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Abstract— This paper studies adversarial scenarios within invasion and the Cuban missile crisis [6]. Other examples
the framework of hypergames, where rational players have are wartime negotiation [9] and cybersecurity [10], where

misperceptions about the game they are involved in. We rs ol ritv strateqi nd th t of ri astio
introduce the notion of inconsistent equilibrium to capture those !Osarﬁghs play security strategies and the cost of risky

equilibria of the hypergame that are not perceived by at least
one player as an equilibrium in her own game. We identify ~ The issue of inconsistency in equilibria in the framework
a class of actions, termed exploratory, that a player can take ¢ incomplete information games, where players have sub-

from an inconsistent equilibrium to improve her payoff (even . . - .
though such actions are perceived to be sanctioned by other jective belief about the state of the game, has been studied

players). We analyze the asymptotic convergence properties N [11]. In [12], [13], it is shown that the swap learning

of the resulting dynamical system and characterize to what method is guaranteed not to increase the misperception of a
extent misperception can be decreased by the use of exploratory player and converges to an equilibrium, possibly incoesist
actions. with players’ perception of equilibria. In [12], a self-bking
strategy, called the modified swap learning, is introduced.
This strategy is guaranteed to converge to a consistent equi

This paper studies the issue of inconsistency in outcomd8rium, however, it can possibly increase the misperceyti
in adversarial scenarios, when players have subjective pdihis is & consequence of the fact that, indeed, inconsigenc
ceptions about the state of the game. We study this probléRgy entirely be due to opponent’s misperception.
using a class of games of incomplete information, called Statement of contributionsOur contributions are three-
hypergames. In hypergames, players can have mutually ifoid. The first contribution is the introduction of the notio
compatible perceptions about their opponents’ prefencef inconsistent equilibrium and exploratory action. An equ
This class of games enjoys many properties, including tHibrium of the hypergame is inconsistent if it is not pereslv
fact that, under suitable learning strategies, the redgaity as an equilibrium by at least one of the players. An action
converges to an equilibrium. However, an equilibrium of thérom an inconsistent equilibrium is exploratory if it imwes
overall hypergame may not be consistent with the perceptiothe payoff of the player but is perceived as not being free
of individual players. If the hypergame arrives at suchof sanctions by other players. We show that the digraph that
inconsistent equilibria, then the players can correctigude contains both the actions perceived as sequentially rtion
that some misperception about each other exists among a player and the exploratory actions, termed exploratory
them. This paper introduces the notion of exploratory actio H-digraph, is weakly acyclic. The second contribution es-
which correspond to actions that a player can take from gablishes that, when players play sequentially, update the
inconsistent equilibrium to improve her payoff (at the rifk  perceptions using swap update mechanism, compatible with
being sanctioned by player's ensuing action). Our aim is ttheir observations, and only one uses exploratory actibes,
understand under what conditions such exploratory actiomspeated play of the hypergame converges to an equilibrium
leads the players to correct errors in their misperceptiowhich is either rational or consistent for the player. Thiedth
about others. contribution concerns the setup where more than one player

Literature review: In this paper, we consider games ofuses exploratory actions. In this case, we show that regeate
incomplete information, where players are uncertain abof@y may not converge to an equilibrium, but a cycle. We
some parameters involved, for examp|e the payoff fundntrOduce the notion of re_latlve mlsperceptlon, Wthh ato -
tions [1]. There is a large body of work on games; we refeyS to precisely characterize those parts of the mispemepti
the interested readers to [2] for a complete synthesis obgamthat can be corrected.
with incomplete information and to [3] for a summary of the Organization: Section Il presents the basic notions on
literature. More specifically, we consider the framework ohypergames. Section Il formalizes the problem under study
hypergames introduced in [4] and further developed in [S|Section IV introduces the notion of exploratory action and
[6], [7]. This class of incomplete information games isanalyzes the convergence properties of repeated play when
mostly used in the context of conflict analysis [8], [6] andsuch actions are allowed. Finally, we gather our conclission
is typically useful in scenarios where players are certaiand ideas for future work in Section V.
about their opponents’ perceptions, while these certsnti
may be mutually inconsistent. Some well-known examples of I
the application of hypergame analysis include the Normandy

I. INTRODUCTION

. HYPERGAME THEORY

) We consider games with inconsistent perceptions across
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{bgharesifard, cortes}@csd. edu 0-level hypergame is simply &inite) game i.e., a triplet



G = (V, Soutcome P), WhereV is a set ofn € Z>, players, I € {4, B} with respect toHY, J € {4, B}, if and only
Soutcome = S1 X ... x S, is the outcome set with finite if for each improvementy for I, perceived byJ in HY,

cardinality N = |Soutcomd € Z>1 andP = (P,..., P,), there exists an improvementfor I’, perceived byJ in HY,
with P; = (x1,...,2n5)7 € Sp the preference vector of such thatr ~p,, z. Whenever this holds, we say that the
playerv;, i € {1,...,n}. Here,S; is a finite set of actions improvementz from y for I’ sanctionsthe improvement

available to playew; € V andSp C Sl icomeiS the set of from z for I in HY. By definition, a rational outcome is also
all elements inSY.ome With pairwise different entries. We sequentially rational. An outcomee SoytcomeiS Unstablefor

denote byr; the projection ofSgyicome ONO S;. player I with respect ton} if it is not sequentially rational

A n-person 1l-level hypergameis a set H! = forplayer/, as perceived by playef and is arequilibrium
{G1,...,G,}, where G; = (V, (Soucomds, P:), for i € of Hf} if it is sequentially rational fqr both/ E.irlld.J', as
{1,...,n}, is the subjective finite game of playey € V, perceived by player. An outcomez is an equilibrium of

andV is a set ofr players;(Soucomds = S1; X . . X Sni, With H' if it is sgqueontially rational for player in Hj and
S the finite set of strategies availableitq as perceived by fOr player 3 in ;. Note thatx can be an equilibrium for
vi; Py = (Pyi, ..., Py), with P;; the preference vector of an(;j not an equmlbrlum ofl;. We denote bBE(‘)l(HAO),
v;, as perceived by;. In a 1-level hypergame, each player EOI(HJ?)v and Eq(H") the set of equilibria of/;, Hp,
v; € V plays the gameG,; with the perception that she is @d H, respectively.

playing a game with complete information. Even though the

notion of hypergame can be extended to higher levels [5B. H-digraphs

n this paper we focus ofi-level hypergames. Th's IS th? The notion of H-digraph encodes the stability information
simplest class of games that allows for the explicit modglin : : . ;
of hypergames. We begin by recalling some basic notions

of players’ perceptions about their opponents’ preference

. T . .. about directed graphs [16]. digraph G is a pair(V, E),
:zgl;ziesrefore exhibits all the intricacies associated vigh whereV is a finite set, called the vertex set, aBdC V x V.

called the edge set. Givem, v) € E, u is anin-neighborof
A. Stability and equilibria v andy is anout-neighborof u. The set gf in-neighbors and
out-neighbors ofy are denoted, respectively, By (v) and

We recall the notion of stability fo-personl-level hy-  A/out(y). Thein-degreeandout-degreef v are the number of
pergames. Lef/' = {HY, Hp}. Here,H = (P4a,Ppa)  in-neighbors and out-neighbors of respectively. A vertex
is the O-level hypergame for player, where P44 and s called asink if its out-degree is zero and sourceif its
Ppa are, respectively, the preferences of playérand in-degree is zero. Adirected) pathis an ordered sequence
player B perceived by playerd. The same convention of vertices so that any two consecutive vertices are an edge
holds for H) = (Pag,Ppp). For simplicity, theO-level  of the digraph. Acyclein a digraph is a directed path that
hypergames have the same set of outcorfigsome We starts and ends at the same vertex and has no other repeated
denote byp,, the binary relation onSoucome induced vertex. A digraph is calledcyclicif it does not contain any
by P;;, whereI,J € {A, B}. For convenience, we let cycle. A digraph is calledveakly acyclicif there exists a

Soutcomdr; () = {¥ € Soutcome | 71(y) = 7r(x)} and refer path from any vertex to a sink. Note that a weakly acyclic
to it as a restricted outcome set. We also find it useful t@igraph may contain cycles.

use I’ to denote the opponent df in {A, B}. We assign
rank(z, Pry) € R5( to each outcome € SouicomeSUch that
rank(y, Pry) > rank(z,Pyy) if and only if x >-p, , y (play-
ers prefer the outcomes with lower ranks). We use the s
{1,...,|Soutcomd } t0 rank the outcomes. Thmisperception
functionLp4 : Sp — Rx>( of A aboutB’s game is

Formally, the H-digraph associated toHY is Guo =
(Soutcome 5H0A), where there exists an edge, y) € Emg if
a?d only if either there exists an improvemerftom x for A
for which there is no sanction d& in HY, or there exists an
improvement, from z for B for which there is no sanction of
Ain HY. One can similarly construt;; . By definition, an

N outcomer is sequentially rational for (Brespectively forB)
Lpa(P) = Z [rank(z;, Ppp) —rank(z;, P)| (1) if and only if A°U(z) N Soucomdry(x) = 0 (respectively
i=1 N°"(2)NSoutcomdr, () = V). Moreover, an outcome belongs

Note that this function compares the rank of each outconte Eq(HY) if and only if its out-degree in the associated H-
in the preference vector faB in HY to its rank inB’s true  digraph is zero. H-digraphs enjoy some structural progerti
preference vector if{%. A similar misperception function that play an important role in our discussion later. A path

L 45 can be defined. S = (z1,%2,...), ; € Soucome fOr all i € Z>q, is
Given two distinct outcomes:,y € Soucoms y is an hondeterioratingfor H3 if (x;,x;41) € Exg, for all j €
improvementfrom z for I € {A, B}, perceived byJ € Z>1- A cycle & = (z1,a,...,&m,21), m € L>1, IS @
{A, BYin HY, if and only if 77 (y) = 7y () andy =p,, = weak improvement cycfer HY if it is nondeteriorating and

b . 1 IJ . j
An outcomez € Soucomelis calledrational for I € {A, B},  %i+1 =P €; for somej € {1,...,m —1}.

as perceived byJ € {A,B} in HY, if there exists no Theorem 2.1:(0-level hypergames with two players
improvement frome for 7. The common notion of rationality contain no weak improvement cycle [13]):For a 1-level

in hypergames is the notion of sequential rationality [18], hypergamelf! = {H, H%} between playerst and B, HY

[15]. An outcomezr € Soutcome iS S€quentially rationaffor — and HS contain no weak improvement cycle.



We denote the sequence of outcomes of the repeatdtk swap update mechanism fot compatible with the
play of a hypergame by a sequenee = (x1,z9,...), oObservation set. Note that by its definitioS,wéuA also
wherey, s, ... € Soucome We call o a cycle wheno = does not increase the misperception functi8m’, can
(581,1'2, .. .LUl), WhereiUZ' 75 1 unless: = 1. Note that this be constructed S|m||ar|y AB

notion of a cycle is different from the one for a digraph. 3) Modified swap learning:lt is interesting to note that

the preference vectors obtained using swap learning may be
inconsistent with the stability properties of the outcorass

Suppose playerst and B take actions that change thedetermined by the actions of other players. When faced with
outcome fromz to y. If A can perfectly observ®’s action  such situation, a player has to determine if this inconsiste
and believes that the opponent is rational, she concludes ths due to her own misperception or the misperception of the
player B prefers(ma(z), mp(y)) over z. Therefore,A can opponent. The modified swap learning method belongs to the
incorporate this information into her hypergame and updaf@st class and is defined as follows.

her perception about the preferences of plafer Consider al-level hypergame between playedsand B.

1) Preference update mechanisnhet us describe the SupposeB takes an action that changes the outcome from
formal requirements that the method used for incorporating, € Syycome t0 2 € Soutcome Wherez; =p,, z2. The
these observations should satisfy. et 4 be a preference modified swap learning maqmswfw2 :Sp — Sp is
vector of player B, perceived by playerA. We define ’
the observation setDg, as the set of all binary relations
observed by playerd about playerB. We say that the

C. Learning

« if x; perceived as unstable f@ in (P 44, Sw;‘w2 (P))
and x5 is perceived as sequentially rational fé in

preference vectaP 5 4 is compatible with an observation set Paa, Swa?l.,wz (P), then

Op4 if all the binary relations iN0g 4 hold with the order A _ A

~p,.- A preference update mechanissompatible with an MSW, 0y (P) = SWe, 4, (P),
observation seUg, is a map¥p,, : S, — S, such o if x1,2o are perceived as unstable foB in
that U, , (P) is compatible withOg4 for P € Soutcome (PAA’SW;417I2 (P)), then

Throughout this paper, when we say a player updates her A N A

preferences with some binary relation, we mean that this MSw;, ., (P)=8Sw; , oSw; .. (P),

player adds this binary relation to her associated obgervat
set and uses a preference update mechanism to generate a
preference vector compatible with the observation set. We
next describe one of such mechanisms, used in this paper.

where y € Soutcomdr,(z,) 1S the outcome with the
highest rank, with respect tswfhm(P), which is

sequentially rational ifP 44, va;;‘l,gc2 (Ppa)).
« if x1,x4 are perceived as sequentially rational #®1in

2) Swap learning:We start with an algebraic construc- (P, Sw _ (P)), then
tion. LetV be a set of cardinalityv and leti¥ be the subset T EnE
of VN with pairwise different elements. Far, z, € V, let MSw; . (P)=Swi _oSwi _ (P),

swap,, .., : W — W be defined by ) .

_ where z € Soutcomdry(z,) IS the outcome  with
(SWapg, e, (V))& = vp  If v # 21, 22, the highest rank, with respect ®wZ , (P), which
(sWap,, 4, (V)i = {

if v; = x1,0; = o andi < j, is an ir‘gprovement fromz; for player A in
(Paa,Swg, ., (Ppa))

Modified swap learning guarantees that the stability prop-
) erties determined by the resulting perceptions are fully
v; if vy =x1,0; = x5 andi > j. consistent with the actions of other players. However, this
method may increase the value of the misperception func-
tion (1) if the misperception is due to the opponent.

Uj
v, ifv; = T1,V5 = T2 andi > 7

v i v =1, =29 andi < j,

(swap,,, .., (v)); = {

We refer toswap,,,, ..., as ther; to xo swap mapTheswap
learning mapeSwf’y : Sp — Sp for player A is given by

A
SWI,y(P) = SW&PzH(WA(z),wB(y))(P)~ IIl. PROBLEM STATEMENT

One can show that if players are rational and perfectly Consider al-level hypergame betweed and 5 and

observe each other's actions, then the misperception furikdPPOSe both players use the swap update mechanism com-
tion (1) under swap learning does not increase [12]. patible with their observation set about each other. Censid

, ) the resulting dynamical system on the perceptions,

Next, suppose playerd and B sequentially take actions
iwt:h thgt thf hg&grgamedogtcon:ﬁs al;e: (xltz e ,x,{). f Ppa(l+1)= SWéBA(z)(PBA(l))7 (2a)

et us denote 7 4 and 0% the observation sets o Pan(l+1) = Swh Pan(l). 2b
players A and B, respectively, associated to. It is easy asll+1) Wo.s0)(Paz(l) (2b)
to observe that played can make her preference vectorHere, Op4(l) and O45(1), respectively, denote the obser-
compatible withO% , by executing a composition of swap vation sets of playersd and B at round! € Z>, and
updates, denote waéa , each of which compatible with P54(0) = P4 andP45(0) = P4p are, respectively, the

B
a

a binary relation in(’)BAf‘ We refer to this mechanism asinitial A andB’s perceptions about their opponent. Under the



evolution prescribed by (2), one can show that the repeatedDefinition 4.1: (Exploratory actions): Consider the hy-

play of the hypergame converges to an equilibrium [13]. pergameH' between playerst and B. An action of player
Note that, by definition, an equilibrium of a-level Afromze Eqy “Y(H') 10y € Soucomdny (x) IS exploratory

hypergameH' need not be an equilibrium of any of its if ¥ >P.aa 2.

associated-level hypergamesHY and H%. Therefore, the  According to this definition, if an inconsistent equilibmiu

equilibrium to which the hypergame converges to might nas rational for A, then this player has no exploratory action.

be consistent with the perception of individual playerst FoAlthough an exploratory action leads to an outcome of the

instance,A, according to her hypergamB might expect game that is more preferred hy, this player perceives

B to move away from the equilibrium off!, even though at least a sanction oB against such improvement; thus

B will actually not do so. This inconsistency makes playergxploratory actions, in general, can be costly. If suchoasti

aware of the existence of some misperception that remainsare permitted toA, then the H-digraphG;q has to be

their beliefs. Our objective in this paper is to study to whadugmented by adding the set of edges

extent players can further explore the hypergame in order exp In-eq, 171

to arrive at fully consistent equilibria. We are particlyar €4 = {(%,%) € Soutcome X Soutcome | = € Eq(H"),

interested in methods that, unlike the modified swap legrnin Y € Soutcomdrg(z)s Y =Pan T

strategy described in Section [I-C.3, do not increase the _

misperception. Assuming players can afford to take somée term the digraptfy o = (Soutcome Errg U E5") the ex-

action within certain restricted class and move away frorploratory H-digraphof A. The following result characterizes

inconsistent equilibria, we are interested in answering ththe basic properties of this digraph and is a consequence of

following questions Theorem 2.1.

(i) under what conditions are these actions guaranteed to-€mMma 4.2:(The exploratory H-digraph is weakly
reduce the misperception about the opponent? acyclic): The digraphGy, is weakly acyclic.

(i) what is the asymptotic behavior of the resulting dy- Note that the digrapb ;o is unknown to the player, unlike
namical system on the perceptions? Do they convergg, , . This is because shé does not know what the equilibria
to an equilibrium? of H' are a priori.

IV. EXPLORATORY ACTIONS A. Repeated play when only one player explores

In this section, we introduce the notion of exploratory Here, we analyze the convergence properties of the re-
action and characterize its properties. We assume thag¢rgayPeated play of the hypergame when only one player uses
are playing sequentially, one after each other. We focus &ixploratory actions. The following result shows that, iisth
player A’s hypergame. All the notions can be establishe§@S€, convergence to consistent equilibria for the playatr t
similarly for playerB. In the rest of this paper, for simplicity USes exploratory actions is guaranteed.
of the statements, we assume that all the preorders are stric Theorem 4.3:(Convergence of repeated play of hyper-

Let qug-eq(H1) = Eq(H") N (Soutcome\ Eq(HY)) denote  games when iny one player explores)Consider al-level
the set of equilibria of ! which are inconsistent with hypergame with two playersl and B, where players play
A’s perceptions. By definition, these equilibria & are sequentially and update their perceptions using swap apdat

perceived byA as sequentially rational for her but unstableNechanism compatible with their observation set. Suppose
for B. Figure 1 illustrates this notion. that only A uses exploratory actions. Then the repeated play

of the hypergame converges to an equilibrium which is either
consistent withA’s perception or rational for.

o o Proof: Since there are no exploratory actions from a
] l ] l rational outcome, the result is immediate if the play asige
an outcome which is both an equilibrium &f' and rational

for A. Assume this is not the case. Let us show that the
repeated play of this hypergame will not converge to a cycle,
i.e., players will not repeatedly play the actions given by
(@ (b) a sequencerc = (T;, Tit1, Tit2,-- > Tith, Ti), k € L>3.
Fig. 1. The outcome: is an equilibrium of i which is inconsistent with Without IOS-S of generality, we assume that the a?tlon- from
(@) A's perception (a) and (b) botA and B's perception. In each case, the Lit+k to z; is taken by playerB. Suppose otherwise, "(_a"
arrows in bold correspond to the actions for herself thaplager perceives  SUppose that the repeated play of the hypergame starting at
as sanctiqn-free. The_ other arrows correspond to what theeplperceives x; converges tor. Since the repeated p|ay of this hypergame
are sanction-free actions of her opponent. under learning and without using exploratory actions does
not converge to a cycle [13], playet must have used an
We refer to the set of actions that players are allowed texploratory action. Without loss of generality, let us assu
take from inconsistent equilibria aaxploratory and define that the action that changes the outcome farmo z;; is
them next. exploratory. SinceB is using the swap update mechanism




compatible with their observation set and does not explorér all y, z € U|,. We use the sefl,...,|U|,|} to rank
one can conclude that;; >p,, x;+1. However, sinceB the outcomes ofU|,. The relative misperception function
has also observed the action of playérfrom z; t0 2;41, Rp,: Up — Rsq of A aboutB’s game, wherdUp C Sp
taking the action that changes the outcome:to,. from x;  associated tdJ, is defined then by
by B implies thatz; 1 >p,, *;+x, Which is a contradiction. U U U

Since the repeated play does not converge to a cycle and Ripa(P) = Z [rank, (2, Ppp) = rank; (z, P)|. - (3)
players use swap update mechanism compatible with their z‘f{?f

observation sets, unless the repeated play of the hypergarﬂ% relative misperception function measures how a player
stops in an equilibrium of the evolved hypergame which P P pilay

is either perceived as rational or an equilibrium by fanks the outcomes, on a subseSgiiome Which share the

eventuall, 017 & Soucane a4 € Soscomds, o) We have G008 RG0S B C e ncion is lso mono.
r =py, y iff @ =-p,, y. Similarly, for z € Soutcomdr (x) ’

we havex >p,, z iff  >p,, z. Thus the repeated play of tonically decreasing. Clearly

evolved hypergame is the same as the repeated play of the Lpa(P)=0= RSBonme(p) =0.

0-level hypergame?® = (P44, Ppp). Since the H-digraph

associated td{° is acyclic, Theorem 2.1, the repeated playiowever, the reverse direction is not necessarily true.

converges to an equilibrium, as claimed. u Next, letoe be a cycle formed by the repeated play of the
hypergame when both players use exploratory actions, see
B. Repeated play when both players explore e.g., Remark 4.4. Give®, we let P|,. = (z;,,...,2i,.)7,
with K = |o¢| — 1, denote the preference vectBrrestricted

The next natural step is to investigate the convergence

of repeated play to an equilibrium when both players use “¢ €.,
exploratory actions. The following observation illusest « x;, appears i, forall j € {1,...,K}, and
how cycles may exist in this case. o Ti; = p|,. Tiy iff 2;, =pay, j,ke{l,...,K}.

Remark 4.4:(Cycles may exist when both players ex-  \We have the following result.
plore): Consider al-level hypergame with playerd and B.
Assume that the sequenee= (x;,Zi11,%it2, ..., Titk)s
wherek € Z>3 and is odd, is the result of the firktrounds
of play of this hypergame, where

Proposition 4.5:(The relative misperception vanishes
along the cycles of repeated play):Consider al-level
hypergame H' between A and B, where players play
sequentially, update their perceptions using swap update

o x; € Eq'ﬂ'eq(Hl) (A explores from this outcome); mechanism compatible with their observation sets, and can
e T € qu'GQ(H 1) (B explores from this outcome); take exploratory actions. If the repeated play of the hyper-
o Titk € Soutcomdr 4 (zy)- game starting fromx € Soutcome reachese again, forming a

: . . cycle o¢, then
Suppose that; is a sanction-free improvement from ycleoe

for B in HY%. Note that this is not in contradiction with RpA(SWhoe (Ppa)lse) =0,
the actions taken by this player in. This is because the U (g 5 p B
action taken byB from z; 4, t0 ;.- is exploratory and thus, Ras( WOZCB( 4a8)loc) =0,

unlike in the proof of Theorem.4.3, ormannotconclude that whereU is the subset 08,,comeassociated to the outcomes
Tivk =Ppp Ti+1. Thus executings followed by the action 4+ appear inve.

mp(x;) of player B results in a cycle, which we denote
by oc. Note that when one of the actions & in o is
inconsistent witiP 3 4, A learns, and therefore, having taken
the initial exploratory action is beneficial fot. However,
it can be the case that the perceived preference vectors 3t

players are such that no two outcomes are swapped durifft¥ € Soutcog}ém(z)’ x =ppy y iff @ -py, y; thus, by
the execution ofrc. o definition of R ; ,, the result follows. u

Our observation in Remark 4.4 shows that if players per- This result precisely captures the part of the mispercep-
sistently explore a cycle, the repeated play of the hypeegarfion that can be reduced by using exploratory actions. The
may never converge to an equilibrium. The source of thifllowing result, in contrast, focuses on the misperceptio
issue is that players cannot identify which actions of theif?@ may remain even after exploration.
opponent have been exploratory. In order to make this point Proposition 4.6: (The remaining part of the mispercep-
precise, we introduce some useful notions. £gtdenote the tion function): Consider al-level hypergaméi! betweend
set of actions available td. Given an actioru € S4 and a and B, where players play sequentially, update their percep-
preference vectoP associated to a subset C Souicome We  tions using swap update mechanism compatible with their
assigmrank;J (y, P) € Ry to each outcomg € U|, such observation sets and can take exploratory actions. Assume
that that

Proof: We prove the first statement. The second state-
ment follows similarly. Since players are using the swap
update mechanism compatible with their observation sets,
er traveling the cycle, for any outcomesy € U such

rankiJ (y, P) > rank}lj(z, P) iff y=p,, 2 R%DXCU"“Q(PBA) = Ri‘g”me(PAB) =0. 4)



SupposeA takes an exploratory action from € Sgutcome
If the outcome of the hypergame comes backztdy an

action of B in any future round of play, ther learns that

B has also explored. Moreover, for each actioniffrom
x, perceived as sanction-free by, player A is indecisive
between

(i) executing modified swap learning, or
(ii) labeling the action as exploratory.

signals the persistence of some misperception about the
game the players are involved in. We have identified a
class of actions, termed exploratory, that players can take
from inconsistent equilibria in order to further decredse t

misperception. We have shown that, if exploration is alldwe

and only one player does it, then the repeated play of the
hypergame arrives at a consistent equilibrium or an outcome
rational for the player. In contrast, when both players use
exploratory actions, we have shown that the repeated play

Proof: First, we show that ha# not explored, repeated may finish in a cycle. The introduction of the notion of
play will not return to the outcome. Suppose otherwise, i.e. rg|ative misperception function has allowed us to charézte
B has not explored and the repeated play of the hypergamg, part of the misperception which is guaranteed to vanish

is oc = (mi,mi+1,..‘7$i+k,xi), wherex; = z, k € Zzg
and the actionz; to x;11 is an exploratory action by.

along such cycles. Future work will consider reward-based
mechanisms for exploration, where players obtain higher re

Since B has not explored, all his actions are perceived byarq for exploratory actions which lead to learning. We also
her as sanction-free. By assumption (4), one can concludesn, to study the impact of including the cost of exploratory

that iy, =pyp iy1. AlSO, the action ofB from xiyx 10 actions, the influence of these actions on deception, and the

x; implies thatz, 11 ~p,, Titr, @ contradiction.

To establish the other part, let us consider then an action of
player B from z € Soutcomet0 an outcomey € Soutcomdr 4 (x)-

collective exploration by groups of players.
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