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Abstract— This paper studies adversarial scenarios within
the framework of hypergames, where rational players have
misperceptions about the game they are involved in. We
introduce the notion of inconsistent equilibrium to capture those
equilibria of the hypergame that are not perceived by at least
one player as an equilibrium in her own game. We identify
a class of actions, termed exploratory, that a player can take
from an inconsistent equilibrium to improve her payoff (even
though such actions are perceived to be sanctioned by other
players). We analyze the asymptotic convergence properties
of the resulting dynamical system and characterize to what
extent misperception can be decreased by the use of exploratory
actions.

I. I NTRODUCTION

This paper studies the issue of inconsistency in outcomes
in adversarial scenarios, when players have subjective per-
ceptions about the state of the game. We study this problem
using a class of games of incomplete information, called
hypergames. In hypergames, players can have mutually in-
compatible perceptions about their opponents’ preferences.
This class of games enjoys many properties, including the
fact that, under suitable learning strategies, the repeated play
converges to an equilibrium. However, an equilibrium of the
overall hypergame may not be consistent with the perceptions
of individual players. If the hypergame arrives at such
inconsistent equilibria, then the players can correctly deduce
that some misperception about each other exists among
them. This paper introduces the notion of exploratory action,
which correspond to actions that a player can take from an
inconsistent equilibrium to improve her payoff (at the riskof
being sanctioned by player’s ensuing action). Our aim is to
understand under what conditions such exploratory actions
leads the players to correct errors in their misperception
about others.

Literature review: In this paper, we consider games of
incomplete information, where players are uncertain about
some parameters involved, for example the payoff func-
tions [1]. There is a large body of work on games; we refer
the interested readers to [2] for a complete synthesis of games
with incomplete information and to [3] for a summary of the
literature. More specifically, we consider the framework of
hypergames introduced in [4] and further developed in [5],
[6], [7]. This class of incomplete information games is
mostly used in the context of conflict analysis [8], [6] and
is typically useful in scenarios where players are certain
about their opponents’ perceptions, while these certainties
may be mutually inconsistent. Some well-known examples of
the application of hypergame analysis include the Normandy
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invasion and the Cuban missile crisis [6]. Other examples
are wartime negotiation [9] and cybersecurity [10], where
players play security strategies and the cost of risky actions
is high.

The issue of inconsistency in equilibria in the framework
of incomplete information games, where players have sub-
jective belief about the state of the game, has been studied
in [11]. In [12], [13], it is shown that the swap learning
method is guaranteed not to increase the misperception of a
player and converges to an equilibrium, possibly inconsistent
with players’ perception of equilibria. In [12], a self-blaming
strategy, called the modified swap learning, is introduced.
This strategy is guaranteed to converge to a consistent equi-
librium, however, it can possibly increase the misperceptions.
This is a consequence of the fact that, indeed, inconsistencies
may entirely be due to opponent’s misperception.

Statement of contributions:Our contributions are three-
fold. The first contribution is the introduction of the notions
of inconsistent equilibrium and exploratory action. An equi-
librium of the hypergame is inconsistent if it is not perceived
as an equilibrium by at least one of the players. An action
from an inconsistent equilibrium is exploratory if it improves
the payoff of the player but is perceived as not being free
of sanctions by other players. We show that the digraph that
contains both the actions perceived as sequentially rational
by a player and the exploratory actions, termed exploratory
H-digraph, is weakly acyclic. The second contribution es-
tablishes that, when players play sequentially, update their
perceptions using swap update mechanism, compatible with
their observations, and only one uses exploratory actions,the
repeated play of the hypergame converges to an equilibrium
which is either rational or consistent for the player. The third
contribution concerns the setup where more than one player
uses exploratory actions. In this case, we show that repeated
play may not converge to an equilibrium, but a cycle. We
introduce the notion of relative misperception, which allows
us to precisely characterize those parts of the misperception
that can be corrected.

Organization: Section II presents the basic notions on
hypergames. Section III formalizes the problem under study.
Section IV introduces the notion of exploratory action and
analyzes the convergence properties of repeated play when
such actions are allowed. Finally, we gather our conclusions
and ideas for future work in Section V.

II. H YPERGAME THEORY

We consider games with inconsistent perceptions across
players and model them as hypergames [5], [6], [12]. A
0-level hypergame is simply a(finite) game, i.e., a triplet



G = (V,Soutcome,P), whereV is a set ofn ∈ Z≥1 players,
Soutcome = S1 × . . . × Sn is the outcome set with finite
cardinality N = |Soutcome| ∈ Z≥1 and P = (P1, . . . , Pn),
with Pi = (x1, . . . , xN )T ∈ SP the preference vector of
player vi, i ∈ {1, . . . , n}. Here,Si is a finite set of actions
available to playervi ∈ V and SP ⊂ SN

outcome is the set of
all elements inSN

outcome with pairwise different entries. We
denote byπi the projection ofSoutcome onto Si.

A n-person 1-level hypergame is a set H1 =
{G1, . . . ,Gn}, where Gi = (V, (Soutcome)i,Pi), for i ∈
{1, . . . , n}, is the subjective finite game of playervi ∈ V ,
andV is a set ofn players;(Soutcome)i = S1i×. . .×Sni, with
Sji the finite set of strategies available tovj , as perceived by
vi; Pi = (P1i, . . . , Pni), with Pji the preference vector of
vj , as perceived byvi. In a 1-level hypergame, each player
vi ∈ V plays the gameGi with the perception that she is
playing a game with complete information. Even though the
notion of hypergame can be extended to higher levels [5],
in this paper we focus on1-level hypergames. This is the
simplest class of games that allows for the explicit modeling
of players’ perceptions about their opponents’ preferences
and therefore exhibits all the intricacies associated withits
analysis.

A. Stability and equilibria

We recall the notion of stability for2-person1-level hy-
pergames. LetH1 = {H0

A,H0
B}. Here,H0

A = (PAA,PBA)
is the 0-level hypergame for playerA, where PAA and
PBA are, respectively, the preferences of playerA and
player B perceived by playerA. The same convention
holds for H0

B = (PAB ,PBB). For simplicity, the0-level
hypergames have the same set of outcomesSoutcome. We
denote by�PIJ

the binary relation onSoutcome induced
by PIJ , where I, J ∈ {A,B}. For convenience, we let
Soutcome|πI(x) = {y ∈ Soutcome | πI(y) = πI(x)} and refer
to it as a restricted outcome set. We also find it useful to
use I ′ to denote the opponent ofI in {A,B}. We assign
rank(x,PIJ ) ∈ R>0 to each outcomex ∈ Soutcomesuch that
rank(y,PIJ ) > rank(x,PIJ ) if and only if x ≻PIJ

y (play-
ers prefer the outcomes with lower ranks). We use the set
{1, . . . , |Soutcome|} to rank the outcomes. Themisperception
functionLBA : SP → R≥0 of A aboutB’s game is

LBA(P ) =

N∑

i=1

|rank(xi,PBB) − rank(xi,P)| (1)

Note that this function compares the rank of each outcome
in the preference vector forB in H0

A to its rank inB’s true
preference vector inH0

B . A similar misperception function
LAB can be defined.

Given two distinct outcomesx, y ∈ Soutcome, y is an
improvementfrom x for I ∈ {A,B}, perceived byJ ∈
{A,B} in H0

J , if and only if πI′(y) = πI′(x) andy ≻PIJ
x.

An outcomex ∈ Soutcome is calledrational for I ∈ {A,B},
as perceived byJ ∈ {A,B} in H0

J , if there exists no
improvement fromx for I. The common notion of rationality
in hypergames is the notion of sequential rationality [14],[6],
[15]. An outcomex ∈ Soutcome is sequentially rationalfor

I ∈ {A,B} with respect toH0
J , J ∈ {A,B}, if and only

if for each improvementy for I, perceived byJ in H0
J ,

there exists an improvementz for I ′, perceived byJ in H0
J ,

such thatx ≻PIJ
z. Whenever this holds, we say that the

improvementz from y for I ′ sanctionsthe improvementy
from x for I in H0

J . By definition, a rational outcome is also
sequentially rational. An outcomex ∈ Soutcomeis unstablefor
playerI with respect toH0

J if it is not sequentially rational
for playerI, as perceived by playerJ and is anequilibrium
of H0

J if it is sequentially rational for bothJ and J ′, as
perceived by playerJ . An outcomex is an equilibrium of
H1 if it is sequentially rational for playerA in H0

A and
for playerB in H0

B . Note thatx can be an equilibrium for
H1 and not an equilibrium ofH0

A. We denote byEq(H0
A),

Eq(H0
B), and Eq(H1) the set of equilibria ofH0

A, H0
B ,

andH1, respectively.

B. H-digraphs

The notion ofH-digraph encodes the stability information
of hypergames. We begin by recalling some basic notions
about directed graphs [16]. Adigraph G is a pair (V,E),
whereV is a finite set, called the vertex set, andE ⊆ V ×V ,
called the edge set. Given(u, v) ∈ E, u is an in-neighborof
v andv is anout-neighborof u. The set of in-neighbors and
out-neighbors ofv are denoted, respectively, byN in(v) and
N out(v). Thein-degreeandout-degreeof v are the number of
in-neighbors and out-neighbors ofv, respectively. A vertex
is called asink if its out-degree is zero and asourceif its
in-degree is zero. A(directed) pathis an ordered sequence
of vertices so that any two consecutive vertices are an edge
of the digraph. Acycle in a digraph is a directed path that
starts and ends at the same vertex and has no other repeated
vertex. A digraph is calledacyclic if it does not contain any
cycle. A digraph is calledweakly acyclicif there exists a
path from any vertex to a sink. Note that a weakly acyclic
digraph may contain cycles.

Formally, the H-digraph associated toH0
A is GH0

A
=

(Soutcome, EH0
A
), where there exists an edge(x, y) ∈ EH0

A
if

and only if either there exists an improvementy from x for A

for which there is no sanction ofB in H0
A, or there exists an

improvementy from x for B for which there is no sanction of
A in H0

A. One can similarly constructGH0
B

. By definition, an
outcomex is sequentially rational forA (respectively forB)
if and only if N out(x) ∩ Soutcome|πB(x) = ∅ (respectively
N out(x)∩Soutcome|πA(x) = ∅). Moreover, an outcome belongs
to Eq(H0

A) if and only if its out-degree in the associated H-
digraph is zero. H-digraphs enjoy some structural properties
that play an important role in our discussion later. A path
S = (x1, x2, . . .), xi ∈ Soutcome for all i ∈ Z≥1, is
nondeterioratingfor H0

A if (xj , xj+1) ∈ EH0
A

, for all j ∈
Z≥1. A cycle S = (x1, x2, . . . , xm, x1), m ∈ Z≥1, is a
weak improvement cyclefor H0

A if it is nondeteriorating and
xj+1 ≻Pi(j)

xj for somej ∈ {1, . . . ,m − 1}.

Theorem 2.1:(0-level hypergames with two players
contain no weak improvement cycle [13]):For a 1-level
hypergameH1 = {H0

A,H0
B} between playersA andB, H0

A

andH0
A contain no weak improvement cycle.



We denote the sequence of outcomes of the repeated
play of a hypergame by a sequenceσ = (x1, x2, . . .),
wherex1, x2, . . . ∈ Soutcome. We call σ a cycle whenσ =
(x1, x2, . . . x1), wherexi 6= x1 unlessi = 1. Note that this
notion of a cycle is different from the one for a digraph.

C. Learning

Suppose playersA and B take actions that change the
outcome fromx to y. If A can perfectly observeB’s action
and believes that the opponent is rational, she concludes that
player B prefers(πA(x), πB(y)) over x. Therefore,A can
incorporate this information into her hypergame and update
her perception about the preferences of playerB.

1) Preference update mechanism:Let us describe the
formal requirements that the method used for incorporating
these observations should satisfy. LetPBA be a preference
vector of player B, perceived by playerA. We define
the observation setOBA as the set of all binary relations
observed by playerA about playerB. We say that the
preference vectorPBA is compatible with an observation set
OBA if all the binary relations inOBA hold with the order
�PBA

. A preference update mechanismcompatible with an
observation setOBA is a mapΨOBA

: Sp → Sp such
that ΨOBA

(P) is compatible withOBA for P ∈ Soutcome.
Throughout this paper, when we say a player updates her
preferences with some binary relation, we mean that this
player adds this binary relation to her associated observation
set and uses a preference update mechanism to generate a
preference vector compatible with the observation set. We
next describe one of such mechanisms, used in this paper.

2) Swap learning:We start with an algebraic construc-
tion. LetV be a set of cardinalityN and letW be the subset
of V N with pairwise different elements. Forx1, x2 ∈ V , let
swapx1 7→x2

: W → W be defined by

(swapx1 7→x2
(v))k = vk if vk 6= x1, x2,

(swapx1 7→x2
(v))i =

{
vj if vi = x1, vj = x2 and i < j,

vi if vi = x1, vj = x2 and i > j,

(swapx1 7→x2
(v))j =

{
vi if vi = x1, vj = x2 and i < j,

vj if vi = x1, vj = x2 and i > j.

We refer toswapx1 7→x2
as thex1 to x2 swap map. Theswap

learning mapsSwA
x,y : SP → SP for playerA is given by

SwA
x,y(P) = swapx7→(πA(x),πB(y))(P).

One can show that if players are rational and perfectly
observe each other’s actions, then the misperception func-
tion (1) under swap learning does not increase [12].

Next, suppose playersA andB sequentially take actions
such that the hypergame outcomes areσ = (x1, . . . , xn).
Let us denote byOσ

BA and Oσ
AB the observation sets of

playersA and B, respectively, associated toσ. It is easy
to observe that playerA can make her preference vector
compatible withOσ

BA by executing a composition of swap
updates, denote bySwA

Oσ
BA

, each of which compatible with
a binary relation inOσ

BA. We refer to this mechanism as

the swap update mechanism forA compatible with the
observation set. Note that by its definition,SwA

Oσ
BA

also

does not increase the misperception function.SwB
Oσ

AB
can

be constructed similarly.

3) Modified swap learning:It is interesting to note that
the preference vectors obtained using swap learning may be
inconsistent with the stability properties of the outcomesas
determined by the actions of other players. When faced with
such situation, a player has to determine if this inconsistency
is due to her own misperception or the misperception of the
opponent. The modified swap learning method belongs to the
first class and is defined as follows.

Consider a1-level hypergame between playersA andB.
SupposeB takes an action that changes the outcome from
x1 ∈ Soutcome to x2 ∈ Soutcome, where x1 ≻PBA

x2. The
modified swap learning mapMSwA

x1,x2
: SP → SP is

• if x1 perceived as unstable forB in (PAA,SwA
x1,x2

(P))
and x2 is perceived as sequentially rational forB in
PAA,SwA

x1,x2
(P), then

MSwA
x1,x2

(P) = SwA
x1,x2

(P),

• if x1, x2 are perceived as unstable forB in
(PAA,SwA

x1,x2
(P)), then

MSwA
x1,x2

(P) = SwA
y,x1

◦SwA
x1,x2

(P),

where y ∈ Soutcome|πA(x2) is the outcome with the
highest rank, with respect toSwA

x1,x2
(P), which is

sequentially rational in(PAA,SwA
x1,x2

(PBA)).
• if x1, x2 are perceived as sequentially rational forB in

(PAA,SwA
x1,x2

(P)), then

MSwA
x1,x2

(P) = SwA
x1,z ◦SwA

x1,x2
(P),

where z ∈ Soutcome|πB(x2) is the outcome with
the highest rank, with respect toSwA

x1,x2
(P), which

is an improvement from x1 for player A in
(PAA,SwA

x1,x2
(PBA))

Modified swap learning guarantees that the stability prop-
erties determined by the resulting perceptions are fully
consistent with the actions of other players. However, this
method may increase the value of the misperception func-
tion (1) if the misperception is due to the opponent.

III. PROBLEM STATEMENT

Consider a1-level hypergame betweenA and B and
suppose both players use the swap update mechanism com-
patible with their observation set about each other. Consider
the resulting dynamical system on the perceptions,

PBA(l + 1) = SwA
OBA(l)(PBA(l)), (2a)

PAB(l + 1) = SwA
OAB(l)(PAB(l)). (2b)

Here,OBA(l) and OAB(l), respectively, denote the obser-
vation sets of playersA and B at round l ∈ Z≥0 and
PBA(0) = PBA and PAB(0) = PAB are, respectively, the
initial A andB’s perceptions about their opponent. Under the



evolution prescribed by (2), one can show that the repeated
play of the hypergame converges to an equilibrium [13].

Note that, by definition, an equilibrium of a1-level
hypergameH1 need not be an equilibrium of any of its
associated0-level hypergames,H0

A andH0
B . Therefore, the

equilibrium to which the hypergame converges to might not
be consistent with the perception of individual players. For
instance,A, according to her hypergameH0

A might expect
B to move away from the equilibrium ofH1, even though
B will actually not do so. This inconsistency makes players
aware of the existence of some misperception that remains in
their beliefs. Our objective in this paper is to study to what
extent players can further explore the hypergame in order
to arrive at fully consistent equilibria. We are particularly
interested in methods that, unlike the modified swap learning
strategy described in Section II-C.3, do not increase the
misperception. Assuming players can afford to take some
action within certain restricted class and move away from
inconsistent equilibria, we are interested in answering the
following questions

(i) under what conditions are these actions guaranteed to
reduce the misperception about the opponent?

(ii) what is the asymptotic behavior of the resulting dy-
namical system on the perceptions? Do they converge
to an equilibrium?

IV. EXPLORATORY ACTIONS

In this section, we introduce the notion of exploratory
action and characterize its properties. We assume that players
are playing sequentially, one after each other. We focus on
player A’s hypergame. All the notions can be established
similarly for playerB. In the rest of this paper, for simplicity
of the statements, we assume that all the preorders are strict.

Let Eq
In-eq
A (H1) = Eq(H1)∩(Soutcome\Eq(H0

A)) denote
the set of equilibria ofH1 which are inconsistent with
A’s perceptions. By definition, these equilibria ofH1 are
perceived byA as sequentially rational for her but unstable
for B. Figure 1 illustrates this notion.

G
H0

A

x

G
H0

B

x

(a)

G
H0

A

x

G
H0

B

x

(b)

Fig. 1. The outcomex is an equilibrium ofH1 which is inconsistent with
(a) A’s perception (a) and (b) bothA andB’s perception. In each case, the
arrows in bold correspond to the actions for herself that theplayer perceives
as sanction-free. The other arrows correspond to what the player perceives
are sanction-free actions of her opponent.

We refer to the set of actions that players are allowed to
take from inconsistent equilibria asexploratory and define
them next.

Definition 4.1: (Exploratory actions): Consider the hy-
pergameH1 between playersA andB. An action of player
A from x ∈ Eq

In-eq
A (H1) to y ∈ Soutcome|πB(x) is exploratory

if y ≻PAA
x.

According to this definition, if an inconsistent equilibrium
is rational forA, then this player has no exploratory action.
Although an exploratory action leads to an outcome of the
game that is more preferred byA, this player perceives
at least a sanction ofB against such improvement; thus
exploratory actions, in general, can be costly. If such actions
are permitted toA, then the H-digraphGH0

A
has to be

augmented by adding the set of edges

Eexp
A = {(x, y) ∈ Soutcome× Soutcome | x ∈ Eq

In-eq
A (H1),

y ∈ Soutcome|πB(x), y ≻PAA
x}.

We term the digraph̃GH0
A

= (Soutcome, EH0
A
∪ Eexp

A ) the ex-
ploratory H-digraphof A. The following result characterizes
the basic properties of this digraph and is a consequence of
Theorem 2.1.

Lemma 4.2:(The exploratory H-digraph is weakly
acyclic): The digraphG̃H0

A
is weakly acyclic.

Note that the digraph̃GH0
A

is unknown to the player, unlike
GH0

A
. This is because she does not know what the equilibria

of H1 are a priori.

A. Repeated play when only one player explores

Here, we analyze the convergence properties of the re-
peated play of the hypergame when only one player uses
exploratory actions. The following result shows that, in this
case, convergence to consistent equilibria for the player that
uses exploratory actions is guaranteed.

Theorem 4.3:(Convergence of repeated play of hyper-
games when only one player explores):Consider a1-level
hypergame with two playersA and B, where players play
sequentially and update their perceptions using swap update
mechanism compatible with their observation set. Suppose
that onlyA uses exploratory actions. Then the repeated play
of the hypergame converges to an equilibrium which is either
consistent withA’s perception or rational forA.

Proof: Since there are no exploratory actions from a
rational outcome, the result is immediate if the play arrives at
an outcome which is both an equilibrium ofH1 and rational
for A. Assume this is not the case. Let us show that the
repeated play of this hypergame will not converge to a cycle,
i.e., players will not repeatedly play the actions given by
a sequenceσC = (xi, xi+1, xi+2, . . . , xi+k, xi), k ∈ Z≥3.
Without loss of generality, we assume that the action from
xi+k to xi is taken by playerB. Suppose otherwise, i.e.,
suppose that the repeated play of the hypergame starting at
xi converges toσ. Since the repeated play of this hypergame
under learning and without using exploratory actions does
not converge to a cycle [13], playerA must have used an
exploratory action. Without loss of generality, let us assume
that the action that changes the outcome formxi to xi+1 is
exploratory. SinceB is using the swap update mechanism



compatible with their observation set and does not explore,
one can conclude thatxi+k ≻PBB

xi+1. However, sinceB
has also observed the action of playerA from xi to xi+1,
taking the action that changes the outcome toxi+k from xi

by B implies thatxi+1 ≻PBB
xi+k, which is a contradiction.

Since the repeated play does not converge to a cycle and
players use swap update mechanism compatible with their
observation sets, unless the repeated play of the hypergame
stops in an equilibrium of the evolved hypergame which
is either perceived as rational or an equilibrium byA,
eventually, forx ∈ Soutcome and y ∈ Soutcome|πA(x) we have
x ≻PBA

y iff x ≻PBB
y. Similarly, for z ∈ Soutcome|πB(x)

we havex ≻PAB
z iff x ≻PAA

z. Thus the repeated play of
evolved hypergame is the same as the repeated play of the
0-level hypergameH̄0 = (PAA,PBB). Since the H-digraph
associated tōH0 is acyclic, Theorem 2.1, the repeated play
converges to an equilibrium, as claimed.

B. Repeated play when both players explore

The next natural step is to investigate the convergence
of repeated play to an equilibrium when both players use
exploratory actions. The following observation illustrates
how cycles may exist in this case.

Remark 4.4:(Cycles may exist when both players ex-
plore): Consider a1-level hypergame with playersA andB.
Assume that the sequenceσ = (xi, xi+1, xi+2, . . . , xi+k),
wherek ∈ Z≥3 and is odd, is the result of the firstk rounds
of play of this hypergame, where

• xi ∈ Eq
In-eq
A (H1) (A explores from this outcome);

• xi+1 ∈ Eq
In-eq
B (H1) (B explores from this outcome);

• xi+k ∈ Soutcome|πA(xi).

Suppose thatxi is a sanction-free improvement fromxi+k

for B in H0
B . Note that this is not in contradiction with

the actions taken by this player inσ. This is because the
action taken byB from xi+1 to xi+2 is exploratory and thus,
unlike in the proof of Theorem 4.3, onecannotconclude that
xi+k ≻PBB

xi+1. Thus executingσ followed by the action
πB(xi) of player B results in a cycle, which we denote
by σC . Note that when one of the actions ofB in σ is
inconsistent withPBA, A learns, and therefore, having taken
the initial exploratory action is beneficial forA. However,
it can be the case that the perceived preference vectors of
players are such that no two outcomes are swapped during
the execution ofσC . •

Our observation in Remark 4.4 shows that if players per-
sistently explore a cycle, the repeated play of the hypergame
may never converge to an equilibrium. The source of this
issue is that players cannot identify which actions of their
opponent have been exploratory. In order to make this point
precise, we introduce some useful notions. LetSA denote the
set of actions available toA. Given an actiona ∈ SA and a
preference vectorP associated to a subsetU ⊆ Soutcome, we
assignrankU

a (y, P ) ∈ R>0 to each outcomey ∈ U|a such
that

rankU

a (y, P ) > rankU

a (z, P ) iff y ≻PBA
z

for all y, z ∈ U|a. We use the set{1, . . . , |U|a|} to rank
the outcomes ofU|a. The relative misperception function
RU

BA : UP → R≥0 of A aboutB’s game, whereUP ⊆ SP

associated toU, is defined then by

RU

BA(P ) =
∑

a∈SA

z∈U|a

|rankU

a (z,PBB) − rankU

a (z, P )|. (3)

The relative misperception function measures how a player
ranks the outcomes, on a subset ofSoutcome, which share the
same action of the opponent. Similar to the misperception
function, the relative misperception function is also mono-
tonically decreasing. Clearly

LBA(P ) = 0 ⇒ RSoutcome
BA (P ) = 0.

However, the reverse direction is not necessarily true.

Next, letσC be a cycle formed by the repeated play of the
hypergame when both players use exploratory actions, see
e.g., Remark 4.4. GivenP , we let P |σC

= (xi1 , . . . , xiK
)T ,

with K = |σC |−1, denote the preference vectorP restricted
to σC , i.e.,

• xij
appears inσC , for all j ∈ {1, . . . ,K}, and

• xij
≻P |σC

xik
iff xij

≻P xik
, j, k ∈ {1, . . . ,K}.

We have the following result.

Proposition 4.5: (The relative misperception vanishes
along the cycles of repeated play):Consider a1-level
hypergameH1 between A and B, where players play
sequentially, update their perceptions using swap update
mechanism compatible with their observation sets, and can
take exploratory actions. If the repeated play of the hyper-
game starting fromx ∈ Soutcome reachesx again, forming a
cycle σC , then

RU

BA(SwA
O

σC

BA

(PBA)|σC
) = 0,

RU

AB(SwB
O

σC

AB

(PAB)|σC
) = 0,

whereU is the subset ofSoutcomeassociated to the outcomes
that appear inσC .

Proof: We prove the first statement. The second state-
ment follows similarly. Since players are using the swap
update mechanism compatible with their observation sets,
after traveling the cycle, for any outcomesx, y ∈ U such
that y ∈ Soutcome|πA(x), x ≻PBA

y iff x ≻PBB
y; thus, by

definition ofRU

BA, the result follows.

This result precisely captures the part of the mispercep-
tion that can be reduced by using exploratory actions. The
following result, in contrast, focuses on the misperception
that may remain even after exploration.

Proposition 4.6: (The remaining part of the mispercep-
tion function): Consider a1-level hypergameH1 betweenA
andB, where players play sequentially, update their percep-
tions using swap update mechanism compatible with their
observation sets and can take exploratory actions. Assume
that

RSoutcome
BA (PBA) = RSoutcome

AB (PAB) = 0. (4)



SupposeA takes an exploratory action fromx ∈ Soutcome.
If the outcome of the hypergame comes back tox by an
action ofB in any future round of play, thenA learns that
B has also explored. Moreover, for each action ofB from
x, perceived as sanction-free byA, player A is indecisive
between

(i) executing modified swap learning, or
(ii) labeling the action as exploratory.

Proof: First, we show that hadB not explored, repeated
play will not return to the outcomex. Suppose otherwise, i.e.
B has not explored and the repeated play of the hypergame
is σC = (xi, xi+1, . . . , xi+k, xi), wherexi = x, k ∈ Z≥3

and the actionxi to xi+1 is an exploratory action byA.
SinceB has not explored, all his actions are perceived by
her as sanction-free. By assumption (4), one can conclude
that xi+k ≻PBB

xi+1. Also, the action ofB from xi+k to
xi implies thatxi+1 ≻PBB

xi+k, a contradiction.

To establish the other part, let us consider then an action of
playerB from x ∈ Soutcometo an outcomey ∈ Soutcome|πA(x).
Note that, by the assumption on zero relative misperception
in (4), this action is perceived as an improvement forB by
A. SupposeA perceivesx as unstable forB, i.e.,A perceives
that w ≻PBA

x, wherew is an improvement fromy for A.
In other words, the preference vectors ofA look like

PAA = (· · ·w · · · y · · · )T ,

PBA = (· · · y · · ·w · · ·x · · · )T .

Since, again by the assumption on zero relative mispercep-
tion in (4), B perceives correctly thatw ≻PAB

y, two cases
can happen:

(i) x is, in fact, perceived as sequentially rational forB

by B, i.e.,

PAB = (· · ·w · · · y · · · )T ,

PBB = (· · · y · · ·x · · ·w · · · )T .

Thus, the inconsistency is due to playerA’s mispercep-
tion. This misperception can be removed by swapping
x and w. This precisely corresponds to the operation
MSwA

x,y(P) = SwA
x,w ◦SwA

x,y(P).
(ii) x is perceived as unstable forB by B, and thusA’s

perception aboutB is correct and the action ofB that
changes the outcomex to y is exploratory.

This concludes the proof.

The result of Proposition 4.6 implies that when both play-
ers use exploratory actions, the repeated play of hypergame
may fail to converge, unless players have some capability or
procedure to distinguish what actions of their opponents are
exploratory.

V. CONCLUSIONS

This paper has considered the repeated play of 1-level
hypergames with two players. We have defined the notion
of inconsistent equilibrium to capture those equilibria of
the hypergame for which at least one player expects the
other to move away from. The existence of such equilibria

signals the persistence of some misperception about the
game the players are involved in. We have identified a
class of actions, termed exploratory, that players can take
from inconsistent equilibria in order to further decrease the
misperception. We have shown that, if exploration is allowed
and only one player does it, then the repeated play of the
hypergame arrives at a consistent equilibrium or an outcome
rational for the player. In contrast, when both players use
exploratory actions, we have shown that the repeated play
may finish in a cycle. The introduction of the notion of
relative misperception function has allowed us to characterize
the part of the misperception which is guaranteed to vanish
along such cycles. Future work will consider reward-based
mechanisms for exploration, where players obtain higher re-
ward for exploratory actions which lead to learning. We also
plan to study the impact of including the cost of exploratory
actions, the influence of these actions on deception, and the
collective exploration by groups of players.
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