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Abstract— This paper studies a coverage control problem for task. We establish the monotonic evolution of the aggregate
multi-vehicle systems where individual agents operate with out- gbjective function encoding the notion of deployment and
dated information about each others’ locations. Our objective 5 acterize the convergence properties of the algorithm.

is to understand to what extent this outdated information Due to the di ti t f the data struct that
is still useful and at which point it becomes essential to Ue 10 e CISCONtNUoUS Nailre of LNe aarta SULICIIIe ha

obtain new, up-to-date information. We propose a self-triggered  2g€nts maintain in our self-triggered .COO_rdination !aVE th
coordination algorithm based on spatial partitioning techniques technical approach resorts to a combination of notions and
with uncertain information and verify its correctness using  tools from computational geometry, set-valued analysig, a
tools from computational geometry, stability theory, set-valued  giapility theory. Various simulations illustrate the perf
analysis, and event-based systems. . . .
mance and implementation cost of thel f-tri gger ed
. INTRODUCTION centroid al gorithm For reasons of space, all proofs

. . . . are omitted. The interested reader is referred to [16].
This paper studies a robotic sensor network performing an

optimal static deployment task when individual agents do no Il. PRELIMINARIES

have up-to-date information about each others’ locatiGns. .

objective is to design a self-triggered coordination attyom .Wte let R>o znd Zzo be tthe Isets gf nobnnetﬁatnée r&al and
that allows agents to decide autonomously when new, up—tgl ?ger numbers, respectively, afjd- || be the Euclidean
date location information is needed to complete the task. O Istance.

motivation comes frpm the need for strategies that naturally, Basic geometric notions

account for uncertainty in the state of other agents caused J )

by, for instance, sparse communication and sensor errors V¢ denote byjp, ¢] C R the closed segment with extreme

Literature review: In the context of robotic sensor networks,pomtSp andq € .Rd' Let ¢ : RY — R>o be a bodunded
this work builds on [1], where distributed algorithms baseéneasurable function that we tgrdensﬂy For 5 C RY, the
on centroidal Voronoi partitions are presented, see alko [in assand center. of mas®f 5 with refpeCt top are

Voronoi partitions are also employed in [3], [4], [5]. Other _ _

works on deployment coverage problems include [4], [6]. Ms = /SQS(Q)dq’ Cs = Mg /ngb(q)dq.

A feature of the algorithms mentioned above is the commog@iven v € R4 \ {0}, let unit(v) be the unit vector in the
assumption of constant communication among agents agftection ofv. Given a convex sef ¢ R? andp € R¢, let
fresh, up-to-date information about each others’ Iocastionprs(p) denote the orthogonal projection pfonto S, i.e.,
The other areas of relevance to this work are discrete—evqﬁts(p) is the point inS closest top. The to-ball-boundary
systems [7], self-triggered control [8], [9], [10], [11] dn maptbb : (R? x Ru)? — R? takes(p, ,q,7) to
event-triggered control [12], [13], [14], [15] of sensordan ]

actuator networks. These works trade computation at the p+dunit(qg —p) if [[p—prg,,. @) =4

agent level for less communication, sensing or actuatorteff PIB (g, if ||p— PIB () (p)|| <o.

while still guaranteeing a desired level of performance. Figure 1 illustrates the action abb.

Statement of contributionsThe main contribution of the

paper is the design of theel f-tri ggered centroid A7

al gori t hmto achieve optimal static deployment in a given

convex environment. We first design an update policy that S0 s
helps an agent determine under what conditions the location s oy
information it possesses about other agents is sufficiently £bb(p,4,0,7) ’tbb(;d_w)

up-to-date. This policy is based on spatial partitioninghte

nigues with uncertain information, and in particular, oe th

notions of guaranteed Voronoi and a new notion we call the

dual guaranteed Voronoi diagram. We then design a motion

control law that, given the (possibly outdated) informatio

an agent has, determines a motion plan that is guaran- @ ®)

teed to contribute positively to achieving the deploymentig. 1.  Graphical representation of the action tbh when (a)|p —
The authors are with the Department of Mechanical and Aecespa prﬁ(q”.)(p)” > 0and (b)||p—pr§(q’r)(p)H =0 .
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circumradiusof S, denotedcr(S), is the radius of this ball. i.e., the optimal sensor positions are the centroids.
We denote byB(p, r) the closed ball centered atc S with
radiusr and by H,, = {g € R? | |lg — p|| < |lg — o[} the I1l. PROBLEM STATEMENT

closed halfspace determined pyo € R? that containg. Consider a group of agents moving in a convex poly§omn
R? with positionsp,,...,p,. For simplicity, we consider
first-order continuous-time dynamics, although our treatm

We refer to [17] for a comprehensive treatment on VoronGéould be extended to arbitrary controllable dynamics with
partitions and briefly present some relevant concepts hef@jnimal modifications. Specifically,

Let S be a convex polygon ifR? and P = (py,...,p,) be
the location ofn sensors. Aartition of S is a collection ofn
polygonsW = {W4, ..., W, } with disjoint interiors whose
union is.S. The Voronoi partitionV(P) = {V4,...,V,} of
S generated by the point® = (p1,...,p,) is

B. Voronoi partitions

(i) all agents’ clocks are synchronous, i.e., given a com-
mon starting timet,, subsequent timesteps occur for
all agents at, = to + ¢At, for ¢ € Z>,, and

(i) each agent can move a maximum amountuvgfy in
one second, i.e||p;(ter1) — pi(te)] < vmaxAt.

Vi={a€Slla—pill <lla=psll, Vi # i} For simplicity of presentation, we consider the case of a
When the Voronoi region¥; andV; are adjacent (i.e., they common maximum velocity boundyay for all agents. The
share an edge)y; is called a(Voronoi) neighborof p; (and results of the paper are extensible to the case when each
vice versa). We denote the neighbors of agerty A;. agent has its own maximum velocity bound.

P = (p1,...,pn) is acentroidal Voronoi configurationf  Our objective is to achieve optimal deployment, measured
it satisfies thap; = Cy;, for all i € {1,...,n}. according to the expected-value meastrimtroduced in (1),
even when agents have uncertain information about each
others’ positions. Because the cost to communicate inegeas
We briefly introduce a locational optimization functionledl with distance, agents might need to balance the need for up-
aggregate distortion, see [18], [2], that is key in the desigto-date location information with the need to spend a<littl
and analysis of our algorithm. Consider a set of sensors winergy as possible. Our goal is to understand the trade-offs
positions P in an environmentS. The sensing performance between deployment performance and communication cost.
at point ¢ taken from theith sensor afp; degrades with The data structure that each ageénnaintains about other
the squared distancg; — p;|*. Assume also that a density agents; is the last known locatiop and the time elapsed
function ¢ : S — R is available, so thap(q) reflects the ric R since this information was received, for eagke

C. Facility location and aggregate distortion

possibility of an event happening at positignConsider the (1, "y} \ {i}. For itself, agent has access to up-to-date
task of minimizing the locational optimization function location information, i.e.p! = p; and 7! = 0 at all times
, l.e.p! ; : .

) ) With this data, agent knows that, at the current time, agent
H(P) = E, em llg = pill”| - (D) will not have traveled more than a distance = vmaxr!

from p%, and hence agent can construct a balB(p}, %)
that is guaranteed to contain the actual location of agent
This data is stored in the vector

HP) =Y [ o= pilPota)in D= (i) (i) € (5 X Ro)™

Additionally, agenti maintains a variabled’ C {1,...,n}
with ¢+ € A* that, at any timet, corresponds to the
agents whose position information should be used. For

It is interesting to note that this function can be rewritben
terms of the Voronoi partition as

This suggests defining a generalization7éf which with a
slight abuse of notation we denote by the same letter, as

2 9 instance, A = {1,...,n} would mean that agent uses
H(P,W) = Z/W llg = pill*é(a)dg, (@ all the information contained iD*. As we will explain
=1 in Section V-B, this is not always necessary. We refer to
where)V is a partition of S, and theith sensor is respon- p — (DY,...,D") € (S x R>0)"2 as the entire memory
sible of the “dominance regionW;. Note that?(P) = of the network. We find it convenient to define the map

H(P,V(P)). The function is to be minimized with respect ¢ - (S xRso)"" — S™ to extract the exact agents’ location
to both the sensors’ locationg and the assignment of jnformation fromD by loc(D) = (pl, ..., p").
the dominance regionyV. The following result [18], [2] "

. . ” : To optimize H, the knowledge of its own Voronoi cell is
characterizes its critical points.

critical to each agent, cf. Section II-C. However, with the
data structure described above, agents cannot compute the
\Voronoi partition exactly. Instead, they implement thecspa
H(P,V(P)) < H(P,W), (3) partitioning techniques described in the following settio

Lemma Il.1 GivenP € S™ and a partitionV of S,

i.e., the optimal partition is the Voronoi partition. Moreer, IV. SPACE PARTITIONING WITH UNCERTAINTY
for P’ € S™ with ||p; — Cw, || < |lpi—Cw, ||, i € {1,...,n},

, Because we are interested in applications in which the
H(P, W) <H(P,W), available information is not perfect, we introduce heretispa



partitioning techniques with uncertain information. Here  If every regionD; is a point,D; = {p;}, then ¢/; and dg/;
review the concept of a guaranteed Voronoi diagram aincide with the standard Voronoi celf; of p;, and the

in [19] and present a new tool we call the dual guaranteeguaranteed and dual guaranteed Voronoi diagrams are the
Voronoi diagram. LetS C R? be a domain and consider Voronoi partition of S generated by, ...,p,. In general,

a set of regionsDy,..., D, C S, each containing a site for any collection of pointsp; € D;, i € {1,...,n}, it

pi € D,. The guaranteed Voronoi diagramf S generated holds that & C V; C dgV;, i € {1,...,n}. Agentp, is a

by Ds,..., D, is the collection of sets¥(D,,...,D,) = guaranteed Voronoi neighbor of if A?j N ogv; # 0. The
{gV1,...,9V,} defined by set of guaranteed Voronoi neighbors of ageist denoted by

gV (D), where we use the notatiaR = (D, ..., D,).
Throughout the paper, we consider uncertain regions given
by balls, D; = B(p;,r;), i € {1,...,n}. In this case, the
edges composing the boundary daf;dn (4) are of the form,

Vi = — || < mi —y|| for all j #i}.
Vi ={g €S| maxiq—zll < min flg - y| J# i}

With a slight abuse of notation, we denote by;@>) the
ith component of ¥(Dq,...,D,). The interpretation of
gV(D;,...,D,) is the following: g/; contains the points Al ={ae S| llg—pill+ri=lla—psll =i}, (6)
of S that are guaranteed to be closemptathan to any other
of the nodesp;, j # i. Because the information about the
location of these nodes is uncertain, there is a neutrabmegi
in S which is not assigned to anybody: those points for whic
no guarantee can be established._ U_nlike the_\ standard \/lqr_ono A?Jg ={qeS|lg—pill—-ri=llg—p;l +r;}, @
partition, the guaranteed Voronoi diagram is not a partitio

of S, see Figure 2(a). Each point in the boundary & g and therefore, lie on the arm of the hyperbola farthest from
p; with foci p; andp;, and semimajor axi%(ri + ;). The
following results state useful properties of the guaramtee
and dual guaranteed Voronoi diagrams.

and therefore, lie on the arm of the hyperbola closest;to
with foci p; andp;, and semimajor axig (r;+r;). The edges
ﬁomposing the boundary of #gin (5) are of the form,

Lemma IV.1 Given py,...,p, € S and ry,...,r,,a €
R>o, let D, = E(pi,’l"i) and D; = E(pi,’l“i + Cl), for i e
{1,...,n}. Then, gV;(D4,...,D,) C aN;(D1,...,D,),
forall i € {1,...,n}.

Lemma IV.2 Given setsDy,..., Dy C S, it holds that

dgVi(D1,..., Dy, Dyt1ye oy Do) € dgVi(Dy,...,Dy)
@ () forall i € {1,...,n}.

Fig. 2. Guaranteed Voronoi (a) and dual guaranteed Vords)aiiagrams.

belongs to a set of the form

V. SELF-TRIGGERED COVERAGE OPTIMIZATION

Here we design a coordination strategy to solve the problem
A ={qe S| max ||l —z|| = min g =y}, (4) described in Section lll. From the point of view of an agent,
e Y the algorithm is composed of two parts: a motion control
for somej # i. Note that in generaA?j + A?Z component that determines the best way to move given the

On the other hand, theual guaranteed Voronoi diagram available information and an update decision componett tha
of S generated byDb . ;Dn is the collection of sets determines when new information should be obtained.

dgV(Ds,...,D,) = {dgVi,...,dgV,} defined by A Motion control

dgvi ={q € S| 52151 llg — =] < yeb. llg =yl forall j # i}. ¢ ap agent had perfect knowledge of other agents’ positions

) then to optimizeH, it could compute its own Voronoi cell
We denote by dg(D) the ith component of 4,4 move towards its centroid, as in [1]. Since this is not the

dgV(Ds, ..., Dy. The interpretation of dg(D, ..., Dn) IS case, we instead propose an alternative motion control law.
the following: the points ofS' outside d§; are guaranteed | ot ys describe it first informally:

to be closer to some other nogg, j # i than to p;.
Because the information about the location of these nodes
is uncertain, there are regions of the space that belong to
more than one cell. The dual guaranteed Voronoi diagram
is a covering of the sef, see Figure 2(b). Each point in
the boundary of dg; belongs to a set of the form

[Informal description]: At each round, each agent

uses its stored information about other agents’
locations to calculate its own guaranteed and dual
guaranteed Voronoi cells. Then, the agent moves
towards the centroid of its guaranteed Voronoi cell.

In general, there is no guarantee that following g i on
AF={ge S| minllg -zl = max g -y}, (5) i
ij — sen, 1 yepo 147 Ylirs control |aw will lead the agent to get closer to the
centroid of its Voronoi cell. A condition under which this
for somej # i. Note that in genera&?}’ #* Aj‘? statement holds is characterized by the following result.



Lemma V.1 Givenp # ¢,q¢* € R?, letp’ € [p,q] such that for the condition to hold. We deal with this by specifying a
I = qll > llg* — qll. Then,|lp’ — ¢*|| < llp — ¢*]|. tolerances > 0 that can be selected a priori by the designer.

Formally, the memory updating mechanism followed by each

Therefore, with the notation of Lemma V.1, if agents at_ agent is described by the pseudo-code in Algorithm 2.
p = p;, computes the target = Cgy, and moves towards it : _
to p/, then the distance tg* = Cy, decreases as long as Algorithm 2 © one- st ep- ahead update policy
, Agenti € {1,...,n} performs:
Ip" — Cqv, (8) 1: setD = D*
) . 2: computeL = gV;(D) andU = dgV; (D)
holds. The right-hand side cannot be computed exactly by 3: computeg = C1 andr = bnd(L, U)

because of lack of information abouty,. However, the & i r2max{lg—pill.cfthen
distance between the centroids of the guaranteed Vorongi ,fvo - Y acauiring up-to-date location information

and Voronoi cells can be upper bounded, as we show next: _ . _
According to Algorithm 2, agent checks at each time step

Proposition V2 LletL CV C U. Then, for any density if condition (10) is feasible Obndi S g, and therefore it is

> ||Cv, = Cyv,

function ¢, the following holds advantageous to execute theti on control | aw for
o one timestep. One could also implement a refined version
ICy —Cp|| < 2cr(U)(1 — WL) of this decision policy making use of the fact that agént
U

has all the information it requires to perform this check for

With the notation of Proposition V.2, agentan usel, = gv; ~ Multiple steps into the future.
andU = dgV; to upper bound the distang¢&'y, — Cgy,

_ My, ) (9) The self-triggered coordination algorithm is the result of

Magv; combining the motion control law of Section V-A and the up-
This bound is computable with the information stored in it$late policy of Section V-B with a procedure to acquire up-to-
own memoryD‘. Agenti can use this bound to guaranteedate information about other agents when this requirensent i

by C. Thesel f-triggered centroid al gorithm

bnd; = bnd(gV;, dgV;) = 2 cr(dgV;) (1

that the condition (8) holds by making sure that triggered (cf5: in Algorithm 2). A trivial update mechanism
. will be to provide each agent with up-to-date information
[p" = Cgv; || = bnd; (10)  about the location of all other agents in the network; howeve

holds. The poinp’ to which agent moves to is determined this is costly from a communications point of view. Instead,
as follows: move toward€'yy, as much as possible in one W€ PrOPOSE an alternative algorithm that only provides up-
time step until it is within distancend; of it. Formally, the {0-date location information of the Voronoi neighbors at

motion control |awis described in Algorithm 1. the specific time when stef is executed. Th&/or onoi
- - . cell conputation is borrowed from [1]. We present it
Algorithm 1 : notion control |aw

' in Algorithm 3, adapted to our scenario.
Agenti € {1,...,n} performs:

. setD = D* Algorithm 3 : Vor onoi cel | conputation
: computeL = gV;(D) andU = dgV;(D)
: computeq = C, andr = bnd(L,U)

. move totbb(p;, vmaxAt, q, 1)

. SetD; = (p;7 T; + UmaxAt)

: SEtD;: = (tbb(ps, vmax, ¢,7),0)

1: initialize R; = mingery,. o\ {4} 1Pi — p}€|| + vmaxri
2: detect allp; within radius R;

3: setW(pi, R;) = B(pi, Ri) N (Ojslips—p; I <R; Hpins)
4: while R; < 2maxgew (p;,R;) llpi —q|| do
5
6

o U WNE

setR; := 2R;
Clearly, if time elapses without new location information, & d¢tect allp; within radius i
7. setW(pi, Ri) = B(pi, Ri) 0 (Njijp, —p; 1 <R; Hpins)
then the bound (9) grows larger and (10) becomes harder t§ end while
satisfy until it becomes unfeasible. Therefore, agentsl ia@e  9: setV; = W(p;, R;)

decision mechanism that establishes when new informatidf: SetA’ =N U {i} andDj = (p;,0) for j € Vi

is required for the execution of the motion control law torhe vior onoi cel | conputation is based on the
achieve its objective. This is addressed in Section V-B.  agent gradually increasing its communication radius kil
the information required to construct its exact Voronoil cel
has been obtained. It can be shown [16] that an agean
The second component of the self-triggered strategy takeempute the set& andU in the algorithms described above
care of updating the memory of the agents, and in partivith the information provided by Algorithm 3.

ular, of deciding when new information is needed. This iShe combination of Algorithms 1-3 leads to the synthesis
essentially achieved by making sure that (10) is feasiblgf the sel f-tri ggered centroid al gorithm de-
Two reasons can make (10) invalid for a given agern  scribed in Algorithm 4 £ 4 denotes the map that extracts

the one hand, the bourighd; might be large due to outdated from Di the information about the agents containedA).
location information about other agents’ locatiorI. This VI CONVERGENCE ANALYSIS

should trigger the need for up-to-date information through
communication with other agents. On the other hand, agentn this section, we analyze the asymptotic convergence-prop
might be close tayy,, requiringbnd; to be small in order erties of sel f-triggered centroid al gorithm

B. Update decision policy



;IAI.g.or!thn? 4:self-triggered centroid algorithm where A’ = {i} U ALGMIN (1 v\ (i) r;
nitialization A, . S .
1 i i . . . Acquisition of up-to-date informationin each timestep,

: setD* and . A* by runningVor onoi cel | conputation . .. .
2 setD! = (p;,0) agents are faced with the decision of whether to acquire
At timestep, agenti € {1,...,n} performs: up-to-date information about the location of other2 agents.
;: setD = 7LrAi (D‘;')(D) 40— dgvi(D) This is captured by the set-valued midp (S x R>o)" =

: computeL = gV; andU = dgV; 2 2 =,

3 computeg = C'z andr = bnd(L, U) (S x RZO)n that, to D € (S' x R>0)™, associates the
4:if > max{||g — p;|,} then Cartesian produdt/(D) whoseith component is eitheD’

gi rest%tDl andzg,?y runningVor onoi cel | conputation (agenti does not get new information) or the vector

oosetD = 4 (D*

7:  setL =gV (D) andU = dgV' (D) A AT !l

8 setqg = Cy andr = bnd(L,U) (1), (P 7))

9: end if AN J . : . AN
10: move totbb(p;, max, q, ) Wher‘? (pj’rj) o (pj,O) er J € {Z} UM a”O_' (pjrj) -
11: setD} = (tbb(p;, vmax ¢,7), 0) (p},7%) otherwise (agent gets new information). Recall
12: setD} = (p, % + vmaxt) for j # i that V; is the set of neighbors to agentiven the partition

V(loc(D)). Itis not difficult to show that the set-valued map
U is closed (a set-valued m&p: X = Y is closed ifz; —
An extension of the algorithm that makes agents decreaseyr — y andy, € T'(x) imply thaty € T'(z)). We define
their maximum speed as the network gets closer to thbe set-valued map : (Sx}RZO)”2 = (S><IR<ZO)"2 by T =
set of centroidal Voronoi configurations is explored in [16]4 o M. Given the continuity ofM and the closedness of,
The case of a constant maximum velocity is analyzed herthe mapT is closed. Lety = {D(t,) }¢cz., be an evolution
Note that this algorithm can be written as a mfp., : ofthesel f-triggered centroid al gorithmthen
(SXRZO)”2 — (Sx[RZO)”2 which corresponds to the com- ' = {D'(t¢)}eez.,, With D'(t)) = fin(D(te)), is a
position of a “decide/acquire-up-to-date-information”apn trajectory of the dynamical system

finfo and a “move-and-update-uncertainty” mARstion, i-€-, , ,

fstca(D) = fmotion(finfo(D)) for D ¢ (S X RZO)n2- Our p (t€+1) < T(D (tf)) (11)
analysis strategy here is shaped by the fact faat, and  with 7 formally defined, one can show that the aggregate
consequently,fs.c. are discontinuous. Our objective is tofynction  is monotonically nonincreasing along the trajec-
prove the following result characterizing the asymptotigories of7. Furthermore, it can also be shown that the omega
convergence properties of the trajectories of the algwrith |imit set Q2(+/) is weakly positively invariant. The final step
then uses this fact to show th@t+’) is contained in the set

Proposition VI.1 For ¢ € [0,diam(5)), the agents’ po- ¢ centroidal Voronoi configurations [16].

sition evolving under thesel f-tri ggered centroid
al gori t hmfrom any initial network configuration irb" VIl. SIMULATIONS

converges to the set of centroidal Voronoi configurations. . . . . .
In this section, we provide several simulations of the

Given that the mags.. is discontinuous, we cannot apply S€l f-triggered centroid al gorithm All simu-
the discrete-time LaSalle Invariance Principle. Our prodf@tions are done with = 8 agents moving in a 4nmx 4m
strategy consists of constructing a closed set-valued Thap Sduare, with a maximum velocitymax = 1m/s operating
whose trajectories include the ones ff.., and apply the with At = .0253. We compare our algorithm agamst the
LaSalle Invariance Principle for set-valued maps [2]. Fofove-to-centroid strategy where agents have perfectitcat
reasons of space, we do not include the full proof and onijpformation at all times, see [1]; we refer to this as the
provide a sketch. The interested reader is referred to [16]Penchmark case. For each ageént {1,...,n}, we adopt
The definition of7" is as follows. For convenience, we recaIIthe following model [20] fo_r quarmfymg the total PO‘.’V@
thatD = (D',...,D") € (SxR>0)"2, and that the elements used by agent to communicate, inlBmW power units:

of D are referred to ag(pi,r?), ..., (pi,r%)). To ease the n
exposition, we divide the construction @f in two steps, a P; = 10logy, Z 31001 Pi—itellpi—pill
first one that captures the agent motion and the uncertainty Gell,...n} it

update to the network memory, and a second one th

N . . \%ere and ¢ are positive real parameters that depend on
captures the acquisition of up-to-date network informatio @ o P P P

the characteristics of the wireless medium and.; is the

Motion and uncertainty updateNote that once the uncer- hoyer received by agertof the signal transmitted by agent
tainty radius about the position of an agent hits the diamete |, our simulations. all these values are set o

of S, it does not need to grow anymore. This justifies th

‘f:i ures 3 and 4 llustrate an execution of the
definition of the continuous motion mapt : (S><]R20)"2 — g

2 i . self-triggered centroid algorithm for a
(S x R>p)" whoseith component is density ¢ which is a sum of two Gaussian functions, and
M;(D) = ((Pli,min {7; + vmaxAt,diam(S)}), . compare its performance against the benchmark case. One
tbb(pi Croir (70 42 (DY). bnd (7 i (D). 0 can see in Figure 4 how, asgets larger, the communication
( (pz; vmax o (m.:(D")), o (A (PD)0) Chtort of the agents decreases, at the cost of a slower
- (pry min {7}, + vmaAt, diam(S) }) | convergence on the value &f.



information case, while requiring substantially less camm
nication effort. In future work, we plan to characterize lgtva
ically the tradeoff between performance and communication
cost, provide guarantees on the network energy savings when
using the proposed algorithm, and explore the extension of

(@) (b)
Fig. 3.  Network trajectories of (a) the benchmark case andtlfk) [1]
self-triggered centroid al gorithmwith e =0.25. The black
and grey dots correspond to the initial and final agent postirespectively.
(2]
(3]
(4]
Timeste Timestep
a b
(@) (b) ]
Fig. 4. Plots of (a) the communication powPrused by the network and
(b) the value ofH in each timestep comparing three different executions. 7]

Figure 5 shows the communication power used and theg
time to convergence of theel f -t ri ggered centroi d

al gori t hmaveraged over 20 random initial conditions for
varying . Note that for smalk, the network performance
does not deteriorate significantly while the communication
effort by the individual agents is substantially smaller.

[11]
188 ‘ —e— self-triggered ‘ %
168 —— benchmark -
. [12]
Pavg 1 Tavg 5
80 40 [13]
o %
0 20 —— self-triggered
2 © —— benchmark
i i (14]
€ €
a b
(@) (b) (15
Fig. 5. Plots of the average (a) communication power consumgigg

and (b) timesteps to convergenZg,g over 20 simulations for varying. [16]
[17]
VIIl. CONCLUSIONS

We have proposed theel f-triggered centroid [18]
al gorithm This strategy combines an update law to
determine when old information needs to be updated angb)
a motion control law that uses this information to decide
how to best move. We have analyzed the correctness of t
proposed algorithm using tools from computational geoynetr
and set-valued analysis. Our simulations have illustrated
our theoretical results and have shown a performance our
algorithm comparable to the constant communication, perfe

these ideas to other motion coordination tasks.
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