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Abstract— This paper studies a coverage control problem for
multi-vehicle systems where individual agents operate with out-
dated information about each others’ locations. Our objective
is to understand to what extent this outdated information
is still useful and at which point it becomes essential to
obtain new, up-to-date information. We propose a self-triggered
coordination algorithm based on spatial partitioning techniques
with uncertain information and verify its correctness using
tools from computational geometry, stability theory, set-valued
analysis, and event-based systems.

I. I NTRODUCTION

This paper studies a robotic sensor network performing an
optimal static deployment task when individual agents do not
have up-to-date information about each others’ locations.Our
objective is to design a self-triggered coordination algorithm
that allows agents to decide autonomously when new, up-to-
date location information is needed to complete the task. Our
motivation comes from the need for strategies that naturally
account for uncertainty in the state of other agents caused
by, for instance, sparse communication and sensor errors.
Literature review: In the context of robotic sensor networks,
this work builds on [1], where distributed algorithms based
on centroidal Voronoi partitions are presented, see also [2].
Voronoi partitions are also employed in [3], [4], [5]. Other
works on deployment coverage problems include [4], [6].

A feature of the algorithms mentioned above is the common
assumption of constant communication among agents and
fresh, up-to-date information about each others’ locations.
The other areas of relevance to this work are discrete-event
systems [7], self-triggered control [8], [9], [10], [11] and
event-triggered control [12], [13], [14], [15] of sensor and
actuator networks. These works trade computation at the
agent level for less communication, sensing or actuator effort
while still guaranteeing a desired level of performance.
Statement of contributions:The main contribution of the
paper is the design of theself-triggered centroid
algorithm to achieve optimal static deployment in a given
convex environment. We first design an update policy that
helps an agent determine under what conditions the location
information it possesses about other agents is sufficiently
up-to-date. This policy is based on spatial partitioning tech-
niques with uncertain information, and in particular, on the
notions of guaranteed Voronoi and a new notion we call the
dual guaranteed Voronoi diagram. We then design a motion
control law that, given the (possibly outdated) information
an agent has, determines a motion plan that is guaran-
teed to contribute positively to achieving the deployment
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task. We establish the monotonic evolution of the aggregate
objective function encoding the notion of deployment and
characterize the convergence properties of the algorithm.
Due to the discontinuous nature of the data structure that
agents maintain in our self-triggered coordination law, the
technical approach resorts to a combination of notions and
tools from computational geometry, set-valued analysis, and
stability theory. Various simulations illustrate the perfor-
mance and implementation cost of theself-triggered
centroid algorithm. For reasons of space, all proofs
are omitted. The interested reader is referred to [16].

II. PRELIMINARIES

We let R≥0 and Z≥0 be the sets of nonnegative real and
integer numbers, respectively, and‖ · ‖ be the Euclidean
distance.

A. Basic geometric notions

We denote by[p, q] ⊂ R
d the closed segment with extreme

points p and q ∈ R
d. Let φ : R

d → R≥0 be a bounded
measurable function that we termdensity. For S ⊂ R

d, the
massandcenter of massof S with respect toφ are

MS =

∫

S

φ(q)dq, CS =
1

MS

∫

S

qφ(q)dq.

Given v ∈ R
d \ {0}, let unit(v) be the unit vector in the

direction ofv. Given a convex setS ⊂ R
d andp ∈ R

d, let
prS(p) denote the orthogonal projection ofp onto S, i.e.,
prS(p) is the point inS closest top. The to-ball-boundary
map tbb : (Rd × R≥0)

2 → R
d takes(p, δ, q, r) to

{

p + δ unit(q − p) if ‖p − prB(q,r)(p)‖ ≥ δ,

prB(q,r) if ‖p − prB(q,r)(p)‖ ≤ δ.

Figure 1 illustrates the action oftbb.
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Fig. 1. Graphical representation of the action oftbb when (a)‖p −
pr

B(q,r)(p)‖ > δ and (b)‖p − pr
B(q,r)(p)‖ ≤ δ.

The circumcenterof S ⊂ R
d, denoted cc(S), is the center

of the closed ball of minimum radius that containsS. The



circumradiusof S, denotedcr(S), is the radius of this ball.
We denote byB(p, r) the closed ball centered atp ∈ S with
radiusr and byHpo = {q ∈ R

d | ‖q − p‖ ≤ ‖q − o‖} the
closed halfspace determined byp, o ∈ R

d that containsp.

B. Voronoi partitions

We refer to [17] for a comprehensive treatment on Voronoi
partitions and briefly present some relevant concepts here.
Let S be a convex polygon inR2 andP = (p1, . . . , pn) be
the location ofn sensors. Apartition of S is a collection ofn
polygonsW = {W1, . . . ,Wn} with disjoint interiors whose
union isS. The Voronoi partitionV(P ) = {V1, . . . , Vn} of
S generated by the pointsP = (p1, . . . , pn) is

Vi = {q ∈ S | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}.

When the Voronoi regionsVi andVj are adjacent (i.e., they
share an edge),pi is called a(Voronoi) neighborof pj (and
vice versa). We denote the neighbors of agenti by Ni.
P = (p1, . . . , pn) is a centroidal Voronoi configurationif
it satisfies thatpi = CVi

, for all i ∈ {1, . . . , n}.

C. Facility location and aggregate distortion

We briefly introduce a locational optimization function called
aggregate distortion, see [18], [2], that is key in the design
and analysis of our algorithm. Consider a set of sensors with
positionsP in an environmentS. The sensing performance
at point q taken from theith sensor atpi degrades with
the squared distance‖q − pi‖2. Assume also that a density
function φ : S → R is available, so thatφ(q) reflects the
possibility of an event happening at positionq. Consider the
task of minimizing the locational optimization function

H(P ) = Eφ

[

min
i∈{1,...,n}

‖q − pi‖
2

]

. (1)

It is interesting to note that this function can be rewrittenin
terms of the Voronoi partition as

H(P ) =

n
∑

i=1

∫

Vi

‖q − pi‖
2φ(q)dq,

This suggests defining a generalization ofH, which with a
slight abuse of notation we denote by the same letter, as

H(P,W) =

n
∑

i=1

∫

Wi

‖q − pi‖
2φ(q)dq, (2)

whereW is a partition ofS, and theith sensor is respon-
sible of the “dominance region”Wi. Note thatH(P ) =
H(P,V(P )). The functionH is to be minimized with respect
to both the sensors’ locationsP and the assignment of
the dominance regionsW. The following result [18], [2]
characterizes its critical points.

Lemma II.1 GivenP ∈ Sn and a partitionW of S,

H(P,V(P )) ≤ H(P,W), (3)

i.e., the optimal partition is the Voronoi partition. Moreover,
for P ′ ∈ Sn with ‖p′i−CWi

‖ ≤ ‖pi−CWi
‖, i ∈ {1, . . . , n},

H(P ′,W) ≤ H(P,W),

i.e., the optimal sensor positions are the centroids.

III. PROBLEM STATEMENT

Consider a group of agents moving in a convex polygonS ⊂
R

2 with positions p1, . . . , pn. For simplicity, we consider
first-order continuous-time dynamics, although our treatment
could be extended to arbitrary controllable dynamics with
minimal modifications. Specifically,

(i) all agents’ clocks are synchronous, i.e., given a com-
mon starting timet0, subsequent timesteps occur for
all agents attℓ = t0 + ℓ∆t, for ℓ ∈ Z≥0, and

(ii) each agent can move a maximum amount ofvmax in
one second, i.e.,‖pi(tℓ+1) − pi(tℓ)‖ ≤ vmax∆t.

For simplicity of presentation, we consider the case of a
common maximum velocity boundvmax for all agents. The
results of the paper are extensible to the case when each
agent has its own maximum velocity bound.

Our objective is to achieve optimal deployment, measured
according to the expected-value measureH introduced in (1),
even when agents have uncertain information about each
others’ positions. Because the cost to communicate increases
with distance, agents might need to balance the need for up-
to-date location information with the need to spend as little
energy as possible. Our goal is to understand the trade-offs
between deployment performance and communication cost.

The data structure that each agenti maintains about other
agentsj is the last known locationpi

j and the time elapsed
τ i
j ∈ R≥0 since this information was received, for eachj ∈
{1, . . . , n} \ {i}. For itself, agenti has access to up-to-date
location information, i.e.,pi

i = pi and τ i
i = 0 at all times.

With this data, agenti knows that, at the current time, agent
j will not have traveled more than a distanceri

j = vmaxτ
i
j

from pi
j , and hence agenti can construct a ballB(pi

j , r
i
j)

that is guaranteed to contain the actual location of agentj.
This data is stored in the vector

Di = ((pi
1, r

i
1), . . . , (p

i
n, ri

n)) ∈ (S × R≥0)
n.

Additionally, agenti maintains a variableAi ⊂ {1, . . . , n}
with i ∈ Ai that, at any timet, corresponds to the
agents whose position information should be used. For
instance,Ai = {1, . . . , n} would mean that agenti uses
all the information contained inDi. As we will explain
in Section V-B, this is not always necessary. We refer to
D = (D1, . . . ,Dn) ∈ (S × R≥0)

n2

as the entire memory
of the network. We find it convenient to define the map
loc : (S×R≥0)

n2

→ Sn to extract the exact agents’ location
information fromD by loc(D) = (p1

1, . . . , p
n
n).

To optimizeH, the knowledge of its own Voronoi cell is
critical to each agent, cf. Section II-C. However, with the
data structure described above, agents cannot compute the
Voronoi partition exactly. Instead, they implement the space
partitioning techniques described in the following section.

IV. SPACE PARTITIONING WITH UNCERTAINTY

Because we are interested in applications in which the
available information is not perfect, we introduce here spatial



partitioning techniques with uncertain information. Here, we
review the concept of a guaranteed Voronoi diagram as
in [19] and present a new tool we call the dual guaranteed
Voronoi diagram. LetS ⊂ R

2 be a domain and consider
a set of regionsD1, . . . ,Dn ⊂ S, each containing a site
pi ∈ Di. The guaranteed Voronoi diagramof S generated
by D1, . . . ,Dn is the collection of sets gV(D1, . . . ,Dn) =
{gV1, . . . , gVn} defined by

gVi = {q ∈ S | max
x∈Di

‖q − x‖ ≤ min
y∈Dj

‖q − y‖ for all j 6= i}.

With a slight abuse of notation, we denote by gVi(D) the
ith component of gV(D1, . . . ,Dn). The interpretation of
gV(D1, . . . ,Dn) is the following: gVi contains the points
of S that are guaranteed to be closer topi than to any other
of the nodespj , j 6= i. Because the information about the
location of these nodes is uncertain, there is a neutral region
in S which is not assigned to anybody: those points for which
no guarantee can be established. Unlike the standard Voronoi
partition, the guaranteed Voronoi diagram is not a partition
of S, see Figure 2(a). Each point in the boundary of gVi

(a) (b)

Fig. 2. Guaranteed Voronoi (a) and dual guaranteed Voronoi (b) diagrams.

belongs to a set of the form

∆g
ij = {q ∈ S | max

x∈Di

‖q − x‖ = min
y∈Dj

‖q − y‖}, (4)

for somej 6= i. Note that in general∆g
ij 6= ∆g

ji.

On the other hand, thedual guaranteed Voronoi diagram
of S generated byD1, . . . ,Dn is the collection of sets
dgV(D1, . . . ,Dn) = {dgV1, . . . , dgVn} defined by

dgVi = {q ∈ S | min
x∈Di

‖q − x‖ ≤ max
y∈Dj

‖q − y‖ for all j 6= i}.

We denote by dgVi(D) the ith component of
dgV(D1, . . . ,Dn. The interpretation of dgV(D1, . . . ,Dn) is
the following: the points ofS outside dgVi are guaranteed
to be closer to some other nodepj , j 6= i than to pi.
Because the information about the location of these nodes
is uncertain, there are regions of the space that belong to
more than one cell. The dual guaranteed Voronoi diagram
is a covering of the setS, see Figure 2(b). Each point in
the boundary of dgVi belongs to a set of the form

∆dg
ij = {q ∈ S | min

x∈Di

‖q − x‖ = max
y∈Dj

‖q − y‖}, (5)

for somej 6= i. Note that in general∆dg
ij 6= ∆dg

ji .

If every regionDi is a point,Di = {pi}, then gVi and dgVi

coincide with the standard Voronoi cellVi of pi, and the
guaranteed and dual guaranteed Voronoi diagrams are the
Voronoi partition ofS generated byp1, . . . , pn. In general,
for any collection of pointspi ∈ Di, i ∈ {1, . . . , n}, it
holds that gVi ⊂ Vi ⊂ dgVi, i ∈ {1, . . . , n}. Agent pj is a
guaranteed Voronoi neighbor ofpi if ∆g

ij ∩ ∂gVi 6= ∅. The
set of guaranteed Voronoi neighbors of agenti is denoted by
gNi(D), where we use the notationD = (D1, . . . ,Dn).

Throughout the paper, we consider uncertain regions given
by balls, Di = B(pi, ri), i ∈ {1, . . . , n}. In this case, the
edges composing the boundary of gVi in (4) are of the form,

∆g
ij = {q ∈ S | ‖q − pi‖ + ri = ‖q − pj‖ − rj}, (6)

and therefore, lie on the arm of the hyperbola closest topi

with foci pi andpj , and semimajor axis12 (ri+rj). The edges
composing the boundary of dgVi in (5) are of the form,

∆dg
ij = {q ∈ S | ‖q − pi‖ − ri = ‖q − pj‖ + rj}, (7)

and therefore, lie on the arm of the hyperbola farthest from
pi with foci pi andpj , and semimajor axis12 (ri + rj). The
following results state useful properties of the guaranteed
and dual guaranteed Voronoi diagrams.

Lemma IV.1 Given p1, . . . , pn ∈ S and r1, . . . , rn, a ∈
R≥0, let Di = B(pi, ri) and D′

i = B(pi, ri + a), for i ∈
{1, . . . , n}. Then, gNi(D

′
1, . . . ,D

′
n) ⊂ gNi(D1, . . . ,Dn),

for all i ∈ {1, . . . , n}.

Lemma IV.2 Given setsD1, . . . ,Dn+m ⊂ S, it holds that
dgVi(D1, . . . ,Dn,Dn+1, . . . ,Dn+m) ⊆ dgVi(D1, . . . ,Dn)
for all i ∈ {1, . . . , n}.

V. SELF-TRIGGERED COVERAGE OPTIMIZATION

Here we design a coordination strategy to solve the problem
described in Section III. From the point of view of an agent,
the algorithm is composed of two parts: a motion control
component that determines the best way to move given the
available information and an update decision component that
determines when new information should be obtained.

A. Motion control

If an agent had perfect knowledge of other agents’ positions,
then to optimizeH, it could compute its own Voronoi cell
and move towards its centroid, as in [1]. Since this is not the
case, we instead propose an alternative motion control law.
Let us describe it first informally:

[Informal description]: At each round, each agent
uses its stored information about other agents’
locations to calculate its own guaranteed and dual
guaranteed Voronoi cells. Then, the agent moves
towards the centroid of its guaranteed Voronoi cell.

In general, there is no guarantee that following themotion
control law will lead the agent to get closer to the
centroid of its Voronoi cell. A condition under which this
statement holds is characterized by the following result.



Lemma V.1 Givenp 6= q, q∗ ∈ R
2, let p′ ∈ [p, q] such that

‖p′ − q‖ ≥ ‖q∗ − q‖. Then,‖p′ − q∗‖ ≤ ‖p − q∗‖.

Therefore, with the notation of Lemma V.1, if agenti is at
p = pi, computes the targetq = CgVi

and moves towards it
to p′, then the distance toq∗ = CVi

decreases as long as

‖p′ − CgVi
‖ ≥ ‖CVi

− CgVi
‖ (8)

holds. The right-hand side cannot be computed exactly byi

because of lack of information aboutCVi
. However, the

distance between the centroids of the guaranteed Voronoi
and Voronoi cells can be upper bounded, as we show next.

Proposition V.2 Let L ⊂ V ⊂ U . Then, for any density
functionφ, the following holds

‖CV − CL‖ ≤ 2 cr(U)
(

1 −
ML

MU

)

.

With the notation of Proposition V.2, agenti can useL = gVi

andU = dgVi to upper bound the distance‖CVi
−CgVi

‖ by

bndi ≡ bnd(gVi, dgVi) = 2 cr(dgVi)
(

1 −
MgVi

MdgVi

)

. (9)

This bound is computable with the information stored in its
own memoryDi. Agent i can use this bound to guarantee
that the condition (8) holds by making sure that

‖p′ − CgVi
‖ ≥ bndi (10)

holds. The pointp′ to which agenti moves to is determined
as follows: move towardsCgVi

as much as possible in one
time step until it is within distancebndi of it. Formally, the
motion control law is described in Algorithm 1.

Algorithm 1 : motion control law

Agent i ∈ {1, . . . , n} performs:
1: setD = Di

2: computeL = gVi(D) andU = dgVi(D)
3: computeq = CL andr = bnd(L, U)
4: move totbb(pi, vmax∆t, q, r)
5: setDi

j = (pi
j , ri

j + vmax∆t)

6: setDi
i = (tbb(pi, vmax, q, r), 0)

Clearly, if time elapses without new location information,
then the bound (9) grows larger and (10) becomes harder to
satisfy until it becomes unfeasible. Therefore, agents need an
decision mechanism that establishes when new information
is required for the execution of the motion control law to
achieve its objective. This is addressed in Section V-B.

B. Update decision policy

The second component of the self-triggered strategy takes
care of updating the memory of the agents, and in partic-
ular, of deciding when new information is needed. This is
essentially achieved by making sure that (10) is feasible.
Two reasons can make (10) invalid for a given agenti. On
the one hand, the boundbndi might be large due to outdated
location information about other agents’ location inDi. This
should trigger the need for up-to-date information through
communication with other agents. On the other hand, agenti

might be close toCgVi
, requiringbndi to be small in order

for the condition to hold. We deal with this by specifying a
toleranceε > 0 that can be selected a priori by the designer.

Formally, the memory updating mechanism followed by each
agent is described by the pseudo-code in Algorithm 2.

Algorithm 2 : one-step-ahead update policy

Agent i ∈ {1, . . . , n} performs:
1: setD = Di

2: computeL = gVi(D) andU = dgVi(D)
3: computeq = CL andr = bnd(L, U)
4: if r ≥ max {‖q − pi‖, ε} then
5: resetDi by acquiring up-to-date location information
6: end if

According to Algorithm 2, agenti checks at each time step
if condition (10) is feasible orbndi ≤ ε, and therefore it is
advantageous to execute themotion control law for
one timestep. One could also implement a refined version
of this decision policy making use of the fact that agenti

has all the information it requires to perform this check for
multiple steps into the future.

C. Theself-triggered centroid algorithm

The self-triggered coordination algorithm is the result of
combining the motion control law of Section V-A and the up-
date policy of Section V-B with a procedure to acquire up-to-
date information about other agents when this requirement is
triggered (cf.5: in Algorithm 2). A trivial update mechanism
will be to provide each agent with up-to-date information
about the location of all other agents in the network; however,
this is costly from a communications point of view. Instead,
we propose an alternative algorithm that only provides up-
to-date location information of the Voronoi neighbors at
the specific time when step5: is executed. TheVoronoi
cell computation is borrowed from [1]. We present it
in Algorithm 3, adapted to our scenario.

Algorithm 3 : Voronoi cell computation

1: initialize Ri = mink∈{1,...,n}\{i} ‖pi − pi
k
‖ + vmaxτ

i
k

2: detect allpj within radiusRi

3: setW (pi, Ri) = B(pi, Ri) ∩
`

∩j:‖pi−pj‖≤Ri
Hpipj

´

4: while Ri < 2maxq∈W (pi,Ri)
‖pi − q‖ do

5: setRi := 2Ri

6: detect allpj within radiusRi

7: setW (pi, Ri) = B(pi, Ri) ∩
`

∩j:‖pi−pj‖≤Ri
Hpipj

´

8: end while
9: setVi = W (pi, Ri)

10: setAi = Ni ∪ {i} andDi
j = (pj , 0) for j ∈ Ni

The Voronoi cell computation is based on the
agent gradually increasing its communication radius untilall
the information required to construct its exact Voronoi cell
has been obtained. It can be shown [16] that an agenti can
compute the setsL andU in the algorithms described above
with the information provided by Algorithm 3.

The combination of Algorithms 1-3 leads to the synthesis
of the self-triggered centroid algorithm de-
scribed in Algorithm 4 (πAi denotes the map that extracts
from Di the information about the agents contained inAi).

VI. CONVERGENCE ANALYSIS

In this section, we analyze the asymptotic convergence prop-
erties of self-triggered centroid algorithm.



Algorithm 4 : self-triggered centroid algorithm
Initialization
1: setDi andAi by runningVoronoi cell computation
2: setDi

i = (pi, 0)

At timestepℓ, agenti ∈ {1, . . . , n} performs:
1: setD = πAi (Di)
2: computeL = gVi(D) andU = dgVi(D)
3: computeq = CL andr = bnd(L, U)
4: if r ≥ max {‖q − pi‖, ε} then
5: resetDi andAi by runningVoronoi cell computation
6: setD = πAi (Di)
7: setL = gV (D) andU = dgV (D)
8: setq = CL andr = bnd(L, U)
9: end if

10: move totbb(pi, vmax, q, r)
11: setDi

i = (tbb(pi, vmax, q, r), 0)
12: setDi

j = (pi
j , ri

j + vmax∆t) for j 6= i

An extension of the algorithm that makes agents decrease
their maximum speed as the network gets closer to the
set of centroidal Voronoi configurations is explored in [16].
The case of a constant maximum velocity is analyzed here.
Note that this algorithm can be written as a mapfstca :
(S×R≥0)

n2

→ (S×R≥0)
n2

which corresponds to the com-
position of a “decide/acquire-up-to-date-information” map
finfo and a “move-and-update-uncertainty” mapfmotion, i.e.,
fstca(D) = fmotion(finfo(D)) for D ∈ (S × R≥0)

n2

. Our
analysis strategy here is shaped by the fact thatfinfo, and
consequently,fstca are discontinuous. Our objective is to
prove the following result characterizing the asymptotic
convergence properties of the trajectories of the algorithm.

Proposition VI.1 For ε ∈ [0,diam(S)), the agents’ po-
sition evolving under theself-triggered centroid
algorithm from any initial network configuration inSn

converges to the set of centroidal Voronoi configurations.

Given that the mapfstca is discontinuous, we cannot apply
the discrete-time LaSalle Invariance Principle. Our proof
strategy consists of constructing a closed set-valued mapT ,
whose trajectories include the ones offstca, and apply the
LaSalle Invariance Principle for set-valued maps [2]. For
reasons of space, we do not include the full proof and only
provide a sketch. The interested reader is referred to [16].

The definition ofT is as follows. For convenience, we recall
thatD = (D1, . . . ,Dn) ∈ (S×R≥0)

n2

, and that the elements
of Di are referred to as((pi

1, r
i
1), . . . , (p

i
n, ri

n)). To ease the
exposition, we divide the construction ofT in two steps, a
first one that captures the agent motion and the uncertainty
update to the network memory, and a second one that
captures the acquisition of up-to-date network information.
Motion and uncertainty update:Note that once the uncer-
tainty radius about the position of an agent hits the diameter
of S, it does not need to grow anymore. This justifies the
definition of the continuous motion mapM : (S×R≥0)

n2

→
(S × R≥0)

n2

whoseith component is

Mi(D) =
(

(pi
1,min

{

ri
1 + vmax∆t,diam(S)

}

), . . . ,

(tbb(pi
i, vmax, CgVi

(πAi(Di)),bnd(πAi(Di))), 0),

. . . , (pi
n,min

{

ri
n + vmax∆t,diam(S)

})

,

whereAi = {i} ∪ argminj∈{1,...,n}\{i} ri
j .

Acquisition of up-to-date information:In each timestep,
agents are faced with the decision of whether to acquire
up-to-date information about the location of other agents.
This is captured by the set-valued mapU : (S × R≥0)

n2

⇉

(S × R≥0)
n2

that, to D ∈ (S × R≥0)
n2

, associates the
Cartesian productU(D) whoseith component is eitherDi

(agenti does not get new information) or the vector

((p′1, r
′
1), . . . , (p

′
n, r′n))

where (p′j , r
′
j) = (pj

j , 0) for j ∈ {i} ∪ Ni and (p′jr
′
j) =

(pi
j , r

i
j) otherwise (agenti gets new information). Recall

thatNi is the set of neighbors to agenti given the partition
V(loc(D)). It is not difficult to show that the set-valued map
U is closed (a set-valued mapT : X ⇉ Y is closed ifxk →
x, yk → y andyk ∈ T (xk) imply thaty ∈ T (x)). We define
the set-valued mapT : (S×R≥0)

n2

⇉ (S×R≥0)
n2

by T =
U ◦M. Given the continuity ofM and the closedness ofU ,
the mapT is closed. Letγ = {D(tℓ)}ℓ∈Z≥0

be an evolution
of theself-triggered centroid algorithm, then
γ′ = {D′(tℓ)}ℓ∈Z≥0

, with D′(tℓ) = finfo(D(tℓ)), is a
trajectory of the dynamical system

D′(tℓ+1) ∈ T (D′(tℓ)). (11)

With T formally defined, one can show that the aggregate
functionH is monotonically nonincreasing along the trajec-
tories ofT . Furthermore, it can also be shown that the omega
limit set Ω(γ′) is weakly positively invariant. The final step
then uses this fact to show thatΩ(γ′) is contained in the set
of centroidal Voronoi configurations [16].

VII. S IMULATIONS

In this section, we provide several simulations of the
self-triggered centroid algorithm. All simu-
lations are done withn = 8 agents moving in a 4m× 4m
square, with a maximum velocityvmax = 1m/s operating
with ∆t = .025s. We compare our algorithm against the
move-to-centroid strategy where agents have perfect location
information at all times, see [1]; we refer to this as the
benchmark case. For each agenti ∈ {1, . . . , n}, we adopt
the following model [20] for quantifying the total powerPi

used by agenti to communicate, indBmW power units:

Pi = 10 log10





n
∑

j∈{1,...,n},i6=j

β100.1Pi→j+α‖pi−pj‖





whereα and β are positive real parameters that depend on
the characteristics of the wireless medium andPi→j is the
power received by agentj of the signal transmitted by agent
i. In our simulations, all these values are set to1.

Figures 3 and 4 illustrate an execution of the
self-triggered centroid algorithm for a
density φ which is a sum of two Gaussian functions, and
compare its performance against the benchmark case. One
can see in Figure 4 how, asε gets larger, the communication
effort of the agents decreases, at the cost of a slower
convergence on the value ofH.



(a) (b)

Fig. 3. Network trajectories of (a) the benchmark case and (b)the
self-triggered centroid algorithm with ε = 0.25. The black
and grey dots correspond to the initial and final agent positions, respectively.
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Fig. 4. Plots of (a) the communication powerP used by the network and
(b) the value ofH in each timestep comparing three different executions.

Figure 5 shows the communication power used and the
time to convergence of theself-triggered centroid
algorithm averaged over 20 random initial conditions for
varying ε. Note that for smallε, the network performance
does not deteriorate significantly while the communication
effort by the individual agents is substantially smaller.
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Fig. 5. Plots of the average (a) communication power consumption Pavg
and (b) timesteps to convergenceTavg over 20 simulations for varyingε.

VIII. C ONCLUSIONS

We have proposed theself-triggered centroid
algorithm. This strategy combines an update law to
determine when old information needs to be updated and
a motion control law that uses this information to decide
how to best move. We have analyzed the correctness of the
proposed algorithm using tools from computational geometry
and set-valued analysis. Our simulations have illustrated
our theoretical results and have shown a performance our
algorithm comparable to the constant communication, perfect

information case, while requiring substantially less commu-
nication effort. In future work, we plan to characterize analyt-
ically the tradeoff between performance and communication
cost, provide guarantees on the network energy savings when
using the proposed algorithm, and explore the extension of
these ideas to other motion coordination tasks.
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