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Adaptive information collection by

robotic sensor networks for spatial estimation

Rishi Graham Jorge Cortés

Abstract

This work deals with trajectory optimization for a robotic sensor network sampling a spatio-temporal

random field. We examine the optimal sampling problem of minimizing the maximum predictive

variance of the estimator over the space of network trajectories. This is a high-dimensional, multi-

modal, nonsmooth optimization problem, known to be NP-hardeven for static fields and discrete design

spaces. Under an asymptotic regime of near-independence between distinct sample locations, we show

that the solutions to a novel generalized disk-covering problem are solutions to the optimal sampling

problem. This result effectively transforms the search forthe optimal trajectories into a geometric

optimization problem. Constrained versions of the latter are also of interest as they can accommodate

trajectories that satisfy a maximum velocity restriction on the robots. We characterize the solution

for the unconstrained and constrained versions of the geometric optimization problem as generalized

multicircumcenter trajectories, and provide algorithms which enable the network to find them in a

distributed fashion. Several simulations illustrate our results.

I. I NTRODUCTION

Intelligent information collection is an exciting field with many scientific, industrial, and

security applications. Path planning, either a priori or online, is an important part of any data

collection mission. When the underlying process being studied is modeled as random, special

attention should be given to the choice of sample locations in order to minimize uncertainty

in the resulting estimation. Our aim in this paper is to characterize the optimal trajectories for
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sampling a spatio-temporal random field modeled as a Gaussian field, and design distributed

coordination algorithms that help robotic sensor networksdetermine them. We assume that the

mean and covariance of the field are known, and concentrate onminimizing the maximum

predictive variance. Because of our interest in online and adaptive operation, we consider a

fairly general optimization problem where some of the samples in the network trajectory might

be fixed in the optimization. This allows us to consider dynamic situations in which the network

composition changes because of agents’ arrivals and departures, or information is received from

the environment or a human operator about changing conditions.

Literature review: There is a rich literature on the use of model uncertainty to drive the

placement of sensing devices, e.g., [2], [3], [4]. Most of this research has focused on choosing

from discrete sets of hypothetical sampling locations, anduntil recently all of it has made use of

centralized computational techniques. Even choosing a fixed number of sampling locations from

a discrete set has been shown to be NP-hard [5]. In cooperative control, various works consider

mobile sensor networks performing spatial estimation tasks. [6], [7], [8] consider deterministic

models with a stochastic measurement error term. [9] addresses the multiple robot path planning

problem by greedily choosing way points from a discrete set of possible sensing locations.

[10] considers a robotic sensor network with centralized control estimating a static field from

samples with both sensing and localization error. In [11], adeterministic model is used, where

the random elements come as unknown model parameters, and localization error is included.

The work [12] uses a Gaussian process model where all information is globally available via

all-to-all communication. Given the difficulty of optimizing within the whole set of network

trajectories, [13] restricts the optimization problem to asubset of possible paths described by a

finite set of parameters. [14] considers a single snapshot scenario (when agents only take one

round of measurements) over a discrete sampling space in thelimit of near-independence. Our

previous work [15] has built on this setup to characterize the optimal network configurations

in continuous sampling spaces and established the connection with Voronoi partitions [16] and

geometric optimization [17], [18].

Statement of contributions:Our first contribution pertains to the characterization of the so-

lutions of the optimal sampling problem for minimizing the prediction variance. We introduce

a weighted distance metric called the correlation distanceand define a novel generalized disk-

covering function based on it. We show that minimizing this function is equivalent to minimizing
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the maximum prediction variance in the limit of near-independence, thus turning the optimization

problem into a geometric one. Our next contributions all pertain to the solution of this geometric

problem. We first introduce a form of generalized Voronoi partition based on the maximal

correlation between a given predictive location and the samples. Assuming a fixed network

trajectory, we show that this partition minimizes the maximal correlation distance over all

partitions of the predictive space. We next define multicircumcenter trajectories, which minimize

the maximal correlation distance over all trajectories fora fixed partition. The combination of

these two results gives rise to the optimal trajectories forthe correlation distance disk-covering

problem. The final stage of our solution is to define an extension of the maximal correlation

partition which takes into account the positions of consecutive samples taken by the same robotic

agent. Over this extended set, we define a notion of centeringwhich ensures that the distance

between such consecutive samples does not exceed a maximum distance. We show that these

constrained multicenter trajectories optimize the correlation distance disk-covering problem over

the set of distance-constrained trajectories. Finally, using the duality between optimal trajectory

and optimal partition, we design a Lloyd-type algorithm which enables the network to arrive at

locally optimal trajectories. At any step of the experiment, our strategy is capable of optimizing

the remainder of the trajectories as new information arrives.

Organization: Section II introduces some preliminary mathematical notions. Section III dis-

cusses the robotic network model and introduces the statistical setup. We introduce the notion

of near-independence in Section IV, and make the connectionto the correlation distance disk

covering problem. Section V introduces the maximal correlation partition. In Sections VI and VII

the optimal trajectories are constructed for a fixed partition in the unconstrained and constrained

cases, respectively. Section VIII presents the distributed coordination algorithms. Finally, Sec-

tion IX gathers our conclusions and ideas for future work. For clarity of exposition, the proofs

are presented in the appendix.

II. PRELIMINARIES

We start with some notation for standard geometric objects.Let R, R>0 andR≥0 denote the

set of reals, positive reals and nonnegative reals, respectively. Let vrs(p) denote the unit vector

in directionp, i.e., vrs(p) = p/‖p‖. For p ∈ R
d and r ∈ R>0, we let B(p, r) denote theclosed

ball of radiusr centered atp. For a setW , we denote by|W |, bnd(W ), int(W ), andco(W ) its
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cardinality, the boundary, the interior, and the convex hull, respectively. A setW ⊂ R
d is convex,

respectivelystrictly convexif, for everys1, s2 ∈ W andα ∈ (0, 1), we haveαs1+(1−α)s2 ∈ W ,

respectively,αs1 +(1−α)s2 ∈ int(W ). For a bounded setW ⊂ R
d, we letCC(W ) andCR(W )

denote thecircumcenterand circumradiusof W , respectively, that is, the center and radius of

the smallest-radiusd-sphere enclosingW .

Let P(W ) (respectivelyF(W )) denote the collection of subsets (respectively, finite subsets)

of W . Let iF : (Rd)n → F(Rd) be the natural immersion, i.e.,iF(P ) contains only the distinct

points in P = (p1, . . . , pn) ∈ (Rd)n. Let ‖ · ‖ denote the Euclidean distance function onR
d.

We are interested in distances between points and subsets ofR
d. Let dmax : R

d × P(Rd) → R

denote the maximum distance between a point and set, i.e.,dmax(s,W ) = sups∈W{‖s − s‖}.

For a vector,S = (s1, . . . , sn)T ∈ (Rd)n, let πk : (Rd)n → R
d denote the canonical projection

onto thekth factor, i.e.πk(S) = sk. For a functionf : R
d → R andc ∈ R, let

Slvl (f, c) = {s ∈ R
d | f(s) = c}, Ssublvl(f, c) = {s ∈ R

d | f(s) ≤ c},

denote thec-level andc-sublevel sets off , respectively.

A. Nonsmooth analysis

Here we present some useful notions from nonsmooth analysisfollowing [19]. A function

f : R
d → R is locally Lipschitz ats ∈ R

d if there exist positive constantsLs and ǫ such that

|f(y)−f(y′)| ≤ Ls‖y−y′‖ for all y, y′ ∈ B(s, ǫ). The functionf is locally Lipschitz onW ⊆ R
d

if it is locally Lipschitz at s, for all s ∈ W . A function f : R
d → R is regular at s ∈ R

d if

for all v ∈ R
d, the right and generalized directional derivatives off at s in the direction ofv,

coincide. The interested reader is referred to [19] for the precise definition of these directional

derivatives. Thegeneralized gradientof a locally Lipschitz functionf is

∂f(s) = co{ lim
i→+∞

df(si) | si → s , si 6∈ W ∪ Ωf},

whereΩf ⊂ R
d denotes the set of points at whichf fails to be differentiable, andW denotes

any other set of measure zero. Note that this definition coincides withdf(s) if f is continuously

differentiable ats. A point s ∈ R
d which satisfies that0 ∈ ∂f(s) is called acritical point of f .

For a given closed, convex setG ⊂ R
d, let NG : G → P(Rd) and TG : G → P(Rd) map

locations inG to the normal cone and the tangent cone ofG, respectively. Specifically, we have

NG(x) = {y ∈ R
d | yT (x − z) ≥ 0, ∀z ∈ G}, TG(x) = {y ∈ R

d | yT z ≤ 0, ∀z ∈ NG(x)}.
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B. Spatio-temporal simple kriging

Here we describe the spatial interpolation process known askriging following [20], adapted

to a spatio-temporal context. LetZ denote a spatio-temporal process of interest taking values

on a compact and convex regionD ⊂ R
d. We assume the form

Z(s, t) = µ(s, t) + ω(s, t), (s, t) ∈ D × R≥0, (1)

whereµ is a known function mapping space-time location to the mean value, andω is a zero mean

random space-time process with known covariance. We assumethatω has a separable covariance

structure, which exhibits second-order stationarity and isotropy in the spatial dimensions, i.e.,

Cov[ω(si, ti), ω(sj, tj)] = g0 gs(‖si − sj‖)gt(ti, tj), (2)

for correlation functionsgs : R≥0 → (0, 1], and gt : R≥0 × R≥0 → [0, 1], and constantg0 ∈

R>0. We assume thatgs is strictly decreasing and continuously differentiable with nonzero

derivative except possibly at0 (i.e., g′
s(d) < 0 for d > 0). Note the assumption that the image

of the spatial correlation function is strictly nonzero. These assumptions include the popular

exponential, Gaussian, and Matérn correlation functions [21].

Assume thatn ∈ Z>0 sensing agents take samples at each of a sequence of discretetimesteps

{1, . . . , kmax}, with kmax ∈ Z>0. Let Si = (s
(1)
i , . . . , s

(kmax)
i )T ∈ Dkmax denote the spatial locations

of samples taken over the course of the experiment by theith agent, and letS = (ST
1 , . . . , ST

n )T ∈

(Dkmax)n denote the locations of all samples taken by the network. We useIsamp= {1, . . . , n}×

{1, . . . , kmax} to denote the set of index pairs into the sample vector. We refer often to vectors

of elements indexed by both agent and timestep, such as the elements ofS. To save space,

we use the shorthand notation(a(1)
1 , . . . , a

(kmax)
n ) = (a

(1)
1 , . . . , a

(kmax)
1 , . . . , a

(1)
n , . . . , a

(kmax)
n ). Let

Y = (y
(1)
1 , . . . , y

(kmax)
n )T ∈ (Rkmax)n denote the values of all samples taken at locationsS. We

assume that the data are corrupted with a measurement error so that,

y
(k)
i = Z(s

(k)
i , k) + ǫi, ǫi

iid
∼ Normal

(
0, τ 2

)
, (3)

where τ 2 > 0, and “iid” denotes independent and identically distributed. Although it is not

a technical requirement, the assumption that the sampling noise is iid simplifies notation and

exposition. The covariance betweeny
(k)
i andy

(l)
j is given by

Cov[y
(k)
i , y

(l)
j ] =





g0 gs(0)gt(k, k) + τ 2, if (i, k) = (j, l),

g0 gs(‖si − sj‖)gt(k, l), otherwise.
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Let Σ = Σ(S) denote the covariance matrix ofY . Where disambiguation is not required, we

use bold face to denote explicit dependence onS.

The simple kriging predictorat (s, t) ∈ D × R≥0 minimizes the error varianceσ2(s, t; S) =

Var(Z(s, t)−p(s, t; Y )) among all unbiased predictors of the formp(s, t; Y ) =
∑n

i=1

∑kmax
k=1 l

(k)
i y

(k)
i +

a, a ∈ R. The simple kriging predictor at(s, t) ∈ D × R≥0 corresponds then to the Linear

Unbiased Minimum Variance Estimator (LUMVE),

p̂SK(s, t; Y ) = µ(s, t) + cT
Σ

−1(Y − µ), (4)

with µ = (µ(s
(1)
1 , 1), . . . , µ(x

(kmax)
n , kmax))

T , c = Cov[Z(s, t), Y ] ∈ (Rkmax)n, and error variance,

σ2(s, t; S) = g0gs(0)gt(t, t) − cT
Σ

−1c. (5)

Note that the functionσ2 only depends on the location of the samples and is invariant under

permutations of the space-time sample locations.

III. PROBLEM STATEMENT

Here we describe the model for the robotic network and provide the objective function for

optimal sampling.

A. Robotic network model

Consider a group{R1, . . . , Rn} of n ∈ Z>0 robotic sensing agents taking measurements of

a spatio-temporal process of interest overD ⊂ R
d. The position of roboti ∈ {1, . . . , n} at

time t ∈ R is denoted bypi(t) ∈ D, andP (t) = (p1(t), . . . , pn(t))T ∈ Dn denotes the vector

of all positions. The robots take point measurements of the random process at their location at

discrete instants of time inZ>0. The results of the paper are independent of the particular robot

dynamics, so long as each agent is able to move up to any point within a distanceumax ∈ R>0

between consecutive sampling times. We assume that the agents have a tunable communication

radius that allows them to transmit prospective sample locations to nearby agents.

B. Objective function for spatial estimation

We consider the scenario where the robotic network is given atime frame [1, kmax], with

kmax ∈ Z>0, to sample the spatio-temporal processZ. A natural objective is to design sampling
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trajectories in such a way as to minimize the uncertainty of an estimate of the field at timekmax

generated from samples taken up to that time. Here, we consider an objective function inspired

by the notion of G-optimality from optimal design [20], [3].The maximum error variance

M : (Dkmax)n → R of estimates made at timekmax over the regionD is

M(S) = max
s∈D

σ2((s, kmax); S) = g0gs(0)gt(kmax, kmax) − min
s∈D

{
cT

Σ
−1c

}
. (6)

Note thatM corresponds to a “worst-case scenario,” where we consider locations in the domain

at which the error variance of the LUMVE is maximal. Under theassumption of noisy measure-

ments, i.e.,τ 2 > 0, the functionσ2 is well-defined for anys ∈ D andS ∈ (Dkmax)n. Indeed, the

dependence ofσ2 on the sample locations is continuous, and henceM is also well-defined. Our

goal is to find the sampling trajectoriesS ∈ (Dkmax)n that minimize the objective functionM.

Note that the simplified case ofkmax = 1 corresponds to optimal sampling locations for a

single snapshot of a static field, where, under near-independence [15], multicircumcenter Voronoi

configurations are optimal. The problem of trajectory optimization treated here is considerably

more complex. We should also note that all of our results holdfor predictions of the field made

at times other thankmax.

IV. OPTIMAL SOLUTIONS UNDER NEAR-INDEPENDENCE

The objective functionM is not convex and nonsmooth. The problem of finding an explicit

characterization for its optimizers is especially hard: even for kmax = 1, the optimization of

M is known to be NP-hard over discrete spaces [5]. In this section we consider instead the

optimization of M when the correlation function is raised to the powerα ∈ R>0. This is

equivalent to considering, instead of (2), the spatio-temporal covariance

Cov[ω(si, ti), ω(sj, tj)] = g0 gα
s (‖si − sj‖)g

α
t (ti, tj).

The meaning of this modified problem is as follows: asα grows, the correlation between

distinct space-time locations vanishes. This asymptotic regime of increasingly smaller correlation

between distinct points is known asnear-independence, see [14]. Note that the correlation

function (gsgt)
α retains much of the shape of the original correlation function (e.g., smoothness,

range, etc), so this analysis is helpful in determining the properties of the original problem as

well. To ease the exposition, we denote byc{α}, resp.Σ{α}, the vectorc, resp. the matrixΣ,
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with the correlation in each element raised to the powerα. Similarly, letM{α} : (Dkmax)n → R

be defined as

M{α}(S) = g0

(
gs(0)gt(kmax, kmax)

)α
− min

s∈D

{
(c{α})T (Σ{α})−1c{α}

}
.

Therefore, our objective is to characterize the asymptoticminimizers of this function. To do

so, we need to introduce a family of weighted distance measures based on correlation. Define

φ : R≥0 → R≥0 andw : {1, . . . , kmax} → R≥0 by,

φ(d) = − log(gs(d)), w(k) = − log(gt(kmax, k)).

The functionw gives a weight which depends on the temporal correlation between sample time

k and predictive timekmax. The functionφ is strictly increasing and continuously differentiable

with strictly positive derivative except possibly at zero.It therefore admits an inverse,φ−1 :

R≥0 → R≥0. The correlation between a sample at stepk and prediction at stepkmax induces the

weighted distance function,δk : D ×D → R≥0,

δk(s1, s2) = φ(‖s1 − s2‖) + w(k). (7)

We refer toδk as thecorrelation distanceassociated with sample timek, and note thatδk(s, s
(k)
i ) =

− log
(
gs(‖s − s

(k)
i ‖)gt(kmax, k)

)
. The following result classifies its level sets.

Lemma IV.1 (Correlation level sets)For eachk ∈ {1, . . . , kmax}, s ∈ D and c ∈ R, one has

Slvl(s
′ 7→ δk(s

′, s), c) = bnd
(
B(s, rk(c))

)
, whererk : R≥0 → R≥0, defined by

rk(c) =





φ−1(c − w(k)) if c ≥ w(k),

0 otherwise,

is strictly increasing and continuously differentiable onthe interval(w(k),∞), with derivative

rk
′(c) = 1

φ′(rk(c))
.

We are interested in those samples with smallest correlation distance to a given predictive

location. Note that this is equivalent to the samples with highest correlation to the predictive

location. We must therefore consider the possibility of samples with identical correlation to all

predictive locations. LetSunique be the following set of possible trajectories, which ensures the
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spatio-temporal uniqueness of any samples that achieve themaximal correlation distance from

any predictive location,

Sunique =
{

S = (s
(1)
1 , . . . , s(kmax)

n )T ∈ (Dkmax)n | 6 ∃(i, k) 6= (j, l) ∈ Isampands ∈ D, s.t.

δk(s, s
(k)
i ) = min

(i′,k′)∈Isamp

δk(s, s
(k′)
i′ ) andδk(s

′, s
(k)
i ) = δl(s

′, s
(l)
j ), ∀s′ ∈ D

}
.

Note that for sampless(k)
i ands

(l)
j to have identical correlation distance to all predictive locations

requires thats(k)
i = s

(l)
j and gt(kmax, k) = gt(kmax, l). We are now ready to characterize the

minimizers ofM{α} asα grows.

Theorem IV.2 (Global minimizers of M under near-independence)Let H : (Dkmax)n → R

denote thecorrelation distance disk-coveringfunction, defined by

H(S) = max
s∈D

{
min

(i,k)∈Isamp

{δk(s, s
(k)
i )}

}
. (8)

For Ω ⊂ (Dkmax)n compact, letSmcc ∈ Ω be a global minimizer of the correlation disk-covering

functionH over Ω. Further assume thatSmcc ∈ Sunique. Then, asα → ∞, Smcc asymptotically

globally optimizesM{α} over Ω, that is,M{α}(Smcc) approaches a global minimum overΩ.

The proof of the theorem can be reproduced for local minimizers of H over Ω to arrive at

the following result.

Corollary IV.3 (Local minimizers of M under near-independence)For Ω ⊂ (Dkmax)n com-

pact, let Smcc ∈ Ω be a local minimizer of the correlation disk-covering function H over Ω.

Then, asα → ∞, Smcc asymptotically locally optimizesM{α} over Ω, that is, M{α}(Smcc)

approaches a local minimum overΩ.

The generality of the subspaceΩ in Theorem IV.2 and Corollary IV.3 also allows us to apply

the result to two situations of particular importance. First, we may restrict the samples to feasible

trajectories based on vehicular movement limitations, andthe initial positions of the vehicles,

which we will call anchor points. This amounts to a restriction on each agent trajectory, andwe

define the range-based constraint set,ΩRg ⊂ (Dkmax)n as,ΩRg =
∏n

i=1 ΩRgi
, where

ΩRgi
=

{
(s

(1)
i , . . . , s

(kmax)
i )T ∈ Dkmax

∣∣ ‖s(1)
i − pi(0)‖ ≤ umax and

‖s
(k)
i − s

(k−1)
i ‖ ≤ umax, ∀k ∈ {2, . . . , kmax}

}
. (9)
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Our results also hold for a more general problem, optimizingover all P (0) ∈ Dn, however

this setup is directed at online path planning where the benefits of distributed implementation

shine. Second, a change in mission parameters at timek − 1, k ∈ {2, . . . , kmax}, might prompt

optimization over just those locations not yet sampled, i.e., Ω
(≥k)
Rg =

∏n

i=1 Ω
(≥k)
Rgi

, where

Ω
(≥k)
Rgi

=
{
(s

(k)
i , . . . , s

(kmax)
i )T ∈ Dkmax−k+1

∣∣ ‖s(k)
i − p(k − 1)‖ ≤ umax and

‖s
(k′)
i − s

(k′−1)
i ‖ ≤ umax, ∀k′ ∈ {k + 1, . . . , kmax}

}
. (10)

For ease of notation, we assume that these decisions and pathadjustments are made at sample

time instants, and thus the anchor points for optimization over Ω
(≥k)
Rgi

are the sample locations at

stepk − 1, but the process is easily extensible to optimization between sample times.

Theorem IV.2 shows that the optimization of the maximum error variance is equivalent to a

geometric optimization problem in the near-independence range. This remarkable result allows us

to turn the search for the optimizers ofM{α} into the search for the optimizers of the correlation

disk-covering functionH defined in (8). This is what we tackle in the following sections.

V. M AXIMAL CORRELATION PARTITION

In this section, we introduce the maximal correlation partition associated to a network trajec-

tory. This partition will be instrumental in determining the optimizers ofH. In the context of this

work, a partition ofD is a collection of compact subsets,W = {W
(1)
1 , . . . ,W

(kmax)
n } with disjoint

interiors whose union isD. For anyS ∈ Sunique, let MC(S) = (MC(1)
1 (S), . . . , MC(kmax)

n (S))

denote themaximal correlation partitiondefined by

MC(k)
i (S) =

{
s ∈ D

∣∣ δk(s, s
(k)
i ) ≤ δl(s, s

(l)
j ), ∀(j, l) 6= (i, k)

}
. (11)

This partition corresponds to a generalized Voronoi partition [16] for distance measureφ and

weights given byw. In general, the maximal correlation regions are neither convex nor star-

shaped. Note that, depending on the weights and locations, MC(k)
i (S) might be empty for somei.

Let I : P(D) → {1, . . . , n ∗ kmax} map a partition to the number of nonempty cells it contains,

which we term theindex of the partition. The following lemma gives some special cases in

which MC is equal to distance-based partitions known in the literature, see e.g., [16], [22].

Lemma V.1 (Special cases ofMC) The maximal correlation partitionMC(S) corresponds to
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• the Voronoi partition ofD with generatorsS, if all weights are equal,

• the power diagram, if the spatial correlation is the Gaussian, gs(d) = e−αd2
, with α ∈ R>0,

• the additively weighted Voronoi partition, if the spatial correlation is the exponential,

gs(d) = e−αd, with α ∈ R>0.

Figure 1 illustrates the latter two types of partitions. ForS ∈ Sunique, the correlation distance

(a) (b)

Fig. 1. Examples of maximal correlation partition in which each cell is defined by the predictive locations with highest (a)

exponential correlation and (b) Gaussian correlation to a given (generating) sample. In both cases, two timesteps are shown.

Samples taken at step 1 are shown as filled triangles, those taken at step 2 are shown as filled boxes.

disk-covering function can be restated in terms of the maximal correlation partition as,

H(S) = max
(i,k)∈Isamp

{
max

s∈MC(k)
i (S)

{δk(s, s
(k)
i )}

}
. (12)

This expression is important because it clearly shows howH has a double dependence on the

network trajectoryS: through the value of the correlation distance and through the maximal

correlation partition. This motivates us to define an extension of H as follows: for a given

sample vectorS ∈ (Dkmax)n and a partitionW = {W
(1)
1 , . . . ,W

(kmax)
n } ⊂ P(D) of the predictive

space, defineHW : (Dkmax)n → R by

HW(S) = max
(i,k)∈Isamp

W
(k)
i 6=∅

{
max

s∈W
(k)
i

{
δk(s, s

(k)
i )

}}
. (13)

Note that if S ∈ Sunique, thenH(S) = HMC(S)(S). This function is particularly useful in our

search for the optimizers ofH because it allows us to decouple the two dependencies of this

function on the network trajectory. The following result characterizes the maximal correlation

partition as the optimal partition forHW given a fixed network trajectory.
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Proposition V.2 (H-optimality of the maximal correlation partition) For anyS ∈ Sunique and

any partitionW ⊂ P(D) of D with I(W) ≤ I(MC(S)),

H(S) ≤ HW(S), (14)

that is, the maximal correlation partitionMC(S) is optimal forH among all partitions ofD of

less than or equal index.

Proposition V.2 implies that, in order to fully characterize the optimizers ofH, it is sufficient

to characterize the optimizers ofHW for a fixed arbitrary partition. The latter formulation is

advantageous because of the single dependence of the value of HW on the network trajectory.

VI. U NCONSTRAINED OPTIMAL TRAJECTORIES FOR A GIVEN PARTITION

In this section, our objective is to characterize the optimal network trajectories ofHW for

a fixed partitionW = {W
(1)
1 , . . . ,W

(kmax)
n } ⊂ P(D) of D. We will find it useful to start our

analysis with the simplified problem of locating a single sample to minimize the maximum

correlation distance to a single predictive region. We willthen build on this analysis to tackle

the more complex multiple sample problem.

A. Single sample unconstrained problem

For (i, k) ∈ Isamp with W
(k)
i 6= ∅, consider the task of choosing whereRi should take the

sample at timek. Let MCD(k)
i : D → R>0 be defined as,

MCD(k)
i (s) = max

s′∈W
(k)
i

δk(s
′, s). (15)

Note that MCD(k)
i corresponds toHW for a single agent and single sample at timestepk. For

any s ∈ D, it is important to note that the maximum correlation distance, MCD(k)
i (s) is attained

at the same locations inW (k)
i as the maximum Euclidean distance, i.e.,

argmax
s′∈W

(k)
i

δk(s
′, s) = argmax

s′∈W
(k)
i

‖s′ − s‖.

In the next result, which follows from Lemma IV.1, we characterize the sublevel sets of MCD(k)
i .

Lemma VI.1 (Sublevel sets of MCD)For any c ∈ R≥0, the setSsublvl(MCD(k)
i , c) is closed,

bounded, and strictly convex.
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W
(k)
i

CC(W
(k)
i )

Fig. 2. A two-dimensional example of the level sets of MCD(k)
i . The dashed circle is the circumcircle. The closed curves

around the circumcenter represent two different level sets of MCD(k)
i .

Figure 2 shows a two-dimensional example of the level sets ofMCD(k)
i . The following result

on the generalized gradient of the maximum correlation distance function makes use of [23,

Theorem 2.1] and [19, Theorem 2.3.9].

Lemma VI.2 (Smoothness of MCD(k)
i ) The MCD(k)

i is locally Lipschitz and regular, and its

generalized gradient takes the form

∂MCD(k)
i (s) = co{φ′(dmax(s,W

(k)
i )) vrs(s − s′) | s′ ∈ argmax

s∗∈W
(k)
i

δk(s
∗, s)}.

We next characterize the minimizers of MCD(k)
i .

Proposition VI.3 (CC(W
(k)
i ) minimizes MCD(k)

i ) The functionMCD(k)
i has a global minimum

at CC(W
(k)
i ) and no other critical points.

Remark VI.4 Note that Proposition VI.3 implies that the circumcenter minimizes the maximum

Euclidean distance to an arbitrary set. •

B. Multiple sample unconstrained problem

Here, we use the results of Section VI-A to tackle the multiple sample problem, i.e., the

characterization of the optima of the network objectiveHW . We can equivalently write (13) as

HW(S) = max
(i,k)∈Isamp

W
(k)
i 6=∅

MCD(k)
i (s

(k)
i ).
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The following result on the generalized gradient ofHW follows from using Lemma VI.2 and [19,

Proposition 2.3.12] on this expression.

Lemma VI.5 (Smoothness ofHW) The functionHW is locally Lipschitz and regular, and its

generalized gradient takes the form

∂HW(S) = co
{
∂MCD(k)

i (S) | (i, k) ∈ Isamps.t.MCD(k)
i (S) = HW(S)

}
,

where, with a slight abuse of notation, we useMCD(k)
i (S) to denote the mapS 7→ MCD(k)

i (s
(k)
i ).

In order to extend Proposition VI.3 to the multiple sample case, we first need to introduce

a piece of notation to account for the possibility of empty regions in the maximal correlation

partition. LetCC : P(Rd) × R
d → R

d be defined by

CC(W, s) =





CC(W ) if W 6= ∅,

s otherwise.

Let CC(W , S) =
(
CC(W

(1)
1 , s

(1)
1 ), . . . , CC(W

(kmax)
n , s

(kmax)
n )

)T
denote a vector of such circum-

center locations. We are now ready to state a generalizationof Proposition VI.3.

Proposition VI.6 (HW-optimal trajectories) For any S = (s
(1)
1 , . . . , s

(kmax)
n )T ∈ Sunique, any

partition W = {W (1)
1 , . . . ,W

(kmax)
n } ⊂ P(D) of D, and anyS̃ = (s̃

(1)
1 , . . . , s̃

(kmax)
n )T ∈ (Dkmax)n,

HW

(
CC(W , S̃)

)
≤ HW(S), (16)

that is, the circumcenter locationsCC(W , S̃) are optimal forHW among all network trajectories.

Note the duality between the results in Proposition V.2 (fora fixed network configuration,

the maximal correlation partition is optimal) and Proposition VI.6 (for a fixed partition, the

circumcenter locations are optimal). The combination of these two results allow us provide the

following characterization of the optimizers of the correlation disk-covering functionH.

Proposition VI.7 (Generalized multicircumcenter trajectories optimize H) ConsiderS =

(s
(1)
1 , . . . , s

(kmax)
n )T ∈ (Dkmax)n such thats(k)

i = CC
(
MC(k)

i (S)
)

for each (i, k) ∈ Isamp with

MC(k)
i (S) 6= ∅. ThenS is a local minimizer ofH over(Dkmax)n. We call such a network trajectory

a generalized multicircumcenter trajectory. Furthermore, ifI(MC(S)) = n ∗ kmax, thenS is a

global minimizer ofH over (Dkmax)n.
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VII. R ANGE-CONSTRAINED OPTIMAL TRAJECTORIES FOR A GIVEN PARTITION

In this section, our objective is to characterize the optimizers ofHW over ΩRg for a fixed

partitionW. We begin our discussion by providing a useful alternative expression forHW . Let

Wi = {W
(1)
i , . . . ,W

(kmax)
i } denote the elements of the partitionW assigned to the samples in

the trajectory ofRi. With a slight abuse of notation, we may write

HW(S) = max
i∈{1,...,n}
Wi 6=∅

HWi
(Si), where HWi

(Si) = max
k∈{1,...,kmax}

W
(k)
i 6=∅

{
MCD(k)

i (s
(k)
i )

}
.

The conditionWi 6= ∅ indicates that there is at least one nonemptyW
(k)
i ∈ Wi. The above

expression clearly shows that, for a fixed partition, minimizing HW over the space of network

trajectories is equivalent to (independently) minimizingeach of the functionsHWi
over the space

of trajectories of the robotRi. As a consequence, we structure our discussion in three parts.

First, we deal with the single sample problem. Then, we buildon this discussion to address

the problem of finding an optimal sampling trajectory for asingle agent. Finally, we combine

individual agent trajectories into a network trajectory tofind the constrained optimizers ofHW .

A. Single sample constrained problem

Proposition VI.3 allows a simple, geometric interpretation of the minimizer of MCD(k)
i . Our

objective here is to obtain a similar characterization for the range-constrained problem. We first

consider the single sample problem over a general closed convex constraint set.

Proposition VII.1 (Constrained minimizers of MCD (k)
i ) Assume thatW (k)

i 6= ∅. Let Γ ⊂ R
d

be closed and convex. Then a points∗ ∈ Γ is the unique minimizer ofMCD(k)
i over Γ if and

only if 0 ∈ ∂MCD(k)
i (s∗) + NΓ(s∗).

Let us now specify the range based constraint set fors
(k)
i . The set of constraining locationsof

(i, k) ∈ Isamp are the locations of robotRi at sample timesk − 1 andk + 1,

Scs(k, Si) = {p(k′) | k′ ∈ Kcs(k)}, whereKcs(k) = {k − 1, k + 1} ∩ {0, . . . , kmax}.

Note that in all but the initial anchor point, this set corresponds to the sample locations imme-

diately preceding and following the(i, k)th sample. LetΓ(k) : Dkmax → P(Rd) map a network
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trajectory to the intersection ofumax-balls centered at locations in the set of constraining locations

of (i, k), i.e.,

Γ(k)(Si) =
⋂

s∈Scs(k,Si)

B(s, umax). (17)

The setΓ(k)(Si) corresponds toΩRg with all other samples fixed in space. RestrictingS
(k)
i to

Γ(k)(Si) ensures thatRi does not violate the maximum distance requirementumax.

In order to state the main result of this section, we will find it useful to introduce an extension

of the predictive setW (k)
i which incorporates the position of sample(i, k) relative toΓ(k)(Si).

To that end, define EPt(k:k′) : Dkmax → R
d, (i, k) ∈ Isamp, k′ ∈ Kcs(k) by

EPt(k:k′)(Si) = s
(k)
i + rk(HWi

(Si))
s
(k′)
i − s

(k)
i

umax
, (18)

The reason for the use ofHWi
(Si) will be made apparent in Section VII-B. For now, it is only

important thatHW(Si) ≥ MCD(k)
i (s

(k)
i ). The location EPt(k:k′)(Si) can be seen as the projection

of s
(k′)
i onto the surface ofB(s

(k)
i , rk(HWi

(Si))
‖s

(k′)
i −s

(k)
i ‖

umax
). Then, we extend the predictive set

by the extended constraint points as follows. LetW̃
(k)
i : Dkmax → P(Rd), (i, k) ∈ Isamp be the

constraint extended predictive set,

W̃
(k)
i (Si) = co

(
W

(k)
i , {EPt(k:k′)(Si) | k′ ∈ Kcs(k)}

)
.

A point s ∈ W̃
(k)
i (Si) is active in centeringif there is no neighborhood ofs which might be

added tõW (k)
i (Si) without changing the circumcenter. It can be seen from (18) that EPt(k:k′)(Si)

is active in centering if and only ifrk(HWi
(Si))

‖s
(k)
i −s

(k′)
i ‖

umax
≥ rk

(
MCD(k)

i (s
(k)
i )

)
. Figure 3 shows

an example of the extended predictive set.

The next result gives a geometric interpretation of the constrained optimum in terms of̃W .

Proposition VII.2 (Extended circumcenter minimizes MCD(k)
i over Γ(k)(Si)) Assume that

Γ(k)(Si) and W
(k)
i are nonempty. Further assume that the scaling factor for theextended

constraints satisfiesHWi
(Si) = MCD(k)

i (s
(k)
i ). Then s

(k)
i is the unique minimizer ofMCD(k)

i

over Γ(k)(Si) iff s
(k)
i = CC

(
W̃

(k)
i (Si)

)
.

B. Multiple sample single agent constrained problem

Here we extend the constrained solution above to a single agent optimizing its own trajectory.

and characterize the optima ofHWi
over the constraint setΩRgi

defined in (9) in terms ofcentered
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W
(2)
1

ESet
(2)
1

Γ
(2)
1

s
(2)
1

s
(1)
1

EPt
(2:1)
1

s
(3)
1

EPt
(2:3)
1

Fig. 3. A two-dimensional example of the extended center representationof a critical point of the constrained problem. The

dashed circle is the circumcircle offW
(2)
1 , with circumcenters(2)

1 . Note thats(2)
1 is on the boundary ofΓ(2) formed bys

(1)
1 ,

and thus EPt(2:1) is active in centering.

sub-sequences. In order to facilitate discussion of generalized gradients, letd(k:k′) : Dkmax → R≥0,

k, k′ ∈ {1, . . . , kmax} be defined asd(k:k′)(Si) = ‖s(k)
i − s

(k′)
i ‖, and letd(1:0)(Si) = d 01(Si) =

‖s
(1)
i − pi(0)‖. With a slight abuse of notation, we use

W̃
(k)
i (Si; KC) = co

(
W

(k)
i , {EPt(k:k′)(Si) | k′ ∈ Kcs(k) ∩ KC}

)
.

to denote constraint extended sets as calculated with a subset of the constraint points.

Lemma VII.3 (Centered sequences satisfy range constraint)Let Si ∈ Dkmax, and letKC ⊆

{1, . . . , kmax} define a sequence of consecutive samples fromSi such that each is at the circum-

center of the extended set formed by consecutive neighbors in the sequence, i.e.,

s
(k)
i = CC

(
W̃

(k)
i (Si; {0} ∪ KC)

)
, for all k ∈ KC ,

Thend(k:k′)(Si) ≤ umax, for all k ∈ KC and k′ ∈ ({0} ∪KC)∩Kcs(k). We call such a sequence

centered.

Figure 4 shows an example of a centered sequence.

In the unconstrained case, optimizingHW takes the form of centering each sample within

its predictive region, which may be characterized in terms of the generalized gradient of MCD.

Given our discussion for the single sample constrained problem, in particular Proposition VII.2,

we next characterize the gradient of the maximum correlation distance to theextendedpredictive
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W1
s1

W2

s2

W3

s3

Fig. 4. Two-dimensional three sample example of a centered sequence. The solid arrows show the directions from the sample

to the farthest points in the associated predictive region. For illustrative purposes, we have used a correlation distance equivalent

to Euclidean distance.

region,W̃ , and thereby the optimal agent trajectories in terms of centered sequences. We begin

with a result on the effect of the trajectory on the constraint extended predictive sets.

Lemma VII.4 (Correlation distance to extended constraints)Let (i, k) ∈ Isamp and k′ ∈

Kcs(k), and letSi ∈ Dkmax such thats(k)
i 6= s

(k′)
i . Let CDE(k:k′)

i : Dkmax → R be defined by

CDE(k:k′)
i (Si) = δk(s

(k)
i , EPt(k:k′)(Si)).

The functionCDE(k:k′)
i is locally Lipschitz and regular nearSi, and its generalized gradient at

Si takes the form

∂CDE(k:k′)
i (Si) =

φ′(‖EPt(k:k′)(Si) − s
(k)
i ‖)

umax
×

×
(
rk(HWi

(Si))∂ d(k:k′)(Si) +
d(k:k′)(Si)

φ′(rk(HWi
(Si)))

∂HWi
(Si)

)
.

In the expression of the gradient of CDE(k:k′)
i wherek′ 6= 0, note that sinces(k)

i 6= s
(k′)
i , the

set∂ d(k:k′)(Si) consists of a single vector whose only nonzero components are thekth andk′th

entries. Likewise∂ d(1:0)(Si) is nonzero only in the first entry.

We next characterize the function which maps the maximum correlation from a sample to any

point in its constraint extended predictive set.

Lemma VII.5 (Extended set correlation distance)Let (i, k) ∈ Isamp. LetMCD(k)
fW

: Dkmax → R

map the ith trajectory to the maximum correlation distance froms(k)
i to the corresponding
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constraint extended predictive set, i.e.,

MCD(k)
fW

(Si) = max
s∈fW

(k)
i (Si)

δk

(
s, s

(k)
i

)
.

Further assume thateither W
(k)
i 6= ∅, or there is ans ∈ Scs(k, Si) such thats(k)

i 6= s. Then

MCD(k)
fW

is locally Lipschitz and regular, and the generalized gradient takes the form

∂MCD(k)
fW

(Si) =





∂MCD(k)
i (Si) if MCD(k)

i (Si) > CDE(k)
max(Si),

∂CDE(k)
max(Si) if MCD(k)

i (Si) < CDE(k)
max(Si),

co
{
∂MCD(k)

i (Si), ∂CDE(k)
max(Si)

}
if MCD(k)

i (Si) = CDE(k)
max(Si),

whereMCD(k)
i (Si) denotes the mapSi 7→ MCD(k)

i (s
(k)
i ), CDE(k)

max(Si) = maxl∈Kcs(k) CDE(k:l)
i (Si),

and ∂CDE(k)
max(Si) = co{∂CDE(k:k′)

i (Si) | k′ ∈ argmaxl∈Kcs(k) CDE(k:l)
i (Si)}.

The constrained objective function for a single agent may bedefined as

HfWi
(Si) = max

k∈{1,...,kmax}
MCD(k)

fW
(Si).

Note that this function may be calculated entirely byRi. The following proposition describes

the smoothness of the per-agent constrained objective function.

Proposition VII.6 (Extended maximum correlation distance)Let i ∈ {1, . . . , n} and assume

that the setWi contains at least one nonempty element. The functionHfWi
is locally Lipschitz

and regular and its gradient takes the form

∂HfWi
(Si) = co

{
∂MCD(k)

fW
(Si), k ∈ {1, . . . , kmax} | MCD(k)

fW
(Si) = HfWi

(Si)
}
. (19)

Lemma VII.7 (Equality of HfWi
and HWi

over ΩRgi
) Let i ∈ {1, . . . , n} and Si ∈ ΩRgi

. Then

HfWi
(Si) = HWi

(Si).

We next characterize the critical points ofHfWi
in terms of a special case of centered sequences.

Lemma VII.8 (Maximal elements define sub-sequences within centered sequences)Let

KC ⊆ {1, . . . , kmax} define a centered sequence of samples inSi with max
k∈KC

MCD(k)
i (s

(k)
i ) = HWi

(Si).

Then there is a sub-sequence,KMC ⊆ KC which is centered and such that everyk ∈ KMC

satisfiesMCD(k)
fW

(s
(k)
i ) = HWi

(Si). We refer to a sequence such asKMC as maximally centered.

April 17, 2010 DRAFT



20

Proposition VII.9 (Global minimizers of HfWi
on ΩRgi

contain maximally centered se-

quences)A trajectorySi ∈ ΩRgi
is a critical point ofHfWi

if and only if it contains at least one

maximally centered sequence of samples. Furthermore, any such critical point globally minimizes

HWi
on ΩRgi

.

C. Multiple agent constrained problem

Finally, we combine agent trajectories into a network trajectory to find the constrained opti-

mizers ofHW . First, defineHfW : (Dkmax)n → R by

HfW(S) = max
i∈{1,...,n}

HfWi
(Si). (20)

The following result extends Lemma VII.7 to the network.

Lemma VII.10 (Equality of HfW and HW over ΩRg) Let S ∈ ΩRg. ThenHfW(S) = HW(S).

The critical points of the extended network objective function may now be characterized. The

proof of this result follows from Proposition VII.9.

Proposition VII.11 (Global minima of HfW on ΩRg contain maximally centered sequences)

A trajectory S ∈ ΩRg is a critical point of HfW if and only if there is at least onei ∈

argmaxi∈{1,...,n} HWi
(Si) such thatSi contains at least one maximally centered sequence. Fur-

thermore, any such critical point is a global minimum ofHW over ΩRg

Proposition VII.11 allows us to think of the optimization ofHW independently for each agent.

If each agent optimizes their own trajectory (cf. Proposition VII.9), then the resulting network

trajectory is optimal. Along with Proposition V.2, this allows the following result on the optimal

trajectories of the correlation disk-covering functionH over ΩRg.

Proposition VII.12 (Range-constrained generalized multicircumcenter trajectory) Let S =

(ST
1 , . . . , ST

n ) ∈ (Dkmax)n such that eachSi contains at least one maximally centered sequence

with respect to the partitionW = MC(S). ThenS is a local minimizer ofH over ΩRg. We

call such a network trajectory arange-constrained generalized multicircumcenter trajectory.

Furthermore, ifI(MC(S)) = n ∗ kmax, thenS is a global minimizer ofH over ΩRg.

Remark VII.13 Note that if eachSi is centered, then it must contain a maximally centered

sequence, and thusS is a range-constrained generalized multicircumcenter trajectory. •
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The following proposition allows for partial optimizationof trajectories which are already

under way, based on minimizing the maximum errorover the remainder of the experiment. The

proof is a direct result of Proposition VII.9, where the samples being optimized over are anchored

by the last sample already taken.

Proposition VII.14 (Partially fixed range-constrained generalized multicircumcenter tra-

jectory) Let k∗ ∈ {2, . . . , kmax}, and assume that samples{1, . . . , k∗− 1} have been taken (thus

the locations are now fixed). LetS = (ST
1 , . . . , ST

n ) ∈ (Dkmax)n such that, for eachi ∈ {1, . . . , n},

∃Ki ⊆ {k∗, . . . , kmax} which defines a maximal sequence of samples inSi, with anchor point

pi(k
∗ − 1). ThenS is a local minimizer of the map(s(k∗)

1 , . . . , s
(kmax)
n ) 7→ H(S) over Ω

(≥k∗)
Rg .

Furthermore, ifI(MC(S)) = n ∗ kmax, thenS is a global minimum of the constrained problem.

VIII. T HE GENERALIZED MULTICIRCUMCENTER ALGORITHM

Given our discussion in the previous sections, here we synthesize coordination algorithms

to find the optimal trajectories of the correlation disk-covering H with and without range-

constraints. The design of these strategies is based on the characterizations stated in Propo-

sitions VI.7 and VII.12 for the unconstrained and the constrained cases, respectively.

Table I presents theGENERALIZED MULTICIRCUMCENTER ALGORITHM, based on the well-known

Lloyd algorithm for data clustering, by which the network may find a minimizer ofH over

Ω
(≥k∗)
Rg for somek∗ ∈ {1, . . . , kmax}. With slight adjustments, the same algorithm works for the

unconstrained case.

Figure 5 shows results of a simulation of theGENERALIZED MULTICIRCUMCENTER ALGORITHM,

leaving out the initial anchor points to illustrate optimization over the set of all initial positions.

The convergence properties of the algorithm are characterized in the following result.

Proposition VIII.1 (Convergence of the GENERALIZED M ULTICIRCUMCENTER ALGORITHM ) The

GENERALIZED MULTICIRCUMCENTER ALGORITHM is distributed over the partitionMC(S{j}), mean-

ing that at stepj + 1, Ri need only communicate withRi′ for each i′ ∈ {1, . . . , n} such that

MC(k)
i (S{j}) adjacent to MC(k

′)
i′ (S{j}) for somek, k′. Furthermore,S{j} ∈ Ω

(≥k∗)
Rg , for all j ∈ Z>0.

As j → ∞, S{j} approaches aS∗ ∈ (Dkmax)n, and if S∗ 6∈ Sunique, thenS∗ is a minimizer ofH

over Ω
(≥k∗)
Rg .
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Goal: Find a minimum ofH over Ω
(≥k∗)
Rg

Input: (i) Sample interval[k∗, kmax]

(ii) Anchor points,pi(k
∗ − 1), i ∈ {1, . . . , n}

(ii) Initial trajectory, S{0} = (S
{0}
1 , . . . , S

{0}
n )T ∈ Ω

(≥k∗)
Rg , with S

{0}
i the ith agent trajectory

Assume: (i) Ri has a communication radius,Rcom ∈ R>0 which is large enough to communicate its

trajectory to any other agents whose samples are neighbors in MC

(ii) If k∗ > 1, Ri knows the locations of all past samples which neighbor any future samples of

Ri in MC

For j ∈ Z>0, each robotRi, i ∈ {1, . . . , n} executes synchronously

1: send all future elements ofS{j−1}
i to robots within a distance ofRcom

2: calculate MC(k)
i (S{j−1}) for k ∈ {k∗, . . . , kmax}

3: run gradient descent ofHfWi

on future samples onlyto find a centered agent trajectory,S
{j}
i ∈ Ω

(≥k∗)
Rg

i

TABLE I

GENERALIZED MULTICIRCUMCENTER ALGORITHM.
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Fig. 5. Simulation of20 iterations of theGENERALIZED MULTICIRCUMCENTER ALGORITHM with no initial anchor

points. (a) Shows the initial trajectoryS{0}. (b) Shows the final trajectoryS{20}. In each case, the associated maximal correlation

partition is drawn, with the different colors representing different agents and different intensities of each color representing the

timestep at which the given sample is to be taken (more intense colors represent later timesteps). The dashed lines show the

path each agent will take. (c) Shows the value ofH(S{j}) as a function ofj.

Remark VIII.2 We suspect that the limit points of theGENERALIZED MULTICIRCUMCENTER AL-

GORITHM are in Sunique except for initial conditions in a set of measure zero, but establishing

this fact is challenging because of the delicate interplay between the objective function and the

constraints. Extensive simulations have reinforced our idea that this intuition is correct. •

We next turn our attention to an adaptive approach to optimalpath planning. Before moving to
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take thekth sample, an intelligent network of robotic sensors might receive updated information

from an external source (a change in the environment or network composition, or even human

input). One or more of the agents may switch from sensing modeto actuation mode, or back.

The GENERALIZED MULTICIRCUMCENTER ALGORITHM directly applies to such a situation, because it

optimizes over only those sample locationsnot yet fixed. The network will arrive at a trajectory

which minimizes the maximum error variance over all trajectories feasible to the network

moving forward. Table II describes theSEQUENTIAL GENERALIZED MULTICIRCUMCENTER ALGORITHM

for performing this sequential optimization. The convergence of theSEQUENTIAL GENERALIZED

MULTICIRCUMCENTER ALGORITHM follows from Proposition VIII.1, and Figure 6 depicts an illus-

trative example.

Goal: Sequentially updated optimization.

Input: (i) Initial trajectory, S{0} = (S
{0}
1 , . . . , S

{0}
n )T ∈ ΩRg, with S

{0}
i the ith agent trajectory

(ii) Status information about correlation structure, domain boundaries, and network composition

Initialization

1: network calculates optimal trajectory,S, via GENERALIZED MULTICIRCUMCENTER ALGORITHM

For k ∈ {1, . . . , kmax}

1: move tokth location in optimal trajectory and takekth sample

2: if status input changed since previous optimizationthen

3: run the GENERALIZED MULTICIRCUMCENTER ALGORITHM to calculate a new optimal network trajectory

over Ω
(k+1)
Rg , holding the sample locations at steps1, . . . , k fixed

TABLE II

SEQUENTIAL GENERALIZED MULTICIRCUMCENTER ALGORITHM

IX. CONCLUSIONS

We have considered a robotic sensor network taking samples of a spatio-temporal process. As

criteria for optimization we have taken the maximum error variance of the prediction made at the

end of the experiment. Under the asymptotic regime of near-independence, we have shown that

minimizing this error is equivalent to minimizing the correlation distance disk-covering function,

thus allowing geometric solutions. We have introduced the maximal correlation partition and

showed that it is the optimal partition of the predictive space for the disk-covering function given
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Fig. 6. Evolution of three steps of theSEQUENTIAL GENERALIZED MULTICIRCUMCENTER ALGORITHM with n = 8

robots,kmax = 5 steps, and Gaussian correlation. In (a), the initial trajectory is calculated from the initial anchor pointspi(0). In

(b), the first set of samples have been taken, andR6 has dropped out to perform another task (for this simulation,R6 remains

stationary during this task). The figure shows the result of theGENERALIZED MULTICIRCUMCENTER ALGORITHM as

run by the remaining7 agents over timesteps{2, . . . , kmax}. In (c), after the second set of samples have been taken,R6 joins the

network again. The figure shows the result of optimizing over steps{3, . . . , kmax} with all agents. In all three plots, the anchor

points and any past samples are shown as solid triangles, with solid lines connecting the initial anchors to the first samples,

the optimized samples at steps{k∗, . . . , kmax} are empty triangles, with dashed lines connecting each agent trajectory. The last

sample location of the dropped agent is circled. In each case, the associated maximal correlation partition is drawn, with the

different colors representing different agents and different intensities of each color representing the timestep at which the given

sample is to be taken (more intense colors represent later timesteps).

a fixed network trajectory. We have introduced the novel notion of multicircumcenter trajectories

and established their optimality with regards to the disk-covering function given a fixed partition.

We have also defined a notion of extended sets which encodes a maximum movement restriction

into a form of geometric centering, yielding the constrained multicircumcenter trajectory which is

optimal over the set of all range-constrained trajectories. On the design front, we have synthesized

distributed strategies that allow the network to calculatean optimal trajectory. In an ongoing

experiment, the optimization can be executed online to recalculate the remaining sample locations

in the face of changes in the environment, network structure, or human input. Future work will

include the study of more complex predictive regions and of alternative optimality criteria.
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APPENDIX

PROOFS AND SUPPORTING RESULTS FROMSECTION IV

We begin with some notation and preliminary results. Letmcds : D × (Dkmax)n → F(Isamp)

denote theminimal correlation distance set(MCDS) defined as,

mcds(s, S) = argmin
(i,k)∈Isamp

{
δk(s, s

(k)
i )

}
.

Note thatmcds defines the set of samples inS with the highest correlation tos. Let gmax :

D × (Dkmax)n → R map location and trajectory to this maximal correlation value, i.e.,

gmax(s, S) = gs(‖s − s
(k)
i ‖)gt(kmax, k), ∀ (i, k) ∈ mcds(s, S).

The following result describes a useful result on the dimensionality of the intersection of any

two correlation distance surfaces.

Lemma A.1 (Equidistant sets are at mostd−1 dimensional surfaces)Assume thatS ∈ Sunique,

and let (i, k), (j, l) ∈ Isamp. Defineγ = {s ∈ R
d | δk(s, s

(k)
i ) = δl(s, s

(l)
j )} ⊂ R

d. Thenγ = R
d

if and only if (i, k) = (j, l). Otherwise, ifγ 6= ∅, then it describes a surface inRd which is at

mostd − 1 dimensional.

Proof: First, consider the shape of the correlation distance surfaces s 7→ δk(s, s
(k)
i ) and

s 7→ δl(s, s
(l)
j ) in R

d+1. From (7), it can be seen that the two surfaces differ only by atranslation

which is a result of both the spatial and temporal locations of the sample. The assumption

that S ∈ Sunique implies thatγ = R
d if and only if (i, k) = (j, l). Next, assumeγ 6= R

d and

γ 6= ∅. It can be shown that either the two correlation distance surfaces are tangent and that

the tangent surface is contained within a one-dimensional line, or the gradient of the function

s 7→ δk(s, s
(k)
i ) − δl(s, s

(l)
j ) over γ \ {s

(k)
i , s

(l)
j } is nonzero, implying that the dimension ofγ is

at mostd − 1.

The above lemma allows the following result on the cardinality of the MCDS.
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Proposition A.2 (Cardinality of MCDS) Assume thatS ∈ Sunique. Then,

min
s∈D

{
gmax(s, S) |mcds(s, S)|

}
= min

s∈D

{
gmax(s, S)

}
.

Proof: We proceed by contradiction. If the statement is false, thenthere existss† ∈ D

such thats† ∈ argmins∈D

{
gmax(s, S) |mcds(s, S)|

}
, and |mcds(s†, S)| > 1. DefineΓ ⊂ D by

Γ = {s ∈ D | |mcds(s, S)| > 1}. Note thats† ∈ Γ, and Γ ⊆
⋃

i6=j γij. Lemma A.1 shows

that Γ is the union of a finite number of surfaces of dimension at mostd − 1 embedded in

R
d. For any ǫ ∈ R>0, there is a locations∗ ∈ D \ Γ which satisfies‖s† − s∗‖ < ǫ. Thus

|mcds(s∗, S)| = 1. Sincegmax(s, S) changes continuously withs, for ǫ small enough we have,

gmax(s
∗, S)|mcds(s∗, S)| < gmax(s

†, S)|mcds(s†, S)|, which is a contradiction.

We are now ready to prove the main result.

Proof of Theorem IV.2:Note that minimizingM{α} on ΩRg is equivalent to maximizing the

functionL{α} : ΩRg → R defined byL{α}(S) = mins∈D

{
(c{α})T×(Σ{α})−1(c{α})

}
. Let λmin and

λmax : ΩRg×R → R be such thatλmin(S, α), λmax(S, α) denote, respectively, the minimum and

the maximum eigenvalue ofΣ{α}. Note that withτ 2 6= 0, we have0 < λmin(S, α) ≤ λmax(S, α).

Gershgorin circles and Proposition A.2 yield the asymptotic bounds,

g2
0

λmax(S, α)
min
s∈D

{gmax(s, S)2α(1 + o(1))} ≤ L{α}(S) ≤
g2
0

λmin(S, α)
min
s∈D

{gmax(s, S)2α(1 + o(1))}.

Consider, then, comparing an arbitrary sampling trajectoryS∗ ∈ ΩRg against a global minimizer

of H on ΩRg, saySmcc. We can write,

L{α}(S∗)

L{α}(Smcc)
≤

1
λmax(S∗,α)

mins∈D

{
gmax(s, S

∗)2α(1 + o(1))
}

1
λmin(Smcc,α)

mins∈D

{
gmax(s, Smcc)2α(1 + o(1))

} . (21)

Next we take a closer look at the eigenvalues. Note that the covariance matrix,Σ{α} becomes

diagonal for largeα. This gives uslimα→∞ 1/(g0 + τ 2)Σ{α} = Inkmax, and it can be seen that

λmax(S, α)/(g0 + τ 2) and λmin(S, α)/(g0 + τ 2) tend to1 for any sample trajectoryS ∈ ΩRg.

Finally, sinceSmcc minimizes the maximum overs of the minimum over(i, k) of δk(s, s
(k)
i ) =

φ(‖s − s
(k)
i ‖) − w(k), it equivalently maximizes the minimum value ofgmax(s, S). For any

S ∈ ΩRg, mins∈D{gmax(s, S)2α} ≤ mins∈D{gmax(s, Smcc)
2α}. Thus the ratio (21) is bounded

by 1 + o(1). Therefore, in the limit asα → ∞, minimizing M{α} over ΩRg is equivalent to

minimizing the maximum covariance disk-covering function, H on ΩRg.
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PROOFS AND SUPPORTING RESULTS FROMSECTION V

Proof of Proposition V.2: Let (i, k) ∈ Isamp and s∗ ∈ D be such thatH(S) = δk(s∗, s
(k)
i ).

By definition, given a partitionW = {W
(1)
1 , . . . ,W

(kmax)
n } of D, there exists a pair,(j, l) ∈ Isamp,

such thats∗ ∈ W
(l)
j . The definition ofMC and the assumption that I(W) ≤ I(MC(S)) leads to

the implication chain,H(S) = δk(s∗, s
(k)
i ) ≤ δl(s∗, s

(l)
j ) ≤ max

s∈W
(l)
j

δl(s, s
(l)
j ) ≤ HW(S).

PROOFS AND SUPPORTING RESULTS FROMSECTION VI

Proof of Lemma VI.1: For c ≤ w(k), we haveSsublvl(MCD(k)
i , c) = ∅. Otherwise, it is the

intersection of an infinite set of closedd-spheres, which is a strictly convex set.

Proof of Proposition VI.3: First, note that MCD(k)
i and the maps 7→ dmax(s,W

(k)
i ) have

the same extrema. In [24] it is shown that the latter functionhas a unique global minimum at

CC(W
(k)
i ), when W

(k)
i is taken to be a convex polygon. Identical reasoning yields the same

result for any closed, bounded and nonemptyW
(k)
i . Thus CC(W

(k)
i ) is a global minimum of

MCD(k)
i . The requirement thatφ′(d) > 0 for all d > 0 suffices to ensure that MCD(k)

i does

not have any critical points which are not critical points ofthe Euclidean maximum distance

function. Since that function has no critical points other thanCC(W
(k)
i ), the result follows.

Proof of Proposition VI.6: For each(i, k) ∈ Isamp with W
(k)
i 6= ∅, we can write,

max
s∈W

(k)
i

{
δk

(
s, CC(W

(k)
i , s̃

(k)
i )

)}
= φ

(
max

s∈W
(k)
i

‖s − CC(W
(k)
i , s̃

(k)
i ))‖

)
+ w(k) ≤

≤ φ( max
s∈W

(k)
i

‖s − s
(k)
i ‖) + w(k) = max

s∈W
(k)
i

{
δk(s, s

(k)
i )

}
.

Taking the maximum over all nodes implies (16).

PROOFS AND SUPPORTING RESULTS FROMSECTION VII-A

We begin with this supporting result on strictly convex sets.

Lemma A.3 (Strict convexity) Let G ⊂ R
d be closed, bounded, and strictly convex. For any

s1, s2 ∈ G and v ∈ NG(s2) \ {0}, vT vrs(s1 − s2) < 0. Equivalently,vrs(s1 − s2) ∈ int(TG(s2)).

Proof of Proposition VII.1: Necessity is a result of [19, Corollary to Proposition 2.4.3].

To show sufficiency, assume that0 ∈ ∂MCD(k)
i (s∗) + NΓ(s∗), and we consider two cases. If

CC(W
(k)
i ) ∈ Γ, the result follows by Proposition VI.3. We proceed by contradiction. Assume that
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s∗ 6= CC(W
(k)
i ), and0 ∈ ∂MCD(k)

i (s∗)+NΓ(s∗), buts∗ is not a unique minimizer. Then∃s† ∈ Γ

such that MCD(k)
i (s†) ≤ MCD(k)

i (s∗). By Proposition VI.3,s∗ is not a critical point of MCD(k)
i .

It follows that there is at least one nonzero vector,vG ∈ ∂MCD(k)
i (s∗) with −vG ∈ NΓ(s∗),

which implies vT
G vrs(s† − s∗) ≥ 0. We know thats† ∈ Ssublvl(MCD(k)

i , MCD(k)
i (s∗)), and by

Lemma VI.1,Ssublvl(MCD(k)
i , MCD(k)

i (s∗)) is strictly convex. By [19, Theorem 2.4.7 Corollary

1], vG ∈ N
Ssublvl(MCD(k)

i ,MCD(k)
i (s∗))

(s∗). Lemma A.3 yields,vT
G vrs(s† − s∗) < 0, a contradiction.

Therefores∗ is the unique global minimizer of MCD(k)
i over Γ.

We will need this supporting result on the circumcenter of the extended set.

Lemma A.4 (s = CC(W̃
(k)
i (Si)) implies s ∈ Γ(k)(Si)) Assume thatW (k)

i 6= ∅. Let Si ∈ Dkmax

such thatΓ(k)(Si) 6= ∅. If s
(k)
i = CC

(
W̃

(k)
i (Si)

)
thens

(k)
i ∈ Γ(k)(Si)

⋂
D.

Proof: Assume thats(k)
i = CC

(
W̃

(k)
i (Si)

)
. Equation (18) and the fact thats

(k)
i ∈ co

(
W̃

(k)
i (Si)

)

imply that s
(k)
i ∈ D. That s

(k)
i ∈ Γ(k)(Si) follows by contradiction from the fact thats(k)

i 6∈

Γ(k)(Si) implies that s(k)
i = CC(co{Scs(k, Si)}), and the fact thatΓ(k)(Si) is the nonempty

intersection ofd-spheres of equal radii centered at points inScs(k, Si).

Proof of Proposition VII.2: As a result of Lemma A.4,s(k)
i = CC

(
W̃

(k)
i (Si)

)
implies that

s
(k)
i ∈ Γ(k)(Si). We may therefore assumes(k)

i ∈ Γ(k)(Si). Note that sinces(k)
i ∈ Γ(k)(Si), we

may write,dmax(s
(k)
i , W̃

(k)
i (Si)) = rk(HWi

(Si)) = rk

(
MCD(k)

i (s
(k)
i )

)
. If, in addition,d(k:k′)(Si) =

umax for somek′ ∈ Kcs(k), then we also have,rk(HWi
(Si)) = ‖s(k)

i − EPt(k:k′)(Si)‖. Let ξEPt ⊂

R
d, respectivelyξW ⊂ R

d denote the sets of unit vectors pointing froms(k)
i to the extended

constraint points at a distance ofrk(HWi
(Si)), respectively to the points inW (k)

i at a distance

of rk(HWi
(Si)), i.e.,

ξEPt =
{

vrs(s
(k′)
i − s

(k)
i )

∣∣k′ ∈ Kcs(k) s.t.‖s(k)
i − EPt(k:k′)(Si)‖ = rk(HWi

(Si))
}

ξW = {vrs(s − s
(k)
i ) | s ∈ W

(k)
i s.t.‖s(k)

i − s‖ = rk(HWi
(Si))}.

It can be deduced from Equation (18) that the set{0
⋃

ξEPt} spansNΓ(k)(Si)(s
(k)
i ). By extension of

Proposition VI.3, we may conclude thats
(k)
i = CC

(
W̃

(k)
i (Si)

)
if and only if 0 ∈ co{ξW

⋃
ξEPt}.

It can be seen that0 ∈ co{ξW

⋃
ξEPt} if and only if 0 ∈ ∂MCD(k)

i (s
(k)
i ) + NΓ(k)(Si)(s

(k)
i ). By

Proposition VII.1, we have our result.
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PROOFS AND SUPPORTING RESULTS FROMSECTION VII-B

Proof of Lemma VII.3: The result follows by simple contradiction from two observations

for any k′ ∈ Kcs(k) ∩ KC . First, if d(k:k′) > umax, thens
(k)
i = CC(W̃

(k)
i (Si; KC)) would imply

that Kcs(k)∩KC = {k − 1, k + 1} ands
(k)
i =

s
(k−1)
i +s

(k+1)
i

2
. Second, the first and last samples in

the sequence must satisfyδk

(
EPt(k:k′)(Si), s

(k)
i

)
≤ MCD(k)

i (Si).

Proof of Lemma VII.4: From Equation (18), we can write,

‖EPt(k:k′)(Si) − s
(k)
i ‖ =

rk(HWi
(Si))

umax
d(k:k′)(Si).

It has been established thatHW is locally Lipschitz and regular, as isd(k:k′). The gradient is

derived from [19, Proposition 2.3.13] and a special case of [19, Theorem 2.3.9].

The following result characterizes critical points of∂CDE(k:k′)
i ⊂ ∂HfWi

(Si).

Corollary A.5 (Critical points of ∂CDE(k:k′)
i (Si)) Let Si ∈ ΩRgi

, and letk, k′ ∈ {1, . . . , kmax}.

If 0 ∈ ∂CDE(k:k′)
i (Si) ⊂ ∂HfWi

(Si) thenall of the following hold,

HWi
(Si) = MCD(k)

i (Si) = MCD(k′)
i (Si) (22a)

0 ∈ co{∂MCD(k)
i (s

(k)
i ), ∂MCD(k′)

i (s
(k′)
i )} (22b)

s
(k)
i = CC

(
W̃

(k)
i (Si; {k

′})
)
. (22c)

Proof: First, note that sinceSi ∈ ΩRgi
, we have∂CDE(k:k′)

i (Si) ⊂ ∂HfWi
(Si) if and only if

d(k:k′)(Si) = umax. From Lemma VII.4 it can be seen that∂CDE(k:k′)
i (Si) is proportional to the

sum of two vector sets, one of which consists of a single vector which is nonzero only in thekth

andk′th components, and the other is∂HWi
(Si). Any vector in∂HWi

(Si) is zero everywhere

except (possibly) the element corresponding to a single timestep. Thus0 ∈ ∂CDE(k:k′)
i (Si)

only if Equation (22a) holds. Solving the two simultaneous equations0 ∈ πk(∂CDE(k:k′)
i ) and

0 ∈ πk′(∂CDE(k:k′)
i ) yields the other results.

Proof of Lemma VII.5: Note that MCD(k)
fW

(Si) = max
{

MCD(k)
i (Si), CDE(k)

max(Si)
}

. By

Lemmas VII.4 and VI.2, MCD(k)
fW

(Si) can be seen to be the maximum of locally Lipschitz and

regular functions, and therefore locally Lipschitz and regular itself. The form of the gradient

follows from application of [19, Proposition 2.3.12].

Proof of Proposition VII.6: The MCD(k)
fW

is locally Lipschitz and regular for allk ∈

argmaxk∈{1,...,kmax} MCD(k)
fW

(Si). SinceHfWi
is the maximum of locally Lipschitz and regular
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functions, it is locally Lipschitz and regular itself. The form of the gradient follows from

application of [19, Proposition 2.3.12].

Proof of Lemma VII.7: For anyk ∈ {1, . . . , kmax} andk′ ∈ Kcs(k), Si ∈ ΩRg implies that

CDE(k:k′)
i (Si) ≤ HWi

(Si). By definition, we also have MCD(k)
i (Si) ≤ HWi

(Si), with equality

for at least onek. We may then write,HfWi
(Si) = maxk∈{1,...,kmax} MCD(k)

fW
(Si) = HWi

(Si).

Proof of Lemma VII.8:First, note that sinceSi ∈ ΩRgi
, for anyk ∈ KC andk′ ∈ Kcs(k), we

have CDE(k:k′)
i (Si) ≤ HWi

(Si), with equality if and only ifd(k:k′)(Si) = umax. If this condition

is not met, then samples(k′)
i is not active in the centering ofs(k)

i . Furthermore, if MCD(k
′)

fW
(Si) <

HWi
(Si), then CDE(k

′:k)
i (Si) < HWi

(Si). Thus any sample which does not have maximal distance

to its extendedset can not be active in the centering of a sample which does. If k is maximal, and

k′ is not, then the sub-sequence which includesk but notk′ is also centered. Thus a maximally

centered sequence may be constructed around any maximal sample in KC .

Proposition A.6 (Maximally centered trajectories are optimal) Let Wi ⊂ P(D) and Si ∈

ΩRgi
such that the entire sequence,Si is maximally centered. ThenSi is the unique strict global

minimizer ofHfWi
over ΩRgi

.

Proof: Let S̃i = (s̃
(1)
i , . . . , s̃

(kmax)
i )T ∈ ΩRgi

such thatHfWi
(S̃i) ≤ HfWi

(Si). By Lemma VI.1,

the setG(k)
Sub = Ssublvl(MCD(k)

i ,HfWi
(Si)) is convex for anyk ∈ {1, . . . , kmax}. Let G

(0)
CSub =

{pi(0)}, and letG(k)
CSub = {s ∈ R

d | ∃k′ ∈ Kcs(k), s′ ∈ G
(k′)
Sub with ‖s − s′‖ ≤ umax}, also a

convex set. SincẽSi ∈ ΩRgi
, s̃

(k)
i ∈ G

(k)
CSub for eachk ∈ {1, . . . , kmax}, and sinceHfWi

(S̃i) ≤

HfWi
(Si), s̃

(k)
i ∈ G

(k)
Sub. Making use of the similarity between the extended set formulation and the

Lagrangian of the constrained one-center problem, it can beshown thatG(k)
ESub∩ G

(k)
Sub = {s

(k)
i }.

Thus S̃i = Si is the unique global minimum ofHfWi
over ΩRgi

.

Proof of Proposition VII.9: We begin with the critical point result. We consider three sep-

arate cases inspired by Lemma VII.5 and Proposition VII.6. First, if there is ak ∈ {1, . . . , kmax}

with 0 ∈ ∂MCD(k)
i (Si) ⊂ ∂HfWi

(Si), then{k} defines a maximally centered sequence inSi.

Second, assume that0 6∈ HWi
(Si), but that∃k ∈ argmaxk′∈{1,...,kmax} MCD(k′)

fW
(Si) with 0 ∈

∂CDE(k)
max(Si). From Corollary A.5, it can be deduced that∃k′ ∈ argmaxl∈Kcs(k) CDE(k:l)

i (Si)

such that{k, k′} is a maximally centered sequence.

Finally, assume that0 6∈ HWi
(Si) and there is nok with 0 ∈ ∂CDE(k)

max(Si) ⊂ ∂HfWi
(Si).

With a slight abuse of notation, let MCD(k)
fW

(Si; K) = max
s∈fW

(k)
i (Si;K)

δk

(
s, s

(k)
i

)
. In this case it
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can be shown that0 ∈ ∂HfWi
(Si) if and only if there is a sequenceK∗ ⊆ {1, . . . , kmax} of two

or more consecutive samples which satisfies0 ∈ co{MCD(k)
i (Si) | k ∈ K∗}, and for allk ∈ K∗,

0 ∈ πk(∂MCD(k)
fW

(Si; K
∗)) and∂MCD(k)

fW
(Si; K

∗) ⊂ HfWi
(Si). It can be shown that the first two

conditions are satisfied if and only ifK∗ defines a centered sequence, while the last requires

that it be maximal.

This proves thatSi is a critical point if and only if it contains at least one maximally centered

sequence. That any critical point is a global minimum follows by applying Proposition A.6 to

any maximally centered sequence inSi.

PROOFS AND SUPPORTING RESULTS FROMSECTION VIII

Proof of Proposition VIII.1: We use the discrete-time LaSalle invariance principle [25]to

show convergence. Let T: (Dkmax)n → (Dkmax)n denote the evolution map of theGENERALIZED

MULTICIRCUMCENTER ALGORITHM, i.e., S{j} = T(S{j−1}). Note thatΩ is positively invariant with

respect to T, and thatH is nonincreasing along T onΩ. SinceΩ is bounded, any evolution is

bounded. The maps T andH are both continuous onΩ. By the discrete time LaSalle invariance

principle, any evolution with initial conditionS{0} ∈ Ω must converge toM , the largest invariant

set with respect toT contained inZ = {S ∈ Ω | H(T(S)) = H(S)} ⊂ Ω.

Now, let Mmin denote the set of all global minimizers ofH on Ω, and note thatMmin ⊆ M .

We reason by contradiction to show thatMmin = M . Assume that there is a trajectory,S{0} ∈

M \Mmin. SinceM ⊂ Z, we haveH(S{1}) = H(S{0}). Consider the fixed-partition optimization

at step0. Let W = MC(S{0}), and let i ∈ argmaxi′∈{1,...,n}HWi
(S

{0}
i ). SinceS{0} is not a

global minimizer ofH over Ω, it is not a global minimizer ofHfW over Ω, thusS
{0}
i is not a

global minimizer ofHfWi
over Ωi. On the other hand,S{1}

i is a global minimizer ofHfWi
, and

we haveHfWi
(S

{1}
i ) < HfWi

(S
{0}
i ). This is true for all suchi, thusHfW(S{1}) < HfW(S{0}). By

Lemma VII.10 and Proposition V.2, we can write,HW(S{0}) > HW(S{1}) ≥ H(S{1}). Thus

H(S{0}) > H(S{1}), which contradicts the assumption thatS{0} ∈ Z. ThereforeMmin = M ,

and the result follows.
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