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Abstract— This paper considers games with incomplete asym-
metric information, where one player (the deceiver) has priv-
ileged information about the other (the mark) and intends
to employ it for belief manipulation. We use hypergames to
represent the asymmetric information available to players and
assume a probabilistic model for the actions of the mark.
This framework allows us to formalize various notions of
deception in a precise way. We provide a necessary condition
and a sufficient condition for deceivability when the deceiver is
allowed to reveal information to the mark as the game evolves.
For the case when the deceiver acts stealthily, i.e., restricts her
actions to those that do not contradict the belief of the mark,
we are able to fully characterize when deception is possible.
Moreover, we design theworst-case max-strategy that,
when such a sequence of deceiving actions exists, is guaranteed
to find it. An example illustrates our results.

I. I NTRODUCTION

Informational asymmetries in strategic scenarios provide
opportunities for manipulating beliefs or inducing certain de-
sired perceptions. In this paper, we consider a class of games
where one player (the deceiver) wishes to misrepresent
certain information in order to gain a strategic advantage over
the opponent (the mark). In our framework, the deceiver can
anticipate the effect that her actions will have on the mark’s
belief structure. In this sense, the deception goal can be
understood as steering the evolution of a particular dynamical
system into a desired set of outcomes. Scenarios of interest
includes bargaining, cybersecurity, military operations, and
human behavior modeling.

Literature review: In strategic scenarios with informa-
tional asymmetries [1], players may decide not to disclose
some information (passive deception) or lie about a value
of interest to the opponent (active deception). Within the
context of games of incomplete information, deception has
not been studied in a systematic way with the exception
of a few references. [2] demonstrates that the inconsistent
structure of beliefs can lead to counterintuitive behaviors. [3]
studies deception via strategic communication, in which a
‘sophisticated’ player sends either truthful or false messages
to the opponents. [4] investigates the vulnerability of strategic
decision makers to persuasion. The recent work [5] con-
structs a theory of deception for games with incomplete in-
formation where players form expectations about the average
behavior of the other players based on past histories. [6], [7]
consider scenarios where one player has access to certain
information and can distort it before it is passed on to others.
In this paper, we make use of hypergames [8], [9], [10],
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since they provide a natural framework for modeling strategic
situations with asymmetric information among players. Early
references on deception in dynamic games with imperfect
information include [11], [12]. The works [13], [14], [15]
provide examples of how informational asymmetries can be
used to induce false perceptions in the opponent and lead to
strategic deception. The works [16], [17] provide deception-
robust schemes for a class of discrete dynamic stochastic
games under imperfect observations.

Statement of contributions:We consider games of incom-
plete information where players have different perceptions
about the scenarios they are involved in. Specifically, we
study a class of2-player hypergames where the deceiver
has full information about the mark’s game and intends to
plant a certain belief in her. The mark is a rational player
that observes the actions taken by the deceiver and assumes
she acts rationally (although she may not), and updates
her perception about the opponent’s preferences accordingly.
From the deceiver’s viewpoint, the mark’s actions are rational
and probabilistic.

This framework sets the stage for the first contribution of
the paper, which is the introduction of precise notions of
deception to capture different forms of belief manipulation.
These notions allow us to identify a necessary condition
and a sufficient condition for deceivability on the mark’s
belief structure. Next, we study scenarios where the deceiver
purposefully restricts her set of actions to those that do
not contradict the mark’s belief structure. We term these
actions stealthy and fully characterize when deception via
such actions is possible. We show how the problem of
finding a stealthy sequence of actions is equivalent to finding
a longest path in an appropriate digraph that encodes the
mark’s belief structure. Our third contribution is then the
design of theworst-case max-strategy that, given a
desired deception objective, determines a stealthy sequence
of actions that achieves it. We end the paper with an example
to illustrate the notions and the results of the paper.

II. PRELIMINARIES

This section introduces some basic notions regarding
graph theory, Markov chains, and hypergames. We denote
the set of real and positive real numbers byR and R>0,
respectively. We denote byZ≥0 andZ≥1 the set of nonneg-
ative and positive integers, respectively. A nonempty setX
along with a preorder�, i.e., a reflexive and transitive binary
relation, is called adirected setif for every pair of elements
in X there exists an upper bound with respect to the preorder.
We useσ = (x1, x2, . . .), wherex1, x2, . . . ∈ X, to denote



a sequence of elements inX. Note that a finite sequence of
k ∈ Z≥1 elements is simply ak-tuple.

A. Graph theory

We recall some basic notions from [18]. AdigraphG is a
pair (V,E), whereV is a finite set, called the vertex set, and
E ⊆ V × V , called the edge set. Given an edge(u, v) ∈ E,
u is an in-neighbor of v and v is an out-neighborof u.
The set of in-neighbors and out-neighbors ofv are denoted,
respectively, byN in(v) andN out(v). The in-degreeandout-
degreeof v are the number of in-neighbors and out-neighbors
of v, respectively.A is an adjacency matrix forG = (V,E) if
the following holds: for eachvi, vj ∈ V , aij > 0 if and only
if (vi, vj) ∈ E. A (directed) pathis an ordered sequence of
vertices so that any two consecutive vertices in the sequence
are an edge of the digraph. Acycle in a digraph is a directed
path that starts and ends at the same vertex and has no other
repeated vertex. A digraph is calledacyclic if it does not
contain any cycle.

B. Markov chains

We recall here some basic notions from Markov chains
following [19]. We denote by(Ω,F , P) a probability space,
where Ω is a countable set,F is a σ-algebra overΩ,
and P is a probability measure. AnE-valued randomvari-
able is a measurable mappingX : (Ω,F , P) → (E, E),
whereE is a σ-algebra overE and (E, E) is a measurable
space. AMarkov chain is a sequence of random variables
(X1,X2, . . .) such that, for alln ∈ Z≥1 andx ∈ Ω,

P(Xn+1 = x |X1 = x1,X2 = x2, . . . ,Xn = xn) =

P(Xn+1 = x |Xn = xn).

The probability transition kernelTP is

TP(xi, xj) = P(Xn+1 = xi |Xn = xj),

wherexi, xj ∈ Ω. Note that for everyx ∈ Ω, TP(x, .) is also
a probability measure onΩ. One can inductively define

T k
P
(xi, xj) : = P(Xn+k = xi |Xn = xj)

=
∑

z∈Ω

TP(xi, z)T k−1
P

(z, xj).

If there existsk ∈ Z≥1 such thatT k
P
(xi, xj) > 0, the statexi

is reachablefrom xj (or, equivalently, thatxj communicates
with xi). We denote the set of all states reachable fromxj ,
with respect to the transition probabilityTP , by

RTP
(xj) = {xi ∈ Ω | ∃ki ∈ Z≥1, T ki

P
(xi, xj) > 0}.

C. Hypergame theory

We consider games with inconsistent perceptions across
the players in the framework of hypergames [20], [8], [9].
A 0-level hypergame is simply a(finite) game, i.e., a triplet
G = (V,Soutcome,P), whereV is a set ofn ∈ Z≥1 players,
Soutcome = S1 × . . . × Sn is the outcome set with finite
cardinality N = |Soutcome| ∈ Z≥1 and P = (P1, . . . , Pn),
with Pi = (x1, . . . , xN )T ∈ Sp the preference vector of

player vi, i ∈ {1, . . . , n}. Here,Si is a finite set of actions
available to playervi ∈ V and Sp ⊂ S

N
outcome is the set of

all elements inSN
outcome with pairwise different entries. We

denote byπi the projection ofSoutcome onto Si.
A n-person 1-level hypergame is a set H1 =

{G1, . . . ,Gn}, where Gi = (V, (Soutcome)i,Pi), for i ∈
{1, . . . , n}, is the subjective finite game of playervi ∈ V ,
andV is a set ofn players;(Soutcome)i = S1i×. . .×Sni, with
Sji the finite set of strategies available tovj , as perceived
by vi; Pi = (P1i, . . . , Pni), with Pji the preference vector
of vj , as perceived byvi. In a 1-level hypergame, each
player vi ∈ V plays the gameGi with the perception
that she is playing a game with complete information. The
definition of 1-level hypergame can be extended to higher-
order hypergames as follows: an-personk-level hypergame,
k ≥ 1, is a setHk = {Hk1

1 , . . . ,Hkn
n }, whereki ≤ k − 1

and at least oneki is equal tok − 1.

1) Stability and equilibria: Here we recall the notion
of stability for 2-person1-level hypergames. This class of
hypergames is the simplest one that explicitly models the
perception of players about their opponents’ preferences
(the reader is referred to [8] for the extension to higher-
order hypergames). LetH1 = {H0

A,H0
B}. Here, H0

A =
(PAA,PBA) is the 0-level hypergame for playerA, where
PAA andPBA are, respectively, the preferences of playerA
and playerB perceived by playerA. The same convention
holds for H0

B = (PAB ,PBB). For simplicity, the0-level
hypergames have the same set of outcomesSoutcome. We
denote by�PIJ

the binary relation onSoutcome induced
by PIJ , where I, J ∈ {A,B}. For convenience, we let
Soutcome|πI(x) = {y ∈ Soutcome | πI(y) = πI(x)} and refer
to it as a restricted outcome set. We also find it useful to
use I ′ to denote the opponent ofI in {A,B}. We assign
rank(x,PIJ ) ∈ R>0 to each outcomex ∈ Soutcome such
that rank(y,PIJ ) > rank(x,PIJ ) if and only if x ≻PIJ

y
(players prefer the outcomes with lower ranks). We use the
set{1, . . . , |Soutcome|} to rank the outcomes.

Given two distinct outcomesx, y ∈ Soutcome, y is an
improvementfrom x for I ∈ {A,B}, perceived byJ ∈
{A,B} in H0

J , if and only if πI′(y) = πI′(x) andy ≻PIJ
x.

An outcomex ∈ Soutcome is calledrational for I ∈ {A,B},
as perceived byJ ∈ {A,B} in H0

J , if there exists no
improvement fromx for I. The common notion of rationality
in hypergames is the notion of sequential rationality [21],[9],
[22]. An outcomex ∈ Soutcome is sequentially rationalfor
I ∈ {A,B} with respect toH0

J , J ∈ {A,B}, if and only
if for each improvementy for I, perceived byJ in H0

J ,
there exists an improvementz for I ′, perceived byJ in H0

J ,
such thatx ≻PIJ

z. Whenever this holds, we say that the
improvementz from y for I ′ sanctionsthe improvementy
from x for I in H0

J . By definition, a rational outcome is also
sequentially rational. An outcomex ∈ Soutcomeis unstablefor
playerI with respect toH0

J if it is not sequentially rational
for playerI, as perceived by playerJ and is anequilibrium of
H0

J if it is sequentially rational for bothJ andJ ′, perceived
by playerJ . An outcomex is anequilibrium ofH1 if it is



sequentially rational for playerA in H0
A and also for player

B in H0
B . Note thatx can be an equilibrium forH1 and not

an equilibrium ofH0
A.

2) H-digraphs: The notion of H-digraph encodes the
stability information of hypergames. Formally, theH-digraph
associated toH0

A is GH0
A

= (Soutcome, EH0
A
), where there

exists an edge(x, y) ∈ EH0
A

iff either there exists an
improvementy from x for A for which there is no sanction
of B in H0

A, or there exists an improvementy from x
for B for which there is no sanction ofA in H0

A. One
can similarly constructGH0

B
. By definition, an outcomex

is sequentially rational forA (respectively forB) if and
only if N out(x)∩Soutcome|πB(x) = ∅ (respectivelyN out(x)∩
Soutcome|πA(x) = ∅). Moreover, an outcome is an equilibrium
for the hypergameH0

A if and only if its out-degree in the
associated H-digraph is zero.

3) Learning in hypergames:Suppose playersA and B
take actions that change the outcome fromx to y. If
player A can perfectly observeB’s action and believes
that the opponent is rational, she concludes that playerB
prefers (πA(x), πB(y)) over x. Therefore, playerA can
incorporate this information into her hypergame and update
her perception about the preferences of playerB. Here, we
recall a method calledswap learningto do this, see [20].
These notions can similarly be defined for playerB.

We start by an algebraic construction. LetV be a set of
cardinalityN and letW be the subset ofV N with pairwise
different elements. Forx1, x2 ∈ V , let swapx1 7→x2

: W →
W be defined by

(swapx1 7→x2
(v))k = vk if vk 6= x1, x2,

(swapx1 7→x2
(v))i =

{

vj if vi = x1, vj = x2 and i < j,

vi if vi = x1, vj = x2 and i > j,

(swapx1 7→x2
(v))j =

{

vi if vi = x1, vj = x2 and i < j,

vj if vi = x1, vj = x2 and i > j.

We refer toswapx1 7→x2
as thex1 to x2 swap map. Theswap

learning mapsSw
A
x,y : SP → SP for playerA is given by

Sw
A
x,y(P) = swapx7→(πA(x),πB(y))(P).

One can show [20] that if players are rational, swap learning
is guaranteed to decrease the mismatch between a player’s
perception and the true payoff structure of other players.

When the outcome changes fromx to y and playerA
updates her perception via swap learning, her H-digraph
changes fromGH0

A
to Sw

A
x,y(GH0

A
). Similarly, if playersA

andB repeatedly take actions such that the hypergame out-
comes areσ = (x1, . . . , xn) ∈ S

n
outcome, then the associated

H-digraph of playerA is denotedSw
A
x1,σ(GH0

A
), where

Sw
A
x1,σ = Sw

A
x1,x2

◦Sw
A
x2,x3

◦ · · · ◦ Sw
A
xn−1,xn

.

We denote bySw
A
x1,σ(EH0

A
) the edge set ofSw

A
x1,σ(GH0

A
).

III. PROBLEM STATEMENT

In this paper, we consider2-person2-level hypergame. We
assume playerB has perfect knowledge about the prefer-

ences of playerA, while A perfectly observes the actions of
B and uses the swap learning map to update her perception.
We focus on swap learning, although the analysis could also
be carried out for other learning mechanisms. Formally, the
situation described above corresponds to a2-person2-level
hypergameH2 = {H0

A,H1
B}, with H1

B = {H0
AB ,H0

BB}
such thatH0

AB = H0
A. SinceH0

BB = H0
B , we actually have

H2 = {H0
A, {H0

A,H0
B}}.

Because of the special form ofH2, it is not difficult to see
that the equilibria ofH2, as defined in [8], are exactly the
same as the equilibria of the hypergameH1

B = {H0
A,H0

B}.
We assume that players take their actions sequentially, one

after each other. This assumption matches up with the notion
of sequential rationality and guarantees that the repeatedplay
of any 0-level hypergame converges to an equilibrium [23].
Note that scenarios where one players takes multiple actions
before the other player acts can also be accommodated. We
formalize this concept next.

Definition 3.1 (Admissible sequence):A sequence of out-
comesσ = (x0, x1, x2, . . .) in Soutcome is admissibleif

(i) πI(x2i) = πI(x2i+1),
(ii) πI′(x2i+1) = πI′(x2i+2),

for all i ∈ Z≥0, whereI ∈ {A,B}. The set of all admissible
sequences onSoutcome is denoted bySadm(Soutcome).

When convenient, we use the notationσB and σB to
denote admissible sequences where playerB is the first and
last, respectively, to take an action. The notationσB

B then
means thatB is the first and last to take an action. Similar
notations can be defined forA. Given an admissible sequence
σ = (x0, x1, . . . , xk), k ∈ Z≥1, we say thatz ∈ Soutcome is
aligned withσ at timei if z = xi. In this paper, without loss
of generality, we assume thatB is the first to take an action.
In order to formalize the problem of deception we set out to
study, we first introduce some basic notions.

A. Modeling player actions via probability distributions

Although playerB has complete information about player
A’s game, she does not know the strategy thatA follows
to decide her actions. For instance, if multiple sanction-free
improvements from an outcome are available toA, she might
not necessarily pick her most preferred sequentially rational
outcome (a less favorite improvement now may allow her to
achieve a larger payoff in the future). Formally, this scenario
can be captured by assigning a probability distribution to the
edges of the H-digraph ofA. Let PAB(Xn+1 = y | Xn =
x), for y ∈ Soutcome|πB(x), denote the probability that the
outcome of the hypergame changes fromx to y by the action
πA(y) of playerA, as perceived by playerB. Given whatB
knows aboutA’s game, we have that for all(x, y) /∈ EH0

A
,

PAB(Xn+1 = y | Xn = x) = 0.

Note that, for allx ∈ Soutcome,
∑

y∈Soutcome|πB(x)

PAB(Xn+1 = y | Xn = x) = 1.



The probability distributionPAB is selected by playerB by
applying some rule (e.g., ‘assign more probability to the most
preferred outcome’) to the H-digraph of the opponent. The
results of the paper are independent of the specific rule used
and so we leave it unspecified.

Player B can choose her own actions based on her
preferences in any way she sees fit. We formally describe
this via a probability distributionPB on any actionπB(y)
which changes the outcome fromx to y. Note that this can, in
particular, be a vector with one entry of1 and the rest0, and
that it can be re-selected at each round of the game. Modeling
B’s actions in this way will later be helpful in the statement
of the results. Since players only use the current state of
the game to decide about their next action, the sequence
of repeated outcomes of the game is a Markov chain. This
Markov chain can possibly be time-varying, since the H-
digraph of playerA can possibly evolve with time.

B. Notions of deception

Here, we introduce several definitions to capture different
forms of deception. The first definition encodes a situation
where the deceiver wishes to make sure that the mark will
not take a certain action from a given outcome.

Definition 3.2 (Edge-deceivability):Suppose playersA
and B play sequentially a hypergameH2 = {H0

A,H1
B},

with H0
AB = H0

A. An edge (x, y) ∈ EH0
A

, πB(x) =

πB(y), is deceivableby B in H0
A from x0 ∈ Soutcome

if there exists an admissible sequence of outcomesσB =
(x0, x1, x2, . . . , x2k+1), k ∈ Z≥0, where

(i) (x2i−1, x2i) ∈ Sw
A
x2i−2,x2i−1

◦ · · ·◦Sw
A
x0,x1

(EH0
A
) and

(ii) TPAB
(x2i, x2i−1) > 0,

for all i ∈ {1, . . . , k}, such that(x, y) /∈ Sw
A
x,σB

(EH0
A
). We

refer to σB a deceiving sequenceand we use the term ‘B
deceivesA’ if the hypergame evolves according toσB . We
denote byEB,x0

dec (H0
A) ⊆ EH0

A
the set of all deceivable edges

by B in H0
A from x0. We say that(x, y) is surely deceivable

by B in H0
A from x0 ∈ Soutcome if it is deceivable with

probability one and we denote the set of all such edges by
EB,x0

sdec (H0
A) ⊆ EH0

A
.

Let us elaborate more on the properties of the deceiving
sequenceσB in the above definition. (i) states thatA uses her
updated H-digraph and takes an action to shift the outcome
to a sanction-free improvement. (ii) states thatB perceives
a positive probability to the actions ofA contained inσB .
There is an abuse of notation due to the fact thatPAB can
change with the evolution of the H-digraph. Also, here we
have assumed thatB takes the last action. This is without loss
of generality; if the edge(x, y) is deceived byB, it remains
deceived afterwards, unlessB reveals new information.

Definition 3.3: (Strong edge-deceivability):The edge
(x, y) is strong deceivableby B in H0

A if it is deceivable
from any outcomex0 ∈ Soutcome and is surely strong
deceivableif it is strong deceivable with probability one.
The set of strong deceivable and surely strong deceivable
edges are denoted, respectively, byEB

stdec(H
0
A) ⊆ EH0

A
and

EB
sstdec(H

0
A) ⊆ EH0

A
.

Note that Definitions 3.2 and 3.3 are a stepping stone
towards the deceiver being able to make sequentially rational
an (in principle) unstable outcome for the mark. One can
indeed similarly define a notion of outcome-deceivability:an
outcome is deceivable if all the out-edges corresponding to
the opponent’s sanction-free improvements can be deceived.
In this paper, we restrict our attention to the problem of
edge-deceivability.

Lemma 3.4 (Deceivability inclusions):For all x0 ∈
Soutcome, the following inclusions hold

EB
sstdec(H

0
A) ⊆ EB,x0

sdec (H0
A), EB

stdec(H
0
A) ⊆ EB,x0

dec (H0
A).

We are now ready to formally state the problem we set
out to study. Consider a2-person2-level hypergameH2 =
{H0

A,H1
B}, with H0

AB = H0
A. We wish to provide answers

to the following two problems:

(i) given (x, y) ∈ EH0
A

, with πB(x) = πB(y), what are
the set of outcomesx0 ∈ Soutcomefrom which the edge
is (surely) deceivable byB? When is the edge (surely)
strong deceivable?

(ii) given an answer to the previous question, design an
strategy thatB can implement in order to deceiveA.

IV. W HEN IS IT POSSIBLE TO PERFORM DECEPTION?

In this section, we identify a necessary condition and a suf-
ficient condition for the notions of deceivability introduced in
Section III-B. We also define a class of admissible sequences
of outcomes, termed stealthy, and characterize conditionsfor
deceivability that are both necessary and sufficient when the
allowable sequences are restricted to this family.

A. Necessary conditions for deceivability and sufficient con-
ditions for surely deceivability

We first identify a necessary condition for deceivability.
Lemma 4.1:(Necessary condition for edge-deceivability):

Let x0 ∈ Soutcome and assume(x, y) ∈ EB,x0

dec (H0
A). Then

H
A
dec(x, y) = {u ∈ Soutcome|πA(y) | u ≺PAA

x} 6= ∅.

Proof: We reason by contradiction. Supposeu �PAA

x for all u ∈ Soutcome|πA(y). Therefore, playerB has no
sanction against the improvement fromx to y for playerA,
and thus the edge(x, y) ∈ Sw

A
x,σ(EH0

A
), for any sequence

of outcomesσ and any initial outcomex0 ∈ Soutcome.
Note that Lemma 4.1 also gives a necessary condition

for strong deceivability, c.f. Lemma 3.4. Next, we give a
sufficient condition for surely deceivability.

Lemma 4.2:(Sufficient conditions for surely deceivabil-
ity): Let (x, y) ∈ EH0

A
, πB(x) = πB(y), and suppose

H
A
dec(x, y) 6= ∅. Then (x, y) ∈ EB,ỹ

sdec(H
0
A), for all ỹ ∈

T
A
dec(y) = {w ∈ Soutcome|πA(y) | w �PBA

y}.

Proof: Note that z ≺PBA
y for z ∈ H

A
dec(x, y),

since otherwise, the improvementy from x of A would be
sanctioned by the perceived improvementz from y of B and
this would imply (x, y) 6∈ EH0

A
. SupposeB takes an action

from ỹ ∈ T
y
dec(y) that changes the outcome toz ∈ H

A
dec(x, y).

Since(ỹ, z) /∈ EH0
A

, A uses the swap learning map to update



her perceptions aboutB. But then (x, y) /∈ Sw
A
ỹ,z(EH0

A
),

since the outcomez with z ≻SwA
ỹ,z

(PBA) y is now perceived
by A as a sanction ofB against the improvementy from x
by A. As a result,σB = (ỹ, z) is a deceiving sequence for
B and thus the result follows.

B. Stealthy sequences of actions

If B takes an action not aligned with the perception
of A, and A updates her perception (using for instance
swap learning), then the structure of the H-digraph ofA
will change. Therefore, forB, the complexity of selecting a
sequence of actions to deceive the opponent greatly grows
with the length of the sequence. Here, instead, we focus on
a particular family of sequences, which we termstealthy,
that B can employ to achieve her goal without revealing
any information toA, up to the moment that the ‘deceiving
action’ takes place. Let us formally define this notion.

Definition 4.3: (Stealthy sequence):An admissible se-
quence of outcomesσB = (x0, x1, . . . , xk), k ∈ Z≥1, is
stealthyif the following holds:

• (xi, xi+1) ∈ EH0
A

, for all i < k − 1;
• (xk−1, xk) /∈ EH0

A
.

A consequence of the definition is that, ifσB =
(x0, x1, . . . , xk), k ∈ Z≥1, is a stealthy sequence, then

Sw
A
xi−1,xi

(EH0
A
) = EH0

A
,

for all i ∈ {1, . . . , k − 1}, i.e., player A does not see
her perception contradicted when the outcomes of the game
correspond toσB . Moreover, at the last outcome,

Sw
A
xk−1,xk

(EH0
A
) = Sw

A
x0,σB

(EH0
A
) 6= EH0

A
. (1)

Note that with this definition, the probability distribution
PAB does not change when the games is played according
to a stealthy sequence. This definition motivates us to define
the setS PAB

adm (Soutcome) ⊆ Sadm(Soutcome) with

S
PAB

adm (Soutcome) = {(x0, x1, x2, . . .) ∈ Sadm(Soutcome) |

TPAB
(xi+1, xi) > 0,∀i ∈ Z≥0, πB(xi) = πB(xi+1)}.

If σ ∈ S
PAB

adm (Soutcome), we call σ a PAB-admissible se-
quence. With this definition,B perceives a positive prob-
ability to the actions ofA contained inσ. From now on,
whenever we use the term ‘stealthy sequence’ we mean to
say ‘PAB-admissible stealthy sequence’.

The following result gives necessary and sufficient condi-
tions for deceivability using stealthy sequence.

Theorem 4.4:(Necessary and sufficient conditions for de-
ceivability via stealthy sequences):Let x0 ∈ Soutcome and
(x, y) ∈ EH0

A
, πB(x) = πB(y). The following are equivalent:

(i) (x, y) is deceivable fromx0 via a stealthy sequence;
(ii) H

A
dec(x, y) 6= ∅ and

T A
dec(y, x0) = T

A
dec(y) ∩

(

{x0} ∪ RTPAB
TPB

(x0)
)

6= ∅,

for a probability distributionPB such thatPB(Xn+1 =
z | Xn = r) > 0 for any (r, z) ∈ EH0

A
.

Proof: We first show that (i) implies (ii). Suppose
(x, y) ∈ EH0

A
. First of all, note that since, by assumption,

(x, y) is deceivable fromx0, the necessary conditions of
Lemma 4.1 hold, i.e.,HA

dec(x, y) 6= ∅. If x0 ∈ T
A
dec(y), then

T A
dec(y, x0) 6= ∅ and the result follows. Supposex0 /∈ T

A
dec(y).

By Definitions 4.3 and 3.2, there exists a stealthy sequence
σB = (x0, . . . , xk−1, xk) such that(x, y) /∈ Sw

A
x0,σB

(EH0
A
)

and S = (x0, . . . , xk−1) is a path in GH0
A

. Note that
xk−1 ∈ T

A
dec(y) and xk ∈ H

A
dec(x, y), since otherwise, by

definition of a swap learning map and Equation (1),(x, y) ∈
Sw

A
x0,σB

(EH0
A
), a contradiction with the assumption. Next,

let ỹ = xk−1 (observe thatk ≥ 3). We show thatỹ ∈
RTPAB

TPB
(x0). SupposePB is a probability distribution such

that PB(Xn+1 = z | Xn = r) > 0, for all r and all
z ∈ Soutcome|πA(r) with (r, z) ∈ EH0

A
. By definition of a

PAB-admissible sequence,TPAB
(xi, xi+1) > 0, πB(xi) =

πB(xi+1), for all i ∈ {1, . . . , k}. Thus there is a strictly
positive probability that̃y is reachable fromx0 via the path
S = (x0, . . . , xk−2, ỹ), πB(xk−2) = πB(ỹ). Thus there
exists someK ∈ Z≥1 such that

(TPAB
TPB

)K(ỹ, x0) > 0,

i.e., ỹ ∈ RTPAB
TPB

(x0). As a result,T A
dec(y, x0) 6= ∅.

Conversely, let us show that (ii) implies (i). The results
hold by Lemma 4.2 ifx0 ∈ T

A
dec(y). Supposex0 /∈ T

A
dec(y).

We need to show that there exists a sequence of outcomes
σB that satisfies the conditions of Definition 4.3 and(x, y) /∈
Sw

A
x0,σB

(EH0
A
). First, note that, by Lemma 4.1, there exists

an outcomez ∈ Soutcome|πA(y) such thatz ≺PAA
x. By

assumption, there exists an outcomeỹ ∈ T
A
dec(y) that can be

reached fromx0, for a probability distributionPB described
above, i.e., there exists a pathS = (x0, . . . , xk−1, ỹ) in GH0

A

such thatTPAB
(xi+1, xi) > 0, for all i ∈ {0, . . . , k − 2}

with πB(xi) = πB(xi+1). If player B takes an action that
changes the outcome from̃y to z, then, by definition,z is
a sanction against the perceived improvementy from x for
playerA; thus(x, y) /∈ Sw

A
ỹ,z(EH0

A
). Next, we defineσB =

(x0, . . . , xk−1, ỹ, z). By Definition 4.3, σB is a stealthy
sequence starting fromx0 and since(x, y) /∈ Sw

A
ỹ,z(EH0

A
),

(x, y) is also a deceiving sequence, as claimed.
The choice ofPB in Theorem 4.4(ii) ensures that all

actions of playerB are considered when determining if a
stealthy sequence exists to deceiveA. Once such sequence
is found,B will assign probability one to each of the actions
for her prescribed in the sequence (cf. Section V).

Theorem 4.4 shows that, givenx0 ∈ Soutcome, any ac-
tion of B from T A

dec(y, x0) to H
A
dec(x, y) removes the edge

(x, y) from the H-digraphGH0
A

. Thus, if these two sets
are nonempty, finding a stealthy sequence is equivalent, by
definition ofT A

dec(y, x0), to finding a path inGH0
A

that reaches
T A

dec(y, x0) from x0. One can characterize the set of all initial
outcomes from which the edge(x, y) is deceivable as

IA
dec(x, y) =

{x0 ∈ Soutcome| H
A
dec(x, y) 6= ∅, T A

dec(y, x0) 6= ∅}. (2)



V. THE WORST-CASE MAX-STRATEGY

Here, we provide an algorithmic approach that can be used
by playerB to determine a stealthy sequence to deceiveA.

Consider the scenario described in Section III. Suppose at
time t ≥ 0 the outcome of the2-person2-level hypergame is
x(t). Without loss of generality, assume that playerB takes
actions whent ∈ 2Z≥0 and playerA takes actions when
t ∈ 2Z≥0 + 1. In this situation, Theorem 4.4 characterizes
the edges of the H-digraph ofA that are deceivable byB
via a stealthy sequence. To model the fact that the outcome
of the hypergame is influenced by the actions of playerA,
let us introduce the mapΦPAB

: S
PAB

adm (Soutcome) → R,

ΦPAB
(x0, . . . , xk) =

k−1
∑

i=0
πB(xi)=πB(xi+1)

ln (TPAB
(xi+1, xi)) . (3)

This map captures the probability of reaching an outcome
via a PAB-admissible sequence.

In this scenario, after making sure that the necessary
condition for deception is satisfied, a reasonable strategy
for B at each round is to take an action that maximizes
the minimum probability of achieving the deception goal.
Informally, this strategy can be described as follows:

[Informal description]: Initially, B has a stealthy
sequence (possibly empty) stored in its memory.
At each round,

(i) if there is a deceiving action that takes the
current outcome toHA

dec(x, y), playerB takes
it to deceiveA, c.f. Lemma 4.2;

(ii) otherwise, B checks if theA’s last action
is aligned with the stored sequence. If it
is, B takes the next action prescribed by
the sequence. If it is not,B considers the
outcomesw ∈ Soutcome where she can take
the game to by an action aligned withA’s H-
digraph, and computes the stealthy sequence
with minimum probability of reaching an out-
come inT A

dec(y, x0) from eachw. B stores the
sequence that maximizes these probabilities
and takes the action prescribed by it.

We call this strategy theworst-case max-strategy
and formally describe it in Algorithm 1. The rationale behind
its name is made explicit in the next result.

Lemma 5.1:(Theworst-case max-strategy max-
imizes the minimum probability of deception):The following
are equivalent:

(i) σB = (x0, x1, x2, . . . , x2k) ∈ S
PAB

adm (Soutcome), where
k ∈ Z≥1, x2k ∈ T

A
dec(y), and (xi, xi+1) ∈ EH0

A
for

i ∈ {0, . . . , 2k − 1}, is a minimizer ofΦPAB
;

(ii) σB corresponds to the longest path fromx0 to x2k ∈
T

A
dec(y), in the digraph(Soutcome, EH0

A
,AH0

A
), where,

for i, j ∈ {1, . . . |Soutcome|},

(AH0
A
)ij =

{

| ln (TPAB
(zj , zi)) |, πB(zi) = πB(zj),

0, otherwise.

Algorithm 1: worst-case max-strategy

Input : GH0
A

, PAB , (x, y) ∈ EH0
A

, x0 ∈ Soutcome,
N out(x0) ∩ Soutcome|πA(x0) 6= ∅

Initialization : αmaxmin = −∞, σB = ∅, x(0) = x0

1 check thatHA
dec(x, y) 6= ∅; otherwise, announce that

(x, y) is not deceivable
at time: t ∈ 2Z≥0

2 if x(t) ∈ T
A
dec(y) then

3 take action that makesx(t + 1) ∈ H
A
dec(x, y)

4 else
5 if σB 6= ∅ and x(t) is aligned with σB then
6 take action prescribed byσB

7 else
8 foreach w ∈ Soutcome|πA(x(t)), (x(t), w) ∈ EH0

A

do
9 αmin = +∞

10 foreach ỹ ∈ T
A
dec(y) do

11 if there is path in GH0
A

from w to ỹ

then
12 find sequenceσA

A from w to ỹ
minimizing ΦPAB

13 if ΦPAB
(σA

A) ≤ αmin then
14 αmin = ΦPAB

(σA
A)

15 end
16 end
17 end
18 if αmin 6= +∞ and αmin ≥ αmaxmin then
19 αmaxmin = αmin, η = σ
20 end
21 end
22 if αmaxmin 6= −∞ then
23 σB = (x(t), η)
24 take action prescribed byσB

25 else
26 (x, y) is not deceivable fromx(t)
27 end
28 end
29 end

Note that, in Lemma 5.1, (i) is equivalent to stating thatσB

is a minimizer ofΠk
i=1TPAB

(x2i, x2i−1), and (ii) implies that
finding solutions to theworst-case max-strategy is
equivalent to finding a longest path on a digraph.

Remark 5.2:(Complexity of Algorithm 1): The digraph
(Soutcome, EH0

A
,AH0

A
) was recently shown in [23] to be

acyclic, and therefore, the problem of finding a longest
path is well-posed and can be solved efficiently. For exam-
ple, since

∣

∣Soutcome|πA(x(t))

∣

∣ and |TA
dec(y)| are bounded by

|Soutcome|, if one uses a version of Dijkstra’s algorithm [24]
to find the longest path, the computational complexity of
the worst-case max-strategy in each round is in
O(|Soutcome|4). Furthermore, since, by acyclicity, the length
of the longest stealthy path in the digraph is bounded by
|Soutcome|, the time complexity is inO(|Soutcome|

5). •



Next, we show that theworst-case max-strategy
is complete, in the sense that it always finds a stealthy
sequence that deceives a surely deceivable edge.

Theorem 5.3:(Surely deceivable edges viaworst-case
max-strategy): The edge (x, y) ∈ EH0

A
, πB(x) =

πB(y), is surely deceivable fromx0 ∈ Soutcomevia a stealthy
sequence ofB if and only if H

A
dec(x, y) 6= ∅ and either

x0 ∈ T
A
dec(y) or

max
x1∈Soutcome|πA(x0)

min
σB

ΦPAB
(σB) = 0,

whereσB = (x0, x1, x2, . . . , x2k) ∈ S
PAB

adm (Soutcome), k ∈
Z≥1, x2k ∈ T

A
dec(y), (xi, xi+1) ∈ EH0

A
for all i ∈

{0, . . . , 2k − 1}.
Proof: Suppose(x, y) ∈ EH0

A
, πB(x) = πB(y),

is surely deceivable fromx0 via a stealthy sequence. By
Lemma 4.1,HA

dec(x, y) 6= ∅. Supposex0 /∈ T
A
dec(y). By The-

orem 4.4 and by the definition of surely deceivability, there
exists a sequence of outcomesσB = (x0, x1, x2, . . . , x2k) ∈
S

PAB

adm (Soutcome), k ∈ Z≥1, x2k ∈ T
A
dec(y), where

(i) (xi, xi+1) ∈ EH0
A

, for all i ∈ {0, . . . , 2k − 1};
(ii) TPAB

(x2i, x2i−1) = 1, for all i ∈ {1, . . . , k}.

By (3), ΦPAB
(σB) = 0. SinceTPAB

(x2i, x2i−1) = 1, for all
i ∈ {1, . . . , k}, if B chooses her sequential actions aligned
with σB at each time, then the sequence will reachx2k with
probability one, and thus it is the unique sequence starting
at x0 reachingx2k which includesx1. This, along with the
fact thatΦPAB

(σB) ≤ 0 for any σB , proves the result.
Conversely, ifx0 ∈ T

A
dec(y), since H

A
dec(x, y) 6= ∅, the

result follows from Lemma 4.2. Supposex0 /∈ T
A
dec(y).

Then, by assumptions,σB is a stealthy sequence fromx0

which reachesx2k ∈ T A
dec(y, x0), with probability one. Since

H
A
dec(x, y) 6= ∅, the result follows by Theorem 4.4 and the

definition of surely deceivability.
The following results demonstrates that theworst-case

max-strategy can also characterize the surely deceivable
edges when the opponent is using a best-response strategy.
The proof is similar to Theorem 5.3 and is omitted here.

Proposition 5.4: (Best-response strategies and the
worst-case max-strategy): If A takes the sanction-
free action associated to her most preferred outcome at all
times andB knows about this, then(x, y) ∈ EB,x0

sdec (H0
A),

x0 ∈ Soutcome, via a stealthy sequence ofB if and only if
H

A
dec(x, y) 6= ∅ and eitherx0 ∈ T

A
dec(y) or

max
x1∈Soutcome|πA(x0)

min
σB

ΦP
∗

AB
(σB) = 0,

whereP
∗
AB assigns one to the edges ofGH0

A
associated to

the most preferred sanction-free actions ofA and σB =
(x0, x1, x2, . . . , x2k) ∈ S

PAB

adm (Soutcome), k ∈ Z≥1, x2k ∈
T

A
dec(y), (xi, xi+1) ∈ EH0

A
for all i ∈ {0, . . . , 2k − 1}.

Remark 5.5 (Strong deceivability):The execution of the
worst-case max-strategy from all the outcomes in
Soutcome fully characterizes the setIA

dec(x, y). Note that, by
definition, IA

dec(x, y) = Soutcome if and only if (x, y) is
strongly deceivable via a stealthy sequence. •

VI. A N EXAMPLE

This section illustrates the results presented in the paper.
Consider a2-level H2 = {H0

A,H1
B} betweenA and B,

with H0
AB = H0

A and outcome setSoutcome = SA × SB =
{1, . . . , 50}, whereSA andSB are the action sets ofA and
B, respectively, and|SA| = 5 and|SB | = 10. The preference
vectorsPAA andPBA are shown in Figure 1. The H-digraph
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(b) PBA

Fig. 1. Preference vectorsPAA andPBA. The horizontal axis shows the
outcomes and the vertical axis shows the rank of outcomes.

GH0
A

is shown in Figure 2(left). Regarding the actions ofA,
player B perceives that outcomes with lower rank inPAA

have higher probability of occurring. Formally,B assigns

TPAB
(j, i) =

50 − rank(j,PAA)
∑

l∈N out(i)∩Soutcome|πB(i)
(50 − rank(l,PAA))

,

to the event that the outcome changes fromi to j by the
actionπA(j) of A, wherej ∈ Soutcome|πB(i).

Suppose the game initially starts at outcomex0 = 14 and
B wishes to deceiveA by removing the edge(29, 26) ∈ EH0

A

via a stealthy sequence. Since

HA
dec(29, 26) = {z ∈ Soutcome|πA(26) | z ≺PAA

29}

= {11, 31, 41} 6= ∅,

the necessary condition of Lemma 4.1 is satisfied. According
to Theorem 4.4, we compute

T
A
dec(26) = {w ∈ Soutcome|πA(26) | w �PBA

26}

= {1, 6, 26, 36}.

The actions ofB from 14 aligned withA’s H-digraph are
N out(14) ∩ Soutcome|πA(14) = {9, 24, 39}. By executing the
worst-case max-strategy, B finds that the action
that maximizes the minimum probability of reaching any of
the outcomes inTA

dec(26) is πB(24), where she perceives that
the repeated play of the game will reach outcome36 via the
path S = (14, 24, 25, 40, 36), with probability 0.52. Note
that, by definition,36 ∈ T A

dec(26, 14). If the repeated play
of the hypergame goes according toB’s perception, after
reaching the outcome36, B takes an action that changes the
outcome from36 to any of the outcomes inHA

dec(29, 26).
For example, ifB chooses to take the actionπB(11) (note
that (36, 11) /∈ EH0

A
), thenA’s H-digraph after updating her

perception via swap learning is shown in Figure 2(right). IfA
takes an action which is not aligned with the sequenceS at
any round of the hypergame, according to theworst-case
max-strategy, B will recompute the stealthy sequence
and take the ensuing action accordingly.
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Fig. 2. H-digraphsGH0
A

(left) andSw
A
36,11(GH0

A
) (right). PlayerA plays rows, playerB plays columns, andPAA andPBA are given in Figure 1.

PlayerB intends to remove the edge(29, 26) ∈ EH0
A

(left plot, dashed) via a stealthy sequence, starting from outcome14. After reaching the outcome
36, the edge(29, 26) ∈ EH0

A
is removed (right plot) by the actionπB(11) of playerB.

VII. C ONCLUSIONS

We have studied scenarios of active deception in2-person
2-level hypergames with asymmetric information. Using the
properties of hypergames encoded in the notion of H-digraph,
we have introduced formal notions that capture different
forms of deception. We have provided a necessary condition
and a sufficient condition for deceivability for the case when
the deceiver might take actions that contradict the perception
of her opponent about the game. When this is not the
case, i.e., if the deceiver acts in a stealthy way and only
takes actions aligned with her opponent’s perception, we
have fully characterized when deception is possible. Finally,
we have introduced theworst-case max-strategy
which maximizes the minimum probability that the deceiver
achieves the deception goal. We have shown this algorithm
to be complete, in the sense that it always finds a stealthy
sequence that deceives a surely deceivable edge. Future work
will study efficient ways of performing outcome deceivabil-
ity, the impact of signaling cost on the deceiver’s available
strategies, and the challenging scenario of deception via non-
stealthy strategies, where the H-digraph of the opponent
might change as a result of the actions taken by the deceiver.
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