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Abstract

This work deals with trajectory optimization for a robotensor network sampling a spatio-temporal
random field. We examine the optimal sampling problem of mining the maximum predictive
variance of the estimator over the space of network trajessto This is a high-dimensional, multi-
modal, nonsmooth optimization problem, known to be NP-leveh for static fields and discrete design
spaces. Under an asymptotic regime of near-independewaedre distinct sample locations, we show
that the solutions to a novel generalized disk-coveringol@mm are solutions to the optimal sampling
problem. This result effectively transforms the search tfee optimal trajectories into a geometric
optimization problem. Constrained versions of the latier @so of interest as they can accommodate
trajectories that satisfy a maximum velocity restriction the robots. We characterize the solution
for the unconstrained and constrained versions of the gemm@ptimization problem as generalized
multicircumcenter trajectories, and provide algorithmbiak enable the network to find them in a

distributed fashion. Several simulations illustrate cesults.

. INTRODUCTION

Intelligent information collection is an exciting field witmany scientific, industrial, and
security applications. Path planning, either a priori oliren is an important part of any data
collection mission. When the underlying process being stlidé modeled as random, special
attention should be given to the choice of sample locationsrder to minimize uncertainty

in the resulting estimation. Our aim in this paper is to cheadze the optimal trajectories for
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sampling a spatio-temporal random field modeled as a Gauséigla, and design distributed
coordination algorithms that help robotic sensor netwal&termine them. We assume that the
mean and covariance of the field are known, and concentratminimizing the maximum
predictive variance. Because of our interest in online anaptke operation, we consider a
fairly general optimization problem where some of the samph the network trajectory might
be fixed in the optimization. This allows us to consider dyiasituations in which the network
composition changes because of agents’ arrivals and dees\for information is received from
the environment or a human operator about changing conditio

Literature review: There is a rich literature on the use of model uncertainty rigedthe
placement of sensing devices, e.g., [2], [3], [4]. Most a ttesearch has focused on choosing
from discrete sets of hypothetical sampling locations, amitil recently all of it has made use of
centralized computational techniques. Even choosing d fixenber of sampling locations from
a discrete set has been shown to be NP-hard [5]. In cooperadntrol, various works consider
mobile sensor networks performing spatial estimationgaf, [7], [8] consider deterministic
models with a stochastic measurement error term. [9] addsethe multiple robot path planning
problem by greedily choosing way points from a discrete depassible sensing locations.
[10] considers a robotic sensor network with centralizedticd estimating a static field from
samples with both sensing and localization error. In [11dleéerministic model is used, where
the random elements come as unknown model parameters, ealizédion error is included.
The work [12] uses a Gaussian process model where all intioom#s globally available via
all-to-all communication. Given the difficulty of optimrzg within the whole set of network
trajectories, [13] restricts the optimization problem teubset of possible paths described by a
finite set of parameters. [14] considers a single snapstetasio (when agents only take one
round of measurements) over a discrete sampling space imiheof near-independence. Our
previous work [15] has built on this setup to characterize diptimal network configurations
in continuous sampling spaces and established the coanestth Voronoi partitions [16] and
geometric optimization [17], [18].

Statement of contributionsOur first contribution pertains to the characterization e s0-
lutions of the optimal sampling problem for minimizing theediction variance. We introduce
a weighted distance metric called the correlation distaarwe define a novel generalized disk-

covering function based on it. We show that minimizing thusdtion is equivalent to minimizing
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the maximum prediction variance in the limit of near-indegence, thus turning the optimization
problem into a geometric one. Our next contributions altaiarto the solution of this geometric
problem. We first introduce a form of generalized Voronoitiian based on the maximal
correlation between a given predictive location and the pdasn Assuming a fixed network
trajectory, we show that this partition minimizes the maaincorrelation distance over all
partitions of the predictive space. We next define multigincenter trajectories, which minimize
the maximal correlation distance over all trajectories ddfixed partition. The combination of
these two results gives rise to the optimal trajectoriestercorrelation distance disk-covering
problem. The final stage of our solution is to define an extensif the maximal correlation
partition which takes into account the positions of conigetsamples taken by the same robotic
agent. Over this extended set, we define a notion of centevinigh ensures that the distance
between such consecutive samples does not exceed a maximstancd. We show that these
constrained multicenter trajectories optimize the catreh distance disk-covering problem over
the set of distance-constrained trajectories. Finallingighe duality between optimal trajectory
and optimal partition, we design a Lloyd-type algorithm @hienables the network to arrive at
locally optimal trajectories. At any step of the experimenir strategy is capable of optimizing
the remainder of the trajectories as new information astive

Organization: Section Il introduces some preliminary mathematical nidSection Il dis-
cusses the robotic network model and introduces the stalisetup. We introduce the notion
of near-independence in Section IV, and make the connettidhe correlation distance disk
covering problem. Section V introduces the maximal coti@hepartition. In Sections VI and VI
the optimal trajectories are constructed for a fixed partiin the unconstrained and constrained
cases, respectively. Section VIl presents the distribut@ordination algorithms. Finally, Sec-
tion IX gathers our conclusions and ideas for future work.r €larity of exposition, the proofs

are presented in the appendix.

I[I. PRELIMINARIES

We start with some notation for standard geometric objdasR, R., andR-, denote the
set of reals, positive reals and nonnegative reals, ragpbctLet vrs(p) denote the unit vector
in directionp, i.e., vis(p) = p/||p||. Forp € R? andr € R.,, we let B(p,r) denote theclosed
ball of radiusr centered ap. For a set?’, we denote byW|, bnd(W), int(W), andco(W) its
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cardinality, the boundary, the interior, and the convex,mabpectively. A setV C R? is convex
respectivelystrictly convexf, for every s;, s, € W anda € (0,1), we havens; +(1—a)sy € W,
respectivelyos; + (1 —a)sq € int(W). For a bounded sé¥ c R?, we letCC(W) andCR(W)
denote thecircumcenterand circumradiusof W, respectively, that is, the center and radius of
the smallest-radiug-sphere enclosingl’.

Let (W) (respectivelyF(1/)) denote the collection of subsets (respectively, finitessts)
of W. Let i : (R)" — F(R?) be the natural immersion, i.eiz(P) contains only the distinct
points iNP = (py,...,p,) € (RY)". Let || - || denote the Euclidean distance function Rf.
We are interested in distances between points and subs&s$ aft d,.. : R? x P(R?) — R
denote the maximum distance between a point and setdi.g.(s, W) = sup,cw{lls — s/}
For a vector,S = (sy,...,s,)T € (R, let m;, : (RY)" — R? denote the canonical projection

onto thekth factor, i.e.m,(S) = s;. For a functionf : R? — R andc € R, let

Sw(f,c)={s €R| f(s) =c}, Ssuml(f,c)={se€R| f(s) <c},

denote the-level andc-sublevel sets off, respectively.

A. Nonsmooth analysis

Here we present some useful notions from nonsmooth andigktsving [19]. A function
f:R? — R is locally Lipschitz ats € R? if there exist positive constants, and ¢ such that
1f(y)—f()| < Lly—v| forall y,y' € B(s,¢). The functionf is locally Lipschitz oniV C R¢
if it is locally Lipschitz ats, for all s € W. A function f : R — R is regular ats € R? if
for all v € R?, the right and generalized directional derivativesfoét s in the direction ofv,
coincide. The interested reader is referred to [19] for thexige definition of these directional

derivatives. Thegeneralized gradienof a locally Lipschitz functionf is
0f(s) = co{Alifrn df(s;) | si—s, si € WUQ},

where(2; c R denotes the set of points at whighfails to be differentiable, andll” denotes

any other set of measure zero. Note that this definition ad@&scwithdf (s) if f is continuously

differentiable ats. A point s € R? which satisfies tha € 9f(s) is called acritical point of f.
For a given closed, convex sét C R%, let Ng : G — PB(RY) and T : G — P(RY) map

locations inG to the normal cone and the tangent coné&-ofrespectively. Specifically, we have

Ne(z)={y e R | yT(x —2) >0, V2 € G}, Tgx)={yeR?|y"2<0, Vz € Ng(z)}.

April 17, 2010 DRAFT



B. Spatio-temporal simple kriging
Here we describe the spatial interpolation process knowkrigeg following [20], adapted
to a spatio-temporal context. Let denote a spatio-temporal process of interest taking values

on a compact and convex regi@ c R?. We assume the form
Z(s,t) = p(s,t) + w(s,t), (s,t) € D x Ry, (1)
wherey is a known function mapping space-time location to the mediney andv is a zero mean

random space-time process with known covariance. We asthate has a separable covariance
structure, which exhibits second-order stationarity esadropy in the spatial dimensions, i.e.,
Covw(si, ti), w(ss, ;)] = go gs(l[si — s5l1)ge(ti. t5), 2)

for correlation functiongys : R>y — (0,1], andg; : R>o x R>q — [0, 1], and constang, €
R.o. We assume thay, is strictly decreasing and continuously differentiablehwnonzero
derivative except possibly &k (i.e., ¢.(d) < 0 for d > 0). Note the assumption that the image
of the spatial correlation function is strictly nonzero.e€Bke assumptions include the popular
exponential, Gaussian, and Mat correlation functions [21].

Assume that € Z-, sensing agents take samples at each of a sequence of disoetieps
{1,. .., kmax}, With kmax € Z~. Let S; = (sgl), e ,sl(.’“ma*))T € DFmax denote the spatial locations
of samples taken over the course of the experiment bytthagent, and le§ = (ST ,...,ST)T €

(Dkm=)n denote the locations of all samples taken by the network. ¥é/ddmp= {1,...,n} x

{1,..., kmax} to denote the set of index pairs into the sample vector. Wer &ften to vectors
of elements indexed by both agent and timestep, such as ¢heeets ofS. To save space,
we use the shorthand notatiqn!", ..., a™)) = (alV, ... alfm™ oM . afmd). Let
Y = (yf), . ,yﬁfmax))T € (Rfm)n denote the values of all samples taken at locatisnsVe

assume that the data are corrupted with a measurement ertbats
ygk) = Z(sgk), k) + €, € < Normal (0,7'2) , 3)
where 72 > 0, and “iid” denotes independent and identically distrilbLiteAlthough it is not

a technical requirement, the assumption that the samplaigens iid simplifies notation and

exposition. The covariance betwegﬁ) and y](-l) is given by

90 95(0)ge(k, k) + 72, if (i,k) = (5,1),
Cov[yfk),y](l)] _ 0 ( ) t( ) ( ) ( )
90 9s(||si — s4[)g:(k, 1), otherwise
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Let 3 = 3(S) denote the covariance matrix &f. Where disambiguation is not required, we
use bold face to denote explicit dependenceSon

The simple kriging predictorat (s,t) € D x R>, minimizes the error variance?(s,t; S) =
Var(Z(s,t)—p(s, t;Y)) among all unbiased predictors of the fops, t; Y) = S, S im= 1y
a, a € R. The simple kriging predictor ats,t) € D x Ry, corresponds then to the Linear
Unbiased Minimum Variance Estimator (LUMVE),

Psk(s,t;Y) = pu(s, t) + " (Y — p), (4)
with g = (u(st,1), ..., (@™ kmax))T, € = Cov[Z(s,t),Y] € (RFm)" and error variance,
0?(5,1;9) = gogs(0)ge(t, t) — " E e (5)

Note that the functionr? only depends on the location of the samples and is invariadeu

permutations of the space-time sample locations.

[1l. PROBLEM STATEMENT

Here we describe the model for the robotic network and peviee objective function for

optimal sampling.

A. Robotic network model

Consider a groud Ry, ..., R,} of n € Z-, robotic sensing agents taking measurements of
a spatio-temporal process of interest ofrc R¢. The position of robot € {1,...,n} at
time ¢ € R is denoted byp;(t) € D, and P(t) = (pi(t),...,pa(t))T € D™ denotes the vector
of all positions. The robots take point measurements of dmelam process at their location at
discrete instants of time ii.,. The results of the paper are independent of the particalaotr
dynamics, so long as each agent is able to move up to any pdimnnva distanceumax € R-q
between consecutive sampling times. We assume that thésdgare a tunable communication

radius that allows them to transmit prospective sampletioes to nearby agents.

B. Objective function for spatial estimation

We consider the scenario where the robotic network is givaima frame [1, knay, With

kmax € Z~q, t0 sample the spatio-temporal procéssA natural objective is to design sampling
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trajectories in such a way as to minimize the uncertaintyroéstimate of the field at timkax
generated from samples taken up to that time. Here, we cemaid objective function inspired
by the notion of G-optimality from optimal design [20], [3The maximum error variance

M : (DFm=)n — R of estimates made at timig,.x over the regiorD is

M(S) = max 02((37 kmax); S) = 909s(0) gt (Kmax, kmax) — Héllf)l {CTE_IC}- (6)

se€D
Note thatM corresponds to a “worst-case scenario,” where we consigatibns in the domain
at which the error variance of the LUMVE is maximal. Under #ssumption of noisy measure-
ments, i.e.;r? > 0, the functions? is well-defined for anys € D and S € (D*=)", Indeed, the
dependence of? on the sample locations is continuous, and heftés also well-defined. Our
goal is to find the sampling trajectorigs € (D*=)" that minimize the objective functioi.
Note that the simplified case df,.x = 1 corresponds to optimal sampling locations for a
single snapshot of a static field, where, under near-inddgrese [15], multicircumcenter Voronoi
configurations are optimal. The problem of trajectory ojtation treated here is considerably
more complex. We should also note that all of our results famigredictions of the field made

at times other thamay.

IV. OPTIMAL SOLUTIONS UNDER NEARINDEPENDENCE

The objective functionM is not convex and nonsmooth. The problem of finding an explici
characterization for its optimizers is especially harderevor kn.x = 1, the optimization of
M is known to be NP-hard over discrete spaces [5]. In this @eactve consider instead the
optimization of M when the correlation function is raised to the powerc R.,. This is

equivalent to considering, instead of (2), the spatio-teralcovariance

Cov]w(si, ti),w(s5,t5)] = g0 g5 (|lsi — s;1) gt (L, t5).

The meaning of this modified problem is as follows: @sgrows, the correlation between
distinct space-time locations vanishes. This asymptetiome of increasingly smaller correlation
between distinct points is known agear-independencesee [14]. Note that the correlation
function (g,g;) retains much of the shape of the original correlation fuorc{ie.g., smoothness,
range, etc), so this analysis is helpful in determining thepprties of the original problem as

well. To ease the exposition, we denote &y, resp.={*}, the vectore, resp. the matrixz,
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with the correlation in each element raised to the poweSimilarly, let Mo} ; (Dkma)? R

be defined as

M{a}(s) =90 (gs<0)gt(kmax; kmax))a — min {(C{a})T(E{a})_lc{a}}.

seD
Therefore, our objective is to characterize the asymptaticimizers of this function. To do
so, we need to introduce a family of weighted distance measbased on correlation. Define
(Z) : Rzo — RZO andw : {1, ceey /{Zmax} — RZO by,

¢(d) = —log(gs(d)),  w(k) = —log(ge(kmax k).

The functionw gives a weight which depends on the temporal correlatiowdrt sample time
k and predictive timéinax. The functiong is strictly increasing and continuously differentiable
with strictly positive derivative except possibly at zetb.therefore admits an inverse,™! :
R>¢ — R>. The correlation between a sample at stepnd prediction at stepnyax induces the

weighted distance functiony, : D x D — R,

Ok (51, 52) = ¢(lls1 = s2]) + w(k). (7)

We refer tod,, as thecorrelation distancessociated with sample tinie and note thady (s, sgk)) =

—1og (gs(||s — 58| ge(kmax, k). The following result classifies its level sets.

Lemma IV.1 (Correlation level sets)For eachk € {1,...,kmax}, s € D and ¢ € R, one has
Sm(s’ +— (s, s),¢) = bnd (E(s,rk(c))), wherery : R>o — R, defined by
¢ He—w(k)) ife>wk),

ri(c) =
0 otherwise

is strictly increasing and continuously differentiable thre interval (w(k), co), with derivative

/ _ 1
"(0) = Ty

We are interested in those samples with smallest corralatistance to a given predictive
location. Note that this is equivalent to the samples withhbst correlation to the predictive

location. We must therefore consider the possibility of gke®s with identical correlation to all

predictive locations. Lebnque be the following set of possible trajectories, which ensutee
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spatio-temporal uniqueness of any samples that achievenéixémal correlation distance from

any predictive location,

n

Suriue= {5 = (s, sUm)T € (D) | Ai, k) # (j.1) € Isampands € D, s.t.

Se(s,s™)y = min  §i(s, s anddy (s sy = 6;(8’,35”), Vs' e D}.

(i' ') € Isamp v
Note that for samplesg’“) ands§’) to have identical correlation distance to all predictiveaiions
requires thatsl(.k) = sy) and g;(kmax k) = g:(kmax (). We are now ready to characterize the

minimizers of M{°} asa grows.

Theorem V.2 (Global minimizers of M under near-independence)Let H : (Dfm=)" — R

denote thecorrelation distance disk-coverirfgnction, defined by

H(S) =max{ min {5k(s,3§k))}}. (8)

s€D  * (i,k)Elsamp
For Q2 C (D*m)" compact, letS,,.. € Q be a global minimizer of the correlation disk-covering
function’H over Q. Further assume tha$,,.. € Sunique Then, asa — oo, S, asymptotically

globally optimizesm{e} over Q, that is, M{*}(S,,..) approaches a global minimum over.

The proof of the theorem can be reproduced for local minirsizé 7 over €2 to arrive at

the following result.

Corollary IV.3 (Local minimizers of M under near-independence)or ) C (D" com-
pact, letS,,.. € €2 be a local minimizer of the correlation disk-covering fuonot/ over ).
Then, asa — 0o, S asymptotically locally optimizest{} over Q, that is, M{*}(S,,..)

approaches a local minimum ovér.

The generality of the subspa€ein Theorem V.2 and Corollary 1V.3 also allows us to apply
the result to two situations of particular importance. f-inge may restrict the samples to feasible
trajectories based on vehicular movement limitations, #redinitial positions of the vehicles,
which we will callanchor points This amounts to a restriction on each agent trajectory,vead

define the range-based constraint $Bty C (D)™ as, Orq = I, QOrg,, Where

Org, = { (s, ..., s mN)T g Dhmax | 150 — p,(0)]| < umax and

5% — s < tmax, YR € {2, kmaxd }. (9)

)
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Our results also hold for a more general problem, optimizingr all P(0) € D™, however
this setup is directed at online path planning where the fitenaf distributed implementation
shine. Second, a change in mission parameters atkiméd, k € {2, ..., kmax}, Might prompt

optimization over just those locations not yet sampled, Q%k) =11, Q(Rzgf), where

O ={(s, ... stmeh)T g phoatrt |58 p(k — 1)]| < umax and

Hs(kl) _ Sgk’,l)” S Uma vk,/ c {k. _|_ 1’ e k‘max}}. (10)

)

For ease of notation, we assume that these decisions andigastments are made at sample
time instants, and thus the anchor points for optimizatimr@%f) are the sample locations at
stepk — 1, but the process is easily extensible to optimization betwsample times.

Theorem IV.2 shows that the optimization of the maximum rewariance is equivalent to a
geometric optimization problem in the near-independenoge. This remarkable result allows us
to turn the search for the optimizers.of{*} into the search for the optimizers of the correlation

disk-covering functiori{ defined in (8). This is what we tackle in the following secton

V. MAXIMAL CORRELATION PARTITION

In this section, we introduce the maximal correlation piari associated to a network trajec-
tory. This partition will be instrumental in determiningetloptimizers ofH. In the context of this
work, a partition ofD is a collection of compact subseld] = {Wl(l), e Wé’“m”)} with disjoint
interiors whose union €. For any S € Suige let MC(S) = (MC{V(S), ... MClm) ()

denote themaximal correlation partitiondefined by
MC(S) = {s € D | di(s, ") < au(s, 1), V(i,1) # (i, k). (12)

This partition corresponds to a generalized Voronoi parti{16] for distance measure and
weights given byw. In general, the maximal correlation regions are neithewer nor star-
shaped. Note that, depending on the weights and Iocatioﬁgf)(\éF) might be empty for some

Let I : B(D) — {1,...,n* kmax} Map a partition to the number of nonempty cells it contains,
which we term theindex of the partition. The following lemma gives some specialesasm

which MC is equal to distance-based partitions known in the liteeatsee e.g., [16], [22].

Lemma V.1 (Special cases afM(C) The maximal correlation partitiooMC(S) corresponds to
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« the Voronoi partition ofD with generatorsS, if all weights are equal,

. the power diagram, if the spatial correlation is the Gaussiasid) = e, with a € R,

. the additively weighted Voronoi partition, if the spatial regation is the exponential,
gs(d) = e72, with o € R+.

Figure 1 illustrates the latter two types of partitions. Foe Synique the correlation distance

@ (b)

Fig. 1. Examples of maximal correlation partition in which each cell is ddfimg the predictive locations with highest (a)
exponential correlation and (b) Gaussian correlation to a given (gémgy sample. In both cases, two timesteps are shown.

Samples taken at step 1 are shown as filled triangles, those taken at steghbwan as filled boxes.

disk-covering function can be restated in terms of the makicorrelation partition as,

H(S) = max { max {5k(s,s§k))}}. (12)

(i.k)€lsamp L semc® ()

This expression is important because it clearly shows fbwas a double dependence on the
network trajectorysS: through the value of the correlation distance and through rhaximal
correlation partition. This motivates us to define an extan®f H as follows: for a given
sample vectolS € (D" and a partitionlV = {Wl(l), ce WT(L’“”‘“)} C ‘B(D) of the predictive
space, defing{,y : (D) — R by

_ (k)
Hw(S) = (ivggf&mp{sgﬁé){%(s,si )}}- (13)

Note that if S € Synique thenH(S) = Hae(s)(S). This function is particularly useful in our
search for the optimizers dft because it allows us to decouple the two dependencies of this
function on the network trajectory. The following resultachcterizes the maximal correlation

partition as the optimal partition fok,, given a fixed network trajectory.
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Proposition V.2 (H-optimality of the maximal correlation partition) For any.S € Synigue @and
any partitionV C (D) of D with (W) < I(MC(S)),

H(S) < Hw(5), (14)

that is, the maximal correlation partitiodMC(S) is optimal for’ X among all partitions ofD of

less than or equal index.

Proposition V.2 implies that, in order to fully characterithe optimizers of, it is sufficient
to characterize the optimizers @f,, for a fixed arbitrary partition. The latter formulation is

advantageous because of the single dependence of the Valtg @n the network trajectory.

VI. UNCONSTRAINED OPTIMAL TRAJECTORIES FOR A GIVEN PARTITION

In this section, our objective is to characterize the optimgtwork trajectories ofH,, for
a fixed partition\V = {Wl(l), e T(L’“ma*)} C B(D) of D. We will find it useful to start our
analysis with the simplified problem of locating a single pénto minimize the maximum
correlation distance to a single predictive region. We wikn build on this analysis to tackle

the more complex multiple sample problem.

A. Single sample unconstrained problem

For (i, k) € Isamp With Wi(’“) # (), consider the task of choosing whefg should take the
sample at timet. Let MCD{" : D — R., be defined as,

MCD™ (s) = max 6(s', s). (15)
s’EWi(k)

Note that MCIjk) corresponds td4,, for a single agent and single sample at timestepFor

any s € D, it is important to note that the maximum correlation dis’ea,ri\/lCDEk)(s) is attained

at the same locations iWZ.(’“) as the maximum Euclidean distance, i.e.,

argmax 0x(s', s) = argmax ||s’ — s]|.
s'ew ™ s'ew ™

In the next result, which follows from Lemma V.1, we chaeatze the sublevel sets of MCﬁ@.

Lemma VI.1 (Sublevel sets of MCD)For any ¢ € R, the setSsumw(MCDg’“),c) is closed,

bounded, and strictly convex.
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Fig. 2. A two-dimensional example of the level sets of I\/lﬁ@D The dashed circle is the circumcircle. The closed curves

around the circumcenter represent two different level sets of MCD

Figure 2 shows a two-dimensional example of the level selNI@DEk). The following result
on the generalized gradient of the maximum correlationadis¢ function makes use of [23,
Theorem 2.1] and [19, Theorem 2.3.9].

Lemma VI.2 (Smoothness of MC[§k)) The MCDZ(.’“) is locally Lipschitz and regular, and its

generalized gradient takes the form

8MCD§k)(s) = co{ @' (dmax(s, V[/i(k))) vrs(s — §') | 8’ € argmax dx(s¥, s)}.
S*GWi(k)

We next characterize the minimizers of M(;’fb

Proposition V1.3 (CC(W}“) minimizes MCDZ(’“)) The functiori\/ICDEk) has a global minimum
at CC(W*) and no other critical points.

Remark V1.4 Note that Proposition VI.3 implies that the circumcentenimizes the maximum

Euclidean distance to an arbitrary set. °

B. Multiple sample unconstrained problem
Here, we use the results of Section VI-A to tackle the mudtiphmple problem, i.e., the

characterization of the optima of the network objecti¥g,. We can equivalently write (13) as

Hyw(S) = max MCDEk)(sZ(-k)).
(ivk)el—samp
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The following result on the generalized gradientof, follows from using Lemma VI.2 and [19,

Proposition 2.3.12] on this expression.

Lemma VL5 (Smoothness ofH,,) The function,, is locally Lipschitz and regular, and its

generalized gradient takes the form
OHw(S) = co {IMCD(S) | (i, k) € IsampS-t. MCD¥(S) = Hyw(S)},
where, with a slight abuse of notation, we M€D* () to denote the map — MCD" (5.

In order to extend Proposition V1.3 to the multiple samplaesawe first need to introduce
a piece of notation to account for the possibility of emptgioas in the maximal correlation
partition. LetCC : B(R?) x R? — R? be defined by

CC(W) it W0,

C(W,s) =
s otherwise
Let CC(W, S) = (CCWM, sV, ..., CC(w ) s{m=))" denote a vector of such circum-

center locations. We are now ready to state a generalizafiéroposition VI.3.

Proposition V1.6 (H,y-optimal trajectories) For any S = (sgl),...,sﬁfma*))T € Sunique any
partition W = {W", .. W™} « B(D) of D, and anys = (51”,..., 57T ¢ (Dhmeoyn,

Hw (CCW, 9)) < Hw(S), (16)
that is, the circumcenter locatiorsC (W, §) are optimal forH,, among all network trajectories.

Note the duality between the results in Proposition V.2 @ofixed network configuration,
the maximal correlation partition is optimal) and PropositVI.6 (for a fixed partition, the
circumcenter locations are optimal). The combination efsthtwo results allow us provide the

following characterization of the optimizers of the coat@én disk-covering functiori.

Proposition VI.7 (Generalized multicircumcenter trajectories optimize H) ConsiderS =
(s, st T ¢ (Dhmayn such thats! = CC(MC(S)) for each (i,k) € Isamp With
MC*)(S) + 0. ThensS is a local minimizer of over (D", We call such a network trajectory
a generalized multicircumcenter trajectofyurthermore, ifl (MC(S)) = n * kmax thenS is a

global minimizer ofH over (Dkma),
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VIlI. RANGE-CONSTRAINED OPTIMAL TRAJECTORIES FOR A GIVEN PARTITION

In this section, our objective is to characterize the optérs of H,, over (rq for a fixed
partition V. We begin our discussion by providing a useful alternatixeression forH,,. Let
W, = {Wi(l), . .,m(kmaX)} denote the elements of the partitioft assigned to the samples in
the trajectory ofRR;. With a slight abuse of notation, we may write

_ | N (k) ()
How(S) = max Hw,(Si), where Mw,(S) = max {MCD"(s")}.
W;#0 W.(k);é(l)

The conditionW; # () indicates that there is at least one nonemﬁfy) € W;. The above
expression clearly shows that, for a fixed partition, miimg #,, over the space of network
trajectories is equivalent to (independently) minimizewgch of the function®t,,, over the space

of trajectories of the robofR?;. As a consequence, we structure our discussion in thres. part
First, we deal with the single sample problem. Then, we baiddthis discussion to address
the problem of finding an optimal sampling trajectory fosiagle agent. Finally, we combine

individual agent trajectories into a network trajectoryfital the constrained optimizers @f,,,.

A. Single sample constrained problem

Proposition V1.3 allows a simple, geometric interpretatmf the minimizer of MCL?C). Our
objective here is to obtain a similar characterization fer tange-constrained problem. We first

consider the single sample problem over a general closegexaonstraint set.

Proposition VII.1 (Constrained minimizers of MCng)) Assume thaWi(k) # 0. LetT C R?
be closed and convex. Then a poiite ' is the unique minimizer df/ICDZ(.k) overI' if and
only if 0 € OMCD¥ (s*) + Np(s*).

Let us now specify the range based constraint seEﬁ%r The set of constraining locationef

(i, k) € Isamp are the locations of robak; at sample timeg — 1 andk + 1,
Ses(k, Si) = {p(K) | k' € Kes(k)}, whereKes(k) = {k — 1,k + 1} N {0, ..., kmax}-

Note that in all but the initial anchor point, this set copesds to the sample locations imme-

diately preceding and following thg, k)th sample. Lef® : Dfmax — 3(R?) map a network
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trajectory to the intersection af,,-balls centered at locations in the set of constrainingtlona
of (i,k), i.e.,

r®(s;) = B(8, Umax)- a7

s$€Ses(k,S;)
The setl'®)(S;) corresponds tdlrg With all other samples fixed in space. Restrictiﬂﬁ) to
') (S;) ensures thaR?; does not violate the maximum distance requiremegt.
In order to state the main result of this section, we will fihdseful to introduce an extension

of the predictive sem(k) which incorporates the position of samglek) relative tol'®) ().

To that end, define EPY") : Dimax — Re (i, k) € Isamp k' € Kes(k) by

S _ g0

Umax

The reason for the use 61,y,(5;) will be made apparent in Section VII-B. For now, it is only

important thatH,y(.S;) > MCDEk)(SEk)). The location EP*)(S;) can be seen as the projection
’ — (k") )

of sgk) onto the surface O'B(sgk),rk(HWi(Si)) I Umajz ”). Then, we extend the predictive set

by the extended constraint points as follows. LEt" : Dkrex — PB(RY), (i, k) € Isamp be the

constraint extended predictive set

W(Si) = co (WM, {EPEN)(S,) | K € Kes(h)}).

)

A point s € W’“’(Si) is active in centeringf there is no neighborhood of which might be

added tofWi(k)(Si) without changing the circumcenter. It can be seen from (&) EPt**"(S,)
(k) _ (K

s> 7 (MCD(M (si)). Figure 3 shows

Uma

is active in centering if and only if(Hy, (S;))
an example of the extended predictive set.

The next result gives a geometric interpretation of the tamsed optimum in terms off/.

Proposition VII.2 (Extended circumcenter minimizes MCDE'“) over I'®)(S;)) Assume that
r®(s;) and WZ.(’“) are nonempty. Further assume that the scaling factor for ¢xeended
constraints satisfie§tyy, (S;) = MCD™ (s*)). Thens!* is the unique minimizer oMCD!"
over ') (5,) iff s = cC (WM ().

B. Multiple sample single agent constrained problem

Here we extend the constrained solution above to a singlet agptimizing its own trajectory.

and characterize the optimaf,, over the constraint sétry defined in (9) in terms ofentered
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Fig. 3. A two-dimensional example of the extended center representattiarcritical point of the constrained problem. The

dashed circle is the circumcircle &>, with circumcenters!®). Note thats{® is on the boundary of'® formed bys!",

and thus EP#Y is active in centering.

sub-sequences. In order to facilitate discussion of géimedagradients, led**¥") : DFmax — R,
k k' € {1,... kma} be defined asl®*)(s,) = [|s% — s, and letd™?(S;) = d01(S;) =
18 — p;(0)|. With a slight abuse of notation, we use

WSy Ko) = co (W {EPE)(S) | K € Kes(k) N Ko}).

to denote constraint extended sets as calculated with a&tsabshe constraint points.

Lemma VII.3 (Centered sequences satisfy range constrainthet S; € Dk and let Ko C
{1,..., kmax} define a sequence of consecutive samples ffpsuch that each is at the circum-

center of the extended set formed by consecutive neighibdih®e isequence, i.e.,
s = cc (WH(S; {0} UKy)), forall ke Ko,

Thend®*)(S;) < umay for all k € K¢ and k' € ({0} U K¢) N Ks(k). We call such a sequence

centered

Figure 4 shows an example of a centered sequence.

In the unconstrained case, optimiziftg, takes the form of centering each sample within
its predictive region, which may be characterized in terinthe generalized gradient of MCD.
Given our discussion for the single sample constrainedlenobin particular Proposition VII.2,

we next characterize the gradient of the maximum correladistance to thextendedredictive
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Fig. 4. Two-dimensional three sample example of a centered sequEmeesolid arrows show the directions from the sample
to the farthest points in the associated predictive region. For illustratiygopes, we have used a correlation distance equivalent

to Euclidean distance.

region,W, and thereby the optimal agent trajectories in terms ofezedt sequences. We begin

with a result on the effect of the trajectory on the constraixtended predictive sets.

Lemma VII.4 (Correlation distance to extended constraints)Let (i, k) € Isamp @and k' €

Kes(k), and letS; € Drmax such thats'®) £ 7. Let CDE**") . DFmax — R be defined by
CDEX ) (5,) = 6,(s, EPEFH)(5,)).

The functionCDEE"“k’) is locally Lipschitz and regular neaf;, and its generalized gradient at

S; takes the form

_ (IEPEI(S,) — s

Umax

X <Tk(Hwi(Si))ad(k:k/)(Si) +

HCDE*) (5,

X

A" (s;)
¢ (ru(Fw, (53)))

In the expression of the gradient of Cﬁ’l@l) wherek’ #£ 0, note that sincegk) # sgk’), the

8HWZ.(SZ-)).

setd d**)(S;) consists of a single vector whose only nonzero componeetshar:.th and/'th
entries. Likewised d*(S;) is nonzero only in the first entry.
We next characterize the function which maps the maximumetatron from a sample to any

point in its constraint extended predictive set.

Lemma VIIL5 (Extended set correlation distance)Let (i, k) € Isamp LetMCD(ﬁ/"i) : Dhmax — R

map theith trajectory to the maximum correlation distance froqﬁ) to the corresponding
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constraint extended predictive set, i.e.,

MCDY)(5)) = max &(s,s").
W SGWi(k)(Si) ( )

Further assume thaeither WZ.('“) # (), or there is ans € Sc(k,S;) such thatsgk) # s. Then

MCD(W’“) is locally Lipschitz and regular, and the generalized geaditakes the form
amcbM(s)) if MCD™(S;) > CDEY). (),
OMCD(5;) = { 9CDEY), (S)) it MCD(5;) < CDEXL(S,),
co {oMCD(S;), 0CDEY) (S;)}  if MCD{¥(S;) = CDEX) (S)),
whereMCD" (5;) denotes the mag; — MCD! (s"), CDE®) (S;) = max;c s CDEF(S,)),
and 9CDE®)_ (S;) = co{@CDa(kik')(Si) | k' € argmax;c k) CDEEk:l)(SZ-)}.
The constrained objective function for a single agent mayldéfned as

(9 — McD¥ (s,
Hi, (5) Rl CDy (5)

Note that this function may be calculated entirely By. The following proposition describes

the smoothness of the per-agent constrained objectivaifumnc

Proposition VII.6 (Extended maximum correlation distance)Leti € {1,...,n} and assume
that the sefV; contains at least one nonempty element. The functign is locally Lipschitz

and regular and its gradient takes the form
OM (Si) = co {OMCDE)(S:), k € {1, .., kmad | MCDIY(S,) = Hyp: (S)}. (19)
Lemma VII.7 (Equality of Hiy; and Hyy, over Qrg) Leti € {1,...,n} and.S; € Qrg. Then

We next characterize the critical points’df;; in terms of a special case of centered sequences.

Lemma VII.8 (Maximal elements define sub-sequences within cégred sequences) et

Kc C{1,..., kmad} define a centered sequence of samples; imith max MCD™ (s™)) = Hyy, ().
ERC

Then there is a sub-sequend€;; C K¢ which is centered and such that evetye K¢

satisfiesl\/lCD%)(sEk)) = Hyw, (S;). We refer to a sequence such &g, asmaximally centered
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Proposition VII.9 (Global minimizers of H;; on gy contain maximally centered se-
quences)A trajectory S; € {2rg, is a critical point of Hy; if and only if it contains at least one
maximally centered sequence of samples. Furthermore,astyaitical point globally minimizes

Hwi on QRgi .

C. Multiple agent constrained problem

Finally, we combine agent trajectories into a network t#jey to find the constrained opti-

mizers of H,y. First, defineH; : (DF=)" — R by

Hyp(S) = max HWi(Si)' (20)

ie{l,...,n}

The following result extends Lemma VII.7 to the network.

Lemma VII.10 (Equality of H;; and Hyy over Qrg) Let S € Qrg. ThenH;(S) = Hw(S).

The critical points of the extended network objective fumttmay now be characterized. The

proof of this result follows from Proposition VII.9.

Proposition VII.11 (Global minima of Hy; on gy contain maximally centered sequences)
A trajectory S € (rg is a critical point of H; if and only if there is at least one €

77777

thermore, any such critical point is a global minimum7df,, over (2gq

Proposition VII.11 allows us to think of the optimization ®f,, independently for each agent.
If each agent optimizes their own trajectory (cf. PropositV11.9), then the resulting network
trajectory is optimal. Along with Proposition V.2, this@is the following result on the optimal

trajectories of the correlation disk-covering functibhover Qgg.

Proposition VII.12 (Range-constrained generalized mulircumcenter trajectory) Let S =
(ST,...,8T) e (D*=9m such that eachs; contains at least one maximally centered sequence
with respect to the partitionV = MC(S). ThenS is a local minimizer ofH over Qg4 We
call such a network trajectory aange-constrained generalized multicircumcenter ttajgc

Furthermore, ifl(MC(S)) = n * kmax thenS is a global minimizer ofH{ over Qgg.

Remark VII.13 Note that if eachS; is centered, then it must contain a maximally centered

sequence, and thus is a range-constrained generalized multicircumcentéedtary. °
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The following proposition allows for partial optimizatioof trajectories which are already
under way, based on minimizing the maximum emwer the remainder of the experimeiihe
proof is a direct result of Proposition VII.9, where the s#esbeing optimized over are anchored

by the last sample already taken.

Proposition VII.14 (Partially fixed range-constrained gereralized multicircumcenter tra-
jectory) Letk* € {2,..., kmax}, @and assume that samplés, ..., k*— 1} have been taken (thus
the locations are now fixed). Lét= (S7,...,S!) € (D)™ such that, for each € {1,...,n},
JK; C {k*, ..., kmaxy Which defines a maximal sequence of samples;jrwith anchor point
pi(k* —1). Then S is a local minimizer of the ma;()sg“*), . 737(1'“”“‘*)) — H(S) over Q%’“*).

Furthermore, ifl(MC(S)) = n * kmax thenS is a global minimum of the constrained problem.

VIII. T HE GENERALIZED MULTICIRCUMCENTERALGORITHM

Given our discussion in the previous sections, here we sgitl coordination algorithms
to find the optimal trajectories of the correlation disk-eomg H with and without range-
constraints. The design of these strategies is based onhtimaaterizations stated in Propo-
sitions V1.7 and VI1.12 for the unconstrained and the caxiagd cases, respectively.

Table | presents th&ENERALIZED MULTICIRCUMCENTER ALGORITHM, based on the well-known
Lloyd algorithm for data clustering, by which the network ynnd a minimizer of H over
Q") for somek™ € {1,..., kmax}. With slight adjustments, the same algorithm works for the
unconstrained case.

Figure 5 shows results of a simulation of tlB@NERALIZED MULTICIRCUMCENTER ALGORITHM,
leaving out the initial anchor points to illustrate optimion over the set of all initial positions.

The convergence properties of the algorithm are charaettiin the following result.

Proposition VIII.1 (Convergence of the GENERALIZED MULTICIRCUMCENTER ALGORITHM ) The
GENERALIZED MULTICIRCUMCENTERALGORITHM is distributed over the partitionMC(S{7}), mean-
ing that at stepj + 1, R; need only communicate witR;; for eachi’ € {1,...,n} such that
MC* ($0}) adjacent to MG (S17}) for somek, k. Furthermore S17} € Q")

As j — oo, SU} approaches a* € (D), and if S* € Synique then S* is a minimizer ofH

,forall j € Z+,.

over Q.
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Goal: Find a minimum of over "

Input: (i) Sample intervalk*, kmax
(i) Anchor points,p;(k* — 1), i € {1,...,n}
(ii) Initial trajectory, S1°} = (s{”,..., {7 € Q"

Assume: (i) R; has a communication radiu®.om € Rso which is large enough to communicate its

), with S{° the ith agenttrajectory

trajectory to any other agents whose samples are neighiovsd
(i) If &* > 1, R; knows the locations of all past samples which neighbor atyrédusamples of

For j € Z~, each robotR;, i € {1,...,n} executes synchronously
1: send all future elements &f” ™" to robots within a distance aReom
2: calculate MG (SU=1}) for k € {k*, ..., kmax}

3: run gradient descent df(;;; on future samples onlfo find a centered agent trajecto&?,{j} € Q%’m

TABLE |
GENERALIZED MULTICIRCUMCENTERALGORITHM.

'H(S(’}) 0.6

2.5 5 7.5 10 12.5 15 17.5 20

i
@ (b) (©

Fig. 5. Simulation of20 iterations of theGENERALIZED MULTICIRCUMCENTER ALGORITHM with no initial anchor

points. (a) Shows the initial trajecto§/°}. (b) Shows the final trajectorg{2°}. In each case, the associated maximal correlation
partition is drawn, with the different colors representing different égand different intensities of each color representing the
timestep at which the given sample is to be taken (more intense colorseaplater timesteps). The dashed lines show the

path each agent will take. (c) Shows the valueﬂ-de{j}) as a function ofj.

Remark VIII.2 We suspect that the limit points of th&NERALIZED MULTICIRCUMCENTER AL-
GORITHM are in Synique €Xcept for initial conditions in a set of measure zero, buakEshing
this fact is challenging because of the delicate interplatyvben the objective function and the

constraints. Extensive simulations have reinforced oaaithat this intuition is correct. °
We next turn our attention to an adaptive approach to optpati planning. Before moving to
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take thekth sample, an intelligent network of robotic sensors migiteive updated information
from an external source (a change in the environment or mkta@mposition, or even human
input). One or more of the agents may switch from sensing ntodectuation mode, or back.
The GENERALIZED MuLTICIRCUMCENTERALGORITHM directly applies to such a situation, because it
optimizes over only those sample locationst yet fixed The network will arrive at a trajectory
which minimizes the maximum error variance over all trajeieis feasible to the network
moving forward. Table Il describes tI8&QUENTIAL GENERALIZED MULTICIRCUMCENTERALGORITHM

for performing this sequential optimization. The convergge of the SEQUENTIAL GENERALIZED
MuLTIcIRCUMCENTERALGORITHM follows from Proposition VIII.1, and Figure 6 depicts arugh

trative example.

Goal:  Sequentially updated optimization.
Input: (i) Initial trajectory, S{0} = (5{%, ... SI'HT ¢ Qrg, with I the ith agenttrajectory

(i) Status information about correlation structure, damoundaries, and network composition

Initialization

1: network calculates optimal trajectory, via GENERALIZED MULTICIRCUMCENTERALGORITHM
Fork e {1,..., kmax}

1: move tokth location in optimal trajectory and takgh sample

2: if status input changed since previous optimizatioen

3:  run the GENERALIZED MULTICIRCUMCENTERALGORITHM to calculate a new optimal network trajectary

k+1)

over Qég , holding the sample locations at steps. ., k fixed

TABLE I
SEQUENTIAL GENERALIZED MULTICIRCUMCENTERALGORITHM

IX. CONCLUSIONS

We have considered a robotic sensor network taking samplespatio-temporal process. As
criteria for optimization we have taken the maximum erraiasece of the prediction made at the
end of the experiment. Under the asymptotic regime of nedependence, we have shown that
minimizing this error is equivalent to minimizing the cdagon distance disk-covering function,
thus allowing geometric solutions. We have introduced treximal correlation partition and

showed that it is the optimal partition of the predictive @p#or the disk-covering function given
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(@) (b) (©

Fig. 6. Evolution of three steps of tfeEQUENTIAL GENERALIZED MULTICIRCUMCENTERALGORITHM with n = 8
robots,kmax = 5 steps, and Gaussian correlation. In (a), the initial trajectory is calculatedthe initial anchor points;(0). In

(b), the first set of samples have been taken, Rachas dropped out to perform another task (for this simulati® remains
stationary during this task). The figure shows the result of BENERALIZED MULTICIRCUMCENTER ALGORITHM as

run by the remaining agents over timestefd2, . . . , kmax}. In (c), after the second set of samples have been takgipins the
network again. The figure shows the result of optimizing over s{&ps. ., kmax} With all agents. In all three plots, the anchor
points and any past samples are shown as solid triangles, with solid linesatiy the initial anchors to the first samples,
the optimized samples at steps™, . .., kmax} are empty triangles, with dashed lines connecting each agent trajecharyadt
sample location of the dropped agent is circled. In each case, theiaisdomaximal correlation partition is drawn, with the
different colors representing different agents and different iitieasof each color representing the timestep at which the given

sample is to be taken (more intense colors represent later timesteps).

a fixed network trajectory. We have introduced the novelamtf multicircumcenter trajectories
and established their optimality with regards to the disiering function given a fixed partition.
We have also defined a notion of extended sets which encodesienom movement restriction
into a form of geometric centering, yielding the constrdinaulticircumcenter trajectory which is
optimal over the set of all range-constrained trajectof@sthe design front, we have synthesized
distributed strategies that allow the network to calculateoptimal trajectory. In an ongoing
experiment, the optimization can be executed online tdcatae the remaining sample locations
in the face of changes in the environment, network structordhuman input. Future work will

include the study of more complex predictive regions andl@friaative optimality criteria.
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APPENDIX
PROOFS AND SUPPORTING RESULTS FROBECTION IV

We begin with some notation and preliminary results. ketls : D x (D)™ — F(Isamp)
denote theminimal correlation distance séMCDS) defined as,
meds(s, S) = argmin {0 (s, 35’“>)}.
(¢,k)EIsamp
Note thatmcds defines the set of samples # with the highest correlation te. Let g :

D x (D*)" — R map location and trajectory to this maximal correlationueali.e.,
o (5,9) = gal([5 = 5 1) g1 (hma k), ¥ (i, ) € meds(s, ).

The following result describes a useful result on the dinmraity of the intersection of any

two correlation distance surfaces.

Lemma A.1 (Equidistant sets are at most/—1 dimensional surfaces)Assume that € Synique
and let (i, k), (j,1) € Isamp Definey = {s € R% | (s, s) = 5l(s,s§l))} C R Theny = R?
if and only if (i, k) = (j,1). Otherwise, ify # (), then it describes a surface iR? which is at

mostd — 1 dimensional.

Proof: First, consider the shape of the correlation distance cesfa — 5k(s,s§k)) and
s +— (s, sg”) in R, From (7), it can be seen that the two surfaces differ only Inaaslation
which is a result of both the spatial and temporal locatiohshe sample. The assumption
that S € Sunique iMmplies thaty = R? if and only if (i,k) = (j,1). Next, assumey # R? and
v # 0. It can be shown that either the two correlation distancéasas are tangent and that
the tangent surface is contained within a one-dimensianal br the gradient of the function
s = 05, 50) — 0i(s, 1) over v\ {s*), s} is nonzero, implying that the dimension efis
at mostd — 1. [ ]

The above lemma allows the following result on the cardipadf the MCDS.
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Proposition A.2 (Cardinality of MCDS) Assume that € Synque Then,
min { gunas (5, S) [meds(s, $)|} = min { gmax(s, 5) }-

Proof: We proceed by contradiction. If the statement is false, tthame existsst ¢ D
such thats' € argmin,cp, { gmax(s, S) (s",S)| > 1. DefineI’ C D by
[ = {s € D | |mcds(s,S)| > 1}. Note thats' € ', andT" C Ui vij- Lemma A.1 shows

that I is the union of a finite number of surfaces of dimension at mbst1 embedded in

R?. For anye € R.q, there is a locations* € D \ I' which satisfies||s" — s*|| < e. Thus

lmeds(s*,.S)| = 1. Sincegmax(s, S) changes continuously with, for ¢ small enough we have,

Gmax (5%, S)|meds(s*, S)| < gmax (s, S)|meds(sT, S)|, which is a contradiction. u
We are now ready to prove the main result.

Proof of Theorem IV.2:Note that minimizingM{e} on Qg is equivalent to maximizing the
function L1} : Qry — R defined byL{*}(S) = min,ep {(c!)Tx (Tt 1 (cloh) }. Let A and
Amax : Q2rg X R — R be such thath,,i, (S, @), Amax (S, @) denote, respectively, the minimum and
the maximum eigenvalue &{*}. Note that withr? # 0, we haved < A (S, @) < Amax(S, @).

Gershgorin circles and Proposition A.2 yield the asymptbtunds,

3 2
90 20 {a} 9 on
(S < <%
T R B R
Consider, then, comparing an arbitrary sampling trajecirg Qrq against a global minimizer

of H on Qgg, sayS,,... We can write,

LEHSY) _ Sptsma Minsed {gmax(s, S (1 + (1)}
L1} (Spee) — %mmsep { Gmax (8, Smee)?*(1 4+ 0(1)) }

Amin(smccva

(21)

Next we take a closer look at the eigenvalues. Note that tharizmce matrixX{*' becomes
diagonal for largen. This gives uslim,_.. 1/(go + 72)% = I, and it can be seen that
Amax (S, @)/ (go + 72) and Apin(S, @) /(go + 72) tend to1 for any sample trajecton € Qgg.
Finally, sinceSmcc minimizes the maximum over of the minimum over(i, k) of d;(s, s{*) =
o(||s — 3 ||) — w(k), it equivalently maximizes the minimum value 9f...(s,S). For any
S € Qrg, Mingep{Gmax (s, 5)?*} < mingep{gmax(s, Smec)>*}. Thus the ratio (21) is bounded
by 1 + o(1). Therefore, in the limit asy — oo, minimizing M{* over Qrq is equivalent to

minimizing the maximum covariance disk-covering functi¢t on Qgg. [ |
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PROOFS AND SUPPORTING RESULTS FROBECTION V

Proof of Proposition V.2: Let (i, k) € Isampands, € D be such that{(S) = oy
(k?max

(505",
By definition, given a partitionV = {Wl(l), Ces ) € Isamp
such thats, € Wj(l). The definition of MC and the assumption thatW) < I(MC(S)) leads to

the implication chain(S) = dx(s., E ) < 0y(S, g)) < max__ .o 0(s, s§-l ) < Hw(S). u

} of D, there exists a paify, [

PROOFS AND SUPPORTING RESULTS FROBECTION VI

Proof of Lemma VI.1: For ¢ < w(k), we haveSsub|v|(MCD§k), ¢) = (. Otherwise, it is the
intersection of an infinite set of closelspheres, which is a strictly convex set. [ |

Proof of Proposition VI.3: First, note that MCL‘f) and the map — dpax(s, WZ.(’“)) have
the same extrema. In [24] it is shown that the latter functias a unique global minimum at
CC(W, ’“)), when Wf’“’ is taken to be a convex polygon. Identical reasoning yields dame
result for any closed, bounded and nonem}zlff). Thus CC(W}’“)) is a global minimum of
MCDE’“). The requirement tha'(d) > 0 for all ¢ > 0 suffices to ensure that M(‘é@ does
not have any critical points which are not critical pointstbé Euclidean maximum distance
function. Since that function has no critical points othrtCC(Wi(k)), the result follows. m

Proof of Proposition VI.6: For each(i, k) € Isamp With me # (), we can write,

max {8 (s, CC(W™, 3M)) 1 = o( max ls — CCWE 39N + w(k) <

sew® sew*

< ¢( max Hs—s ) + w(k) = max {01 (s, (k))}.
sGW(k) SEW(k)

Taking the maximum over all nodes implies (16). [ |

PROOFS AND SUPPORTING RESULTS FROBECTION VII-A

We begin with this supporting result on strictly convex sets

Lemma A.3 (Strict convexity) Let G ¢ R be closed, bounded, and strictly convex. For any

s1,82 € G andv € Ng(s2) \ {0}, vT vrs(s; — s9) < 0. Equivalently,vrs(s; — s5) € int(Tg(s2))-

Proof of Proposition VII.1: Necessity is a result of [19, Corollary to Proposition 2.4.3]
To show sufficiency, assume thate 8MCD£k)(S*) + Nr(s*), and we consider two cases. If

CC(WZ@)) € T, the result follows by Proposition VI.3. We proceed by cadiction. Assume that
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s* # CC(W, "")) ando € 8MCD§’“)(S*)+NF(3*), buts* is not a uniqgue minimizer. Thefs’ € I'
such that MCIﬁC st) < MCDZ. )(s*). By Proposition VI1.3,s* is not a critical point of MC[?’C).

It follows that there is at least one nonzero vecter, ¢ IMCD® (s*) with —vg € Np(s*),
which implies v} vrs(s™ — s*) > 0. We know thats' € Ssuw(MCDEk),MCDE"”)(S*)), and by
Lemma VI.1,Ssub|\,|(MCD§k), MCDEk)<S*>> is strictly convex. By [19, Theorem 2.4.7 Corollary

1], ve € Ng__ (McD® Mco<k><s*)>(5*)- Lemma A.3 yieldspZ vrs(st — s*) < 0, a contradiction.
Therefores* is the unique global minimizer of MCEf‘)? overI. n

We will need this supporting result on the circumcenter @& ¢éxtended set.

Lemma A4 (s = CC(W}’“(S})) implies s € T®)(S;)) Assume thaW # (. Let S; € DFmx
such thatl®)(S;) # 0. If s\ = cC (WM(S,)) thens™ e TW(S,)ND.

Proof: Assume thas") = CC (W*(5;)). Equation (18) and the fact thaf’ e co (W ¥ (S;))
imply that s{*) € D. Thats®¥ e I®(s,) follows by contradiction from the fact that" ¢
r'®)(S;) implies thats!” = CC(co{Ses(k,S;)}), and the fact thal'™(S,) is the nonempty
intersection ofd-spheres of equal radii centered at pointsSig(k, S;). [ |

Proof of Proposition VII.2: As a result of Lemma A.4s\") = CC (W*(5,)) implies that
s e T (S,). We may therefore assume&®” € T¥)(3;). Note that sinces!” € T®)(S;), we
may write,dpay (s, W () = 14 (Hw, () = r (MCD (7)) If, in addition,d®*)(S,) =
Umax fOr somek’ € Ks(k), then we also havey,(Hyw, () = ||s — EPEF*)(3))||. Let &epp C
R?, respectivelyéy: ¢ RY denote the sets of unit vectors pointing froqﬁ‘f) to the extended
constraint points at a distance of(H,,(S;)), respectively to the points iWi(k) at a distance
of r1.(Hy, (S:)), i.e.,

e = {vis(s") — ") K € Keo(k) sit. |15 — EPEHI(S,) | = ri(H, (51)) }
G = {vrs(s — s | s € W st || — s|| = re(How, (S))1

It can be deduced from Equation (18) that the{$¥t) {epi} spansZVW)(Si)(sEk)). By extension of
Proposition V1.3, we may conclude thgt’ = CC (W *(S,)) if and only if 0 € co{&w Uprt}
It can be seen thad € co{&w |J&ept} if and only if 0 8MCD ( N+ Ny T (8, ( ). By
Proposition VII.1, we have our result. [ |
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PROOFS AND SUPPORTING RESULTS FROBECTION VII-B

Proof of Lemma VII.3: The result follows by simple contradiction from two obsdiwvas
for any k' € Kes(k) N Ke. First, if &) > upna, thens™ = cC(W ™ (S;; K¢)) would imply
that Kes(k) N Ko = {k—1,k+ 1} and sgk) = w Second, the first and last samples in
the sequence must satisfy(EP{**)(S;), s") < MCD{ (). m

Proof of Lemma VII.4: From Equation (18), we can write,
e(Hw, (5:))

Umax

|EPEER)(S,) — st = dF*(3,).

It has been established that, is locally Lipschitz and regular, as i&**"). The gradient is
derived from [19, Proposition 2.3.13] and a special casel®f Theorem 2.3.9]. [ |

The following result characterizes critical points @EDE"") ¢ oMy (S)).

Corollary A.5 (Critical points of 8CDE§"“’“')(SZ»)) Let S; € Qrg, and letk, k" € {1,..., kmax}.
If 0 € 9CDE")(S;) € OMy;, (S;) thenall of the following hold,

Hyw, (S;) = MCDM(S;) = MCD¥)(3)) (22a)
0 € co{oMCD¥ (s¥), oMCD*) (s (22b)
st = cC (WM (S5 {k). (22¢)

Proof: First, note that since; € Qry, we haveaCDEEk‘k')(Si) C 87-(%(52-) if and only if
d®*)(S,) = umax.  From Lemma VII.4 it can be seen tha€DE**(S,) is proportional to the
sum of two vector sets, one of which consists of a single vagtoch is nonzero only in théth
and k£'th components, and the otherd$iyy,(S;). Any vector indHy,(.S;) is zero everywhere
except (possibly) the element corresponding to a singlesiep. Thus0 € 9CDE!*)(s,)
only if Equation (22a) holds. Solving the two simultaneoggiaions0 € wk(8CDI§(.’“’“')) and
0 € my (OCDE*)) yields the other results. ]

Proof of Lemma VII.5: Note that MCBY(S;) = max {MCD{"(S;), CDE}) (S:)}. By
Lemmas VII.4 and V1.2, MC%)(SZ-) can be seen to be the maximum of locally Lipschitz and
regular functions, and therefore locally Lipschitz andulag itself. The form of the gradient
follows from application of [19, Proposition 2.3.12]. [ |

Proof of Proposition VII.6: The MCdm@ is locally Lipschitz and regular for alk €

argmaxe(y }MCD%)(SZ-). Since Hy; is the maximum of locally Lipschitz and regular

7777 k?max
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functions, it is locally Lipschitz and regular itself. Theri of the gradient follows from
application of [19, Proposition 2.3.12]. [ |
Proof of Lemma VIL7:For anyk € {1,..., knax} andk’ € Key(k), S; € Qrg implies that
CDE*)(S,) < Hyw,(S:). By definition, we also have MCH(S;) < Hw,(S;), with equality
kmax} MCDW (Si) = Hw,(5;). =
Proof of Lemma VII.8:First, note that since; € Qrgy, for anyk € K¢ andk’ € Ks(k), we
have CDE“*)(S;) < Hyy,(S;), with equality if and only ifd**)(S;) = umax If this condition
is not met, then samplé iS not active in the centering Gﬁ’“). Furthermore, if MCI:SV';)(Si) <

for at least oné:. We may then erteHWi( Si) = maXpeq

.....

Hyw, (S;), then CDé’c ) ) < Hyw,(S;). Thus any sample which does not have maximal distance
to its extendedset can not be active in the centering of a sample which dbédsimaximal, and
k" is not, then the sub-sequence which incluéldsut not%’ is also centered. Thus a maximally

centered sequence may be constructed around any maximplesami(. [ |

Proposition A.6 (Maximally centered trajectories are optimal) Let W, C ‘B(D) and S; €
Qrg, such that the entire sequencs,is maximally centered. The$ is the unique strict global

minimizer ofHy; . over QRg, -

Proof: LetS; = (5/",...,5"™)T € Qry such thathy; (Si) < H,(S:). By Lemma V1.1,
the setGSub = Ssumw(MCDEk),HWi(Si)) is convex for anyk € {1,..., kmax}. Let Gg]s)ub =
{p:(0)}, and letGE, = {s Rd | K € Keok), & € GE)with ||s — /|| < umax}, also a
convex set. Sinces; € QRgZ, #) e g, for eachk € {1,..., kma}, and sinceHWi(SQ—) <
HWZ,(S) ) e GSub Making use of the similarity between the extended set féatian and the
Lagrangian of the constrained one-center problem, it cashiogvn thatG(EkS)ubm Ggfj)b: {s§k>}.
Thus S; = S; is the unique global minimum Ofty;. over Qgg,. [ |
Proof of Proposition VII.9: We begin with the critical point result. We consider threp-se

arate cases inspired by Lemma VII.5 and Proposition VIlistFif there is ak € {1, ..., kmax}
with 0 € 8MCD(»’“)(S<) C OHy;,(Si), then{k} defines a maximally centered sequenceﬂzin

Second, assume thatg¢ Hyy,(S;), but that3k € argmaxycyy g0 MCD (Si) with 0 €
OCDEY) (S;). From Corollary A5, it can be deduced that’ € argmaxy. ;) CDE"(S;)
such that{k, '} is a maximally centered sequence.

Finally, assume thad ¢ H,y,(S;) and there is nd: with 0 € 9CDEY) (S:) C OH(Si).-

With a slight abuse of notation, let MdW@(Si; K) = max Ok (s, sgk)). In this case it

sEWi<k) (S4;K)
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can be shown thad € 9Hy; (S;) if and only if there is a sequende™ C {1, ..., kmax} Of two
or more consecutive samples which satisfies CO{MCng)(Si) | k € K*}, and for allk € K*,
0 € m(IMCDY(S;; K*)) and OMCDL)(S;; K*) C My (Si). It can be shown that the first two
conditions are satisfied if and only K* defines a centered sequence, while the last requires
that it be maximal.

This proves thab; is a critical point if and only if it contains at least one masilly centered
sequence. That any critical point is a global minimum fololy applying Proposition A.6 to

any maximally centered sequencedn [ |

PROOFS AND SUPPORTING RESULTS FROGBECTION VIII

Proof of Proposition VIII.1: We use the discrete-time LaSalle invariance principle 5]
show convergence. Let T(Dkmax)» — (Dkma)n denote the evolution map of theeneraLizED
MULTICIRCUMCENTERALGORITHM, i.e., ST} = T(SU~1}), Note that() is positively invariant with
respect to T, and thek is nonincreasing along T oft. Since( is bounded, any evolution is
bounded. The maps T arid are both continuous oft. By the discrete time LaSalle invariance
principle, any evolution with initial conditio{® € © must converge td/, the largest invariant
set with respect t@" contained inZ = {S € Q | H(T(S)) = H(S)} C Q.

Now, let M,,;, denote the set of all global minimizers ®f on €2, and note that\/,,;, C M.
We reason by contradiction to show thiak,;, = M. Assume that there is a trajectoyl” e
M\ M. SinceM C Z, we haveH (S = H(S1%). Consider the fixed-partition optimization
global minimizer ofH over (2, it is not a global minimizer ofH; over €, thusSi{O} IS not a
global minimizer of Hy; over(2;. On the other handSi{l} is a global minimizer ofHy; , and
we haveHWi(Si{l}) < HWZ,(S;[O}). This is true for all such, thusH;5(St™) < H;5(S1). By
Lemma VII.10 and Proposition V.2, we can write,(S1%) > H,,(S11) > H(S11}). Thus
H(S1h) > H(S{1), which contradicts the assumption th&t” ¢ Z. Therefore M., = M,

and the result follows. [ ]
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