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Abstract— This paper considers a class of strategic scenarios
in which two undirected networks of agents have opposing
objectives with regards to the optimization of a common
objective function. In the resulting zero-sum game, individual
agents collaborate with neighbors in their respective network
and have only partial knowledge of the state of the agents
in the other one. We synthesize a distributed saddle-point
algorithm that is implementable via local interactions and
establish its convergence to the set of Nash equilibria for a
class of strictly concave-convex and locally Lipschitz objective
functions. Our algorithm synthesis builds on a continuous-time
optimization strategy for finding the set of minimizers of a
sum of convex functions in a distributed way. As a byproduct,
we show that this strategy can be itself cast as a saddle-
point dynamics and use this fact to establish its asymptotic
convergence properties. The technical approach combines tools
from algebraic graph theory, nonsmooth analysis, set-valued
dynamical systems, and game theory.

I. INTRODUCTION

This paper considers a class of strategic scenarios in which
two undirected networks of agents are involved in a zero-sum
game. We assume that the objective function can be decom-
posed as a sum of concave-convex functions and networks
have opposing objectives regarding its optimization. Agents
collaborate with neighbors in their own network and have
partial information about the state of the agents in the other
one. Our aim is to design a distributed coordination algorithm
that can be used by the networks to converge to the set
of Nash equilibria. Potential applications include collective
bargaining, competitive social networks, and collaborative
pursuit-evasion.
Literature review: The present work has connections with the
literature on distributed optimization and zero-sum games.
The distributed optimization of a sum of convex functions
has been intensively studied in recent years, see e.g. [1], [2],
[3], [4]. These works build on consensus-based dynamics [5],
[6], [7], [8] to find the solutions of the optimization problem
in a variety of scenarios and are designed in discrete time.
An exception is the recent work [9] on continuous-time
distributed optimization. Regarding zero-sum games, the
works [10], [11], [12] study the convergence of discrete-
time subgradient dynamics to a saddle point. Continuous-
time best-response dynamics for zero-sum games converges
to the set of Nash equilibria for both convex-concave [13]
and quasiconvex-quasiconcave [14] functions. Under strict
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convexity-concavity assumptions, continuous-time subgradi-
ent flow dynamics converges to a saddle point [15], [10].
Asymptotic convergence is also guaranteed when the Hessian
of the objective function is positive definite in one argument
and the function is linear in the other [10], [16].
Statement of contributions: Our contributions are twofold.
First, we show that the solutions to the continuous-time
distributed optimization problem for a sum of locally Lip-
schitz (i.e., not necessarily differentiable) convex functions
correspond to saddle points of a certain objective function.
This function is convex in one of its arguments and linear in
the other. We also show that the dynamics proposed in [9]
to solve the optimization problem exactly corresponds to
the saddle point dynamics of the objective function when
the network is undirected. This allows us to establish its
asymptotic convergence properties using a set-valued version
of the LaSalle Invariance Principle. Second, we introduce the
problem of distributed convergence to Nash equilibria for
two networks engaged in a strategic scenario. The networks’
objectives are to either maximize or minimize a common
objective function which can be written as a sum of concave-
convex functions. Individual agents collaborate with neigh-
bors in their respective network and have partial knowledge
of the state of the agents in the other network. Building
on our analysis of the distributed optimization problem, we
synthesize a consensus-based saddle-point strategy for the
adversarial network, which we term the distributed Nash
seeking dynamics. We show that, for a class of strictly
concave-convex and locally Lipschitz objective functions, the
proposed dynamics is guaranteed to converge to the Nash
equilibria. For reasons of space, some proofs are omitted
and will appear elsewhere.

II. PRELIMINARIES

Let R, Z, R≥0, Z≥1 denote the set of real, integer, non-
negative real, and positive integer numbers, respectively. We
let Id×d denote the identity matrix in Rd×d, d ∈ Z≥1 and
use 1d to denote the vector (1, . . . , 1) ∈ Rd. We denote
by || · || the Euclidean norm on Rd. We denote the set of
subsets of Rd by B(Rd). If v = (v1, . . . , vd1)

T ∈ Rd1

and w = (w1, . . . , wd2)
T ∈ Rd2 , We denote by v ⊗ w =

(v1w, . . . , vd1w)T ∈ Rd1×d2 the Kronecker product of v
and w. We call ı : Rd1 → Rd2 , d1, d2 ∈ Z≥1, d2 ≥ d1,
a canonical inclusion if it consists of mapping each vector
in Rd1 to a vector in Rd2 by adding zeros to the rest of its
components. A function f : Rd1 × Rd2 → R, is concave-
convex if it is concave in its first argument and convex in



the second one [17]. Let f : X1×X2 → R, where X1 ⊂ Rd1

and X2 ⊂ Rd2 are closed and convex, be a concave-convex
function. Then a point (x∗1, x

∗
2) ∈ X1×X2 is called a saddle

point of f if for all x1 ∈ X1 and x2 ∈ X2 we have

f(x1, x
∗
2) ≤ f(x∗1, x

∗
2) ≤ f(x∗1, x2).

A. Nonsmooth analysis

We briefly recall some notions of nonsmooth analysis [18].
A function f : Rd → R is locally Lipschitz at x ∈ Rd if
there exists a neighborhood U of x and Cx,∈ R≥0 such
that |f(y) − f(z)| ≤ Cx||y − z||, for all y, z ∈ U . By
Rademacher’s Theorem [18], locally Lipschitz functions are
differentiable almost everywhere. Let us denote by Ωf the
set of points that f fails to be differentiable. The generalized
gradient of f is then defined by

∂f(x) = co
{

lim
k→∞

df(xk) | xk → x, xk /∈ Ωf ∪ S
}

,

where S is any set of measure zero. A point x ∈ Rd such
that 0 ∈ ∂f(x) is called a critical point of f . A function
f : Rd → R is called regular at x ∈ R if for all v ∈ Rd

the right directional derivative of f , in the direction of v,
exists at x and coincides with the generalized directional
derivative of f at x in the direction of v. We refer the
interested reader to [18] for definitions of these notions. A
locally Lipschitz function at x which is convex is always
regular [18, Proposition 2.3.6]. If f is a convex function
which is Lipschitz in a neighborhood U of x ∈ Rd, then for
all ξ ∈ ∂f(x) and x′ ∈ U

f(x′)− f(x) ≥ ξ · (x′ − x). (1)

We call this property the first order condition of convexity.
Proposition 2.1: (Properties of generalized gradient): Let
f : Rd → R be a locally Lipschitz function at x ∈ Rd. Then

(i) the map ∂f : Rd → B(Rd) is upper semicontinuous
and locally bounded at x ∈ Rd.

(ii) ∂f(x) is nonempty, compact, and convex.
Proposition 2.2: (Generalized gradient of finite sum of lo-
cally Lipschitz functions): Suppose {f i}n

i=1, n ∈ Z≥1, is a
collection of functions which are Lipschitz in a neighborhood
of x ∈ Rd. Then ∂(

∑
i f i)(x) ⊆

∑
i ∂f i(x). The equality

holds when f i is regular, for all i ∈ {1, . . . , n}.

B. Set-valued dynamical systems

We recall some background on continuous-time set-valued
dynamical systems from [19], [20]. Let x : R≥0 → X be
a curve on X ⊂ Rd, d ∈ Z≥1. A time-invariant set-valued
dynamical systems is a differential inclusion

ẋ(t) ∈ Ψ(x(t)) a.e., (2)

where t ∈ R≥0 and Ψ : Rd → B(Rd) is a set-valued map.
If 0 ∈ Ψ(x), we call x an equilibrium of (2). A solution to
this dynamical systems is any absolutely continuous curve
x : R≥0 → X which satisfies (2).
Proposition 2.3: (Existence of solutions for differential
inclusions): Let Ψ be upper semicontinuous with nonempty,

compact, and convex values. Then for any initial condition,
locally, there exists, a solution to (2).
The LaSalle Invariance Principle for set-valued continuous-
time systems is helpful to establish the asymptotic stability
properties of systems of the form (2). A set W ⊂ X is weakly
positively invariant with respect to Ψ if for any x ∈ W , there
exists x̃ ∈ X such that x̃ ∈ Ψ(x). The set W is strongly
positively invariant with respect to Ψ if Ψ(x) ⊂ W , for all
x ∈ W . The set-valued Lie derivative of a differentiable
function V : Rd → R with respect to Ψ at x ∈ Rd is defined
by L̄ΨV (x) = {v · ∇V (x) | v ∈ Ψ(x)}.
Theorem 2.4: (Set-valued LaSalle Invariance Principle):
Let W ⊂ X be a strongly positively invariant under (2) and
V : X → R a continuously differentiable function. Suppose
the evolutions of (2) are bounded and max L̄ΨV (x) ≤ 0 or
L̄ΨV (x) = ∅, for all x ∈ W . If SΨ,V = {x ∈ X | 0 ∈
L̄ΨV (x)}, then any solution x(t), t ∈ R≥0, starting in W
converges to the largest weakly positively invariant set M
contained in S̄Ψ,V ∩ W . When M is a finite collection of
points, then the limit of each solution equals one of them.

C. Graph theory

A directed graph, or simply digraph, is a pair G = (V,E),
where V is a finite set called the vertex set and E ⊆ V ×V is
the edge set. When E is unordered, we call G an undirected
graph or simply a graph. We say that an edge (u, v) ∈ E
is incident away from u (or an out-edge of u) and incident
toward v (or an in-edge of v), and we call u an in-neighbor
of v and v an out-neighbor of u. We denote the set of in-
neighbors and out-neighbors of v, respectively, with N in

G (v)
and N out

G (v). For a graph, these two sets are equal and we call
members of this set, denoted by NG(v), neighbors of v. A
bipartite digraph is a digraph whose vertices can be divided
into two disjoint sets V1 and V2 such that every edge can be
written as (v1, v2) or (v2, v1), where v1 ∈ V1 and v2 ∈ V2.
Here, we focus our attention only on the algebraic properties
of graphs. A graph is called connected if there exists a path
between any two vertices. A weighted graph is a triplet G =
(V,E, A), where (V,E) is a graph and A ∈ Rn×n

≥0 is the
adjacency matrix of G. The adjacency matrix has the property
that aij > 0 if (vi, vj) ∈ E and aij = 0, otherwise. The
weighted degree vi, i ∈ {1, . . . , n} is dw(vi) =

∑n
j=1 aij .

The weighted degree matrix D is the diagonal matrix defined
by (D)ii = dw(i), for all i ∈ {1, . . . , n}. The Laplacian is
L = D − A. For an undirected graph, L1n = 1T

nL = 0
and L = LT and is positive semidefinite [21]. When G is
connected, the zero eigenvalue is simple.

D. Zero-sum games

We recall some game theoretic notions from [22]. An n-
player game is a triplet G = (P,X, U), where P is the set
of players, n = |P | ∈ Z≥2, X = X1 × . . . × Xn, Xi ⊂
Rdi is the set of (pure) strategies of player vi ∈ P , di ∈
Z≥1, and U = (u1, . . . , un), where ui : X → R is the
payoff function of player vi, i ∈ {1, . . . , n}. The game G
is called a zero-sum game if

∑n
i=1 ui(x) = 0, for all x ∈



X. If xi ∈ Xi, we denote by x−i the strategy set of all
players except vi. An outcome x∗ ∈ X is called a (pure)
Nash equilibrium of G if for all i ∈ {1, . . . , n} and all xi ∈
Xi we have ui(x∗i , x

∗
−i) ≥ ui(xi, x

∗
−i). One can extend this

notion to mixed Nash equilibria by assigning probabilities to
pure strategies [22]. In this paper, we focus on a particular
class of two-players zero-sum games which have at least
one pure Nash equilibrium. The following well-known result,
characterizes this class of games.
Theorem 2.5: (Minmax theorem): Let X1 ⊂ Rd1 and X2 ⊂
Rd2 , d1, d2 ∈ Z≥1, be nonempty, closed, bounded, and
convex. If u : X1 × X2 → R is continuous and the sets
{x′ ∈ X1 | u(x′, y) ≥ α}, and {x′ ∈ X2 | u(x, y′) ≤ α}
are convex for all x ∈ X1, y ∈ X2, and α ∈ R, then
maxx miny u(x, y) = miny maxx u(x, y).

III. PROBLEM STATEMENT

Consider two networks Σ1 and Σ2 composed of agents
{v1, . . . , vn1} and agents {w1, . . . , wn2}, respectively.
Throughout this paper, Σ1 and Σ2 are undirected graphs. The
state of Σ1, denoted x1, belongs to X1 ⊂ Rd1 , d1 ∈ Z≥1.
Likewise, the state of Σ2, denoted x2, belongs to X2 ⊂ Rd2 ,
d2 ∈ Z≥1. We assume that X1 and X2 are compact and
convex. Here we do not get into the details of what these
states represent (as a particular case, the network state could
correspond to the collection of the states of agents in it). In
addition, each agent vi in Σ1 has an estimate xi

1 ∈ Rd1 of
what the network state is, which may differ from the actual
value x1. Similarly, each agent wj in Σ2 has an estimate
xj

2 ∈ Rd2 of what the network state is. For convenience, we
let x1 = (x1

1, . . . , x
n1
1 )T and x2 = (x1

2, . . . , x
n2
2 )T denote

the vector of agent estimates about the state of the respective
networks. Within each network, neighboring agents can share
their estimates. Networks can also obtain information about
each other. This is modeled by means of a bipartite directed
graph Σeng, called engagement topology, with disjoint vertex
sets {v1, . . . , vn1} and {w1, . . . , wn2}. According to this
model, an agent in Σ1 obtains information from its in-
neighbors in Σeng about their estimates of the state of Σ2,
and vice versa. Figure 1 illustrates this concept.

Σ1 Σ2
Σeng

Fig. 1. Two networks Σ1 and Σ2 engaged in a strategic scenario. The
edges of the engagement topology Σeng are dashed.

For each i ∈ {1, . . . , n1}, let f i
1 : X1 × X2 → R be

a differentiable concave-convex function only available to
agent vi ∈ Σ1. Similarly, let f j

2 : X1 × X2 → R be
a differentiable concave-convex function only available to
agent wj ∈ Σ2, j ∈ {1, . . . , n2}. The networks Σ1 and
Σ2 are engaged in a zero-sum game with payoff function

U : X1 × X2 → R

U(x1, x2) =
n1∑
i=1

f i
1(x1, x2) =

n2∑
j=1

f j
2 (x1, x2), (3)

where Σ1 wishes to maximize U , while Σ2 wishes to
minimize it. The objective of the networks is therefore to
settle upon a Nash equilibrium, i.e., to solve the following
maxmin problem

max
x1∈X1

min
x2∈X2

U(x1, x2). (4)

We refer to the this zero-sum game as the 2-network zero-
sum game and denote it by Gadv-net = (Σ1,Σ2,Σeng, U).
Interestingly, several problems in sensor networks such as
estimation, localization, or routing [23], [24] can be cast into
this framework when intelligent adversaries are present.

IV. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON
UNDIRECTED NETWORKS

Here, we review the continuous-time solution to the op-
timization problem proposed in [9] for undirected graphs.
Consider a network composed by n ∈ Z≥1 agents v1, . . . , vn

whose communication topology is described by a connected
graph G. For each, i ∈ {1, . . . , n}, let f i : Rd → R be
locally Lipschitz and convex, and only available to agent vi.
The network objective is to solve the following optimization
problem in a distributed way,

minimize f(x) =
n∑

i=1

f i(x). (5)

Let xi ∈ Rd denote the estimate of agent vi about the value
of the solution to (5) and define xT = ((x1)T , . . . , (xn)T ) ∈
Rnd. Next, we provide an alternative formulation of (5).
Lemma 4.1: Let L ∈ Rn×n be the Laplacian of G and define
L = L⊗ Id ∈ Rnd×nd. The problem (5) on Rd is equivalent
to the following problem on Rnd,

minimize f̃(x) =
n∑

i=1

f i(xi), subject to Lx = 0nd. (6)

Proof: The proof follows by noting that (i) f̃(1n⊗x) =
f(x) for all x ∈ Rd and (ii) since G is connected, Lx = 0nd

if and only if x = 1n ⊗ x, for some x ∈ Rd.
The formulation (6) is appealing because it brings together
the estimates of each agent about the value of the solution
to the original optimization problem. It is worth mentioning
that f̃ is Lipschitz and convex. Moreover, from Proposi-
tion 2.2, the elements of its generalized gradient are of the
form g̃x = (g1

x1 , . . . , gn
xn) ∈ ∂f̃(x), where gi

xi ∈ ∂f i(xi),
for i ∈ {1, . . . , n}. Since f̃ is convex and the constraints
in (6) are linear, the constrained optimization problem is
feasible [25].
Proposition 4.2: (Solutions of the distributed optimization
problem as saddle points): Let G be connected, and define
F : Rnd × Rnd → R by

F (x,z) = f̃(x) + zT Lx +
1
2
xT Lx. (7)



Then F is locally Lipschitz and convex in its first argument
and linear in its second, and

(i) if (x∗,z∗) is a saddle point of F , then so is (x∗,z∗+
1n ⊗ a), for any a ∈ Rd.

(ii) if (x∗,z∗) is a saddle point of F , then x∗ is a solution
of (6).

(iii) if x∗ is a solution of (6), there exists z∗ with Lz∗ ∈
−∂f̃(x∗) such that (x∗,z∗) is a saddle point of F .

Proof: First, note that for G undirected, F is convex in
its first argument and linear in the second. The statement (i)
is immediate. To show (ii), using that G is connected, one
can see that the saddle points of F are of the form (x∗,z∗)
with x∗ = 1n ⊗ x∗, x∗ ∈ Rd, and Lz∗ ∈ −∂f̃(x∗). The
last inclusion implies that there exist gi

x∗ ∈ ∂f i(x∗), i ∈
{1, . . . , n}, such that Lz∗ = −(g1

x∗ , . . . , g
n
x∗)

T . Noting that

(1T
n ⊗ Id)L = (1T

n ⊗ Id)(L⊗ Id) = 1T
nL⊗ Id = 0d×dn,

we deduce 0d = (1T
n ⊗ Id)Lz∗ = −

∑n
i=1 gi

x∗ . As a result,
using Proposition 2.2, x∗ is a solution of (6). Finally, (iii)
follows by noting x∗ = 1n⊗x∗ and the fact that 0 ∈ ∂f(x∗)
implies that there exists z∗ ∈ Rnd with Lz∗ ∈ −∂f̃(x∗),
yielding that (x∗,z∗) is a saddle point of F .
Since G is undirected, the gradient of F in (7) is distributed
over G. Given Proposition 4.2, it is natural to consider the
saddle-point dynamics of F to solve (5),

ẋ + Lx + Lz ∈ −∂f̃(x), (8a)
ż = Lx. (8b)

Note that (8) is a set-valued dynamical system. Using
Propositions 2.1 and 2.3, one can guarantee the existence of
solutions. From Proposition 4.2, if (x∗,z∗) is an equilibrium
of (8), then x∗ is a solution to (6). The next result states
that the dynamics (8) leads the network to agree on a global
minimum of f when G is undirected and f is the sum of
locally Lipschitz convex functions.
Theorem 4.3: (Asymptotic convergence of (8) on undi-
rected networks): Let G be a connected graph and consider
the distributed optimization problem (5), where each f i,
i ∈ {1, . . . , n} is locally Lipschitz and convex. Then, the
projection onto the first component of any trajectory of (8)
asymptotically converges to the set of solutions to (6).
Moreover, if f has a finite number of critical points, the limit
of the projection onto the first component of each trajectory
is a solution of (6).

V. NASH SEEKING STRATEGIES ON UNDIRECTED
ADVERSARIAL NETWORKS

Consider the network Σnet = (Σ1,Σ2,Σeng) described in
Section III. We propose a distributed dynamics which allows
for agents in Σnet to compute a Nash equilibrium of the zero-
sum game Gadv-net = (Σ1,Σ2,Σeng, U), when U is a strictly
concave-convex Lipschitz continuous function.

A. Reformulation of the 2-network zero-sum game

We start by describing how agents in each network use
the information obtained from their neighbors to compute

the value of their own objective function. Based on these
estimates, we introduce a reformulation of the Gadv-net =
(Σ1,Σ2,Σeng, U) which is instrumental for establishing our
results. Each agent in Σ1 has a function f̃ i

1 : Rd1 ×Rd2n2 →
R with the following properties

(i) f̃ i
1(x1,1n2 ⊗ x2) = f i

1(x1, x2), for x1 ∈ Rd1 , x2 ∈
Rd2 , and

(ii) for each x2 ∈ Rd2n2 and any canonical inclusion map
ı1 : Rd2|N in

Σeng (vi)| → Rd2n2 ,

f̃ i
1(x

i
1, ı1 ◦ hi

1(x2)) = f̃ i
1(x

i
1,x2), (9)

where hi
1 : Rd2n2 → Rd2|N in

Σeng (vi)| projects x2 to the
values received by vi from its in-neighbors in Σeng.

Each agent wj in Σ2 has a function f̃ j
2 defined similarly.

The collective payoff functions of the two networks are

Ũ1(x1,x2) =
n1∑
i=1

f̃ i
1(x

i
1, ı1 ◦ hi

1(x2)), (10a)

Ũ2(x1,x2) =
n2∑

j=1

f̃ j
2 (ı2 ◦ hj

2(x1), x
j
2). (10b)

In general, the functions Ũ1 and Ũ2 need not be the same.
However, note that Ũ1(1n1 ⊗ x1,1n1 ⊗ x2) = Ũ2(1n1 ⊗
x1,1n1⊗x2), for any x1 ∈ Rd1 , x2 ∈ Rd2 . Here, we assume
that the individual payoff functions are assigned such that
Ũ1 = Ũ2, and denote this common function by Ũ . The merit
of this assumption, as we will see in the next result, is that
it allows us to still cast the problem as a (constrained) zero-
sum game. The proof follows from an argument similar to
the one in Lemma 4.1.
Lemma 5.1 (Reformulation of the 2-network zero-sum game):
The problem (4) on Rd1 ×Rd2 is equivalent to the following
problem on Rn1d1 × Rn2d2 ,

max
x1∈X

n1
1

min
x2∈X

n2
2

Ũ(x1,x2), subject to (11a)

L1x1 = 0n1d1 , L2x2 = 0n2d2 . (11b)
We denote the constrained zero-sum game defined in (11)
by Gadv-net = (Σ1,Σ2,Σeng, U). Our objective is to design a
coordination algorithm that is implementable with the local
information available and leads them to find a Nash equilib-
rium of G̃adv-net which corresponds to a Nash equilibrium of
Gadv-net. Achieving this goal, however, is nontrivial because
individual agents, not networks themselves, are the decision
makers. From the point of view of agents in each network,
the objective is to agree on the states of both their own
network and the other network, and that the resulting states
correspond to a Nash equilibrium of Gadv-net.
Proposition 5.2: (Characterization of the Nash equilibria
of G̃adv-net): Let F1 and F2 be defined by

F1(x1,z1,x2) = −Ũ(x1,x2) + zT
1 L1x1 +

1
2
xT

1 L1x1,

F2(x2,z2,x1) = Ũ(x1,x2) + zT
2 L2x2 +

1
2
xT

2 L2x2,



where Li = Li⊗ Idi , for i ∈ {1, 2}, with Li the Laplacian of
Σi. Then if (x∗1,z

∗
1 ,x∗2) and (x∗2,z

∗
2 ,x∗1) are saddle points

of, respectively, F1 and F2

(i) so are (x∗1,z
∗
1 + 1n1 ⊗ a1,x

∗
2) and (x∗2,z

∗
2 + 1n2 ⊗

a2,x
∗
1), a1 ∈ Rd1 and a2 ∈ Rd2 ,

(ii) (x∗1,x
∗
2) is a Nash equilibrium of G̃adv-net,

Furthermore,

(iii) if (x∗1,x
∗
2) is a Nash equilibria of G̃adv-net then there

exists z∗1 ,z∗2 such that (x∗1,z
∗
1 ,x∗2) and (x∗2,z

∗
2 ,x∗1)

are saddle points of, respectively, F1 and F2.

B. The distributed Nash seeking dynamics

Here, we introduce a dynamics to solve (11). Specifically,
we design gradient dynamics to find the saddle points of
F1 and F2 prescribed by Proposition 5.2. Consider the set-
valued dynamical system ΨNash-undir : (Rd1n1 × Rd2n2)2 ⇒
(Rd1n1 × Rd2n2)2 given by

ẋ1 + L1x1 + L1z1 ∈ ∂x1Ũ(x1,x2), (12a)
ż1 = L1x1, (12b)

ẋ2 + L2x2 + L2z2 ∈ −∂x2Ũ(x1,x2), (12c)
ż2 = L2x2, (12d)

where xj ,zj ∈ Rnjdj , j ∈ {1, 2}. We refer to ΨNash-undir
as the undirected distributed Nash seeking dynamics. Note
that local solutions to this dynamics exist by virtue of
Proposition 2.1 and 2.3. The next result captures the main
contribution of this section.
Theorem 5.3: (Asymptotic convergence of the undirected
distributed Nash seeking dynamics): Consider the zero-
sum game Gadv-net = (Σ1,Σ2,Σeng, U), where

(i) Σ1 and Σ2 are connected and undirected,
(ii) Ũ : Xn1

1 ×Xn2
2 → R, X1 and X2 compact convex sub-

sets of, respectively, Rd1 and Rd2 , is a Lipschitz con-
tinuous strictly concave-convex function, distributed
over (Σ1,Σ2,Σeng) in the sense of (10).

Then the projection onto the first and third components of
the solutions to (12) asymptotically converges to the solution
of (11).

Proof: Throughout this proof, since (9) holds for both
networks, without loss of generality and for simplicity, we
assume that agents in Σ1 have access to x2 and, simi-
larly, agents in Σ2 have access to x1. By Theorem 2.5,
a solution to (11) exists. By the strict concavity-convexity
properties, this solution is, in fact, unique. Let us denote
this solution by x∗1 = 1n1 ⊗ x∗1 and x∗2 = 1n2 ⊗ x∗2.
By Proposition 5.2(iii), there exists z∗1 and z∗2 such that
(x∗1,z

∗
1 ,x∗2,z

∗
2) ∈ Eq(ΨNash-undir). First, note that given any

initial condition (x0
1,z

0
1 ,x0

2,z
0
2) ∈ R2n1d1 × R2n2d2 , the

set Wz0
1 ,z0

2
= {(x1,z1,x2,z2) | (1T

nj
⊗ Idj )zj = (1T

nj
⊗

Idj )z
0
j , j ∈ {1, 2}} is strongly positively invariant un-

der (12). Consider the function V : (Rd1n1)2 × (Rd2n2)2 →

R≥0 defined by

V (x1,z1,x2,z2) =
1
2
(x1 − x∗1)

T (x1 − x∗1) +
1
2
(z1 − z∗1)T (z1 − z∗1)

+
1
2
(x2 − x∗2)

T (x2 − x∗2) +
1
2
(z2 − z∗2)T (z2 − z∗2).

The function V is smooth. Next, we examine its
set-valued Lie derivative along ΨNash-undir. Let ξ ∈
L̄ΨNash-undirV (x1,z1,x2,z2). By definition, there exists v ∈
ΨNash-undir(x1,z1,x2,z2), given by

v = (− L1x1 − L1z1 + g1,(x1,x2),

− L2x2 − L2z2 − g2,(x1,x2),L1x1,L2x2),

where g1,(x1,x2) ∈ ∂x1U(x1,x2) and g2,(x1,x2) ∈
∂x2U(x1,x2), such that

ξ =v · ∇V (x1,z1,x2,z2)

=(x1 − x∗1)
T (−L1x1 − L1z1 + g1,(x1,x2))

+(x2 − x∗2)
T (−L2x2 − L2z2 − g2,(x1,x2))

+(z1 − z∗1)T L1x1 + (z2 − z∗2)T L2x2.

Note that −L1x1−L1z1+g1,(x1,x2) ∈ −∂x1F1(x1,z1,x2),
L1x1 ∈ ∂z1F1(x1,z1,x2), −L2x2 − L2z2 − g2,(x1,x2) ∈
−∂x2F1(x1,z2,x2), and L2x2 ∈ ∂z2F2(x2,z2,x1). Using
the first-order convexity property of F1 and F2 in their first
two arguments, one gets

ξ ≤F1(x∗1,z1,x2)− F1(x1,z1,x2) + F2(x∗2,z2,x1)
−F2(x2,z2,x1) + F1(x1,z1,x2)− F1(x1,z

∗
1 ,x2)

+F2(x2,z2,x1)− F2(x2,z
∗
2 ,x1).

By substituting each term in the right-hand side and using
the fact that (x∗1,z

∗
1 ,x∗2,z

∗
2) ∈ Eq(ΨNash-undir),

ξ ≤− Ũ(x∗1,x2) + Ũ(x1,x
∗
2)− z∗1L1x1

− 1
2
x1L1x1 − z∗2L2x2 −

1
2
x2L2x2.

By rearranging, we thus have ξ ≤ −F2(x2,z
∗
2 ,x∗1) −

F1(x1,z
∗
1 ,x∗2). Next, since F2(x∗1,z

∗
2 ,x∗2) +

F1(x∗2,z
∗
2 ,x∗1) = 0, we conclude

ξ ≤ F1(x∗1,z
∗
1 ,x∗2)− F1(x1,z

∗
1 ,x∗2)

+ F2(x∗2,z
∗
2 ,x∗1)− F2(x2,z

∗
2 ,x∗1),

yielding that ξ ≤ 0. As a result,

max L̄ΨNash-undirV (x1,z1,x2,z2) ≤ 0.

We also conclude that the trajectories of (12) are bounded.
By Theorem 2.4, any trajectory starting from an initial
condition (x0

1,z
0
1 ,x0

2,z
0
2) converges to the largest positively

invariant set M in SΨNash-undir,V ∩ V −1(≤ V (x0
1,z

0
1 ,x0

2,z
0
2)).

Let (x1,z1,x2,z2) ∈ M . Because M ⊂ SΨNash-undir,V , then
F1(x∗1,z

∗
1 ,x∗2)− F1(x1,z

∗
1 ,x∗2) = 0, i.e.,

−Ũ(x∗1,x
∗
2)+Ũ(x1,x

∗
2)−z∗1L1x1−

1
2
xT

1 L1x1 = 0. (13)



Define now G1 : Rn1d1 × Rn1d1 × Rn2d2 → R by
G1(x1,z1,x2) = F1(x1,z1,x2) − 1

2xT
1 L1x1. G1 is con-

vex in its first argument and linear in its second, and
that it has the same saddle points as F1. As a result,
G1(x∗1,z

∗
1 ,x∗2) − G1(x1,z

∗
1 ,x∗2) ≤ 0, or equivalently,

−Ũ(x∗1,x
∗
2) + Ũ(x1,x

∗
2) − z∗1L1x1 ≤ 0. Combining this

with (13), we have that L1x1 = 0 and −Ũ(x∗1,x
∗
2) +

Ũ(x1,x
∗
2) = 0. Since Ũ is strictly concave in its first

argument x1 = x∗1. A similar argument establishes that
x2 = x∗2. Using now the fact that M is positively invariant,
one can deduce that Ljzj ∈ −∂xj Ũ(x1,x2), for j ∈ {1, 2},
and thus (x1,z1,x2,z2) ∈ Eq(ΨNash-undir).
Remark 5.4: (Comparison with the best-response dynam-
ics): The advantage of using the gradient flow is that it avoids
the cumbersome computation of the best-response map. This,
however, does not come for free. There are convex-concave
functions for which the (distributed) gradient flow dynamics,
unlike the best-response dynamics, fails to converge to the
saddle point, see [16] for an example. •
Remark 5.5: (Zero-sum games with more than two ad-
versarial networks): It is known that there are continuous-
time zero-sum games with three players and strictly concave-
convex payoff functions, for which even the best-response
dynamics fails to converge, see [14]. This leaves little hope
for extending the results of Theorem 5.3 to N -network zero-
sum games, with N ∈ Z≥3. •

VI. CONCLUSIONS AND FUTURE WORK

We have considered a class of strategic scenarios in which
two networks of agents are involved in a zero-sum game.
The networks’ objectives are to either maximize or minimize
a common objective function. Individual agents collaborate
with neighbors in their respective network and have partial
knowledge of the state of the agents in the other network.
We have proposed a distributed saddle-point dynamics that
is implementable by each network via local interactions. We
have shown that, for a class of strictly concave-convex and
locally Lipschitz objective functions, the proposed dynamics
is guaranteed to converge to the Nash equilibria. Our al-
gorithm synthesis builds on a continuous-time optimization
strategy designed to find the set of minimizers of a sum of
convex functions in a distributed way. As a byproduct of our
study, we have shown that this strategy can be interpreted
itself as a saddle-point dynamics and have established its
convergence properties. Future areas of work include the
extension of the convergence analysis for directed network
topologies; the generalization of our results to not necessarily
strict concave-convex functions; and the applications to var-
ious areas, including social networks, collective bargaining,
and collaborative pursuit-evasion.
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