functioh over Qgg.

Lemma VIIL.3 (Centered sequences satisfy range con- Proposition VII.7 (Range-constrained generalized multi-
straint) LetS; € D*m and letKc C {1,..., kmax} define a circumcenter trajectory) LetS = (S7,..., ST) e (Dkme)n
sequence of consecutive samples ff§yrsuch that each is at such that eachs; contains at least one maximally centered
the circumcenter of the extended set formed by consecutisequence with respect to the partitibh = MC(S). ThenS
neighbors in the sequence, i.e., is a local minimizer ofH over Q2rgq. We call such a network
—~ trajectory arange-constrained generalized multicircumcenter
si) = CC (WM (S {0y UKe)), forall ke K., tra}ectori Furtr?ermore, ifI(MCg(S)) = n % kmay then$ is

Thend®*)(S,) < umax for all k € Ko and k' € ({0} @ global minimizer ofH over Qgg.

Kc) N Kes(k). We call such a sequencentered The following results allows for partial optimization ofitr
Define the constrained objective function for an agent Jectorles. which are already unde_r way, based on minimizing
" the maximum erroover the remainder of the experiment

Mo (S) = max  MCDY)(s)),

' RE{L, - hmaxd W Proposition VI1.8 (Partially fixed range-constrained gen-
where Mc®) ;) = N 5 (k)) Note that eralized multicircumcenter trajectory) Let k* €
 (51) = max, g g (s 5i) {2,..., kmax}, and assume that samplés, ..., k*—1} have

Hyy, may be calculated entirely bi;. Moreover, forS; €
Qrg,, it holds thatH; (S;) = Hw, (S:).

We next characterize the critical points btfwi in terms
of a special case of centered sequences.

been taken (thus the locations are now fixed). Set=
(ST,...,ST) e (DFmx)" such that, for each € {1,...,n},
IK; C{k*,..., kmax Which defines a maximal sequence of
samples inS;, with anchor pointp;(k* — 1). ThenS is a
local minimizer of the mapsgk*), cee s%km“)) — H(S) over
Q™). Furthermore, ifl(MC(S)) = n * kmax then S is a
global minimum of the constrained problem.

Lemma VII.4 (Maximal elements define sub-sequences
within centered sequences)Let Ko C {1,...,kmax}
define a centered sequence of samples Sp with

k), (k .
132?32 MCDZ(‘ )(52(‘ )):HWi(S’i)' Then there is a sub- v|||. T HE GENERALIZED MULTICIRCUMCENTER ALGORITHM

sequencel{ ;¢ C K¢ which is centered and such that every  Given our discussion in the previous sections, here we

ke Kuc satisfiesMCD%)(sgk)) = Hyw, (S;). We refer to  synthesize coordination algorithms to find the optimaltaj

a sequence such & ,;- as maximally centered tories of the correlation disk-covering with and without
range-constraints. Table | presents BEeNERALIZED MULTI-

Proposition VII.5 (Global minimizers of Hiy, on Q)Rg,  CIRCUMCENTERALGORITHM, based on the well-known Lloyd

contain maximally centered sequencesh trajectory S; €  algorithm for data clustering, by which the network may find

Qrg, is a critical point ofHWi iff it contains at least one a minimizer ofH overQ%k*) for somek* € {1,..., kmax}-
maximally centered sequence of samples. Furthermore, awjith slight adjustments, the same algorithm works for the
such critical point globally minimize®tyy, on Qrg,. unconstrained case. Figure 2 shows results of a simulafion o

the GENERALIZED MULTICIRCUMCENTERALGORITHM, leaving
out the initial anchor points to illustrate optimizationemthe

Finally, we combine agent trajectories into a networlset of all initial positions. The convergence propertieshef
trajectory to find the constrained optimizers Hfy. First, algorithm are characterized in the following result.
defineH; : (DFme)™ — R by

Hyz(5) = z‘egﬁ)jn} H'Wi(si). (15)

Note thatH;(S) = Hw(S) for S € Qrg Next, we
characterize the critical points 6{;.

C. Multiple agent constrained problem

Proposition VIII.1 The GENERALIZED MULTICIRCUMCEN-
TERALGORITHM is distributed over the partitiooVC(S%71),
meaning that at step + 1, R; need only communicate with
Ry for eachi’ € {1,...,n} such that MC" (5%3}) adja-
cent to MG (517} for somek, k'. Furthermore,SU7} ¢

. - . (=k") . : j
Proposition VI1.6 (Global minima of H; on Qrq contain  {!&rg ‘;OV all j € Zo. Asj — oo, S{J}_approgghgs a
maximally centered sequencesh trajectory S € Qrgis a 5™ € (D"™)", and if S ¢ Sunique then 5™ is a minimizer
critical point of 73 if and only if there is at least onec  of H overQ%k ),



Goal:  Find a minimum ofH over Q& "
Input: (i) Sample intervalk™, kmax]
(i) Anchor points,p;(k* — 1), i € {1,...,n}
(ii) Initial trajectory, 510 = (S{% .. §{HT ¢
Q% with 51 the ith agenttrajectory
For j € Zso, each robotR;, i € {1,...,n} executes

synchronously

1: send all future elements csfi{]_l} to robots within a distanc
of Reom

calculate MG (U1 for k € {k*, ..., kmax}

run gradient descent df g on future samples onlo find

a centered agent trajector&’{{j Ve Q%_k*)

2:
3

TABLE |
GENERALIZED MULTICIRCUMCENTERALGORITHM.

H(SU) ol p

j

(b) (©

Fig. 2. Simulation of20 iterations of theGENERALIZED MULTICIR-
CUMCENTERALGORITHM with no initial anchor points. (a) Shows the
initial trajectory S{0}. (b) Shows the final trajector{2°}. In each case,
the associated maximal correlation partition is drawn, with tifferent
colors representing different agents and different intessof each color
representing the timestep at which the given sample is to tEntékore
intense colors represent later timesteps). The dashed dim@s the path
each agent will take. (c) Shows the value7afSti}) as a function of;.

@

We finish by discussing an adaptive approach to optimaj3]

path planning. Before moving to take tlig¢h sample, the

network might receive new information from an external 4]
source (a change in the environment or network composition,
or even human input). One or more of the agents may switcr[1

from sensing mode to actuation mode, or back. Ts-
ERALIZED MULTICIRCUMCENTERALGORITHM directly applies

to such a situation, because it optimizes over only thosés]

sample locationsiot yet fixed The network will arrive at

a trajectory which minimizes the maximum error variance(7]

over all trajectories feasible to the network moving forekar
Figure 3 depicts an illustrative example of this procedure.

IX. CONCLUSIONS

We have considered a robotic sensor network takinégl
samples of a spatio-temporal process. The criteria for op-
timization has been the maximum error variance of th&9l
prediction made at the end of the experiment. Under the
asymptotic regime of near-independence, we have shown thist]

minimizing this error is equivalent to minimizing the cdae
tion distance disk-covering function, thus allowing gedtmice

solutions. We have introduced the maximal correlation par-

tition and established its optimality properties with resp

to the disk-covering function. We have introduced the novéils]

notion of multicircumcenter trajectories and establistiesdr
optimality for unconstrained and constrained versionshef t

disk-covering optimization problem. On the design front;s
we have synthesized distributed strategies that allow the

network to calculate an optimal trajectory. Future workl wil

@

(b) ©

Fig. 3. Sequential implementation GENERALIZED MULTICIRCUM-
CENTERALGORITHM with n = 8 robots,kmax = 5 steps, and Gaussian
correlation. In (a), the trajectory is calculated from thiial anchor points.

In (b), the first set of samples have been taken, @hd has dropped
out to perform another task (for this simulatioR¢ remains stationary
during this task). The plot shows the result of tl&ENERALIZED
MULTICIRCUMCENTERALGORITHM as run by the remaining agents
over timestepy2, ..., kmax}. In (c), after the second set of samples have
been taken,Rs joins the network again. The figure shows the result of
optimizing over steps{3, ..., kmax} with all agents. In all three plots,
the anchor points and any past samples are shown as solidl&sanwith
solid lines connecting the initial anchors to the first sarmpthe optimized
samples at step$k™, ..., kmax} are empty triangles, with dashed lines
connecting each agent trajectory. The last sample locaticgheodropped
agent is circled. The color convention is the same as in Figure

include the study of more complex predictive regions and of
alternative optimality criteria.
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