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Abstract— This paper considers games with incomplete asym- since they provide a natural framework for modeling striateg
metric information, where one player (the deceiver) has priv-  sjtuations with asymmetric information among players \Ear
ileged information about the other (the mark) and intends references on deception in dynamic games with imperfect
to employ it for belief manipulation. We use hypergames to . . .
represent the asymmetric information available to players and mformanon include [11], [_12]' Th? works [13], [1,4]’ [15]
assume a probabilistc model for the actions of the mark. Provide examples of how informational asymmetries can be
This framework allows us to formalize various notions of used to induce false perceptions in the opponent and lead to
deception in a precise way. We provide a necessary condition strategic deception. The works [16], [17] provide decaptio

and a sufficient cc_nndltlon for deceivability when the deceiver is robust schemes for a class of discrete dynamic stochastic
allowed to reveal information to the mark as the game evolves. . .
games under imperfect observations.

For the case when the deceiver acts stealthily, i.e., restricts he
actions to those that do not contradict the belief of the mark, Statement of contributionsiVe consider games of incom-
we are able to fully characterize when deception is possible. plete information where players have different percestion
Mr(])reover,hwe design the‘f’“érSt,'Pasetmx'St, rtat.egy that,t ;About the scenarios they are involved in. Specifically, we
\tlg) fei:dsili_c Ar? Zig%%?gﬁllﬂstéf:évgﬁr ?gs'alrt': Exists, IS guarantee study a _class ofz-player hypergames where the_ deceiver
has full information about the mark’s game and intends to
. INTRODUCTION plant a certain belief in her. The mark is a rational player
that observes the actions taken by the deceiver and assumes
. : . i . i . She acts rationally (although she may not), and updates
opportunities for manipulating beliefs or inducing cemtde- her perception about the opponent's preferences accdyding

sired perceptions. In this paper, we consider a class ofgarqgrom the deceiver’s viewpoint, the mark’s actions are ratio
where one player (the deceiver) wishes to misrepresegﬁd probabilistic

certain information in order to gain a strategic advantags o

e e eter e paper, i i the iroducton of precise notons o
P deception to capture different forms of belief manipulatio

belief structure. In .thls SEnse, t_he decept|_on goal can bIff"lese notions allow us to identify a necessary condition
understood as steering the evolution of a particular dyoalmi and a sufficient condition for deceivability on the mark’s
1 y

isgjhe drgsmggraa?ﬁ;'rEdCSs;gegﬁ:ﬁomﬂiﬁitjcegagf;ggégter%elief structure. Next, we study scenarios where the deceiv
9 9. ¢y Y y operaly purposefully restricts her set of actions to those that do

huFan behawor. m?(?ellng. . . ith inf not contradict the mark’s belief structure. We term these
. Iterature review. n strategic scenarios with In 0rma- 4 ctions stealthy and fully characterize when deception via
tional asymmetries [1], players may demd_e not to disclosg o, actions is possible. We show how the problem of
some information (passive decepnon) or “? about_ a V"’”Uﬁnding a stealthy sequence of actions is equivalent to fondin
of interest to the opponent (actl_ve dece_pt|on). W|th|n th% longest path in an appropriate digraph that encodes the
context of games Qf incomplete !nformatlo_n, deception haﬁ‘lark's belief structure. Our third contribution is then the
not been studied in a systematic way with the exceptlogesign of thenor st - case max- st rat egy that, given a

of a few references. [2] demonstrates that the inconsisteg ciraq deception objective, determines a stealthy segquen

structure of beliefs can lead to counterintuitive behaa/i¢3] of actions that achieves it. We end the paper with an example
studies deception via strategic communication, in which & illustrate the notions and the results of the paper
‘sophisticated’ player sends either truthful or false rages '

to the opponents. [4] investigates the vulnerability cditsgic
decision makers to persuasion. The recent work [5] con-
structs a theory of deception for games with incomplete in- This section introduces some basic notions regarding
format_|on where players form expectations ab(_)ut the aeeragraph theory, Markov chains, and hypergames. We denote
behavior of the other players based on past histories. 6], [the set of real and positive real numbers Ryand R,
consider scenarios where one player has access to certaigpectively. We denote b~ andZs; the set of nonneg-
information and can distort it before it is passed on to ather ative and positive integers, respectively. A nonempty Xet
In this paper, we make use of hypergames [8], [9], [10]along with a preorder, i.e., a reflexive and transitive binary
) ) relation, is called alirected seif for every pair of elements

The authors are with the Department of Mechanical and Aernespa. X th ist b d with tto th d
Engineering, University of California, San Diego, Califa, USA, n €re exists an upper bound with respect 1o the preorder.
{bgharesi fard, cortes}@iucsd. edu We usec = (1,22, ...), wherezy,zs,... € X, to denote

Informational asymmetries in strategic scenarios provid

This framework sets the stage for the first contribution of
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a sequence of elements if. Note that a finite sequence of playerv;, ¢ € {1,...,n}. Here,S; is a finite set of actions

k € Z>, elements is simply a&-tuple. available to playew; € V andS, C Sy omeis the set of
all elements inSY,..me With pairwise different entries. We
A. Graph theory denote byr; the projection ofSoyicome ONtO S;.

We recall some basic notions from [18].dA\graph G is a A n-person 1-level hypergameis a set H' =
pair (V, E), whereV is a finite set, called the vertex set, and{G, ..., G}, where G; = (V, (Soutcomei, Pi), for i €
E CV xV, called the edge set. Given an edgev) € E, {1,...,n}, is the subjective finite game of player € V,
u is an in-neighbor of v and v is an out-neighborof w. andV is a set ofn players;(Soutcomd: = S1: X . . . XS4, With
The set of in-neighbors and out-neighborsvodire denoted, S;; the finite set of strategies available g, as perceived
respectively, byV"(v) and N°(v). Thein-degreeandout- by v;; P; = (P, ..., Pn;), With P;; the preference vector
degreeof v are the number of in-neighbors and out-neighboref v;, as perceived bw;. In a 1-level hypergame, each
of v, respectively.A is an adjacency matrix fa¥ = (V, E) if  player v; € V plays the gameG; with the perception
the following holds: for eachr;,v; € V, a;; > 0if and only  that she is playing a game with complete information. The
if (v;,v;) € E. A (directed) pathis an ordered sequence of definition of 1-level hypergame can be extended to higher-
vertices so that any two consecutive vertices in the sequenarder hypergames as follows:rapersonk-level hypergame
are an edge of the digraph.&clein a digraph is a directed k > 1, is a setH* = {Hfl, .., HEn} wherek; < k—1
path that starts and ends at the same vertex and has no otlied at least oné; is equal tok — 1.
repeated vertex. A digraph is calletyclic if it does not

contain any cycle. 1) Stability and equilibria: Here we recall the notion
of stability for 2-personi-level hypergames. This class of
B. Markov chains hypergames is the simplest one that explicity models the

We recall here some basic notions from Markov chainBerception of players about their opponents’ preferences
following [19]. We denote by, 7, P) a probability space (the reader is referred to [8] for the extension to higher-
where Q is a countable set is a o-algebra over(, order hypergames). Letl' = {Hj, Hp}. Here, Hj =
andP is a probability measure. A@-valued randonvari- (Paa,Ppa) is the O-level hypergame for played, where
able is a measurable mappin§ : (0, F,P) — (E,¢&), Paa andPpy are, respectlvely, the preferences of play?er
where¢ is a o-algebra overE and (E, €) is a measurable and player perceived by playerl. The same convention
space. AMarkov chainis a sequence of random variablesholds for Hi = (Pag,Ppp). For simplicity, the0-level

(X1, Xs,...) such that, for alln € Z~; andz € Q, hypergames have the same set of outcorgg.ome We
B denote by>p,, the binary relation onSgyicome iNduced
PXpy1=2| X1 =21, Xo0=122,..., Xy = 1) = by P;;, where I,J € {A, B}. For convenience, we let
P(X,11 =2| Xy = ). Soutcoménj(x) = {y € Soutcome| 71(y) = 7(x)} and refer
- N ] to it as a restricted outcome set. We also find it useful to
The probability transition kernell: is use I’ to denote the opponent df in {A, B}. We assign
To (21, 2;) = P(Xps1 = @5 | Xn = ), rank(z,Prs) € Rs( to each outcome: € Sgyicome SUCh

that rank(y, Py;) > rank(z,P;;) if and only if x >p,, y
wherez;, z; € . Note that for every: € Q, Tp(x,.) is also  (players prefer the outcomes with lower ranks). We use the
a probability measure oft. One can inductively define set{l,...,|Soutcomd} t0 rank the outcomes.

L o _ . Given two distinct outcomes,y € Soutcome ¥ IS an
T (wirws) - = P(Xnpp = 2i [ X = 25) improvementfrom z for I € {A, B}, perceived byJ e
= Z Tp (2, 2) T~ (2, 25). {A, B} in HY, if and only if 77/ (y) = 7y (x) andy =p,, .
z€Q An outcomex € SoucomeiS Calledrational for I € {A, B},
as perceived byJ € {A, B} in HY, if there exists no
improvement frome for 1. The common notion of rationality
in hypergames is the notion of sequential rationality [24],
[22]. An outcomex € Soucome IS S€quentially rationalfor
I € {A, B} with respect toHY, J € {A, B}, if and only
Ry (x;) = {m; € Q| ki € Zsy, T (x4, 25) > 0}. if for each improvementy for I, perceived byJ in HY,
there exists an improvementfor I’, perceived byJ in HY,
such thatz >~p,, z. Whenever this holds, we say that the
We consider games with inconsistent perceptions acrosaprovementz from y for I’ sanctionsthe improvementy
the players in the framework of hypergames [20], [8], [9]from z for I in HY. By definition, a rational outcome is also
A 0-level hypergame is simply #inite) gamei.e., a triplet sequentially rational. An outcomee SgyicomelS Unstablefor
G = (V, Soutcome P), WhereV is a set ofn € Z>, players, playerI with respect ton} if it is not sequentially rational
Soutcome = S1 X ... x S, is the outcome set with finite for player!, as perceived by playef and is arequilibrium of
cardinality N = |Soutcomd € Z>1 andP = (Py,..., P,), HY ifitis sequentially rational for botly and.J’, perceived
with P, = (z1,...,zn5)7 € S, the preference vector of by player.J. An outcomez is anequilibrium of H! if it is

If there existsk € Z>; such thatl (x;, z;) > 0, the stater;
is reachablefrom z; (or, equivalently, that:; communicates
with z;). We denote the set of all states reachable from
with respect to the transition probabili§}, by

C. Hypergame theory



sequentially rational for played in HS and also for player ences of player, while A perfectly observes the actions of

B in HY%. Note thatr can be an equilibrium fof/! and not B and uses the swap learning map to update her perception.

an equilibrium of HY. We focus on swap learning, although the analysis could also
2) H-digraphs: The notion of H-digraph encodes the be carried out for other learning mechanisms. Formally, the

stability information of hypergames. Formally, thedigraph  situation described above corresponds t2-@erson2-level

associated taH is Gno = (Soutcome Exg ), Where there hypergameH? = {HY, H}}, with Hy = {H 5, H% 5}

exists an edge(z,y) € &y iff either there exists an such thati}, = Hj. SinceH}; = H}, we actually have

improvementy from x for A for which there is no sanction 2 0 0 170

of B in HY, or there exists an improvement from = H = {H4, {H}s, Hp}}.

for B for which there is no sanction oft in H. One Because of the special form éf2, it is not difficult to see

can similarly construct;o . By definition, an outcome:  that the equilibria ofH?, as defined in [8], are exactly the

is sequentially rational forA (respectively forB) if and same as the equilibria of the hypergaitg, = {HS, H%}.

only if N°*() N Soutcomd () = ¥ (respectivelyNV*(z) N We assume that players take their actions sequentially, one

Soutcomd A () = ¥). Moreover, an outcome is an equilibrium after each other. This assumption matches up with the notion

for the hypergameT, if and only if its out-degree in the of sequential rationality and guarantees that the repeassd

associated H-digraph is zero. of any 0-level hypergame converges to an equilibrium [23].
3) Learning in hypergamesSuppose playerst and B Note that scenarios where one players takes multiple action

take actions that change the outcome framto y. If  before the other player acts can also be accommodated. We

player A can perfectly observeB’s action and believes formalize this concept next.

that the opponent is rational, she concludes that pldyer  pefinition 3.1 (Admissible sequence): sequence of out-

prefers (ma(z),mp(y)) over z. Therefore, playerA can comeso = (zg, 21, %2, ...) in SoucomeiS admissibleif
incorporate this information into her hypergame and update

her perception about the preferences of plageere, we (f:; ZII((I;‘_) 7)2(::2/’6;)_’ )

recall a method callegwap learningto do this, see [20]. [T RIS o

These notions can similarly be defined for playgr for all i € Z>o, where'I € {A, B}. The set of all admissible
We start by an algebraic construction. Létbe a set of S€dUENCes 0Boucomeis denoted by ,qum (Soutcome-

cardinality N and letiW be the subset of N with pairwise When convenient, we use the notatiory and o? to

different elements. Fog,,z, € V, letswap, ,.,, : W —  denote admissible sequences where pldyes the first and

W be defined by last, respectively, to take an action. The notatigf) then

means thatB is the first and last to take an action. Similar

(sWapy, g, (V) = v 1 v # 21, 22, notations can be defined far. Given an admissible sequence

v; if vy =x1,v; =29 andi < j, o= (xo,21,...,2k), k € Z>1, we say thatz € Soutcome IS
(swap,, ., (v))i = {Uj if v; = 21,0, = 25 andi > j, aligned witho at timei if z = ;. In this paper, without loss
’ ) o of generality, we assume th&k is the first to take an action.
(swap,., o, (1)); = {Uz‘ '.f Vi = T1,V5 = T2 andz. < J.> In order to _formalize the problem o_f deception we set out to
v; if v; =x1,v; =29 andi > j. study, we first introduce some basic notions.

Iwe refer toswapm;»zz as ther, t? T2 Iswap;gp'fheswap A. Modeling player actions via probability distributions
eaming mapsSw,,, : Sp — Sp for player is given by Although playerB has complete information about player

Sw;‘_yy(P) = SWaDy (4 (2),m5 (y)) (P)- A’s game, she does not know the strategy tHafollows
to decide her actions. For instance, if multiple sanctieaef

One can show [20] that if players are rational, swap learnin . .

. . mprovements from an outcome are availablelishe might

is guaranteed to decrease the mismatch between a player oo . )
necessarily pick her most preferred sequentially matio

. N
perception and the true payoff structure of other players. ° o
outcome (a less favorite improvement now may allow her to

When the outcome changes fromto y and playerA

- X g i chieve a larger payoff in the future). Formally, this scena
updates her perceptlonAwa swap _Iee_lrnlng,_ her H-digrap n be captured by assigning a probability distributiorht® t
changes fronGyo to Swy, (Gp ). Similarly, if players A edges of the H-digraph afl. Let Pag (X1 = y | X =
and B repeatedly take actions such that the hypergame o%t), fOr 1 € Soutcomdny(x), denote the probability that the
comes arey = (1, N o) € ngcon}f then the associated outcome of the hypergame changes frono y by the action
H-digraph of player is denotedSw;, (G, ), where 7a(y) of player A, as perceived by playeB. Given whatB

SwA —Sw? oSw? o...0oSw?A knows aboutd’s game, we have that for alle, y) ¢ g,
x1,0 T1,T2 T2,T3 Tn—1,Tn °
We denote bySw? , (£x9) the edge set 08w (G ). Pap(Xny1 =y | Xn =2) =0.
[1l. PROBLEM STATEMENT Note that, for allz € Soutcome
In this paper, we consid&rperson2-level hypergame. We Z Pap(Xpnt1=y| Xn=12)=1

assume playeB has perfect knowledge about the prefer- Y€Saucomd 5 ()



The probability distributioriP 4 5 is selected by playeB by Note that Definitions 3.2 and 3.3 are a stepping stone

applying some rule (e.qg., ‘assign more probability to thesto towards the deceiver being able to make sequentially raltion

preferred outcome’) to the H-digraph of the opponent. Than (in principle) unstable outcome for the mark. One can

results of the paper are independent of the specific rule usedieed similarly define a notion of outcome-deceivabiléy:

and so we leave it unspecified. outcome is deceivable if all the out-edges corresponding to
Player B can choose her own actions based on hdhe opponent’s sanction-free improvements can be deceived

preferences in any way she sees fit. We formally descride this paper, we restrict our attention to the problem of

this via a probability distributioiPz on any actionrz(y) edge-deceivability.

which changes the outcome framto . Note that this can, in ~ Lemma 3.4 (Deceivability inclusionsfor all z, €

particular, be a vector with one entry bfand the rest, and  Souicome the following inclusions hold

that it can be re-selected at each round of the game. Modelin B.a B.a

B’s actions in this way will later be helpful in ?he statement gEgtde&Hf(‘)‘) < Esd’eCO(HE‘)’ Egsed H2) B "(H3)-

of the results. Since players only use the current state of We are now ready to formally state the problem we set

the game to decide about their next action, the sequenest to study. Consider a-person2-level hypergamef? =

of repeated outcomes of the game is a Markov chain. Thig?3, Hy}, with H} ; = HY. We wish to provide answers

Markov chain can possibly be time-varying, since the Hto the following two problems:

digraph of playerA can possibly evolve with time. () given (z,y) € Epq, With mp(z) = mx(y), what are

the set of outcomesy € Soutcomefrom which the edge

] o . is (surely) deceivable by3? When is the edge (surely)
Here, we introduce several definitions to capture different strong deceivable?

forms of deception. The first definition encodes a situation(ii) given an answer to the previous question, design an

B. Notions of deception

where the dece!ver wishes to ma_ke sure that the mark will strategy thatB can implement in order to deceivé.
not take a certain action from a given outcome.
Definition 3.2 (Edge-deceivability)Suppose playersA IV. WHEN IS IT POSSIBLE TO PERFORM DECEPTION
and B play sequentially a hypergamd? = {H}, Hp}, In this section, we identify a necessary condition and a suf-

with Hip = Hj. An edge (z,y) € g, mp(x) ficient condition for the notions of deceivability introdetin
m5(y), is deceivableby B in HY from 2o € Soucome Section I11-B. We also define a class of admissible sequences
if there exists an admissible sequence of outcomgs=  of outcomes, termed stealthy, and characterize condifmns

(o, 21,72, ..., T2k11), k € Z>0, Where deceivability that are both necessary and sufficient when th
() (z2i-1,72) € Swf%_ﬂ_’m_1 o-- ~OSWf0,zl(5Hg) and allowable sequences are restricted to this family.

(i) Tp,p(w2i,02i-1) >0,
for all i € {1,...,k}, such that(z,y) ¢ Swi,, (Eyq). We
refer toop a deceiving sequencand we use the termB o : - o
deceivesd’ if the hypergame evolves according tg;. We We first identify a necessary condition for deceivability.

denote byEBal‘O( HY) C Emro, the set of all deceivable edges Lemma 4.1:(Necessary condition for edge-deceivability):

A. Necessary conditions for deceivability and sufficiemt-co
ditions for surely deceivability

dec B.x
by B in HY from zo. We say thatz, ) is surely deceivable L€t Zo € Soutcomeand assuméz, y) € Ege (H3). Then
. o ol . .
by B in Hy from zy € Soutcome if it is deceivable with Hé?ec(mwy) ={ue soutcomém(y) | u<p,, x} #0.

probability one and we denote the set of all such edges by _
EBwo (HS) C Epo. Proof: We reason by contradiction. Suppose-p, ,

sdec z for all u € Soutcomdra(y). Therefore, playerB has no

Let us elaborate more on the properties of the deceiv"@anction against the improvement franto y for player A,
sequence g in the above definition. (i) states thatuses her and thus the edgér, y) ¢ Sw (&0 ), for any sequence
’ x,0 a’l?

updated H.—digraph. and takes an Z.B:Ction to shift the qutconbef outcomess and any initial outcomer, € Soutcome -
to a sanction-free improvement. (ii) states tliatperceives Note that Lemma 4.1 also gives a necessary condition

a positive probability to the actions of contained inos. for strong deceivability, ¢.f. Lemma 3.4. Next, we give a
There is an abuse of notation due to the fact thag can - iy e L ’
sufficient condition for surely deceivability.

change with the evolution of the H-digraph. Also, here wé i . . L
have assumed thét takes the last action. This is without loss Lemma 4.2:(Sufficient conditions for surely deceivabil-

of generality; if the edgéz, y) is deceived by, it remains '%)" L€t (z,y) € Eug, mp(z) = mp(y), and suppose

B,j ~
deceived afterwards, unlegs reveals new information. Hiedz,y) # 0. Then (z,y) € Egi(HY), for all j €
- ivability): Téedy) = {w € Soutcomdrs(y) | W =Ppa y}-
Definition 3.3: (Strong edge-deceivability):The edge 'dec outcome m 4 () TPra
(z,y) is strong deceivabldy B in HY if it is deceivable Proof: Note thatz <p,, y for z € Hi(z,vy),

from any outcomezy € Soucome @and is surely strong since otherwise, the improvementfrom = of A would be
deceivableif it is strong deceivable with probability one. sanctioned by the perceived improvemeritom y of B and
The set of strong deceivable and surely strong deceivaltleis would imply (z,y) ¢ Epq . SupposeB takes an action
edges are denoted, respectively, BY,.(HS) C € no and  fromj € T4, (y) that changes the outcomesa Hg(z, ).
EZ4edHY) C Eno. Since(y, z) ¢ Exo, A uses the swap learning map to update



her perceptions abouB. But then (z,y) ¢ Sw (SHU) Proof: We first show that (i) implies (ii). Suppose
since the outcome with z mSwi _(Ppa) Y is now percelved (z,y) € 5H9‘. First of all, note that since, by assumption,
by A as a sanction of? against the improvementfrom =z (z,y) is deceivable fromz, the necessary conditions of
by A. As a resultop = (7, 2) is a deceiving sequence for Lemma 4.1 hold, i.e.Hi(z,y) # 0. If 29 € Ti(y), then

B and thus the result follows. B 7y, x0) # 0 and the result follows. Supposs ¢ Tia(y).
_ By Definitions 4.3 and 3.2, there exists a stealthy sequence

B. Stealthy sequences of actions op = (20, ...,T5_1,7;) such that(z,y) ¢ SWTO o (Err0)

If B takes an action not aligned with the perceptiorand & = (170,-~ ;xk—1) is a path inGyq. Note that

of A, and A updates her perception (using for instancerxr—1 € Taedy) and z;, € HiJ(z,y), since othervvise, by
swap learning), then the structure of the H-digraphf definition of a swap learning map and Equation (L),y) €
will change. Therefore, foB, the complexity of selecting a SwaB (€m0 ), @ contradiction with the assumption. Next,
sequence of actions to deceive the opponent greatly grovet § = x,_; (observe thatc > 3). We show thaty €
with the length of the sequence. Here, instead, we focus @z, . 7., (o). Supposé is a probability distribution such
a particular family of sequences, which we testealthy that Pp(X,41 = 2z | X,, = r) > 0, for all » and all
that B can employ to achieve her goal without revealing: € Soutcomdr,(r) With (r,z) € Ego. By definition of a
any information toA, up to the moment that the ‘deceiving P4 z-admissible sequenc@p,, (z;,zi11) > 0, mp(z;) =

action’ takes place. Let us formally define this notion. mp(zit1), for all « € {1,...,k}. Thus there is a strictly

Definition 4.3: (Stealthy sequence)An admissible se- Ppositive probability thaj is reachable fronx, via the path
quence of outcomesp = (g, x1,...,7%), k € Z>1,is  © = (Zo,...,¥k—2,7), TB(zk—2) = 7wp(y). Thus there
stealthyif the following holds: exists somek € Z>; such that

o (Ti,@i1) € Epo, foralli <k —1
. ((L'k_l,l’k) ¢ SH%
A consequence of the definition is that, #5 = ie.,j€Rn  n, (o). As aresultTi(y, z) # 0.
(wo,21,...,21), k € Z>1, is a stealthy sequence, then Conversely, let us show that (i) implies (i). The results
Swi . (Eny) = Emy hold by Lemma 4.2 ifr, € Ta‘?ec(y.). Supposery ¢ Tid(y).
Fim1,Ti ’ We need to show that there exists a sequence of outcomes
for all i € {1,...,k — 1}, i.e., player A does not see op that satisfies the conditions of Definition 4.3 aady) ¢
her perception contrad|cted when the outcomes of the garﬁevT0 o5 (Emg). First, note that, by Lemma 4.1, there exists

(TPABT]P’B )K(gv 1’0) >0,

correspond tarz. Moreover, at the last outcome, an outcome: € Soutcomdra (y) SUCh thatz <p,, z. By
assumption, there exists an outcofne T4.(y) that can be
Swmk 1,Tk (“:HO) = zo oB (5H°) 7 5H2,~ (1) reached fromxg, for a probability distributiorPg described

above, i.e., there exists a pagh= (xq, ..., zr—1,9) in gHg
ch thatTp, , (it1,2;) > 0, for all ¢ € {0,...,k — 2}
th 75(x;) = mp(z;11). If player B takes an action that

Note that with this definition, the probability distributio
P45 does not change when the games is played accordift
to a stealthy sequence. This definition motivates us to defi

the SeLViﬁ,’f(Somcome) C Zram (Soutcomd With changes the otJtcome frog_mtq z, t_hen, by definition,z is
a sanction against the perceived improvemgfitom « for

SE8B (Soutcomd = { (0, 1,22, - . .) € Fadm (Soutcomd | player A; thus (z,y) ¢ Swj..(Exq). Next, we definer;; =
Tp,p (Tis1, @) > 0,Yi € Zoo, 75 (i) = 75 (zis1)} (mo,..‘,xk,hy?z). By Deﬂmtl_on 43,0p is 3 stealthy

- sequence starting from, and since(z, y) ¢ Swj . (Ex ),

If o € yﬁim (Soutcomd, We call o a P4p-admissible se- (z,y) is also a deceiving sequence, as claimed. |

quence With this definition, B perceives a positive prob-  The choice of P in Theorem 4.4(ii) ensures that all
ability to the actions of4 contained inos. From now on, actions of playerB are considered when determining if a
whenever we use the term ‘stealthy sequence’ we mean d@ealthy sequence exists to deceiteOnce such sequence

say P4p-admissible stealthy sequence’. is found, B will assign probability one to each of the actions
The following result gives necessary and sufficient condifor her prescribed in the sequence (cf. Section V).
tions for deceivability using stealthy sequence. Theorem 4.4 shows that, givery € Soutcome any ac-

Theorem 4.4:(Necessary and sulfficient conditions for detion of B from 7 (y,zo) to Hi,{(z,y) removes the edge
ceivability via stealthy sequenced)et xq € Soucome @nd  (z,y) from the H- -digraphGyq . Thus, if these two sets
(z,y) € Exg, mp(x) = mp(y). The following are equivalent: are nonempty, finding a stealthy sequence is equivalent, by

() (v,y) is deceivable fromr, via a stealthy sequence; definition of 742((y, zo), to finding a path i ;4 that reaches

(i) Hidz,y) # 0 and Ty, mo) from z. One can characterize the set of all initial

N outcomes from which the edde, y) is deceivable as
Tgedy, o) = Tdec( )N ({xO} U RTLZAB’I]PB (xo)) # 0,

for a probability distributiorP 5 such thaP s (X, 11 = Tiedx,y) =
2| Xp=7)>0forany(r,z) € Eyq. {20 € Soutcome| Hipd(, y) # 0, Tgady, x0) # 0} (2)



V. THE WORST- CASE MAX- STRATEGY Algorithm 1: wor st - case max-strat egy

Here, we provide an algorithmic approach that can be usedInput: Gy, Pas, (z,y) € €m0, o € Soutcome
by player B to determine a stealthy sequence to deceive N (z0) N Soutcomdr a (z0) 7 0

Consider the scenario described in Section Ill. Suppose atlnitialization : o™ ™= —oo, o5 = ), x(0) = z¢
time¢ > 0 the outcome of th@-person2-level hypergame is ; check thatHL(z, y) # 0; otherwise, announce that
x(t). Without loss of generality, assume that playetakes (z,y) is not deceivable
actions whent € 2Zx( and playerA takes actions when gt time: ¢ € 27,
t € 2Z>o + 1. In this situation, Theorem 4.4 characterizes, i x(t) € T4 (y) then

dec

the edges of the H-digraph of that are deceivable byg 4 | take action that makes(t + 1) € Hg(, y)
via a stealthy sequence. To model the fact that the outcomeg|se

of the hypergame is influenced by the actions of plajer s if op # 0 and x(¢) is aligned with o5 then
let us introduce the mage, ,, : 7212 (Soutcome — R, 6 | take action prescribed by
k-1 7 else
O,y (20, k) = Y In(Toups(wigr, ). (3) 8 foreach w € Soutcomdr 4 (x(t)): (X(t), w) € Exrg
ﬂB(Ii)Z:}?B(%H) 9 do Q™ — 4 o
This map captures the probability of reaching an outcome foreach ¢ ¢ Tg‘ec(y) do
via alP4g-admissible sequence. 11 if there is path in Gyo from w to g
In this scenario, after making sure that the necessary then
condition for deception is satisfied, a reasonable strategy find sequence from w to §
for B at each round is to take an action that maximizes minimizing ®p, ,
the minimum probability of achieving the deception goahs if ®p,,(c4) < aMn then
Informally, this strategy can be described as follows: 14 | o™ =®p, , (04)
[Informal description]: Initially, B has a stealthy 15 end
sequence (possibly empty) stored in its memory. 16 end
At each round, 17 end _ _
(i) if there is a deceiving action that takes the 18 i O‘m:afmxoo an?md o™ > oMM then
current outcome tolsL (, y), player B takes 19 | @ o, n=a
it to deceiveA, c.f. Lemma 4.2; 20 end
(i) otherwise, B checks if theA’s last action 2 end
is aligned with the stored sequence. If it 22 if oMM £ —oo then
is, B takes the next action prescribed by 23 op = (x(t),n)
the sequence. If it is notB considers the 24 take action prescribed by
outcomesw € Soucome Where she can take 25 else _ _
the game to by an action aligned wittis H- 26 | (x,y) is not deceivable fromx(t)
digraph, and computes the stealthy sequence %’ end
with minimum probability of reaching an out- 28 | €nd

come in7(y, zo) from eachw. B stores the 20 end
sequence that maximizes these probabilities
and takes the action prescribed by it.

We call this strategy theor st - case nmax- str at egy
and formally describe it in Algorithm 1. The rationale bedin
its name is made explicit in the next result.

Lemma 5.1:(Thewor st - case max- st rat egy max-
imizes the minimum probability of deceptiorihe following
are equivalent:

Note that, in Lemma 5.1, (i) is equivalent to stating thgt
is a minimizer ofﬂleT]pAB (22, x2i—1), and (ii) implies that
finding solutions to thewor st - case nax-strategy is
equivalent to finding a longest path on a digraph.
Remark 5.2:(Complexity of Algorithm 1): The digraph
i Soutcome Exo , Ago) was recently shown in [23] to be
() o5 = (z0.21,22,- ... 221) € L7 (Soucomd, Where ;(icyclic, and ther?a)fore, the problem of finding a longest
k € Zx1, ma € Taedy), and (wi,xi41) € £y fOr  path is well-posed and can be solved efficiently. For exam-
i €{0,...,2k ~ 1}, is a minimizer ofdp, ,; ple, since |Soutcomdr (x())| aNd [Tged(y)| are bounded by
(i) op corresponds to the longest path from to z2x € |5 4 if one uses a version of Dijkstra’s algorithm [24]
Téedy), in the digraph(Soutcome €9 s Aps ), Where, o find the longest path, the computational complexity of
for 4,5 € {1,...|Soutcomd}. the wor st - case max-strategy in each round is in
L N . O(|Soutcomd?). Furthermore, since, by acyclicity, the length
(Ao )ij = {Hn (Tran (2, 23)) | WB(Z’)__ (%), of(|the Ione{ge)st stealthy path in the digraph is bounded by
0, otherwise. |Soutcomd the time complexity is irO(|Soutcomd®)- .



Next, we show that thewor st - case nax- str at egy VI. AN EXAMPLE
is complete, in the sense that it always finds a stealthy g section illustrates the results presented in the paper

sequence that deceives a surely deceivable edge. Consider a2-level H2 = {HY, HL} betweenA and B
Theorem 5.3:(Surely deceivable edges war st - case  yijth H9,, = HY and outcome seBoucome= Sa X S5 =
max-strategy): The edge(z,y) € &g, m5(x) = (1, . 50}, whereS, andSp are the action sets of and

75(y), is surely deceivable from, € SoucomeVia a stealthy  p respectively, angiS4| = 5 and|Sz| = 10. The preference

sequerllce ofB if and only if Hg(2,y) # 0 and either vectorsP 4 4 andP 34 are shown in Figure 1. The H-digraph
xo € Tiely) or

max min®p, . (o) =0,
wlesoulcomé‘rrA(mO) 9B
P
whereop = (20,1, %2,...,%%) € yad?f(soutcome% k €

Zzl’ Tor € Tf?ec(y)’ (337;,,5(17;+1) S SHg for all © e
{0,...,2k — 1}.

Proof: Suppose(z,y) € Eyg, mp(z) = mp(Yy),
is surely deceivable fronx, via a stealthy sequence. By

Lemma 4.1Hj.(,y) # 0. Supposery ¢ Ti(y). By The- (@) Paa (b) Ppa
Or?m 4.4 and by the definition of Surely dece'vab'“ty’ ther%ig. 1. Preference vectoid 4 andP g 4. The horizontal axis shows the
exists a sequence of outcomes = (zg, x1,22,...,%2;) €  outcomes and the vertical axis shows the rank of outcomes.
P
yad?nB (Soutcom&, k € Zzl, Tok € Taqec(y), Where

Gro is shown in Figure 2(left). Regarding the actions/Af
player B perceives that outcomes with lower rank vy 4
have higher probability of occurring. Formallig assigns

50 — rank(j,Paa)

() (x5,2441) € é‘Hg, foralli € {0,...,2k — 1};
(Il) TPAB (l‘gi,l‘gi_l) =1, forallie {1, ey ]{,‘}
By (3), @]}DAB (UB) = 0. SinceTpAB (l‘gi, 3321*,1) =1, for all
i € {1,...,k}, if B chooses her sequential actions alignedTp,,(j,7) = ,
with o at each time, then the sequence will reagh with ZleN"“‘(i)ﬁSoumomému) (50 — rank(l, Pa4))
probability one, and thus it is the unique sequence startirtg the event that the outcome changes froo j by the
at zo reachingzz, which includese;. This, along with the actionz4(j) of A, wherej € Soutcomdry, ()
fact that®p, , (c5) < 0 for any o, proves the result. Suppose the game initially starts at outcome= 14 and
Conversely, ifzg € Ti(y), since Hi(z,y) # 0, the B wishes to deceivel by removing the edgé29, 26) € Em,
result follows from Lemma 4.2. Suppose, ¢ Ti(y). via a stealthy sequence. Since
Then, by assumptionssp is a stealthy sequence fromy, A _
which reaches:y;, € TA(y, xo), with probability one. Since Haed29,26) = {z € Soucomdr 26) | 2 <Pas 29}
HiLd(z,y) # 0, the result follows by Theorem 4.4 and the = {11,31,41} # 0,
definition of surely deceivability. B the necessary condition of Lemma 4.1 is satisfied. According
The following results demonstrates that ther st - case  to Theorem 4.4, we compute
max- st r at egy can also characterize the surely deceivable A _
edges when the opponent is using a best-response strategy. Taed(26) = {w € Soutcomdr s (26) | @ =P, 26}
The proof is similar to Theorem 5.3 and is omitted here. = {1,6,26,36}.

Proposition 5.4: (Best-response  strategies and th@he actions ofB from 14 aligned with A’s H-digraph are
wor st - case max-strategy): If A takes the sanction- A°U(14) N Soucomdr,(14) = {9,24,39}. By executing the
free action associated to her most preferred outcome at abbr st - case max-strat egy, B finds that the action
times andB knows about this, ther,y) € EZ20(HY),  that maximizes the minimum probability of reaching any of

To € Soutcome Via a stealthy sequence & if and only if  the outcomes iT4,(26) is m(24), where she perceives that

Hésd@,y) # 0 and eitherz, € TiL(y) or the repeated play of the game will reach outcdfievia the
in®p- (o) =0 path & = (14,24, 25,40, 36), with probability 0.52. Note
xlesoflmij{u(m)rgén Pap\9B) =5 that, by definition,36 € 7;1.(26,14). If the repeated play

of the hypergame goes according BJs perception, after
reaching the outcoma&g, B takes an action that changes the
outcome from36 to any of the outcomes ift(5.(29, 26).
P : For example, ifB chooses to take the actions(11) (note
Toed)s (i 2it1) € Eqg foralli € {0,..., 2k — 1}. that (36, 11) ¢ &), then A's H-digraph after updating her
Remark 5.5 (Strong deceivabilityfthe execution of the perception via swap learning is shown in Figure 2(right| If
wor st - case max-strategy from all the outcomes in takes an action which is not aligned with the seque@cat
Soutcome fUlly characterizes the séf;l(r,y). Note that, by any round of the hypergame, according to e st - case
definition, Zjl(z,¥) = Soutcome if and only if (z,y) is nax-strategy, B will recompute the stealthy sequence
strongly deceivable via a stealthy sequence. e and take the ensuing action accordingly.

whereP}, ; assigns one to the edges @f;, associated to
the most preferred sanction-free actions Afand o =
(20,21, T2, ..., 2ok) € FLoi? (Soutcomds k € Z>1, xa €

adm



Fig. 2. H-digraphngg (left) and 5w§6711(gH%) (right). PlayerA plays rows, playet3 plays columns, an® 44 andPp 4 are given in Figure 1.
Player B intends to remove the edde9, 26) € £,0 (left plot, dashed) via a stealthy sequence, starting fromeame14. After reaching the outcome
36, the edge(29, 26) € SH% is removed (right plot) by the actiomg (11) of player B.

VII. CONCLUSIONS [9]

We have studied scenarios of active deceptio-person
2-level hypergames with asymmetric information. Using thé0]
properties of hypergames encoded in the notion of H-digraph
we have introduced formal notions that capture different)
forms of deception. We have provided a necessary condition
and a sufficient condition for deceivability for the case whe
the deceiver might take actions that contradict the pei@ept [12]
of her opponent about the game. When this is not the
case, i.e., if the deceiver acts in a stealthy way and 0”[!3]
takes actions aligned with her opponent’s perception, we
have fully characterized when deception is possible. Rinal
we have introduced thewr st-case nax-strategy 4]
which maximizes the minimum probability that the deceiver
achieves the deception goal. We have shown this algorithm
to be complete, in the sense that it always finds a stealtl%f
sequence that deceives a surely deceivable edge. Futuke wpsb]
will study efficient ways of performing outcome deceivabil-
ity, the impact of signaling cost on the deceiver's ava#abl 17]
strategies, and the challenging scenario of deceptionasia n
stealthy strategies, where the H-digraph of the opponent
might change as a result of the actions taken by the deceivt—:tl%]
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