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Abstract— This paper presents a distributed algorithmic solu- is challenging because of the spatially distributed natfre
tion to achieve network configurations where agents cluster the problem and the agent mobility. Our technical approach
into coincident groups that are distributed optimally over the combines elements of spatial facility location [5], rendezs

environment. The motivation for this problem comes from d depl t of I ¢ t 6 d lti
spatial estimation tasks executed with unreliable sensors. We an eployment of multi-agent systems [6], and coalition

propose a probabilistic strategy that combines a repeated formation games [7], [8]. From a game-theoretic perspectiv
game governing the formation of coalitions with a spatial our analysis of the coalition formation dynamics is novel be
motion component governing their location. We establish the cause of the consideration of evolving and partial intéoact

convergence of the agents to coincident groups of a desired size network topologies. From a motion coordination perspegtiv

in finite time and the asymptotic convergence of the overall th It i th led d ics bet th
network to the optimal deployment, both with probability 1. € novelly relies on the couple ynamics between the

The algorithm is robust to agent addition and subtraction. —coalition formation, the clustering, and the network dgplo
From a game perspective, the algorithm is novel in that the ment. Other works in the cooperative control literaturet tha
players’ information is limited to neighboring clusters. From a  have employed game-theoretic ideas to solve coordination
motion coordination perspective, the algorithm is novel because tasks such as formation control, target assignment, self-

it brings together two basic tasks, rendezvous (individual agest izati f ficient icati d
into clusters) and deployment (clusters in the environment). ©rganization for eflicient communication, COnNsensus, an

The technical approach draws on tools from computational Sensor coverage include [9], [10], [11], [12].

geometry, game theory, and probability theory. Statement of contributionsThe main contribution of the
paper is the design and analysis of theACITION FOR-
I. INTRODUCTION MATION AND DEPLOYMENT ALGORITHM. The aim of this

This paper is motivated by optimal spatial sampling protsler,nsynchronous and distributed strategy is to allow robotic

under possibly failing communications. Consider a group of%gents to autonomously form groups of a given desired size

mobile robotic sensors that take point measurements of\'\élhIIe clustering together and deploying optimally in the

random field over an environment and relay them back to %nvwonment. The deployment objective is encoded through

data fusion center. Assume that because of the features of@ﬁ fﬁgt;gr;?cgﬁg'ﬁ;?(zgrgjr:];t?;nzv Z?Z(taiozzm%zee;sl ((;:i:Le
medium and the limited agent communication capabilities, Idgsi n combines a repeated amegcom onént tha? OVerns
is known that only a fraction of these packets will arrive g b 9 P 9

at the center, but it is not a priori known which ones will.gzjemdmzmﬁa?f dce?:rlgl?nnesfok:?vetfnex\tlgh zs?t?:rggle\r;:)(l)\tllgnln
Given that some sensors are not working and their identity P 9 P '

unknown, a reasonable stategy consists of grouping sens? DE0%, B620E BIEK A0 B BRAL RN F0e 00 TR
together into clusters so that the likelihood of obtaining Y : 9

measurement from the position of each cluster is higher. ﬁ the motpr_l coordination law, aggnts not ygt na W?II'
{)rmed coalition cluster together while agents in a caatiti

this paper, our aim is to design a distributed algorithm thaf the desired size also move towards the circumcenter of
makes the network autonomously create groups of a desired . i : X
eir Voronoi cell. We establish that the executions of the

size such that (i) members of each individual group becom(e:\OALITION FORMATION AND DEPLOYMENT ALGORITHM

incident, and (ii) the gr loy in an optimal way with i .
coincident, and (ii) the groups deploy in an optimal way wit converge in finite time to a configuration where agents are

rggards 0 th? sp?atlal eSFlmathn obje9t|ve. coincident with their own coalition and these coalitions
Literature review. Th(_are IS an Increasing body (_Jf researcl‘hre the desired size, and asymptotically converge to an
that deals with spatial estimation problems with possml% timal deployment configuration, each with probability

failing communications where packets are either recewe*e algorithm does not require the agents to have a common

VZ'thIO ut cotr_rupl)tlon 4or r;]OI rectilv?df atti”’ seeb(?.g., [1]’t.[3]’. reference frame, and is robust to agent addition and daletio
[4]- In particuar, [.] shows that, for he problem mo gl Finally, we illustrate these properties in simulation. $om
our algorithm design, the clustering strategy outlinedvabo Hroofs are omitted for reasons of space

is not only reasonable but optimal in some cases: the co
figurations that maximize the expected information content Il. PRELIMINARIES
of the measurements retrieved at the center correspond
agents grouping into clusters, and the resulting clusteirsgb

deployed optimally. Achieving such desirable configunagio

1P this section, we collect some basic facts on geometry,
spatial deployment, probability, and coalition games.

A. Basic geometric notions

The authors are with the Department of Mechanical and Aecaspa .
Engineering, University of California, San Diego, CA 92098sA, Ve denote byR andZ the sets of real and integer numbers,

{m oui met, cortes}@icsd. edu respectively. Let|| - || be the Euclidean distance. Given a



setS C X, let F(S) denote the collection of finite subsetsB(p;, ), for: € {1,...,n}. For convenience, we use the no-

of S and S¢ = X \ S its complement. LetS| denote the
cardinality of the setS. Let vr : R? — R? be defined by
vr(u) = u/||u| for u € R4\ {0}, andvr(0) = 0. We denote
the closed ball centered at ¢ R? of radiusr € R+, by
B(z,7) = {p € R? | |[z—p| < r}. The circumcenter of a set
of points P, denotedCC(P), is the center of the ball of mini-
mum radius, denotedR (P), which encloses all points iR.
Next, we introduce theyet -t oget her -t owar d- goal
function gttg : S x F(S) x S — S by

gttg(p7 P7 Q> =P +wy + w2,
where we use the shorthand notatiBn= P U {p},
wy = min{|| CC(Fy) — p||,d1(r)} vr(CC(Fy) — p),
wy = minfllg — (p +w)l], da(r)} vr(g — (p + w1)),

andr = CR(PO>/||q - CC(PQ)H Here,d; : RZO — RZO is
a continuous, increasing function @6, co) that satisfies

dl (O) = 0, hm dl(S) = dmaxa hIIlJr dl(S) = dmin7
§—00 s—0

for dmax > dmin > 0, @andds : R>o — R is defined by
da(8) = dmax — d1(s). Figure 1 illustrates the definition of
gttg. Appendix A gathers some relevant propertiegtifs.
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o
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Fig. 1. lllustration of the action of the functiogttg.

B. Voronoi partitions and deployment objective
Here, we introduce some computational geometric notio

deployment problem. Giverd) ¢ R? and a finite set of
pointsP = {p1,...,pn} C @, the Voronoi partitior/ (P) =
{Vi(P),...,V,(P)} of Q is defined by

Vi(P)={q€Q|lla—npill <lla—p;ll, Vp; € P}.
The setV;(P) is the Voronoi cell ofp;. The pointsp; and

p; are Voronoi neighbors if the boundaries of their Vorono

cells intersect. To compute the Voronoi cellgf all that is
required is the location of its Voronoi neighbors i The
work [13] introduces a procedure, that we term thRJAST

RADIUS strategy, which does the following: starting from

r = 0, it repeatedly grows until all Voronoi neighbors
of p;, are guaranteed to be contained in the B(p;, r).
Given a partition{W,,...,W,} of @, the disk-covering
function Hpc,, is defined by

Dy Wiy oo, W) = max  max ||qg — pil|e.

H Ty---
DC,n (p ’ ie{ir oo} €W,

The value ofHpc ,, solves the following problem: cover the
whole environment with balls centered at the pointsPin=
{p1,-..,pn} With minimum common radius such th#f; C

tationHDC,n(ph v 7pn) = HDC,n(ph <oy Pns V17 ceey ‘/IL)
Two properties are worth noting [6]: for a fixed configuration
the Voronoi partition is optimal among all partitions,
7pn7V1(P)7 LR Vn(P)) S
HDC,n(pla <oy Pnsy Wla v

Hocn (1, --
aWn)a

and, for a fixed partition, the circumcenter locations of the
cells are optimal,

Hpo,n(CC(Wh),...,CC(W,,), W, ...
Hocn(p1s---

W) <
7p’n7W17"'7Wn)'

Under certain technical conditions, optimizifigpc,, cor-
responds to minimizing the maximum error variance in the
estimation of a random spatial field [14]. The deployment
objective function that motivates our algorithm is given by

Hn,k(pla e apn) -

1
R

k) {s1,....sx}EC(n.k)

HDC,k(pslv"',pSk)v (1)

where C'(n, k) denotes the set of uniquesized combina-
tions of elements in{1,...,n}. This function corresponds
to the expected disk-covering performance of a network of
agents where only of them are working and their identity is
unknown. Optimizers ot{,, ,, correspond to grouping agents
into coincident clusters, say, that themselves are optimally
deployed according té{pc, ., see [4].

C. Probability notions

Here we gather some probability notions from [15], [16].
Let X be a random variable that has outconfes, o, ... }
with probabilities{p1, p2, ...} C R>¢. An eventE is a set
of outcomes ofX. For brevity, we use’(E) = P(X € E).

. . - "Biven a sequence of event#, }> ., let
that play an important role in the formalization of the q L2

[o olENNe o]

limsup E,, = {E,, i.0.} = m U By,

n=1k=n

(o] (oo}
liminf B, = {E, a.a} = U ﬂ Ej.
" n=1k=n
IHere ‘l.0.” stands for infinitely often, and ‘a.a.’ standsr fo
almost always. Note thgtF,, i.0.}¢ = {ES a.a}.

Lemma II.1 (Borel-Cantelli Lemma) Given a sequence of
events {E,}22, satisfying >->°, P(E,) < oo. Then
P( lim sup,, En) = 0.

D. Hedonic coalition games

Hedonic coalition formation games [7] aré-player nonco-
operative games [17], [18] where players attempt to joay/st
in preferable coalitions. Each player is hedonic because th
utility it assigns to a given network coalition partitiogirs
only a function of its own coalition. Each player’s actiort se
is finite: the only actions are to stay in the current coaititio
or join another coalition. For a finite set of players =



IV. COALITION FORMATION AND DEPLOYMENT
ALGORITHM

{1,..., N}, afinite coalition partition is a sél = { S, }< |,
K € Z>,, that partitions.4. The subsetsS;, are called
coalitions. For playeri and partitionTl, let Sr(i) be the
setS, € II such thati € Si.. Agenti’s preference is defined
by an ordering=; over the set5; = {S € F(A) | i € S}. A
coalition partitionII is called Nash stable if, for eaghe A,

SH(Z) =; S U {Z}, VS, e ITU .

In this section, we solve the spatial deployment problem
posed in Section Il with the GALITION FORMATION AND
DEPLOYMENT ALGORITHM. This distributed, synchronous
strategy specifies for each agent the dynamics of coalition
) formation and spatial motion. Section IV-A outlines theitog
used by agents to determine which coalition to join as well
A game’s purpose is to study the stable coalition partitionas the supporting inter-agent communication and Sectien 1V
based on the players’ action sets and preferences. Finally,discusses how agents decide how to move depending on
we define the subset of coalitions that playecan join their coalition size and the deployment objective.
as7; € {Su(j)}jea gy U Su(0), where S (0) = 0. The N _
function best-set defines the set of players thatcan join A Coalition formation game
that maximizes its coalition preference: The formation of coalitions evolves according to a
simultaneous-action hedonic coalition game with partial i
formation. Let us start with an informal description.

[Informal description]: The agents’ objective is to

be in a«k-sized coalition. There are two rounds
of communication per timestep. In the first one,
each agent acquires information to determine if
any neighboring coalition is more attractive than its
current one. In the second one, the agents involved
in a coalition change (either because they have
decided to switch or because someone else decided
to join their coalition) exchange information to
update the coalition membership.

Next, we formally describe the hedonic coalition formation
game. The agents preference ordering; over G, is

best-set(>=;, ;) = {7 € A\ {i} U{0} | Su(y) € 7,
Su(j)U{i} =; Su(k)u{i}, vSu(k) € 7;}.

An important observation is that, in coalition formation
games, an agent has information about which coalitions all
other agents are in and may join any of them. This is in
contrast to our scenario, where coalition information ig/on
partial due to the limited capabilities of individual agent

IIl. PROBLEM STATEMENT

Consider a group of robotic sensors with unique identifiers
A = {1,...,N} moving in a convex polygorQ C R2
Let p; denote the location of agentand P = (p1,...,pN)
denote the overall network configuration. We consider arb
trary agent dynamics, assuming each agent can move up to{S €6 ||S|=k}={5€6; S| =r—1}>...
a distancel,,,, € R~ within one timestep,

={Se€G ||S|=1}-{Se6;||S|=r+1} ...

pi(t+1) € B(pi(€), dmax), L€ Z. ~{Se&;||S|=N} (3

Through either sensing or communication, we assume eaglecording to (3), the agents most prefer to beirsized
agent: can get the relative position and identity of agentgoalitions. The memoryM; of agenti is composed of
within distancer; € R~o. During the coalition formation « the coalition set (.. Elements of this set are of the
process, agents can communicate with other agents within form (j,p,), i.e idtentity and position of the member
this radius. Agent can adjust-; but the cost of acquiring For cor;vén,ie.nc':e we sét, p;) € C; and C — 0 '
. . . . . . . ’ s 171 K3 - )
mfor_mat-lon IS an increasing function of it. Inter-agentreo « thecommunication radius; at which the agent interacts
munication occurs instantaneously. with other agents not necessarily in its coalition set;
The group’s objective is dual. On the one hand, agents want, e neighboring set\V; corresponding to agents within
to cluster into groups of a predefined size Equivalently, distancer;, i.e., (j,p;) € N; iff p; € B(pi,r:);

the network wants to self-assemble into= | | clusters
of size k, with possibly one additional cluster of size
0 < z < k, with N = mr~+2z. We call this thegoal coalition

« the farthest-away radius;, corresponding to the max-

imum distance to members of its coalition set.

o theflag | ast, which indicates if an agent belongs to

partition. On the other hand, the resulting clusters should be o single final coalition not of size when7 # m.
positioned in the environment so as to Minimit&c m,

where the final number of coalitions is given by For convenience, the operatads-) andpos(-) extract identi-

ties and positions, respectively, from sets whose elenaets
of the form (¢, p;). A consistent partitionings a collection
{Cla cee CN} - F({(]-vpl)a ceey (vaN)}) with (Zﬂpz) €

C; andC; = C}, for eachj € id(C;) andi € A. Initially,
where modN, k) is the remainder ofV/k. As discussed in for somed € R, we require the agents be in a consistent
Section 1I-B, such deployments correspond to optimizess of partitioning,r; = J, andl ast = False.

spatial estimation problem with unreliable data transioiss Next, we specify the two rounds of communication that take
Our aim is to create a distributed algorithm that accompksh place per timestep. Agents who already are in a coalition of
the dual network objective in a robust and efficient way. size x do not actively take part in this process; they only

__m, if mod(V, k) =0,
| m+1, otherwise



Algorithm 1: BEST NEIGHBOR COALITION DETECTION

Algorithm 2: COALITION SWITCHING

Executed by Agentsi with |C;| # &

1 Acquire \V; % get | ocation of neighbors
2 Setj* =1 % reset switching flag
3 if NM;\ C; # 0 then

4 Send(query,r;) atr; to id(N; \ C))

% request coalition sizes
5 Receiveid(C;) from all j € id(\N; \ C;)

% recei ve coalition sizes
6 | € :={(m,pm) ENi\Ci||Cn|#r}U{(0,0)}
% candi date agents to join
7 if 3j €id(¢;) s.t.id(C;) U {i} >=; id(C;) then

% better coalitions exist

Executed by All agentsi

1 if j* # 4 then

Send(l eave, i) att; to id(C;)
if 7% # 0 then

| Send(j oi n,i,r;) atr; to j*
end

a A~ W N

% alert old and new coalitions
end
7 M :={k € A i receivedj oi n from k}
% agents relying on ¢ to aid swtching
g foreach m € M do Send(j oi n,m,r,,) to id(C})
% al ert other coalition nenbers via v;

(2]

L:={k € A|ireceivedl eave from k}
J:={keA|anm €id(C;) gotj oi n from k}
% agents |eaving/joining s coalition
ld(CZ) = (ld(Cz) @] J) \ Landr; :=1t; + InaX{’f‘j}jej
% update current coalition and radius
12 foreachm € M do Send(r;,id(C;)) atr,, to m

with probability P(|C;|,x) do 9
Setj* from best-set(=;, {id(Ck) }reia(e,)) 10
% identify best coalition to join
if 7*#0then r; :=||p;- —pil|
end
end

10 11
11

12

13 end % update agents joining ¢ s coalition
13 if j* # 4 then
14 if 7% =0 then
. 15 C; ={(i,p; % forma new coalition
respond to other agents’ messages. First, agents exeeute, h e‘lse i =A{Gpa)k

BEST NEIGHBOR COALITION DETECTIONStrategy described
as Algorithm 1. According to this strategy (cf. step 8), an
agent that finds a neighboring coalition better than its own

ld(Cl) = id(Cj*) andr; ;== ||pj* _pill + 7=
% updat e coalition and radius

end
will decide to join it with probability given by 19 end
P(ICil,k) =1 — (1 =p)VI% i |G| £k (4) 200 TJ#DV " #ithen
21 | Acquire N;, pos(C;), recomputel;
If |C;| = k, the player will surely not switch coalitions. The ,, J* =i % reset switching variable

design parametel € (0,1) corresponds to the probability ,53 end
that at least one agent in a nancoalition has the ability to
act. The choice ob influences the rate of coalition changes.

increase their radius to improve the chances of
finding a better coalition and move towards their
coalition members. Agents in a coalition of size
adjust their radius to ensure they can calculate their

Remark V.1 (Justification for probabilistic actions) The
probabilistic model for actions described in (4) helps dvoi
deadlock situations that may result from the decentralized
nature of the game. As an example, in a situation with : . > |
two groups of sizex — 1, all agents will desire to join Voronoi cell and move towards both thg|r coalition
the other group. If this were the case, a group of size members and the circumcenter of their cell.
would never form. Instead, under (4), there is a positivEormally, theRADIUS ADJUSTMENT AND MOTION strategy
probability 2b(1—b) that agents in only one of the groups actjs described as Algorithm 3. Its interaction with the coali-
breaking the deadlock. In contrast with a one-agent-actingon formation dynamics is described in steps 9-15, which
per-timestep policy, the model (4) allows multiple agemts tgoverns the set of agents that a robot not yet in-sized
switch coalitions at the same timestep. e coalition may interact with. The next result ensures that th
agent communication radius is kept at the smallest value

Next, all agents execute thedBLITION SWITCHING strategy  guaranteeing a successful completion of coalitions.
described in Algorithm 2.

Lemma IV.2 For eachi € A, let k; be the closest agent
. ) which is in a coalition different from’s with size different
Here, we des_crlbe how agents move at each timestep, bedigym » and definer; (P, (C1,...,Cx)) = |pi — pr, ||. Such
ning with an informal description: radii guarantee the property that at least one agent has an
[Informal description]: At each timestep, agents incentive to switch coalitions when the configuration isinot
adjust their communication radius and move. Both  the goal coalition partition. Furthermore, if the commuaic
of these actions are dependent on the size of their tion radii were set according tdr}(P, (C1,...,Cn))}ica
coalition. Agents not yet in a coalition of size with 7/(P, (C1,...,CnN)) < ri(P,(Ci,...,Cy)) for somei

B. Motion control law




Algorithm 3: RADIUS ADJUSTMENT AND MOTION circumcenter replaces all the locations of the individual
Executed by All agentsi agents. This ensures that all members in a coalition compute
the same Voronoi cell. However, this also implies that, in

Lif |Ci| =k V] ast = True then general, the collection of cells computed by the coalitisn i
2 Upda_teri with ADJUST RADIUS strategy not a partition of the environment. This issue gets resolved
3 Acquire N; when the members within each coalition are coincident and
4 | Ai:= ({CC(pos(Ci))} Upos(Ni)) \ pos(Cy) will be treated in the proof of Theorem V.1. .
5 Vi :=Vi(A) % conput e Voronoi cell
6 | goal=CC(Vi) Remark IV.4 (Choice of parameter §) In step 15 of Algo-
7 else rithm 3, the parametef describes the amount that an agent
8 | goal= CC(pos(C;)) i’s communication radius; increases if it does not have any
o if Q\{(0,0?} # 0 then neighboring candidate agents to join. Several choices for
10 Ti »= Mp, epos(€;\{(0,0)}) I = pill + Qdméx are possible. For instance, when agents are roughly uriform
. else% guarantees a neighbor after motion  gigyibyted across), choosingd o MNQ) makes it likely
> i 1d(\}) = A then that agent will discover at least one new agent. °
13 | last :=True 9% one non-x coalition We refer to the composition of Algorithms 1-3 as the
14 else COALITION FORMATION AND DEPLOYMENT ALGORITHM.
15 \ ri =1+ 0 % increase radius We note that this strategy does not require the agents to
16 end share a common reference frame.
17 end
18 end Remark V.5 (Robustness to agent addition and subtrac-
10 foreach j € id(C;) do p; := gttg(p;, pos(C;), goal) tion) The COALITION FORMATION AND DEPLOYMENT AL -

% conput e next position GORITHM is robust to agents joining or leaving the network
20 pos(C;) == {pj}jeia(cy) % updat e positions under the following assumptions: (i) new agents alert the

21 t; = max, cpos(cy) IP; — pill % reconpute radius network of their presence by sendingjaer y message, (ii)
when an agent fails, the other members of its coalition detec
this fact, and (iii) when agents receivgaer y message they
setl ast := False. °

and P, then this property is no longer guaranteed.
V. CONVERGENCE ANALYSIS

Proof: In the case that there exists at least one coaIitiorP
of size greater than:, all agents in this coalition have
an incentive to start their own coalition. Consider instea(g
the case where all coalitions are of size at mastAn
agent: in the smallest coalition has an incentive to join itSTheorem V.1 Consider a network o agents executing the
neighbork; and the claimed property follows. Next, we ShOWCOALITION FORMATION AND DEPLOYMENT ALGORITHM.
the minimality property. It is enough to show that there is ONthe following holds
consistent partition different from the goal coalition titzon ) ) o . .
for which a smaller communication radius assignment would () theré exists a finite time after which all agents are in
not work. Consider a consistent partitioning at configorati :tgec%gzliiltigcr)\a:lr:f;t?é]lrzltl\?vrilr?rp])?o%aaﬁlilt; lcommdent with
P where all coalitions but one have been formed, and ; '
the remaining agents are in two coalitions, one with the (i) the network asymptotically converge towards the set of

single agent;, and the other one(’, with the rest. Since minimizers ofH{pc z, with probability 1.

! — P . . . -
ri(P, (Cr,..., On)) < (P (O, On)) = |Ipi = prlls particular, note that this result states that, with ptiba
agenti has no agents ioV; that it has incentive to join. i "y “the network will not converge to a coalition partition
Furthermore, given the coalition partition, agens the only ~ ihar than the desired one. Agents may be stuck for some
one who could have an incentive to switch coalitions, whicl o iy a different partition but, in finite time, they will aeh
finalizes the proof. ®  the desired coalition partition with probability.

Steps 9-15 in Algorithm 3 implement the result described iq'o prove Theorem V.1, we first establish several intermediat

LemmahIV._Z. If agent is QOt vv||.th|n r; of a non}coalmo'n results. We begin by showing that the coalition formation
agent that is not in &-sized coalition, increase. If agenti  game tives rise to the desired partition,

is within r; of such an agent, change to the distance
between the two agents plus a constant that ensures that theynma v2 In the N-agent simultaneous-action game
remain within communication range after moving. where agents have preference orderings that sat{8ly

complete knowledge about all other coalition memberships
Remark V.3 (Moronoi cell computation) In the Voronoi and their action set is to stay or join any other coalitiongth
cell computation of step 5 in Algorithm 3, the coalition’sonly Nash stable partition is the goal coalition partition.

his section analyzes the convergence properties of the
OALITION FORMATION AND DEPLOYMENT ALGORITHM.
ur main objective is to establish the following result.




As stated in Theorem V.1, the GALITION FORMATION  Algorithm 3, within at most% timesteps, each ageit
AND DEPLOYMENT ALGORITHM achieves the same goal will have a radius; satisfying Lemma 1V.2, so at least one
coalition partition even though agents have partial coait agent has an incentive to change coalitions. In the timsstep
information. Before continuing our discussion, we definen which no agents wish to change coalitions, the corre-
here the collection of actions of all agents at a given tiegst sponding timestep-event®,,, 11, ..., Fmia, @ < %,
as atimestep-eventThe next result determines a strictly occur with probabilityl. Define E,,, . 11 to be a timestep-
positive lower bound on the probability of any possibleevent where exactly one agent joins a coalition it has an
timestep-event happening. incentive to and all others do not switch. By Lemma V.3,
the probability of this event is bounded away from zero.
Lemma V.3 Let E be a timestep-event witf?(E) > 0. Additionally, because all coalitions are at most sizethe
ThenP(E) > min{(1 — b)™, (1 - (1 - b)~)NY. function = increases by Lemma V.4. If the configuration is
- ] not in the goal coalition partition, within at mow
Proof: Note that the probability that an agent switchegimesteps, at least one agent will have an incentive to bwitc
coalitions is lower bounded by— (1 —b)~ and the proba- ¢qajitions. Because the integer-valued and upper-bounded
bility that an agent wishes to switch coalitions but is ndeab f,nction = monotonically increases each time this sequence

to is lower bounded by —b. Moreover, agents in coalitions of timestep-events occurs, the number of times this canroccu
of sizex or with no incentive to switch coalitions will surely i at most A2V . Within szv(dlan;(@) +1) + m timesteps,

stay in the same coalition. The result now follows by notingp,¢ agents will be in the goal coalition partition. u

that all agents’ pmbat_"“s“c actions are |nd.epe.ndent. u _. The following result shows that in finite time all agents are
The next result establishes that one agent joining a aoRliti coincident with their coalitions and these coalitions faira
of at least its own current coalition’s size is a timestep?0a| coalition partition, with probability.

event with a positive effect on the convergence of the olera

network towards the goal coalition partition. Theorem V.6 There exists a finite time after whicfi agents

. . using theCOALITION FORMATION AND DEPLOYMENT AL-
Lemma V.4 When exactly one agent joins a new coalitiong ot are in the goal coalition partition with probabil-
of at least its current coalition’s size, this action sthct ity 1.

increases the functioR defined by
N2ICi| Proof: Lemma V.3 asserts that the probability of a
2(|Cql,...,|CN]) = Z TN timestep-event occurring is lower bounded+y min{(1—

i Gl b)N, (1 — (1 — b)~)N}. Given an initial consistent parti-
tioning, Proposition V.5 guarantees that there exists aefini
sequence of timestep-events, whose length is upper bounded
by L = NQN(W +1)+m, leading to the goal coalition
partition. If the length of this sequence is smaller thian
this sequence can be extended to one of exactly lehdik

{N201+2 + N2IC21=2 _ N2IGil _ N2IC21 |0y > 1, considering additional timestep-events where no agerss wi

Proof: Let j be the agent changing coalitionS; be
the coalition being joined(> the one being left, and so
|C1] > |C2]. The net effect or= of all of the agents in
id(C;) is N?I%l so the change i&E whenj switches is

N2ICil+2 _ N2ICi] _ N2IC2] |Gyl =1. 10 change coalitions. The latter occur with probability
Therefore, the sequence of timestep-events leading to the
In either case, usinf’;| > [C>[, one can lower boundh > goal coalition partition has a probability of occurring df a
N2 (N? — 2), which is strictly positive for allV > 1. B |easty, independent of the initial partitioning.
Our next step is to show that there exists a finite sequence Bkfine a sequence of everftd, A,, ...}, whereA,, is the
timestep-events leading to the goal coalition partiti@itslg  event that the coalitions do not exist aftet timesteps. The
from any consistent partitioning. probability of A,, occurring is at mostl — ~v%)™. Now,

Proposition V.5 From any consistent partitioning, there ex- i A, < i(l — b < o
ists a finite sequence of timestep-events, each having a - ’
positive probability of occurring under the&COALITION
FORMATION AND DEPLOYMENT ALGORITHM, leading to
the goal coalition partition. Furthermore, the length ofigh
sequence is bounded by (%ML 4 1) 4,

n=1 n=1

since it corresponds to a convergent geometric series.

Thus, by the Borel-Cantelli Lemma, cf. Lemma II.1,

P({4, i.0.}) = 0. This meansP({4, i.0}¢) = 1 or,

equivalently,P ({AS a.a}) = 1. The result follows by noting
Proof: Initially, if any coalitions are larger than size  thatAj, is the event that the coalitions occur at some point in

let the first timestep-event; be one where the correct nL timesteps and A7, a.a} is the event that all but a finite

number of agents leave one of these large coalitions afgimber of eventsiy occur. u

all other agents do not switch, creating a coalition of size We are now ready to prove Theorem V.1.

From Lemma V.3,P(E1) is bounded away from zero. There Proof of Theorem V.1:In statement (i), the fact that

can be at mostn — 1 more coalitions larger than size, there exists, with probabilityl, a finite time after which

and soFs,..., E,, are defined similarly. From Step 15 in all agents are in the goal coalition partition follows from



Theorem V.6. Proposition A.2 allows to upper bound the;3
number of timesteps it takes for the circumradius of one of ,
these coalitions to vanish HW]. This implies the fact s
that in finite time agents become coincident with its coatiti >
members. Once coalitions form and all individual agents are: H
coincident with the members of their respective coalitions
the collection of Voronoi cells that the agents compute (a) (b)
correspond to a correct Voronoi partition witih generators.
Statement (ii) then follows from [6, Theorem 5.5]. ]
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Fig. 3. For the execution in Figure 2, (a) shows the number ehtg
switching coalitions at each timestep, and (b) shows theuévol of ¢
(solid line) as defined in (5) antit20,19 (dashed line) as defined in (1).

V1. SIMULATIONS
This section presents several simulations of tleaGTION
FORMATION AND DEPLOYMENT ALGORITHM. We illustrate
the convergence to the desired goal coalition partition a
the achievement of the deployment task, and the robustn Rcreases its radius until it joins a group far away from it.

against agent addition and subtraction. We also pay am’n.n.ntle19 temporarily increases while these agents get together.

to the number of timesteps required on average for coalitiorngI ure 4 illustrates the robustness of theLITION FOR
formation. We investigate the average coalition formatio 9
MATION AND DEPLOYMENT ALGORITHM. After agents have

time as functions ofN, k, and b. Regarding (4), in all : ! . : . S
simulations wheré is constant. we havge chogérg:)o 5 1N achieved the final optimal configuration seen in Figure 2(b),
i - we let one agent fail and two new agents come into the

all simulations§ = dyay = ~2 9D \We use the function *" o
V2 VN picture. The agents adapt to the new network composition

1 and optimally deploy according to the available resources.
¢(Cla~--aCN):mZ|‘Ci‘_“|7 %) P y deploy g
€A

ni optimal [4]. The bumps in the evolution 6{5 19 in the
5ot occur when an agent has no nearby coalitions to join and

to illustrate the dynamics of coalition formation. This &n
tion is zero if and only if all agents are isized coalitions.
Figure 2 shows an execution of thed&LITION FORMATION
AND DEPLOYMENT ALGORITHM with 20 agents forming
coalitions of size2. The network converges to both cor-

(a) Initial configuration (b) Final configuration

Fig. 4. Execution of the GALITION FORMATION AND DEPLOYMENT
ALGORITHM from the configuration in Figure 2(b) where an agent hasdaile
in the coalition marked as '0’ and two agents, marked as 'X’,ehbeen
added. After these agent additions and subtractions ticvaliadapt and the
network re-converges to an optimal deployment configuration.

(a) Initial configuration (b) Final configuration

Finally, Figure 5 illustrates the dependency of the average
Fig. 2. ExeC_;ﬁiO; of thet GALI(LION F;RTMhAmNtvCNi DEPLOYMENtT number of timesteps required for all coalitions to form
élc;r?f(i)gﬂ:a'-t'i'gnwvlvhereo :jlg:gesntasnare in c;)rrecetlyrIZize?jr djg;gvz:]gde?heosea on N, «, andb. Each _p_o_mt is the average QDO run_s’
coalitions are optimally deployed. where the agents were initially randomly placed with urrifor
distribution in a unit square. The error bars correspond to
rectly sized groups and coalitions optimally deployed aplus and minus one standard deviation. Figure 5(a) shows the
their Voronoi cell's circumcenters. From Theorem V.1, theaverage coalition formation convergence time for différ¥n
final configuration optimize${pc 10. Figure 3(a) shows the for cases of fixecdk = 4 and changings = L%J. In both
number of coalition switches at each timestep for the santases, the completion time appears linearNinand each
run. Many switches happen early, but decrease in frequentake a similar amount of time. The latter is corroborated
as agents form correctly sized coalitions. The evolutiog of in Figure 5(b), which shows the average coalition formation
depicted in Figure 3(b) confirms this by showing how agentsonvergence time for fixed = 20 and varyings. The coali-
join more desirable coalitions over time. Figure 3(b) alsdion formation time is roughly equal for all desired coaliti
shows the evolution of the objective functiGty y_; that, sizes, until nearly all agents are joining one coalitionjclih
in the language of Section 1I-B, corresponds to the sitmatiotakes less time on average. Figure 5(c) shows the average
where N — 1 of the sensors are working. This choice ofcoalition formation time for20 agents forming coalitions of
function is motivated by the fact that, in one dimension, isize 4 with various values forb. The completion time is
is known that in such a case, forming coalitions of sze roughly constant for values @faway from0 and 1.
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Fig. 5. (a) shows the average coalition formation time as atfomof the number of agentd/, for x = 4 (dashed line) ana = L%J (solid line). (b)
shows the average coalition formation time as a function ofrel@soalition sizex for NV = 20 agents. (c) shows the average coalition formation time
for 20 agents forming coalitions of siz¢ as a function of. In all plots, the error bars correspond to plus and minus taedsard deviation.
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