
Self-triggered coordination of robotic networks

for optimal deployment

C. Nowzari
a

J. Cortés
a

aDepartment of Mechanical and Aerospace Engineering, University of California, San Diego, CA, 92093, USA

Abstract

This paper studies a deployment problem for a group of robots where individual agents operate with outdated information about
each other’s locations. Our objective is to understand to what extent outdated information is still useful and at which point it
becomes essential to obtain new, up-to-date information. We propose a self-triggered coordination algorithm based on spatial
partitioning techniques with uncertain information. We analyze its correctness in synchronous and asynchronous scenarios,
and establish the same convergence guarantees that a synchronous algorithm with perfect information at all times would
achieve. The technical approach combines computational geometry, set-valued stability analysis, and event-based systems.

Key words: robotic networks, self-triggered control, spatial partitioning, uncertain information, set-valued analysis

1 Introduction

This paper studies a robotic sensor network perform-
ing an optimal static deployment task when individ-
ual agents do not have up-to-date information about
each other’s locations. Our objective is to design a
self-triggered coordination algorithm where agents au-
tonomously decide when they need new, up-to-date lo-
cation information in order to successfully perform the
required task. Our motivation comes from the need for
strategies that naturally account for uncertainty in the
state of other agents and are able to produce substantial
energy savings in the operation of the network.

Literature review. There are two main areas related
to the contents of this paper. In the context of robotic
sensor networks, this work builds on [Cortés et al.,
2004], where distributed algorithms based on centroidal
Voronoi partitions are presented, and [Cortés et al.,
2005], where limited-range interactions are considered.
Other works on deployment coverage problems in-
clude [Howard et al., 2002, Schwager et al., 2009, Kwok
and Mart́ınez, 2010, Pavone et al., 2011]. We note that
the locational optimization problem considered here
is a static coverage problem, in contrast to dynamic
coverage problems, e.g., [Choset, 2001, Hussein and Sti-
panovic̀, 2007], that seek to visit or continuously sense
all points in the environment. A feature of the algo-
rithms mentioned above is the common assumption of

Email addresses: cnowzari@ucsd.edu (C. Nowzari),
cortes@ucsd.edu (J. Cortés).

constant communication among agents and up-to-date
information about each other’s locations.

The other area of relevance to this work is discrete-event
systems [Cassandras and Lafortune, 2007], and the re-
search in triggered control [Velasco et al., 2003, Sub-
ramanian and Fekri, 2006, Wang and Lemmon, 2009,
Anta and Tabuada, 2010], particularly as related to sen-
sor and actuator networks. Of particular relevance are
works that study self-triggered or event-triggered de-
centralized strategies that are based on local interac-
tions with neighbors defined in an appropriate graph.
Among them, we highlight [Kang et al., 2008] on collision
avoidance while performing point-to-point reconfigura-
tion, [Dimarogonas and Johansson, 2009] on achieving
agreement, [Wan and Lemmon, 2009] on distributed op-
timization, and [Mazo Jr. and Tabuada, 2011] on imple-
menting nonlinear controllers over sensor and actuator
networks. This paper shares with these works the aim of
trading computation and decision making at the agent
level for less communication, sensing or actuator effort
while still guaranteeing a desired level of performance.

Statement of contributions. The main contribu-
tion of the paper is the design of the self-triggered

centroid algorithm to achieve optimal static deploy-
ment in a given convex environment. This strategy is
based on two building blocks. The first building block
is an update policy that helps an agent determine if
the information it possesses about the other agents is
sufficiently up-to-date. This update policy is based on
spatial partitioning techniques with uncertain informa-

Preprint submitted to Automatica 14 July 2011

tion, and in particular, on the notions of guaranteed and
dual guaranteed Voronoi diagrams. The second building
block is a motion control law that, given the (possibly
outdated) information an agent has, determines a mo-
tion plan that is guaranteed to contribute positively to
achieving the deployment task. To execute the proposed
algorithm, individual agents only need to have location
information about a (precisely characterized) subset of
the network and in particular, do not need to know the
total number of agents. We establish the monotonic evo-
lution of the aggregate objective function encoding the
notion of deployment and characterize the convergence
properties of the algorithm. Due to the discontinuous
nature of the data structure that agents maintain in
our self-triggered law, the technical approach resorts
to a combination of tools from computational geome-
try, set-valued analysis, and stability theory. We show
that both synchronous and asynchronous executions of
the self-triggered centroid algorithm asymptoti-
cally achieve the same optimal configurations that an
algorithm with perfect location information would, and
illustrate their performance and cost in simulations.

Organization. Section 2 outlines some important no-
tions from computational geometry. Section 3 contains
the problem statement. Section 4 introduces the notions
of guaranteed and dual guaranteed Voronoi diagrams.
Section 5 presents our algorithm design and Section 6 an-
alyzes the convergence properties of its synchronous ex-
ecutions. Section 7 discusses an extension to further re-
duce communication costs and the convergence of asyn-
chronous executions. Simulations illustrate our results
in Section 8. We gather our conclusions in Section 9.

2 Preliminaries

Let R≥0, Z≥0 be the sets of nonnegative real, integer
numbers, resp., and let ‖ · ‖ be the Euclidean distance.

2.1 Basic geometric notions

Let [p, q] ⊂ R
d be the closed segment with extreme

points p and q ∈ R
d. Let B(p, r) = {q ∈ R

d | ‖q−p‖ ≤ r}
and Hpo = {q ∈ R

d | ‖q − p‖ ≤ ‖q − o‖} be the
closed halfspace determined by p, o ∈ R

d that contains p.
Let φ : R

d → R≥0 be a bounded measurable function,
termed density. For S ⊂ R

d, the mass and center of mass
of S with respect to φ are

MS =

∫

S

φ(q)dq, CS =
1

MS

∫

S

qφ(q)dq.

The circumcenter ccS of a bounded set S ⊂ R
d is the

center of the closed ball of minimum radius that contains
S. The circumradius crS of S is the radius of this ball.
The diameter of S is diam(S) = maxp,q∈S ‖p − q‖.

Given v ∈ R
d \ {0}, let unit(v) be the unit vector in the

direction of v. For a convex set S ⊂ R
d and p ∈ R

d,
prS(p) is the point in S closest to p. The to-ball-boundary

map tbb : (Rd × R≥0)
2 → R

d takes (p, δ, q, r) to

{
p + δ unit(q − p) if ‖p − pr

B(q,r)(p)‖ > δ,

pr
B(q,r)(p) if ‖p − pr

B(q,r)(p)‖ ≤ δ.

Figure 1 illustrates the action of tbb.

tbb(p, δ, q, r)

δ

p

q

r

(a)

tbb(p, δ, q, r)

≤ δ

p

q

r

(b)

Fig. 1. Graphical representation of the action of tbb when (a)
‖p − prB(q,r)(p)‖ > vmax and (b) ‖p − prB(q,r)(p)‖ ≤ vmax.

The notion of Voronoi partitioning [Okabe et al., 2000]
plays an important role in the later developments. Let
S be a convex polygon in R

2 including its interior and
let P = (p1, . . . , pn) be n points in S. A partition of S
is a collection of n polygons W = {W1, . . . ,Wn} with
disjoint interiors whose union is S. The Voronoi partition
V(P) = {V1, . . . , Vn} of S generated by the points P is

Vi = {q ∈ S | ‖q − pi‖ ≤ ‖q − pj‖ , ∀j 6= i}.

When the Voronoi regions Vi and Vj share an edge, pi

and pj are (Voronoi) neighbors. We denote the neighbors
of agent i by Ni. P = (p1, . . . , pn) is a centroidal Voronoi
configuration if pi = CVi

, for all i ∈ {1, . . . , n}.

2.2 Facility location and aggregate distortion

We introduce here a locational optimization function
termed aggregate distortion [Du et al., 1999, Bullo et al.,
2009]. Consider a set of agent positions P ∈ Sn. The
agent performance at q of the agent pi degrades with
‖q− pi‖2. Assume a density φ : S → R is available, with
φ(q) reflecting the likelihood of an event happening at
q. Consider then the minimization of

H(P) = Eφ

[
min

i∈{1,...,n}
‖q − pi‖

2

]
. (1)

This type of function is applicable in scenarios where
the agent closest to an event of interest is the one re-
sponsible for it. Examples include servicing tasks, spa-
tial sampling of random fields, resource allocation, and
event detection, see [Bullo et al., 2009] and references
therein. Interestingly, H can be rewritten as

H(P) =
n∑

i=1

∫

Vi

‖q − pi‖
2φ(q)dq,

2

This suggests defining a generalization of H, which with
a slight abuse of notation we denote by the same letter,

H(P,W) =

n∑

i=1

∫

Wi

‖q − pi‖
2φ(q)dq, (2)

where W is a partition of S, and the ith agent is respon-
sible of the “dominance region” Wi. The function H is
to be minimized with respect to the locations P and the
dominance regions W. The next result [Du et al., 1999,
Bullo et al., 2009] characterizes its critical points.

Lemma 2.1 Given P ∈ Sn and a partition W of S,

H(P,V(P)) ≤ H(P,W), (3)

i.e., the optimal partition is the Voronoi partition. For
P ′ ∈ Sn with ‖p′i − CWi

‖ ≤ ‖pi − CWi
‖, i ∈ {1, . . . , n},

H(P ′,W) ≤ H(P,W),

i.e., the optimal sensor positions are the centroids.

3 Problem statement

Consider a group of agents moving in a convex polygon
S ⊂ R

2 with positions (p1, . . . , pn). For simplicity, we
consider arbitrary continuous-time dynamics such that

(i) all agents’ clocks are synchronous, i.e., given a com-
mon starting time t0, subsequent timesteps occur
for all agents at tℓ = t0 + ℓ∆t, for ℓ ∈ Z≥0;

(ii) each agent can move at a maximum speed of vmax,
i.e., ‖pi(tℓ + ∆t) − pi(tℓ)‖ ≤ vmax∆t;

(iii) for pgoal ∈ S, there exists a control such that
‖pi(tℓ+∆t)−pgoal‖ < ‖pi(tℓ)−pgoal‖, pi(tℓ+∆t) ∈
[pi(tℓ), pgoal] and pi([tℓ, tℓ+1]) ⊂ S.

Later in Section 7.2, we will relax assumption (i). In our
later developments, we assume in (iii) that, if ‖pi(tℓ) −
pgoal‖ ≤ vmax∆t, then pi(tℓ + ∆t) = pgoal for simplicity.
Dropping this assumption does not affect any results.

Our objective is to achieve optimal deployment with re-
spect to H, even when agents have outdated informa-
tion about each others’ positions. Since agents expend
energy to communicate, agents need to balance the need
for updated information with the desire to spend as lit-
tle energy as possible. Our goal is to understand how
communication effort affects deployment performance.

The data structure that each agent i maintains about
other agents j ∈ {1, . . . , n} \ {i} is the last known lo-
cation pi

j and the time elapsed τ i
j ∈ R≥0 since this in-

formation was received (if i does not ever receive infor-
mation about j, then pi

j and τ i
j are never initiated). For

itself, agent i has access to up-to-date location informa-
tion, i.e., pi

i = pi and τ i
i = 0 at all times. When data

is available, agent i knows that, at the current time, j
will not have traveled more than ri

j = vmaxτ
i
j from pi

j ,

and hence i can construct a ball B(pi
j , r

i
j) that is guar-

anteed to contain the true location of j. Note that once
any radius ri

j becomes diam(S), it does not make sense
to grow it any more. The data is stored in

Di = ((pi
1, r

i
1), . . . , (p

i
n, ri

n)) ∈ (S × R≥0)
n.

Additionally, agent i maintains a set Ai ⊂ {1, . . . , n}
with i ∈ Ai that, at any time t, corresponds to the
agents whose position information should be used. For
instance, Ai = {1, . . . , n} would mean that agent i uses
all the information contained in Di. As we will explain
in Section 5.2, this is not always necessary. We refer to

D = (D1, . . . ,Dn) ∈ (S×R≥0)
n2

as the entire memory of
the network. We find it convenient to define the map loc :

(S×R≥0)
n2

→ Sn, loc(D) = (p1
1, . . . , p

n
n), to extract the

exact agents’ location information from D.

Remark 3.1 (Errors in position information) The
model described above assumes, for simplicity, that each
agent knows and transmits its own position exactly. Er-
rors in acquiring exact information can easily be incor-
porated into the model if they are upper bounded by δ ∈
R≥0 by setting ri

j = vmaxτ
i
j +δ, for all i, j ∈ {1, . . . , n}.•

To optimize H, the knowledge of its own Voronoi cell is
critical to each agent, cf. Section 2.2. However, with the
data structure described above, agents cannot compute
the Voronoi partition exactly. We address this next.

4 Space partitions with uncertain information

Since we are looking at scenarios with imperfect data,
we introduce partitioning techniques with uncertainty.

4.1 Guaranteed Voronoi diagram

Here, we follow [Sember and Evans, 2008, Jooyandeh
et al., 2009]. Let S ⊂ R

2 be a convex polygon and con-
sider a set of uncertain regions D1, . . . ,Dn ⊂ S, each
containing a site pi ∈ Di. The guaranteed Voronoi dia-
gram of S generated by D = (D1, . . . ,Dn) is the collec-
tion gV(D1, . . . ,Dn) = {gV1, . . . , gVn},

gVi = {q ∈ S | max
x∈Di

‖q − x‖ ≤ min
y∈Dj

‖q − y‖ for all j 6= i}.

With a slight abuse of notation, gVi(D) denotes the ith
component of gV(D1, . . . ,Dn). Note that gVi contains
the points of S that are guaranteed to be closer to pi

than to any other of the nodes pj , j 6= i. Because the
information about the location of these nodes is uncer-
tain, there is a neutral region in S which is not assigned
to anybody: those points for which no guarantee can be
established. The guaranteed Voronoi diagram is not a
partition of S, see Figure 2(a). Each point in the bound-
ary of gVi belongs to the set

∆g
ij = {q ∈ S | max

x∈Di

‖q − x‖ = min
y∈Dj

‖q − y‖}, (4)

3

(a) (b)

Fig. 2. Guaranteed (a) and dual guaranteed (b) Voronoi
diagrams.

for some j 6= i. Note that ∆g
ij 6= ∆g

ji. If every re-

gion Di is a point, Di = {pi}, then gV(D1, . . . ,Dn) =
V(p1, . . . , pn). For any collection of points pi ∈ Di, i ∈
{1, . . . , n}, the guaranteed Voronoi diagram is contained
in the Voronoi partition, i.e., gVi ⊂ Vi, i ∈ {1, . . . , n}.
Agent pj is a guaranteed Voronoi neighbor of pi if ∆g

ij ∩
∂gVi is not empty nor a singleton. The set of guaranteed
Voronoi neighbors of agent i is gNi(D).

Throughout the paper, we consider uncertain regions
given by balls, Di = B(pi, ri), i ∈ {1, . . . , n}. Then, the
edges (4) composing the boundary of gVi are given by

∆g
ij = {q ∈ S | ‖q − pi‖ + ri = ‖q − pj‖ − rj}, (5)

thus they lie on the arm of the hyperbola closest to pi

with foci pi and pj , and semimajor axis 1
2 (ri + rj). Note

that each cell is convex. The following results states a
useful property of the guaranteed Voronoi diagram.

Lemma 4.1 Given p1, . . . , pn ∈ S and r1, . . . , rn, a ∈
R≥0, let Di = B(pi, ri) and D′

i = B(pi, ri + a), for i ∈
{1, . . . , n}. Then, gNi(D

′
1, . . . ,D

′
n) ⊂ gNi(D1, . . . ,Dn),

for all i ∈ {1, . . . , n}.

PROOF. Let j ∈ gNi(D
′). This fact implies, according

to (5), that there exists q ∈ S such that

‖q − pi‖ + ri + a = ‖q − pj‖ − rj − a

< ‖q − pk‖ − rk − a, (6)

for all k ∈ {1, . . . , n} \ {i, j}. Now, let q′ be the unique
point in [q, pj] such that ‖q′ − pi‖+ ri = ‖q′ − pj‖ − rj .
Note that, since q′ ∈ [q, pj], then ‖q′ − pj‖ = ‖q − pj‖−
‖q′ − q‖. Therefore, we can write

‖q′ − pj‖ − rj = ‖q − pj‖ − rj − ‖q′ − q‖

< ‖q − pk‖ − rk − ‖q′ − q‖,

for all k ∈ {1, . . . , n} \ {i, j}, where we have used (6).
Now, using the triangle inequality ‖q− pk‖ ≤ ‖q− q′‖+
‖q′ − pk‖, we deduce ‖q′ − pj‖− rj < ‖q′ − pk‖− rk, for
all k ∈ {1, . . . , n} \ {i, j}, and hence j ∈ gNi(D). ✷

4.2 Dual guaranteed Voronoi diagram

Here we introduce the concept of dual guaranteed
Voronoi diagram. We first define a covering of Q
as a collection of n polytopes W = {W1, . . . ,Wn}
whose union is Q but do not necessarily have dis-
joint interiors. The dual guaranteed Voronoi diagram
of S generated by D1, . . . ,Dn is the collection of sets
dgV(D1, . . . ,Dn) = {dgV1, . . . ,dgVn} defined by

dgVi = {q ∈ S | min
x∈Di

‖q − x‖ ≤ max
y∈Dj

‖q − y‖ for all j 6= i}.

With a slight abuse of notation, dgVi(D) denotes the
ith component of dgV(D1, . . . ,Dn). Note that the points
of S outside dgVi are guaranteed to be closer to some
other node pj , j 6= i than to pi. Because the information
about the location of these nodes is uncertain, there are
regions of the space that belong to more than one cell.
The dual guaranteed Voronoi diagram is a covering of
the set S, see Figure 2(b). Each point in the boundary
of dgVi belongs to the set

∆dg
ij = {q ∈ S | min

x∈Di

‖q − x‖ = max
y∈Dj

‖q − y‖}, (7)

for some j 6= i. Note that ∆dg
ij 6= ∆dg

ji . If every re-

gion Di is a point, Di = {pi}, then dgV(D1, . . . ,Dn) =
V(p1, . . . , pn). For any collection of points pi ∈ Di, i ∈
{1, . . . , n}, the guaranteed Voronoi covering contains the
Voronoi partition, i.e., Vi ⊂ dgVi, i ∈ {1, . . . , n}. Agent

pj is a dual guaranteed Voronoi neighbor of pi if ∆dg
ij ∩

∂dgVi is not empty nor a singleton. The set of dual guar-
anteed Voronoi neighbors of i is dgNi(D).

Consider the uncertain regions given Di = B(pi, ri),
i ∈ {1, . . . , n}. The edges (7) are given by

∆dg
ij = {q ∈ S | ‖q − pi‖ − ri = ‖q − pj‖ + rj}, (8)

thus they lie on the arm of the hyperbola farthest from pi

with foci pi and pj , and semimajor axis 1
2 (ri + rj). Cells

are generally not convex. The next result states a useful
property of the dual guaranteed Voronoi diagram. Its
proof is analogous to that of Lemma 4.1 and is omitted.

Lemma 4.2 Given p1, . . . , pn ∈ S and r1, . . . , rn, a ∈
R≥0, let Di = B(pi, ri) and D′

i = B(pi, ri + a), for i ∈
{1, . . . , n}. Then, dgNi(D1, . . . ,Dn) ⊂ dgNi(D

′
1, . . . ,D

′
n),

for all i ∈ {1, . . . , n}.

The next result is another useful property. Its proof is a
direct consequence of the definition of dgV .

Lemma 4.3 Given sets D1, . . . ,Dn+m ⊂ S, it holds
that dgVi(D1, . . . ,Dn,Dn+1, . . . ,Dn+m) ⊆ dgVi(D1, . . . ,Dn)
for all i ∈ {1, . . . , n}.

4

5 Self-triggered coverage optimization

Here we design an algorithm to solve the problem de-
scribed in Section 3. From the point of view of an agent,
the algorithm is composed of two components: a motion
control part that determines the best way to move given
the available information and an update decision part
that determines when new information is needed.

5.1 Motion control

If an agent had perfect knowledge of other agents’ po-
sitions, then to optimize H, it could compute its own
Voronoi cell and move towards its centroid, as in [Cortés
et al., 2004]. Since this is not the case we are consid-
ering, we instead propose an alternative motion control
law. Let us describe it first informally:

[Informal description]: At each timestep, each agent
uses its stored information about other agents’ loca-
tions to calculate its own guaranteed Voronoi and dual
guaranteed Voronoi cells. Then, the agent moves to-
wards the centroid of its guaranteed Voronoi cell.

Note that this law assumes that each agent has access
to the value of the density φ over its guaranteed Voronoi
cell. In general, there is no guarantee that following the
motion control law will lead the agent to get closer to
the centroid of its Voronoi cell. A condition under which
this statement holds is characterized by the next result.

Lemma 5.1 Given p 6= q, q∗ ∈ R
2, let p′ ∈ [p, q] such

that ‖p′ − q‖ ≥ ‖q∗ − q‖. Then, ‖p′ − q∗‖ ≤ ‖p − q∗‖.

PROOF. We reason by contradiction. Assume ‖p′ −
q∗‖ > ‖p − q∗‖. Since p′ ∈ [p, q], we have ∠(q − p′, q∗ −
p′) = π − ∠(p − p′, q∗ − p′). Now,

(p − p′) · (q∗ − p′) = (p − q∗ + q∗ − p′) · (q∗ − p′)

= (p − q∗) · (q∗ − p′) + ‖q∗ − p′‖2.

Since ‖p′ − q∗‖ > ‖p− q∗‖, it follows that ∠(p− p′, q∗ −
p′) ∈ [0, π/2), and hence ∠(q − p′, q∗ − p′) ∈ (π/2, π].
Now the application of the law of cosines to the triangle
with vertices q∗, q, and p′ yields

‖q∗ − q‖2 = ‖q∗ − p′‖2 + ‖q − p′‖2 (9)

− 2‖q∗ − p′‖‖q − p′‖ cos ∠(q − p′, q∗ − p′) > ‖q − p′‖2,

where we use the fact that p′ 6= q∗ (otherwise, ‖p′ −
q∗‖ > ‖p − q∗‖ would imply p = q∗, a contradiction).
Finally, the result follows by noting that (9) contradicts
the hypothesis ‖p′ − q‖ ≥ ‖q∗ − q‖. ✷

Hence, with the notation of Lemma 5.1, if i is at p = pi,
computes the goal q = CgVi

and moves towards it to p′,
then the distance to q∗ = CVi

decreases as long as

‖p′ − CgVi
‖ ≥ ‖CVi

− CgVi
‖ (10)

holds. This is illustrated in Figure 3. The right-hand side
cannot be computed by i because of lack of information
about CVi

but can be upper bounded, as we show next.

p p′ q

q∗

Fig. 3. Graphical representation of Lemma 5.1.

Proposition 5.2 Let L ⊂ V ⊂ U . Then, for any den-
sity function φ, the following holds

‖CV − CL‖ ≤ 2crU

(
1 −

ML

MU

)
. (11)

PROOF. For convenience, let a = ML, b = MV , and
c = MU . By hypothesis, a ≤ b ≤ c. Note also that
MU\L = c − a. By definition, we have

CV − CL =
1

b

∫

V

qφ(q)dq −
1

a

∫

L

qφ(q)dq. (12)

For any v ∈ R
2, v = 1

b

∫
V

vφ(q)dq = 1
a

∫
L

vφ(q)dq. Sum-

ming and subtracting v ∈ R
2, we get that (12) equals

1

b

∫

V

(q − v)φ(q)dq −
1

a

∫

L

(q − v)φ(q)dq

=
1

b

∫

V \L

(q − v)φ(q)dq +
(1

b
−

1

a

) ∫

L

(q − v)φ(q)dq.

Taking norms, we deduce that for v = ccU , we have

‖CV − CL‖ ≤
1

b
crU (b − a) +

∣∣∣
1

b
−

1

a

∣∣∣crUa.

The result now follows after some manipulations. ✷

In general, the bound in Proposition 5.2 is tight, i.e.,
there exist density functions for which (11) is an equality.
Exploiting Proposition 5.2, agent i can use L = gVi and
U = dgVi to upper bound the distance ‖CVi

−CgVi
‖ by

bndi ≡ bnd(gVi,dgVi) = 2crdgVi

(
1 −

MgVi

MdgVi

)
. (13)

This bound is computable with information in Di only
and can be used to guarantee that (10) holds by ensuring

‖p′ − CgVi
‖ ≥ bndi (14)

holds. The point p′ to which agent i moves to is deter-
mined as follows: move towards CgVi

as much as possible

5

Agent i ∈ {1, . . . , n} performs:

1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)
3: compute q = CL and r = bnd(L, U)
4: move to tbb(pi, vmax∆t, q, r)
5: set Di

j = (pi
j , min{ri

j +vmax∆t, diam(S)}

6: set Di
i = (tbb(pi, vmax∆t, q, r), 0)

Table 1
motion control law.

in one time step until it is within distance bndi of it. For-
mally, the motion control law is described in Table 1.

If time elapses without new location information, then
the uncertainty radii in the agent memory’s grows, the
bound (13) grows larger and (14) becomes harder to sat-
isfy until it becomes unfeasible. Therefore, agents need a
decision mechanism that establishes when new informa-
tion is required in order for the execution of the motion
control law to be useful. This is addressed in Section 5.2.

5.2 Update decision policy

The second component of our coordination strategy
takes care of updating the memory of the agents, and in
particular, of deciding when new information is needed.
To specify this component, we build on the discussion
of the previous section, specifically on making sure
that condition (14) is feasible. Two reasons can make
this condition invalid for a given agent i. One reason
is the bound bndi might be large due to outdated lo-
cation information about other agents’ location in Di.
This should trigger the need for up-to-date information
through communication with other agents. Another
reason is that agent i might be close to CgVi

, requiring
bndi to be very small. We deal with this by specifying a
tolerance ε > 0 that is selected a priori by the designer.

We describe the decision policy informally next.

[Informal description]: At each timestep, each agent
uses its stored information about other agents’ loca-
tions to calculate its own guaranteed Voronoi and dual
guaranteed Voronoi cells, and the bound (13). Then,
it decides that up-to-date location information is re-
quired if its computed bound is larger than ε and the
distance to the centroid of its guaranteed cell.

Formally, the memory updating mechanism followed by
each agent is described by the pseudo-code in Table 2.

Agent i ∈ {1, . . . , n} performs:

1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)
3: compute q = CL and r = bnd(L, U)
4: if r ≥ max {‖q − pi‖, ε} then

5: reset Di by acquiring up-to-date location
information

6: end if

Table 2
one-step-ahead update decision policy.

According to Table 2, agent i checks at each time step
if condition (14) is feasible or bndi ≤ ε, and there-
fore it is advantageous to execute the motion control

law. An equivalent way of describing this decision policy
that more clearly displays its self-triggered character is
given by the multiple-steps-ahead update decision

policy of Table 3. According to Table 3, agent i deter-
mines when in the future it will have to update its loca-
tion information again as a function of the current state
of its memory.

Agent i ∈ {1, . . . , n} performs:

1: set D = Di

2: compute L = gVi(D) and U = dgVi(D)
3: compute q = CL and r = bnd(L, U)
4: if r ≥ max {‖q − pi‖, ε} then

5: reset Di by acquiring up-to-date location
information

6: else

7: initialize tsleep = 0
8: while r < max {‖q − pi‖, ε} do

9: set tsleep = tsleep + 1
10: set Di

j = (pi
j , min{ri

j +
vmax∆t, diam(S)}) for j 6= i

11: set Di
i = (tbb(pi, vmax∆t, q, r), 0)

12: set D = Di

13: compute L = gVi(D) and U = dgVi(D)
14: compute q = CL and r = bnd(L, U)
15: end while

16: execute policy again in tsleep timesteps
17: end if

Table 3
multiple-steps-ahead update decision policy.

5.3 The self-triggered centroid algorithm

Here, we synthesize a self-triggered algorithm to achieve
optimal deployment with outdated information. The al-
gorithm is the result of combining the motion control
law of Section 5.1 and the update decision policies of
Section 5.2 with a procedure to acquire up-to-date in-
formation about other agents when this requirement is
triggered (cf. 5: in both Tables 2 and 3). Let us discuss
this latter point in detail. A trivial update mechanism
will be to provide each agent with up-to-date informa-
tion about the location of everybody else in the net-
work. However, the implementation of such a mechanism
is costly from a communications point of view. We in-
stead propose to use an alternative algorithm that only
provides up-to-date location information of the Voronoi
neighbors at the specific time when step 5: is executed.
This algorithm, termed the Voronoi cell computation,
is borrowed from [Cortés et al., 2004]. We present it in
Table 4, adapted to our scenario.

The Voronoi cell computation determines a radius Ri

with the property that agent i does not need location
information about agents farther away than Ri from pi

to compute exactly its Voronoi cell. There are multiple
ways as to how an agent might physically acquire loca-
tion information about agents located within a distance

6

At timestep ℓ ∈ Z≥0, agent i ∈ {1, . . . , n} performs:

1: initialize Ri = mink∈{1,...,n}\{i} ‖pi − pi
k‖ + vmaxτ i

k

2: detect all pj within radius Ri

3: set W (pi, Ri) = B(pi, Ri) ∩
`

∩j:‖pi−pj‖≤Ri
Hpipj

´

4: while Ri < 2maxq∈W (pi,Ri) ‖pi − q‖ do

5: set Ri := 2Ri

6: detect all pj within radius Ri

7: set W (pi, Ri) = B(pi, Ri)∩
`

∩j:‖pi−pj‖≤Ri
Hpipj

´

8: end while

9: set Vi = W (pi, Ri)
10: set Ai = Ni ∪ {i} and Di

j = (pj , 0) for j ∈ Ni

Table 4
Voronoi cell computation.

less than or equal to this radius, including point-to-point
communication, multi-hop communication, and sensing.

The next result justifies why an agent i may use only the
subset Ai prescribed by Voronoi cell computation to
compute L and U in the algorithms presented above. In
the statement, πAi denotes the map that extracts from
Di the information about the agents contained in Ai.

Lemma 5.3 Assume that at timestep ℓ∗ ∈ Z≥0,
agent i ∈ {1, . . . , n} gets up-to-date information about
the location of its current Voronoi neighbors (e.g.,
by executing the Voronoi cell computation). Let
Dall(ℓ∗) = ((p1(tℓ∗), 0), . . . , (pn(tℓ∗), 0)) ∈ (S × R≥0)

n

and let DVr(ℓ∗) ∈ (S × R≥0)
n be any vector whose jth

component is (pj(tℓ∗), 0), for all j ∈ Ai = Ni ∪ {i}. For
ℓ ≥ ℓ∗, define recursively

LVr(ℓ) = gV (πAi(DVr(ℓ))), UVr(ℓ) = dgV (πAi(DVr(ℓ))),

Lall(ℓ) = gV (Dall(ℓ)), Uall(ℓ) = dgV (Dall(ℓ)),

where DVr(ℓ + 1) = Evlℓ(DVr(ℓ)), Dall(ℓ + 1) =
Evlℓ(Dall(ℓ)) and Evlℓ : (S ×R≥0)

n → (S ×R≥0)
n, cor-

responding to the time evolution of the data structure, is
given by (Evlℓ)j(D) = (pj , rj + vmax∆t) for j 6= i, and

(Evlℓ)i(D) = (tbb(pi, vmax, CLVr(ℓ),bnd(LVr(ℓ), UVr(ℓ))), 0),

otherwise. Then, for ℓ ≥ ℓ∗,

LVr(ℓ) = Lall(ℓ) and UAll(ℓ) ⊂ UVr(ℓ).

Lemma 5.3 states that the information provided by the
Voronoi cell computation is sufficient to compute the
quantities required by the motion control law and the up-
date decision policies. Its proof follows from Lemmas 4.1
and 4.3. Lemma 4.1 implies that taking into account only
the uncertain positions of agents in Ai is enough to com-
pute correctly the guaranteed Voronoi cell. Lemma 4.3
implies that using only this information an upper bound
of the dual guaranteed Voronoi cell can be computed.
Thus the self-triggered centroid algorithm can be
run by agent i using only the information in πAi(Di).

The combination of the Voronoi cell computation

with the motion control law, cf. Section 5.1, and the
one-step-ahead update decision policy, cf. Sec-
tion 5.2, leads to the synthesis of the self-triggered

centroid algorithm in Table 5. A similar ver-

Initialization

1: set Di and Ai by running Voronoi cell

computation

2: set Di
i = (pi, 0)

At timestep ℓ ∈ Z≥0, agent i ∈ {1, . . . , n} performs:

1: set D = πAi(Di)
2: compute L = gVi(D) and U = dgVi(D)
3: compute q = CL and r = bnd(L, U)
4: if r ≥ max {‖q − pi‖, ε} then

5: reset Di and Ai by running Voronoi cell

computation

6: set D = πAi(Di)
7: set L = gV (D) and U = dgV (D)
8: set q = CL and r = bnd(L, U)
9: end if

10: move to tbb(pi, vmax∆t, q, r)
11: set Di

i = (tbb(pi, vmax∆t, q, r), 0)
12: set Di

j = (pi
j , min{ri

j + vmax∆t, diam(S)}) for j ∈

Ai \ {i}

Table 5
self-triggered centroid algorithm.

sion of this algorithm can be written using the
multiple-steps-ahead update decision policy in
which agents can instead schedule the next time in-
formation should be updated as opposed to checking
condition (14) in each intermediate timestep. Since
the latter corresponds to multiple executions of the
one-step-ahead update decision policy, the tra-
jectories described by the network would be the same,
and hence we just concentrate on the analysis of the
self-triggered centroid algorithm.

Remark 5.4 (Robustness against agent depar-
tures and arrivals) The self-triggered centroid

algorithm is robust against agent departures and ar-
rivals. Consider the case of a failing agent i that can no
longer send or receive information to/from any other
agent j. Once all other agents j have updated their
information according to Voronoi cell computation,
notice that i /∈ Aj for all the remaining agents j,
which continue to run the self-triggered centroid

algorithm normally without agent i. On the other
hand if a new agent i appears in the system, we require
it to immediately update its information and send a
request to its Voronoi neighbors to do the same thing.
After this, the self-triggered centroid algorithm

can continue running having incorporated agent i. •

6 Convergence of synchronous executions

In this section, we analyze the asymptotic conver-
gence properties of the self-triggered centroid

algorithm. Note that this algorithm can be written

7

as a map fstca : (S × R≥0)
n2

→ (S × R≥0)
n2

which
corresponds to the composition of a “decide/acquire-
up-to-date-information” map finfo and a “move-and-
update-uncertainty” map fmotion, i.e., fstca(D) =

fmotion(finfo(D)) for D ∈ (S × R≥0)
n2

. Our analysis
strategy here is shaped by the fact that finfo, and con-
sequently, fstca are discontinuous.

Our objective is to prove the following result character-
izing the asymptotic convergence properties of the tra-
jectories of the self-triggered centroid algorithm.

Proposition 6.1 For ε ∈ [0,diam(S)), the agents’ po-
sition evolving under the self-triggered centroid

algorithm from any initial network configuration in Sn

converges to the set of centroidal Voronoi configurations.

Since the map fstca is discontinuous, we cannot read-
ily apply the discrete-time LaSalle Invariance Principle.
Our strategy to prove Proposition 6.1 is to construct a
closed set-valued map Tsync, whose trajectories include
the ones of fstca, and apply the LaSalle Invariance Prin-
ciple for set-valued maps, e.g., [Bullo et al., 2009].

Next, we define Tsync formally. For convenience, we recall

that D = (D1, . . . ,Dn) ∈ (S × R≥0)
n2

, and that the
elements of Di are referred to as ((pi

1, r
i
1), . . . , (p

i
n, ri

n)),
for each i ∈ {1, . . . , n}. To ease the exposition, we divide
the construction of Tsync in two steps, a first one that
captures the agent motion and the uncertainty update
to the network memory, and a second one that captures
the acquisition of up-to-date network information.

Motion and uncertainty update. We define the con-
tinuous motion and time update map as M : (S ×

R≥0)
n2

→ (S × R≥0)
n2

whose ith component is

Mi(D) =
(
(pi

1,min
{
ri
1 + vmax∆t,diam(S)

}
), . . . ,

(tbb(pi
i, vmax, CgVi

(πAi(Di)),bnd(πAi(Di))), 0),

. . . , (pi
n,min

{
ri
n + vmax∆t,diam(S)

})
,

where Ai = {i} ∪ argminj∈{1,...,n}\{i} ri
j .

Acquisition of up-to-date information. At each pos-
sible state of the network memory, agents are faced with
the decision of whether to acquire up-to-date informa-
tion about the location of other agents. This is captured

by the set-valued map U : (S × R≥0)
n2

⇒ (S × R≥0)
n2

that, to D ∈ (S×R≥0)
n2

, associates the Cartesian prod-
uct U(D) whose ith component is either Di (agent i does
not get any up-to-date information) or the vector

((p′1, r
′
1), . . . , (p

′
n, r′n))

where (p′j , r
′
j) = (pj

j , 0) for j ∈ {i} ∪ Ni and (p′j , r
′
j) =

(pi
j , r

i
j) otherwise (agent i gets updated information).

Recall that Ni is the set of neighbors of agent i given the
partition V(loc(D)). It is not difficult to show that U is

closed (a set-valued map T : X ⇒ Y is closed if xk → x,
yk → y and yk ∈ T (xk) imply that y ∈ T (x)).

We define the set-valued map Tsync : (S×R≥0)
n2

⇒ (S×

R≥0)
n2

by Tsync = U◦M. Given the continuity ofM and
the closedness of U , the map Tsync is closed. Moreover, if
γ = {D(tℓ)}ℓ∈Z≥0

is an evolution of the self-triggered
centroid algorithm, then γ′ = {D′(tℓ)}ℓ∈Z≥0

, with
D′(tℓ) = finfo(D(tℓ)), is a trajectory of

D′(tℓ+1) ∈ Tsync(D
′(tℓ)). (15)

The next result establishes the monotonic evolution of
the aggregate function H along the trajectories of Tsync.
With a slight abuse of notation, denote also by H the
extension of the aggregate function to the space (S ×

R≥0)
n2

, i.e., H(D) = H(loc(D)), for D ∈ (S × R≥0)
n2

.

Lemma 6.2 H : (S × R≥0)
n2

→ R is monotonically
nonincreasing along the trajectories of Tsync.

PROOF. Let D ∈ (S × R≥0)
n2

and D′ ∈ Tsync(D).
For convenience, let P = loc(D) and P ′ = loc(D′) =
loc(M(D)). To establish H(P ′) ≤ H(P), we use the for-
mulation (2) and divide our reasoning in two steps. First,
we fix the partition V(P). For each i ∈ {1, . . . , n}, if
‖pi

i −CgVi
(πAi(Di))‖ ≤ bnd(πAi(Di)), then p′ii = pi

i be-
cause agent i does not move according to the definition of
tbb. If, instead, ‖pi

i − CgVi
(πAi(Di))‖ > bnd(πAi(Di)),

then, by Lemma 5.1 and Proposition 5.2, we have that
‖p′ii − CVi

‖ < ‖pi
i − CVi

‖. In either case, it follows
from Lemma 2.1 that H (P ′,V (P)) ≤ H (P,V (P)).
Second, the optimality of the Voronoi partition stated
in Lemma 2.1 guarantees that H (P ′,V (P ′)) ≤
H (P ′,V (P)), and the result follows. ✷

One can establish the next result using Lemma 6.2 and
the fact that Tsync is closed and its trajectories are

bounded and belong to the closed set (S × R≥0)
n2

.

Lemma 6.3 Let γ′ be a trajectory of (15). Then, the ω-

limit set ∅ 6= Ω(γ′) ⊂ (S×R≥0)
n2

belongs to H−1(c), for
some c ∈ R, and is weakly positively invariant for Tsync,
i.e., for D ∈ Ω(γ′), ∃ D′ ∈ Tsync(D) with D′ ∈ Ω(γ′).

PROOF. Let γ′ be a trajectory of (15). The fact that
Ω(γ′) 6= ∅ follows from γ′ being bounded. Let D′ ∈
Ω(γ′). Then there exists a subsequence {D′(tℓm

) | m ∈
Z≥0} of γ′ such that limm→+∞ D′(tℓm

) = D′. Con-
sider {D′(tℓm+1

) | m ∈ Z≥0}. Since this sequence is
bounded, it must have a convergent subsequence, i.e.,

there exists D̂′ such that limm→+∞ D′(tℓm+1
) = D̂′.

By definition, D̂′ ∈ Ω(γ′). Also, since Tsync is closed,

we have D̂′ ∈ Tsync(D
′), which implies that Ω(γ′) is

weakly positively invariant. Now consider the sequence
H ◦ γ = {H(γ(l)) | l ∈ Z≥0}. Since γ is bounded and H

8

is non-increasing along γ on W , the sequence H◦γ is de-
creasing and bounded from below, and therefore, conver-
gent. Let c ∈ R satisfy liml→+∞ H(γ(l)) = c. Next, we
prove that the value of V on Ω(γ) is constant and equal to
c. Take any z ∈ Ω(γ). Accordingly, there exists a subse-
quence {γ(lm) | m ∈ Z≥0} such that limm→+∞ γ(lm) =
z. Since H is continuous, limm→+∞ H(γ(lm)) = H(z).
From liml→+∞ H(γ(l)) = c, we conclude H(z) = c. ✷

We are finally ready to establish the asymptotic conver-
gence of the self-triggered centroid algorithm.

PROOF OF PROPOSITION 6.1. Let γ =
{D(tℓ)}ℓ∈Z≥0

be an evolution of self-triggered

centroid algorithm. Define γ′ = {D′(tℓ)}ℓ∈Z≥0

by D′(tℓ) = finfo(D(tℓ)). Note that loc(D(tℓ)) =
loc(D′(tℓ)). Since γ′ is a trajectory of Tsync, Lemma 6.3
guarantees that Ω(γ′) is weakly positively invariant and
belongs to H−1(c), for some c ∈ R. Next, we show that

Ω(γ′) ⊆ {D ∈ (S × R≥0)
n2

| for i ∈ {1, . . . , n}, (16)

‖pi
i − CgVi

(πAi(Di))‖ ≤ bnd(πAi(Di))}.

We reason by contradiction. Assume there exists
D ∈ Ω(γ) for which there is i ∈ {1, . . . , n} such that
‖pi

i − CgVi
(πAi(Di))‖ > bnd(πAi(Di)). Then, using

Lemmas 2.1 and 5.1 together with Proposition 5.2, we
deduce that any possible evolution from D under Tsync

will strictly decreaseH, which is a contradiction with the
fact that Ω(γ′) is weakly positively invariant for Tsync.

Furthermore, note that for each i, the inequality bndi <
max{‖pi

i−CgVi
‖, ε} is satisfied at D′(tℓ), for all ℓ ∈ Z≥0.

Therefore, by continuity, it also holds on Ω(γ′), i.e.,

bnd(πAi(Di)) ≤ max{‖pi
i − CgVi

(πAi(Di))‖, ε}, (17)

for all i ∈ {1, . . . , n} and all D ∈ Ω(γ′). Let us now show

that Ω(γ′) ⊆ {D ∈ (S×R≥0)
n2

| for i ∈ {1, . . . , n}, pi
i =

CVi
}. Consider D̃ ∈ Ω(γ′). Since Ω(γ′) is weakly pos-

itively invariant, there exists D̃1 ∈ Ω(γ′) ∩ Tsync(D̃).

Note that (16) implies that loc(D̃1) = loc(D̃). We con-
sider two cases, depending on whether or not agents have

got up-to-date information in D̃1. If agent i gets up-to-

date information, then bnd(πAi(D̃i
1)) = 0, and conse-

quently, from (16), pi
i = p′ii = CgVi

(πAi(D̃i
1) = CVi

,
and the result follows. If agent i does not get up-to-date

information, then bnd(πAi(D̃i
1)) > bnd(πAi(D̃i)) and

gVi(πAi(D̃i
1)) ⊂ gVi(πAi(D̃i)) by Lemma 4.1. Again, us-

ing the fact that Ω(γ′) is weakly positively invariant

set, there exists D̃2 ∈ Ω(γ′) ∩ Tsync(D̃1). Reasoning re-
peatedly in this way, the only case we need to discard
is when agent i never gets up-to-date information. In
such a case, ‖pi

i − CgVi
‖ → 0 while bndi monotoni-

cally increases towards diam(S). For sufficiently large ℓ,

we have that ‖pi
i − CgVi

(πAi(D̃i
ℓ))‖ < ε. Then (17) im-

plies bndi(πAi(D̃i
ℓ)) < ε, which contradicts the fact that

bnd(πAi(D̃i
ℓ)) tends to diam(S). This ends the proof. ✷

Remark 6.4 (Convergence with errors in position
information) A convergence result similar to Proposi-
tion 6.1 can be stated in the case when errors in position
information are present, as discussed in Remark 3.1. In
this case, for sufficiently small maximum position error
δ, it can be shown (although we do not do it here for rea-
sons of space) that the network will converge to within
a constant factor of δ of the set of centroidal Voronoi
configurations. •

7 Extensions

In this section, we briefly discuss two important varia-
tions of the self-triggered centroid algorithm. Sec-
tion 7.1 discusses a procedure that agents can implement
to decrease their maximum velocity as they get close to
their optimal locations. Section 7.2 discusses the conver-
gence of asynchronous executions.

7.1 Maximum velocity decrease

The agents update their individual memories along the
execution of the self-triggered centroid algorithm

by growing the regions of uncertainty about the position
of other agents at a rate vmax. However, as the network
gets close to the optimal configuration (as guaranteed by
Proposition 6.1), agents move at velocities much smaller
than the nominal maximum velocity vmax per timestep.
Here, we describe a procedure that the network can im-
plement to diminish this mismatch and reduce the need
for up-to-date location information.

The strategy is based on the simple observation that the
gradient ∇H of the objective function vanishes exactly
on the set of centroidal Voronoi configurations. There-
fore, as the network gets close to this set, the norm of
∇H tends to zero. From [Du et al., 1999, Bullo et al.,
2009], we know that ∂H

∂pi
= 2MVi

(pi − CVi
) for each

i ∈ {1, . . . , n}, and hence

∥∥∥
∂H

∂pi

∥∥∥ ≤ 2MdgVi
(‖pi − CgVi

‖ + bndi).

Note that this upper bound is computable by agent i.
The objective of the network is then to determine if, for
a given design parameter δ, with 0 < δ ≪ 1,

2MdgVi
(‖pi − CgVi

‖ + bndi) < δ (18)

for all i ∈ {1, . . . , n}. This check can be implemented in a
number of ways. Here, we use a convergecast algorithm,
see e.g., [Peleg, 2000].

The strategy can informally be described as follows.
Each time an agent i communicates with its neighbors,
it checks if (18) is satisfied for Ai∪{i}. If this is the case,
then agent i triggers the computation of a spanning tree
(e.g., a breadth-first-search spanning tree [Peleg, 2000])

9

rooted at itself which is used to broadcast the message
‘the check is running’. An agent j passes this message
to its children or sends an acknowledgement to its par-
ent if and only if (18) is satisfied for j. At the end of
this procedure, the root i has the necessary information
to determine if (18) holds for all agents. If this is the
case, agent i broadcasts a message to all agents to set
v+
max = vmax/2 and δ+ = δ/2.

7.2 Asynchronous executions

Here, we relax assumption (i) in Section 3 and con-
sider asynchronous executions of the self-triggered

centroid algorithm. We begin by describing a totally
asynchronous model for the operation of the network
agents, cf. [Bertsekas and Tsitsiklis, 1997]. Let T i =
{ti0, t

i
1, t

i
2, . . . } ⊂ R≥0 be a time schedule for agent i ∈

{1, . . . , n}. Assume agent i executes the algorithm ac-
cording to T i, i.e., the agent executes the steps 1:-
12: described in Table 5 at time tiℓ, for ℓ ∈ Z≥0, with
timestep (tiℓ+1 − tiℓ) instead of ∆t. In general, the time
schedules of different agents do not coincide and this re-
sults in an overall asynchronous execution. Our objective
is to show that, under mild conditions on the time sched-
ules of the agents, one can establish the same asymptotic
convergence properties for asynchronous evolutions.

Our analysis strategy has two steps. First, we synchro-
nize the network operation using the procedure of ana-
lytic synchronization, see e.g., [Lin et al., 2007]. Second,
we use this to lay out a proof strategy similar to the one
used for the synchronous case.

7.2.1 Analytic synchronization

Analytic synchronization is a procedure that consists
of merging together the individual time schedules T i,
i ∈ {1, . . . , n}, of the network agents into a global time
schedule T = {t0, t1, t2, . . . } by setting

T = ∪n
i=1T

i.

This synchronization is performed only for analysis pur-
poses, i.e., T is unknown to the individual agents. Note
that more than one agent may be active at any given
t ∈ T . For convenience, we define

∆tℓ = tℓ+1 − tℓ > 0,

for ℓ ∈ Z≥0, i.e., ∆tℓ is the time from tℓ until at least
one agent is active again.

7.2.2 Convergence of asynchronous executions

The procedure of analytic synchronization allows us to
analyze the convergence properties of asynchronous ex-
ecutions mimicking the proof strategy used in Section 6
for the synchronous case. We do not include the full proof
here to avoid repetition. Instead, we provide the neces-
sary elements to carry it over.

The main tool is the definition of a set-valued map Tasync

whose trajectories include the asynchronous executions

of the self-triggered centroid algorithm. As be-
fore, the construction of Tasync is divided in two parts,
a first one that captures the agents’ motion and uncer-
tainty update to the network memory, and a second one
that captures the acquisition of up-to-date information.
The definition of Tasync also takes into account the global
time schedule T in order to capture the different sched-
ules of the agents. For convenience, we define the net-
work state to be (x, ℓ) ∈ ((S×R≥0)

n×S)n×Z≥0, where

x = ((D1, u1), . . . , (Dn, un)),

ui denotes the waypoint of agent i ∈ {1, . . . , n} and ℓ is
a time counter. For ease of notation, let

(S × R≥0)
n2

e = ((S × R≥0)
n × S)n × Z≥0.

Motion and uncertainty update. The motion and

time update map M : (S × R≥0)
n2

e → (S × R≥0)
n2

e

simply corresponds to all agents moving towards their
waypoints while increasing in their memories the uncer-
tainty about the locations of other agents. The map is
given by M(x, ℓ) = (M1(x, ℓ), . . . ,Mn(x, ℓ), ℓ) where

Mi(x, ℓ) =
(
(pi

1,min
{
ri
1 + vmax∆tℓ,diam(S)

}
), . . . ,(

tbb(pi
i, vmax∆tℓ, u

i, 0), 0
)
, . . . ,

(pi
n,min

{
ri
n + vmax∆tℓ,diam(S)

}
, ui

)
.

Note that tbb(pi
i, vmax∆tℓ, u

i, 0) corresponds to where
agent i can get to in time ∆tℓ while moving towards its
waypoint ui. The map M is continuous.

Acquisition of up-to-date information. Any given
time might belong to the time schedules of only a few
agents. Moreover, these agents are faced with the deci-
sion of whether to acquire up-to-date information about
the location of other agents. This is captured with the

set-valued map U : (S × R≥0)
n2

e ⇒ (S × R≥0)
n2

e . Given
the global time schedule T , the map U associates the
Cartesian product U(x, ℓ) whose (n+1)th component is
ℓ + 1 and whose ith component, i ∈ {1, . . . , n}, is one of
the following three possibilities: either (i) the vector

(Di, ui),

which means i is not active at time step ℓ, (ii) the vector

(Di, tbb(pi
i, vmax(tℓ′ − tℓ), CgVi

,bndi)),

for some ℓ′ > ℓ, with CgVi
= CgVi

(πAi(Di)), bndi =
bnd(πAi(Di)), and Ai = {i} ∪ argminj∈{1,...,n}\{i} ri

j ,
which means i is active at time step ℓ and recomputes its
waypoint but does not get any up-to-date information,
or (iii) the vector

((p′1, r
′
1), . . . , (p

′
n, r′n), tbb(pi

i, vmax(tℓ′ − tℓ), CgVi
,bndi)),

10

for some ℓ′ > ℓ, where (p′j , r
′
j) = (pj

j , 0) for j ∈ {i} ∪ Ni

and (p′j , r
′
j) = (pj

j , r
j
j) otherwise, which means i

is active at time step ℓ, gets up-to-date informa-
tion and recomputes its waypoint. In this case,
CgVi

= CgVi
(πAi((p′1, r

′
1), . . . , (p

′
n, r′n))), bndi =

bnd(πAi((p′1, r
′
1), . . . , (p

′
n, r′n))), and Ai = {i}∪Ni. The

set-valued map U is closed.

Finally, we define the set-valued map Tasync : (S ×

R≥0)
n2

e ⇒ (S × R≥0)
n2

e by Tasync = U ◦ M. Given
the continuity of M and the closedness of U , the map
Tasync is closed. Moreover, the asynchronous executions
of the self-triggered centroid algorithm with time
schedules T i, i ∈ {1, . . . , n} are trajectories of

(x(ℓ + 1), ℓ + 1) ∈ Tasync(x(ℓ), ℓ).

Equipped with the definition of Tasync, one can now re-
produce the proof strategy followed in Section 6 and es-
tablish the monotonic evolution of the objective func-
tion, the weakly positively invariant nature of the omega
limit sets of its trajectories, and finally, the same asymp-
totic convergence properties of the asynchronous exe-
cutions of the self-triggered centroid algorithm,
which we state here for completeness.

Proposition 7.1 Assume the time schedules T i,
i ∈ {1, . . . , n} are infinite and unbounded. For ε ∈
[0,diam(S)), the agents’ position evolving under the
asynchronous self-triggered centroid algorithm

with time schedules T i, i ∈ {1, . . . , n} from any ini-
tial network configuration in Sn converges to the set of
centroidal Voronoi configurations.

8 Simulations

Here, we provide several simulations to illustrate our re-
sults. All simulations are done with n = 8 agents mov-
ing in a 4m × 4m square, with a maximum velocity
vmax = 1m/s. The synchronous executions operate with
∆t = .025s. In the asynchronous execution shown in
Figure 4(b), agents in {1, 2, 3, 4} and {5, 6, 7, 8} share
their time schedules, respectively. These time schedules
are generated as follows: the four first time steps are
randomly generated, and then they repeat periodically.
We compare our algorithm against the move-to-centroid
strategy where agents have perfect location information
at all times, see [Cortés et al., 2004]; we refer to this as
the benchmark case. For each agent i ∈ {1, . . . , n}, we
adopt the following model [Firouzabadi, 2007] for quan-
tifying the total power Pi used by agent i to communi-
cate, in dBmW power units,

Pi = 10 log10

[n∑

j∈{1,...,n},i 6=j

β100.1Pi→j+α‖pi−pj‖
]
,

where α > 0 and β > 0 depend on the characteristics
of the wireless medium and Pi→j is the power received

by j of the signal transmitted by i in units of dBmW .
In our simulations, all these values are set to 1.

(a) (b) (c)

Fig. 4. Network trajectories of (a) a synchronous execution
and (b) an asynchronous execution of the self-triggered

centroid algorithm with ε = 0.25, and (c) the centroid
algorithm with perfect information at all times (benchmark
case). The black and grey dots correspond to the initial and
final agent positions, respectively.

Figures 4 and 5 illustrate an execution of the self-triggered
centroid algorithm for a density φ which is a sum of
two Gaussian functions

φ(x) = e−‖x−q1‖
2

+ e−‖x−q2‖
2

,

with q1 = (2, 3) and q2 = (3, 1), and compare its per-
formance against the benchmark case. The communica-
tion power in a given timestep is the sum of the energy
required for all the directed point-to-point messages to
be sent in that timestep. Additionally, Figure 5 shows
an execution that is also incorporating the distributed
algorithm for decreasing velocity.

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

ε = 0.55
ε∗ = 0.55

benchmark

(a)
Timestep

P

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

ε = 0.55
ε∗ = 0.55

benchmark

(b)
Timestep

H

Fig. 5. Communication power P used by the network (a)
and value of H (b) at each time step of the executions in
Figure 4(a) and (c), and an execution with the maximum
velocity decrease (denoted with ε∗). The vertical lines denote
the timesteps where agents reduce their maximum velocity.

Figure 6 shows the average communication power ex-
penditure and the average time to convergence of the
self-triggered centroid algorithm for varying ε
over 20 random initial agent positions based on uni-
formly sampling the domain. One can see how as ε gets
larger, the communication effort of the agents decreases
at the cost of a slower convergence on the value of H.
Interestingly, for small ε, the network performance does
not deteriorate significantly while the communication
effort by the individual agents is substantially smaller.
The lower cost associated to the self-triggered

11

centroid algorithm is due to requiring less communi-
cation than the benchmark case.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

self-triggered
benchmark

(a)
ε

Pavg

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

self-triggered
benchmark

(b)
ε

Tavg

Fig. 6. Plots of the average (a) communication power con-
sumption Pavg and (b) timesteps to convergence Tavg over
20 simulations for varying ε.

9 Conclusions

We have proposed the self-triggered centroid

algorithm. This strategy combines an update law to
determine when old information needs to be refreshed
and a motion control law that uses this information to
decide how to best move. We have analyzed the correct-
ness of both synchronous and asynchronous executions
of the proposed algorithm using tools from computa-
tional geometry and set-valued analysis. Our results
have established the same convergence properties that
a synchronous algorithm with perfect information at
all times would have. Extensive simulations have illus-
trated the substantial communication savings of the
self-triggered centroid algorithm, which can be
further improved by employing an event-triggered strat-
egy to prescribe maximum velocity decreases as the
network gets closer to its final configuration. In future
work, we plan to characterize analytically the tradeoff
between performance and communication cost, provide
guarantees on the network energy savings, and explore
the extension of these ideas to other coordination tasks.

References

A. Anta and P. Tabuada. To sample or not to sample: self-
triggered control for nonlinear systems. IEEE Transactions on

Automatic Control, 55(9):2030–2042, 2010.
D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed

Computation: Numerical Methods. Athena Scientific, 1997.
ISBN 1886529019.

F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of

Robotic Networks. Applied Mathematics Series. Princeton Uni-
versity Press, 2009. ISBN 978-0-691-14195-4. Electronically
available at http://coordinationbook.info.

C. G. Cassandras and S. Lafortune. Introduction to Discrete-

Event Systems. Springer, 2 edition, 2007. ISBN 0387333320.
H. Choset. Coverage for robotics – A survey of recent results.

Annals of Mathematics and Artificial Intelligence, 31(1-4):113–
126, 2001.

J. Cortés, S. Mart́ınez, T. Karatas, and F. Bullo. Coverage control
for mobile sensing networks. IEEE Transactions on Robotics

and Automation, 20(2):243–255, 2004.
J. Cortés, S. Mart́ınez, and F. Bullo. Spatially-distributed cover-

age optimization and control with limited-range interactions.

ESAIM. Control, Optimisation & Calculus of Variations, 11
(4):691–719, 2005.

D. V. Dimarogonas and K. H. Johansson. Event-triggered con-
trol for multi-agent systems. In IEEE Conf. on Decision and

Control, pages 7131–7136, Shanghai, China, 2009.
Q. Du, V. Faber, and M. Gunzburger. Centroidal Voronoi tes-

sellations: Applications and algorithms. SIAM Review, 41(4):
637–676, 1999.

S. Firouzabadi. Jointly optimal placement and power allocation
in wireless networks. Master’s thesis, University of Maryland
at College Park, 2007.

A. Howard, M. J. Matarić, and G. S. Sukhatme. Mobile sensor
network deployment using potential fields: A distributed scal-
able solution to the area coverage problem. In Int. Conference

on Distributed Autonomous Robotic Systems, pages 299–308,
Fukuoka, Japan, June 2002.

I. I. Hussein and D. M. Stipanovic̀. Effective coverage control for
mobile sensor networks with guaranteed collision avoidance.
IEEE Transactions on Control Systems Technology, 15(4):642–
657, 2007.

M. Jooyandeh, A. Mohades, and M. Mirzakhah. Uncertain
Voronoi diagram. Information Processing Letters, 109(13):
709–712, 2009.

K. Kang, J. Yan, and R. R. Bitmead. Cross-estimator design
for coordinated systems: Constraints, covariance, and commu-
nications resource assignment. Automatica, 44(5):1394–1401,
2008.

A. Kwok and S. Mart́ınez. Deployment algorithms for a power-
constrained mobile sensor network. International Journal on

Robust and Nonlinear Control, 20(7):725–842, 2010.
J. Lin, A. S. Morse, and B. D. O. Anderson. The multi-agent

rendezvous problem. Part 2: The asynchronous case. SIAM

Journal on Control and Optimization, 46(6):2120–2147, 2007.
M. Mazo Jr. and P. Tabuada. Decentralized event-triggered con-

trol over wireless sensor/actuator networks. IEEE Transac-

tions on Automatic Control, 2011. To appear.
A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial Tessel-

lations: Concepts and Applications of Voronoi Diagrams. Wi-
ley Series in Probability and Statistics. Wiley, 2 edition, 2000.
ISBN 0471986356.

M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo. Distributed al-
gorithms for environment partitioning in mobile robotic net-
works. IEEE Transactions on Automatic Control, 56(9), 2011.
To appear.

D. Peleg. Distributed Computing. A Locality-Sensitive Ap-

proach. Monographs on Discrete Mathematics and Applica-
tions. SIAM, 2000. ISBN 0898714648.

M. Schwager, D. Rus, and J. J. Slotine. Decentralized, adaptive
coverage control for networked robots. International Journal

of Robotics Research, 28(3):357–375, 2009.
J. Sember and W. Evans. Guaranteed Voronoi diagrams of un-

certain sites. In Canadian Conference on Computational Ge-

ometry, Montreal, Canada, 2008.
R. Subramanian and F. Fekri. Sleep scheduling and lifetime max-

imization in sensor networks. In Symposium on Information

Processing of Sensor Networks, pages 218–225, New York, NY,
2006.

M. Velasco, P. Marti, and J. M. Fuertes. The self triggered task
model for real-time control systems. In Proceedings of the 24th

IEEE Real-Time Systems Symposium, pages 67–70, 2003.
P. Wan and M. D. Lemmon. Event-triggered distributed opti-

mization in sensor networks. In Symposium on Information

Processing of Sensor Networks, pages 49–60, San Francisco,
CA, 2009.

X. Wang and M. D. Lemmon. Self-triggered feedback control
systems with finite-gain L2 stability. IEEE Transactions on

Automatic Control, 54(3):452–467, 2009.

12

