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Abstract— This paper presents a distributed algorithmic solu-
tion to achieve network configurations where agents cluster
into coincident groups that are distributed optimally over the
environment. The motivation for this problem comes from
spatial estimation tasks executed with unreliable sensors. We
propose a probabilistic strategy that combines a repeated
game governing the formation of coalitions with a spatial
motion component governing their location. We establish the
convergence of the agents to coincident groups of a desired size
in finite time and the asymptotic convergence of the overall
network to the optimal deployment, both with probability 1.
The algorithm is robust to agent addition and subtraction.
From a game perspective, the algorithm is novel in that the
players’ information is limited to neighboring clusters. From a
motion coordination perspective, the algorithm is novel because
it brings together two basic tasks, rendezvous (individual agents
into clusters) and deployment (clusters in the environment).
The technical approach draws on tools from computational
geometry, game theory, and probability theory.

I. I NTRODUCTION

This paper is motivated by optimal spatial sampling problems
under possibly failing communications. Consider a group of
mobile robotic sensors that take point measurements of a
random field over an environment and relay them back to a
data fusion center. Assume that because of the features of the
medium and the limited agent communication capabilities, it
is known that only a fraction of these packets will arrive
at the center, but it is not a priori known which ones will.
Given that some sensors are not working and their identity is
unknown, a reasonable strategy consists of grouping sensors
together into clusters so that the likelihood of obtaining a
measurement from the position of each cluster is higher. In
this paper, our aim is to design a distributed algorithm that
makes the network autonomously create groups of a desired
size such that (i) members of each individual group become
coincident, and (ii) the groups deploy in an optimal way with
regards to the spatial estimation objective.
Literature review: There is an increasing body of research
that deals with spatial estimation problems with possibly
failing communications where packets are either received
without corruption or not received at all, see e.g., [1], [2], [3],
[4]. In particular, [4] shows that, for the problem motivating
our algorithm design, the clustering strategy outlined above
is not only reasonable but optimal in some cases: the con-
figurations that maximize the expected information content
of the measurements retrieved at the center correspond to
agents grouping into clusters, and the resulting clusters being
deployed optimally. Achieving such desirable configurations
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is challenging because of the spatially distributed natureof
the problem and the agent mobility. Our technical approach
combines elements of spatial facility location [5], rendezvous
and deployment of multi-agent systems [6], and coalition
formation games [7], [8]. From a game-theoretic perspective,
our analysis of the coalition formation dynamics is novel be-
cause of the consideration of evolving and partial interaction
network topologies. From a motion coordination perspective,
the novelty relies on the coupled dynamics between the
coalition formation, the clustering, and the network deploy-
ment. Other works in the cooperative control literature that
have employed game-theoretic ideas to solve coordination
tasks such as formation control, target assignment, self-
organization for efficient communication, consensus, and
sensor coverage include [9], [10], [11], [12].
Statement of contributions:The main contribution of the
paper is the design and analysis of the COALITION FOR-
MATION AND DEPLOYMENT ALGORITHM . The aim of this
synchronous and distributed strategy is to allow robotic
agents to autonomously form groups of a given desired size
while clustering together and deploying optimally in the
environment. The deployment objective is encoded through
a locational optimization function whose optimizers corre-
spond to circumcenter Voronoi configurations. The algorithm
design combines a repeated game component that governs
the dynamics of coalition formation with a spatial motion
component that determines how agents’ positions evolve. In
the game, agents seek to join a neighboring coalition that
most closely resembles one with the desired size. According
to the motion coordination law, agents not yet in a well-
formed coalition cluster together while agents in a coalition
of the desired size also move towards the circumcenter of
their Voronoi cell. We establish that the executions of the
COALITION FORMATION AND DEPLOYMENT ALGORITHM

converge in finite time to a configuration where agents are
coincident with their own coalition and these coalitions
are the desired size, and asymptotically converge to an
optimal deployment configuration, each with probability1.
The algorithm does not require the agents to have a common
reference frame, and is robust to agent addition and deletion.
Finally, we illustrate these properties in simulation. Some
proofs are omitted for reasons of space.

II. PRELIMINARIES

In this section, we collect some basic facts on geometry,
spatial deployment, probability, and coalition games.

A. Basic geometric notions

We denote byR andZ the sets of real and integer numbers,
respectively. Let‖ · ‖ be the Euclidean distance. Given a



set S ⊂ X, let F(S) denote the collection of finite subsets
of S and Sc = X \ S its complement. Let|S| denote the
cardinality of the setS. Let vr : R

d → R
d be defined by

vr(u) = u/‖u‖ for u ∈ R
d \ {0}, andvr(0) = 0. We denote

the closed ball centered atx ∈ R
d of radius r ∈ R>0 by

B(x, r) = {p ∈ R
d | ‖x−p‖ ≤ r}. The circumcenter of a set

of pointsP , denotedCC(P ), is the center of the ball of mini-
mum radius, denotedCR(P ), which encloses all points inP .
Next, we introduce theget-together-toward-goal
function gttg : S × F(S) × S → S by

gttg(p, P, q) = p + w1 + w2,

where we use the shorthand notationP0 = P ∪ {p},

w1 = min{‖CC(P0) − p‖, d1(r)} vr(CC(P0) − p),

w2 = min{‖q − (p + w1)‖, d2(r)} vr(q − (p + w1)),

andr = CR(P0)
/

‖q −CC(P0)‖. Here,d1 : R≥0 → R≥0 is
a continuous, increasing function on(0,∞) that satisfies

d1(0) = 0, lim
s→∞

d1(s) = dmax, lim
s→0+

d1(s) = dmin,

for dmax > dmin > 0, andd2 : R≥0 → R≥0 is defined by
d2(s) = dmax − d1(s). Figure 1 illustrates the definition of
gttg. Appendix A gathers some relevant properties ofgttg.

p

p + w1

gttg(p, P, q)CC(P0)

q

Fig. 1. Illustration of the action of the functiongttg.

B. Voronoi partitions and deployment objective

Here, we introduce some computational geometric notions
that play an important role in the formalization of the
deployment problem. GivenQ ⊂ R

d and a finite set of
pointsP = {p1, . . . , pn} ⊂ Q, the Voronoi partitionV (P ) =
{V1(P ), . . . , Vn(P )} of Q is defined by

Vi(P ) = {q ∈ Q | ‖ q − pi‖ ≤ ‖ q − pj‖, ∀ pj ∈ P}.

The setVi(P ) is the Voronoi cell ofpi. The pointspi and
pj are Voronoi neighbors if the boundaries of their Voronoi
cells intersect. To compute the Voronoi cell ofpi, all that is
required is the location of its Voronoi neighbors inP . The
work [13] introduces a procedure, that we term the ADJUST

RADIUS strategy, which does the following: starting from
r = 0, it repeatedly growsr until all Voronoi neighbors
of pi are guaranteed to be contained in the ballB(pi, r).
Given a partition{W1, . . . ,Wn} of Q, the disk-covering
functionHDC,n is defined by

HDC,n(p1, . . . , pn,W1, . . . ,Wn) = max
i∈{i,...,n}

max
q∈Wi

‖q − pi‖2.

The value ofHDC,n solves the following problem: cover the
whole environment with balls centered at the points inP =
{p1, . . . , pn} with minimum common radius such thatWi ⊂

B(pi, r), for i ∈ {1, . . . , n}. For convenience, we use the no-
tationHDC,n(p1, . . . , pn) = HDC,n(p1, . . . , pn, V1, . . . , Vn).
Two properties are worth noting [6]: for a fixed configuration,
the Voronoi partition is optimal among all partitions,

HDC,n(p1, . . . , pn, V1(P ), . . . , Vn(P )) ≤

HDC,n(p1, . . . , pn,W1, . . . ,Wn),

and, for a fixed partition, the circumcenter locations of the
cells are optimal,

HDC,n(CC(W1), . . . ,CC(Wn),W1, . . . ,Wn) ≤

HDC,n(p1, . . . , pn,W1, . . . ,Wn).

Under certain technical conditions, optimizingHDC,n cor-
responds to minimizing the maximum error variance in the
estimation of a random spatial field [14]. The deployment
objective function that motivates our algorithm is given by

Hn,k(p1, . . . , pn) =

1
(

n
k

)

∑

{s1,...,sk}∈C(n,k)

HDC,k(ps1
, . . . , psk

), (1)

whereC(n, k) denotes the set of uniquek-sized combina-
tions of elements in{1, . . . , n}. This function corresponds
to the expected disk-covering performance of a network ofn
agents where onlyk of them are working and their identity is
unknown. Optimizers ofHn,k correspond to grouping agents
into coincident clusters, saym, that themselves are optimally
deployed according toHDC,m, see [4].

C. Probability notions

Here we gather some probability notions from [15], [16].
Let X be a random variable that has outcomes{x1, x2, . . . }
with probabilities{p1, p2, . . . } ⊂ R≥0. An eventE is a set
of outcomes ofX. For brevity, we useP

(

E
)

= P
(

X ∈ E
)

.
Given a sequence of events{En}

∞
n=1, let

lim sup
n

En = {En i.o.} =
∞
⋂

n=1

∞
⋃

k=n

Ek,

lim inf
n

En = {En a.a.} =

∞
⋃

n=1

∞
⋂

k=n

Ek.

Here ‘i.o.’ stands for infinitely often, and ‘a.a.’ stands for
almost always. Note that{En i.o.}c = {Ec

n a.a.}.

Lemma II.1 (Borel-Cantelli Lemma) Given a sequence of
events {En}∞n=1 satisfying

∑∞
n=1 P

(

En

)

< ∞. Then
P

(

lim supn En

)

= 0.

D. Hedonic coalition games

Hedonic coalition formation games [7] areN -player nonco-
operative games [17], [18] where players attempt to join/stay
in preferable coalitions. Each player is hedonic because the
utility it assigns to a given network coalition partitioning is
only a function of its own coalition. Each player’s action set
is finite: the only actions are to stay in the current coalition
or join another coalition. For a finite set of playersA =



{1, . . . , N}, a finite coalition partition is a setΠ = {Sk}K
k=1,

K ∈ Z≥1, that partitionsA. The subsetsSk are called
coalitions. For playeri and partitionΠ, let SΠ(i) be the
setSk ∈ Π such thati ∈ Sk. Agent i’s preference is defined
by an ordering�i over the setSi = {S ∈ F(A) | i ∈ S}. A
coalition partitionΠ is called Nash stable if, for eachi ∈ A,

SΠ(i) �i Sk ∪ {i}, ∀Sk ∈ Π ∪ ∅. (2)

A game’s purpose is to study the stable coalition partitions
based on the players’ action sets and preferences. Finally,
we define the subset of coalitions that playeri can join
as τi ⊆ {SΠ(j)}j∈A\{i} ∪ SΠ(0), whereSΠ(0) = ∅. The
function best-set defines the set of players thati can join
that maximizes its coalition preference:

best-set(�i, τi) = {j ∈ A \ {i} ∪ {0} | SΠ(j) ∈ τi,

SΠ(j) ∪ {i} �i SΠ(k) ∪ {i}, ∀SΠ(k) ∈ τi}.

An important observation is that, in coalition formation
games, an agent has information about which coalitions all
other agents are in and may join any of them. This is in
contrast to our scenario, where coalition information is only
partial due to the limited capabilities of individual agents.

III. PROBLEM STATEMENT

Consider a group of robotic sensors with unique identifiers
A = {1, . . . , N} moving in a convex polygonQ ⊂ R

2.
Let pi denote the location of agenti andP = (p1, . . . , pN )
denote the overall network configuration. We consider arbi-
trary agent dynamics, assuming each agent can move up to
a distancedmax ∈ R>0 within one timestep,

pi(ℓ + 1) ∈ B(pi(ℓ), dmax), ℓ ∈ Z.

Through either sensing or communication, we assume each
agenti can get the relative position and identity of agents
within distanceri ∈ R>0. During the coalition formation
process, agents can communicate with other agents within
this radius. Agenti can adjustri but the cost of acquiring
information is an increasing function of it. Inter-agent com-
munication occurs instantaneously.
The group’s objective is dual. On the one hand, agents want
to cluster into groups of a predefined sizeκ. Equivalently,
the network wants to self-assemble intom = ⌊N

κ ⌋ clusters
of size κ, with possibly one additional cluster of sizez,
0 ≤ z < κ, with N = mκ+z. We call this thegoal coalition
partition. On the other hand, the resulting clusters should be
positioned in the environment so as to minimizeHDC,m,
where the final number of coalitionsm is given by

m =

{

m, if mod(N, k) = 0,

m + 1, otherwise,

where mod(N, k) is the remainder ofN/k. As discussed in
Section II-B, such deployments correspond to optimizers ofa
spatial estimation problem with unreliable data transmission.
Our aim is to create a distributed algorithm that accomplishes
the dual network objective in a robust and efficient way.

IV. COALITION FORMATION AND DEPLOYMENT

ALGORITHM

In this section, we solve the spatial deployment problem
posed in Section III with the COALITION FORMATION AND

DEPLOYMENT ALGORITHM. This distributed, synchronous
strategy specifies for each agent the dynamics of coalition
formation and spatial motion. Section IV-A outlines the logic
used by agents to determine which coalition to join as well
as the supporting inter-agent communication and Section IV-
B discusses how agents decide how to move depending on
their coalition size and the deployment objective.

A. Coalition formation game

The formation of coalitions evolves according to a
simultaneous-action hedonic coalition game with partial in-
formation. Let us start with an informal description.

[Informal description]: The agents’ objective is to
be in a κ-sized coalition. There are two rounds
of communication per timestep. In the first one,
each agent acquires information to determine if
any neighboring coalition is more attractive than its
current one. In the second one, the agents involved
in a coalition change (either because they have
decided to switch or because someone else decided
to join their coalition) exchange information to
update the coalition membership.

Next, we formally describe the hedonic coalition formation
game. The agenti’s preference ordering�i over Si is

{S ∈ Si | |S| = κ} ≻ {S ∈ Si | |S| = κ − 1} ≻ . . .

≻ {S ∈ Si | |S| = 1} ≻ {S ∈ Si | |S| = κ + 1} ≻ . . .

≻ {S ∈ Si | |S| = N}. (3)

According to (3), the agents most prefer to be inκ-sized
coalitions. The memoryMi of agenti is composed of

• the coalition set Ci. Elements of this set are of the
form (j, pj), i.e., identity and position of the member.
For convenience, we set(i, pi) ∈ Ci andC0 = ∅;

• thecommunication radiusri at which the agent interacts
with other agents not necessarily in its coalition set;

• the neighboring setNi corresponding to agents within
distanceri, i.e., (j, pj) ∈ Ni iff pj ∈ B(pi, ri);

• the farthest-away radiusri, corresponding to the max-
imum distance to members of its coalition set.

• the flag last, which indicates if an agent belongs to
the single final coalition not of sizeκ whenm 6= m.

For convenience, the operatorsid(·) andpos(·) extract identi-
ties and positions, respectively, from sets whose elementsare
of the form (i, pi). A consistent partitioningis a collection
{C1, . . . , CN} ⊂ F({(1, p1), . . . , (N, pN )}) with (i, pi) ∈
Ci and Ci = Cj , for eachj ∈ id(Ci) and i ∈ A. Initially,
for someδ ∈ R>0, we require the agents be in a consistent
partitioning,ri = δ, andlast = False.
Next, we specify the two rounds of communication that take
place per timestep. Agents who already are in a coalition of
size κ do not actively take part in this process; they only



Algorithm 1: BEST NEIGHBOR COALITION DETECTION

Executed by: Agentsi with |Ci| 6= κ

1 AcquireNi % get location of neighbors

2 Set j∗ := i % reset switching flag

3 if Ni \ Ci 6= ∅ then
4 Send(query, ri) at ri to id(Ni \ Ci)

% request coalition sizes

5 Receiveid(Cj) from all j ∈ id(Ni \ Ci)
% receive coalition sizes

6 Ci := {(m, pm) ∈ Ni \ Ci | |Cm| 6= κ} ∪ {(0, 0)}
% candidate agents to join

7 if ∃j ∈ id(Ci) s.t. id(Cj) ∪ {i} ≻i id(Ci) then
% better coalitions exist

8 with probability P
(

|Ci|, κ
)

do
9 Set j∗ from best-set(�i, {id(Ck)}k∈id(Ci))

% identify best coalition to join

10 if j∗ 6= 0 then ri := ‖pj∗ − pi‖
11 end
12 end
13 end

respond to other agents’ messages. First, agents execute the
BEST NEIGHBOR COALITION DETECTIONstrategy described
as Algorithm 1. According to this strategy (cf. step 8), an
agent that finds a neighboring coalition better than its own
will decide to join it with probability given by

P
(

|Ci|, κ
)

= 1 − (1 − b)1/|Ci| if |Ci| 6= κ. (4)

If |Ci| = κ, the playeri will surely not switch coalitions. The
design parameterb ∈ (0, 1) corresponds to the probability
that at least one agent in a non-κ coalition has the ability to
act. The choice ofb influences the rate of coalition changes.

Remark IV.1 (Justification for probabilistic actions) The
probabilistic model for actions described in (4) helps avoid
deadlock situations that may result from the decentralized
nature of the game. As an example, in a situation with
two groups of sizeκ − 1, all agents will desire to join
the other group. If this were the case, a group of sizeκ
would never form. Instead, under (4), there is a positive
probability2b(1−b) that agents in only one of the groups act,
breaking the deadlock. In contrast with a one-agent-acting-
per-timestep policy, the model (4) allows multiple agents to
switch coalitions at the same timestep. •

Next, all agents execute the COALITION SWITCHING strategy
described in Algorithm 2.

B. Motion control law

Here, we describe how agents move at each timestep, begin-
ning with an informal description:

[Informal description]: At each timestep, agents
adjust their communication radius and move. Both
of these actions are dependent on the size of their
coalition. Agents not yet in a coalition of sizeκ

Algorithm 2: COALITION SWITCHING

Executed by: All agentsi

1 if j∗ 6= i then
2 Send(leave, i) at ri to id(Ci)
3 if j∗ 6= 0 then
4 Send(join, i, ri) at ri to j∗

5 end
% alert old and new coalitions

6 end
7 M := {k ∈ A | i receivedjoin from k}

% agents relying on i to aid switching

8 foreach m ∈ M do Send(join,m, rm) to id(Ci)
% alert other coalition members via ri

9 L := {k ∈ A | i receivedleave from k}
10 J := {k ∈ A | an m ∈ id(Ci) got join from k}

% agents leaving/joining i’s coalition

11 id(Ci) := (id(Ci) ∪ J) \ L andri := ri + max{rj}j∈J

% update current coalition and radius

12 foreach m ∈ M do Send(ri, id(Ci)) at rm to m
% update agents joining i’s coalition

13 if j∗ 6= i then
14 if j∗ = 0 then
15 Ci = {(i, pi)} % form a new coalition

16 else
17 id(Ci) := id(Cj∗) andri := ‖pj∗ − pi‖ + rj∗

% update coalition and radius

18 end
19 end
20 if J 6= ∅ ∨ j∗ 6= i then
21 AcquireNi, pos(Ci), recomputeCi

22 j∗ := i % reset switching variable

23 end

increase their radius to improve the chances of
finding a better coalition and move towards their
coalition members. Agents in a coalition of sizeκ
adjust their radius to ensure they can calculate their
Voronoi cell and move towards both their coalition
members and the circumcenter of their cell.

Formally, theRADIUS ADJUSTMENT AND MOTION strategy
is described as Algorithm 3. Its interaction with the coali-
tion formation dynamics is described in steps 9-15, which
governs the set of agents that a robot not yet in aκ-sized
coalition may interact with. The next result ensures that the
agent communication radius is kept at the smallest value
guaranteeing a successful completion of coalitions.

Lemma IV.2 For each i ∈ A, let ki be the closest agent
which is in a coalition different fromi’s with size different
from κ and defineri(P, (C1, . . . , CN )) = ‖pi − pki

‖. Such
radii guarantee the property that at least one agent has an
incentive to switch coalitions when the configuration is notin
the goal coalition partition. Furthermore, if the communica-
tion radii were set according to{r′i(P, (C1, . . . , CN ))}i∈A
with r′i(P, (C1, . . . , CN )) < ri(P, (C1, . . . , CN )) for somei



Algorithm 3: RADIUS ADJUSTMENT AND MOTION

Executed by: All agentsi

1 if |Ci| = κ ∨ last = True then
2 Updateri with ADJUST RADIUS strategy
3 AcquireNi

4 Ai := ({CC(pos(Ci))} ∪ pos(Ni)) \ pos(Ci)
5 Vi := V1(Ai) % compute Voronoi cell

6 goal= CC(Vi)
7 else
8 goal= CC(pos(Ci))
9 if Ci\{(0, 0)} 6= ∅ then

10 ri := minpk∈pos(Ci\{(0,0)}) ‖pk − pi‖ + 2dmax

% guarantees a neighbor after motion

11 else
12 if id(Ni) = A then
13 last := True % one non-κ coalition

14 else
15 ri := ri + δ % increase radius

16 end
17 end
18 end
19 foreach j ∈ id(Ci) do pj := gttg(pj ,pos(Ci), goal)

% compute next position

20 pos(Ci) := {pj}j∈id(Ci) % update positions

21 ri := maxpj∈pos(Ci) ‖pj − pi‖ % recompute radius

and P , then this property is no longer guaranteed.

Proof: In the case that there exists at least one coalition
of size greater thanκ, all agents in this coalition have
an incentive to start their own coalition. Consider instead,
the case where all coalitions are of size at mostκ. An
agenti in the smallest coalition has an incentive to join its
neighborki and the claimed property follows. Next, we show
the minimality property. It is enough to show that there is one
consistent partition different from the goal coalition partition
for which a smaller communication radius assignment would
not work. Consider a consistent partitioning at configuration
P where all coalitions but one have been formed, and
the remaining agents are in two coalitions, one with the
single agent,i, and the other one,C, with the rest. Since
r′i(P, (C1, . . . , CN )) < ri(P, (C1, . . . , CN )) = ‖pi − pki

‖,
agent i has no agents inNi that it has incentive to join.
Furthermore, given the coalition partition, agenti is the only
one who could have an incentive to switch coalitions, which
finalizes the proof.
Steps 9-15 in Algorithm 3 implement the result described in
Lemma IV.2. If agenti is not within ri of a non-coalition
agent that is not in aκ-sized coalition, increaseri. If agenti
is within ri of such an agent, changeri to the distance
between the two agents plus a constant that ensures that they
remain within communication range after moving.

Remark IV.3 (Voronoi cell computation) In the Voronoi
cell computation of step 5 in Algorithm 3, the coalition’s

circumcenter replaces all the locations of the individual
agents. This ensures that all members in a coalition compute
the same Voronoi cell. However, this also implies that, in
general, the collection of cells computed by the coalition is
not a partition of the environment. This issue gets resolved
when the members within each coalition are coincident and
will be treated in the proof of Theorem V.1. •

Remark IV.4 (Choice of parameter δ) In step 15 of Algo-
rithm 3, the parameterδ describes the amount that an agent
i’s communication radiusri increases if it does not have any
neighboring candidate agents to join. Several choices forδ
are possible. For instance, when agents are roughly uniformly
distributed acrossQ, choosingδ ∝ diam(Q)√

N
makes it likely

that agenti will discover at least one new agent. •

We refer to the composition of Algorithms 1-3 as the
COALITION FORMATION AND DEPLOYMENT ALGORITHM.
We note that this strategy does not require the agents to
share a common reference frame.

Remark IV.5 (Robustness to agent addition and subtrac-
tion) The COALITION FORMATION AND DEPLOYMENT AL -
GORITHM is robust to agents joining or leaving the network
under the following assumptions: (i) new agents alert the
network of their presence by sending aquery message, (ii)
when an agent fails, the other members of its coalition detect
this fact, and (iii) when agents receive aquery message they
setlast := False. •

V. CONVERGENCE ANALYSIS

This section analyzes the convergence properties of the
COALITION FORMATION AND DEPLOYMENT ALGORITHM.
Our main objective is to establish the following result.

Theorem V.1 Consider a network ofN agents executing the
COALITION FORMATION AND DEPLOYMENT ALGORITHM.
The following holds,

(i) there exists a finite time after which all agents are in
the goal coalition partition and each is coincident with
its coalition members, with probability1;

(ii) the network asymptotically converge towards the set of
minimizers ofHDC,m, with probability 1.

In particular, note that this result states that, with probabil-
ity 1, the network will not converge to a coalition partition
other than the desired one. Agents may be stuck for some
time in a different partition but, in finite time, they will reach
the desired coalition partition with probability1.
To prove Theorem V.1, we first establish several intermediate
results. We begin by showing that the coalition formation
game gives rise to the desired partition.

Lemma V.2 In the N -agent simultaneous-action game
where agents have preference orderings that satisfy(3),
complete knowledge about all other coalition memberships
and their action set is to stay or join any other coalition, the
only Nash stable partition is the goal coalition partition.



As stated in Theorem V.1, the COALITION FORMATION

AND DEPLOYMENT ALGORITHM achieves the same goal
coalition partition even though agents have partial coalition
information. Before continuing our discussion, we define
here the collection of actions of all agents at a given timestep
as a timestep-event. The next result determines a strictly
positive lower bound on the probability of any possible
timestep-event happening.

Lemma V.3 Let E be a timestep-event withP
(

E
)

> 0.
ThenP

(

E
)

≥ min{(1 − b)N , (1 − (1 − b)
1
N )N}.

Proof: Note that the probability that an agent switches
coalitions is lower bounded by1− (1− b)

1
N and the proba-

bility that an agent wishes to switch coalitions but is not able
to is lower bounded by1− b. Moreover, agents in coalitions
of sizeκ or with no incentive to switch coalitions will surely
stay in the same coalition. The result now follows by noting
that all agents’ probabilistic actions are independent.
The next result establishes that one agent joining a coalition
of at least its own current coalition’s size is a timestep-
event with a positive effect on the convergence of the overall
network towards the goal coalition partition.

Lemma V.4 When exactly one agent joins a new coalition
of at least its current coalition’s size, this action strictly
increases the functionΞ defined by

Ξ(|C1|, . . . , |CN |) =
∑

i∈A

N2|Ci|

|Ci|
.

Proof: Let j be the agent changing coalitions,C1 be
the coalition being joined,C2 the one being left, and so
|C1| ≥ |C2|. The net effect onΞ of all of the agents in
id(Ci) is N2|Ci|, so the change inΞ when j switches is

∆ =

{

N2|C1|+2 + N2|C2|−2 − N2|C1| − N2|C2|, |C2| > 1,

N2|C1|+2 − N2|C1| − N2|C2|, |C2| = 1.

In either case, using|C1| ≥ |C2|, one can lower bound∆ ≥
N2|C1|(N2 − 2), which is strictly positive for allN > 1.
Our next step is to show that there exists a finite sequence of
timestep-events leading to the goal coalition partition starting
from any consistent partitioning.

Proposition V.5 From any consistent partitioning, there ex-
ists a finite sequence of timestep-events, each having a
positive probability of occurring under theCOALITION

FORMATION AND DEPLOYMENT ALGORITHM, leading to
the goal coalition partition. Furthermore, the length of this
sequence is bounded byN2N ( diam(Q)

δ + 1) + m.

Proof: Initially, if any coalitions are larger than sizeκ,
let the first timestep-eventE1 be one where the correct
number of agents leave one of these large coalitions and
all other agents do not switch, creating a coalition of sizeκ.
From Lemma V.3,P

(

E1

)

is bounded away from zero. There
can be at mostm − 1 more coalitions larger than sizeκ,
and soE2, . . . , Em are defined similarly. From Step 15 in

Algorithm 3, within at mostdiam(Q)
δ timesteps, each agenti

will have a radiusri satisfying Lemma IV.2, so at least one
agent has an incentive to change coalitions. In the timesteps
in which no agents wish to change coalitions, the corre-
sponding timestep-events,Em+1, . . . , Em+α, α ≤ diam(Q)

δ ,
occur with probability1. DefineEm+α+1 to be a timestep-
event where exactly one agent joins a coalition it has an
incentive to and all others do not switch. By Lemma V.3,
the probability of this event is bounded away from zero.
Additionally, because all coalitions are at most sizeκ, the
function Ξ increases by Lemma V.4. If the configuration is
not in the goal coalition partition, within at mostdiam(Q)

δ
timesteps, at least one agent will have an incentive to switch
coalitions. Because the integer-valued and upper-bounded
function Ξ monotonically increases each time this sequence
of timestep-events occurs, the number of times this can occur
is at mostN2N . Within N2N ( diam(Q)

δ + 1) + m timesteps,
the agents will be in the goal coalition partition.
The following result shows that in finite time all agents are
coincident with their coalitions and these coalitions formthe
goal coalition partition, with probability1.

Theorem V.6 There exists a finite time after whichN agents
using theCOALITION FORMATION AND DEPLOYMENT AL -
GORITHM are in the goal coalition partition with probabil-
ity 1.

Proof: Lemma V.3 asserts that the probability of a
timestep-event occurring is lower bounded byγ = min{(1−
b)N , (1 − (1 − b)

1
N )N}. Given an initial consistent parti-

tioning, Proposition V.5 guarantees that there exists a finite
sequence of timestep-events, whose length is upper bounded
by L = N2N ( diam(Q)

δ +1)+m, leading to the goal coalition
partition. If the length of this sequence is smaller thanL,
this sequence can be extended to one of exactly lengthL by
considering additional timestep-events where no agents wish
to change coalitions. The latter occur with probability1.
Therefore, the sequence of timestep-events leading to the
goal coalition partition has a probability of occurring of at
leastγL, independent of the initial partitioning.
Define a sequence of events{A1, A2, . . . }, whereAn is the
event that the coalitions do not exist afternL timesteps. The
probability of An occurring is at most(1 − γL)n. Now,

∞
∑

n=1

An ≤
∞
∑

n=1

(1 − γL)n < ∞,

since it corresponds to a convergent geometric series.
Thus, by the Borel-Cantelli Lemma, cf. Lemma II.1,
P

(

{An i.o.}
)

= 0. This meansP
(

{An i.o.}c
)

= 1 or,
equivalently,P

(

{Ac
n a.a.}

)

= 1. The result follows by noting
thatAc

n is the event that the coalitions occur at some point in
nL timesteps and{Ac

n a.a.} is the event that all but a finite
number of eventsAc

n occur.
We are now ready to prove Theorem V.1.

Proof of Theorem V.1: In statement (i), the fact that
there exists, with probability1, a finite time after which
all agents are in the goal coalition partition follows from



Theorem V.6. Proposition A.2 allows to upper bound the
number of timesteps it takes for the circumradius of one of
these coalitions to vanish by⌈ diam(Q)

dmin
⌉. This implies the fact

that in finite time agents become coincident with its coalition
members. Once coalitions form and all individual agents are
coincident with the members of their respective coalitions,
the collection of Voronoi cells that the agents compute
correspond to a correct Voronoi partition withm generators.
Statement (ii) then follows from [6, Theorem 5.5].

VI. SIMULATIONS

This section presents several simulations of the COALITION

FORMATION AND DEPLOYMENT ALGORITHM. We illustrate
the convergence to the desired goal coalition partition and
the achievement of the deployment task, and the robustness
against agent addition and subtraction. We also pay attention
to the number of timesteps required on average for coalition
formation. We investigate the average coalition formation
time as functions ofN , k, and b. Regarding (4), in all
simulations whereb is constant, we have chosenb = 0.5. In
all simulations,δ = dmax = .2√

2

diam(Q)√
N

. We use the function

φ(C1, . . . , CN ) =
1

N(κ − 1)

∑

i∈A
||Ci| − κ|, (5)

to illustrate the dynamics of coalition formation. This func-
tion is zero if and only if all agents are inκ-sized coalitions.
Figure 2 shows an execution of the COALITION FORMATION

AND DEPLOYMENT ALGORITHM with 20 agents forming
coalitions of size2. The network converges to both cor-
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Fig. 2. Execution of the COALITION FORMATION AND DEPLOYMENT
ALGORITHM with 20 agents andκ = 2. The network converges to a
configuration where all agents are in correctly-sized coalitions and these
coalitions are optimally deployed.

rectly sized groups and coalitions optimally deployed at
their Voronoi cell’s circumcenters. From Theorem V.1, the
final configuration optimizesHDC,10. Figure 3(a) shows the
number of coalition switches at each timestep for the same
run. Many switches happen early, but decrease in frequency
as agents form correctly sized coalitions. The evolution ofφ
depicted in Figure 3(b) confirms this by showing how agents
join more desirable coalitions over time. Figure 3(b) also
shows the evolution of the objective functionHN,N−1 that,
in the language of Section II-B, corresponds to the situation
where N − 1 of the sensors are working. This choice of
function is motivated by the fact that, in one dimension, it
is known that in such a case, forming coalitions of size2
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Fig. 3. For the execution in Figure 2, (a) shows the number of agents
switching coalitions at each timestep, and (b) shows the evolution of φ
(solid line) as defined in (5) andH20,19 (dashed line) as defined in (1).

is optimal [4]. The bumps in the evolution ofH20,19 in the
plot occur when an agent has no nearby coalitions to join and
increases its radius until it joins a group far away from it.
H20,19 temporarily increases while these agents get together.
Figure 4 illustrates the robustness of the COALITION FOR-
MATION AND DEPLOYMENT ALGORITHM . After agents have
achieved the final optimal configuration seen in Figure 2(b),
we let one agent fail and two new agents come into the
picture. The agents adapt to the new network composition
and optimally deploy according to the available resources.
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Fig. 4. Execution of the COALITION FORMATION AND DEPLOYMENT
ALGORITHM from the configuration in Figure 2(b) where an agent has failed
in the coalition marked as ’o’ and two agents, marked as ’x’, have been
added. After these agent additions and subtractions, coalitions adapt and the
network re-converges to an optimal deployment configuration.

Finally, Figure 5 illustrates the dependency of the average
number of timesteps required for all coalitions to form
on N , κ, and b. Each point is the average of200 runs,
where the agents were initially randomly placed with uniform
distribution in a unit square. The error bars correspond to
plus and minus one standard deviation. Figure 5(a) shows the
average coalition formation convergence time for different N
for cases of fixedκ = 4 and changingκ = ⌊N

2 ⌋. In both
cases, the completion time appears linear inN and each
take a similar amount of time. The latter is corroborated
in Figure 5(b), which shows the average coalition formation
convergence time for fixedN = 20 and varyingκ. The coali-
tion formation time is roughly equal for all desired coalition
sizes, until nearly all agents are joining one coalition, which
takes less time on average. Figure 5(c) shows the average
coalition formation time for20 agents forming coalitions of
size 4 with various values forb. The completion time is
roughly constant for values ofb away from0 and1.



10

10

20

20

30

30

40

40

50

50

60

70

(a)

5

10

10 15

20

20

30

40

50

(b)

20

40

60

80

100

120

140

.2 .4 .6 .8 1

(c)

Fig. 5. (a) shows the average coalition formation time as a function of the number of agentsN , for κ = 4 (dashed line) andκ = ⌊N
2
⌋ (solid line). (b)

shows the average coalition formation time as a function of desired coalition sizeκ for N = 20 agents. (c) shows the average coalition formation time
for 20 agents forming coalitions of size4 as a function ofb. In all plots, the error bars correspond to plus and minus one standard deviation.

VII. C ONCLUSIONS

Motivated by a spatial estimation problem, we have designed
a synchronous, distributed algorithm for a network of robotic
agents to autonomously deploy over a given region in
groups. Our strategy allows agents to autonomously form
coalitions of a desired size, cluster together within finite
time, and asymptotically reach an optimal deployment, each
with probability 1. The algorithm design is a combination
of a hedonic coalition formation game where agents only
have partial information about other coalition memberships
with motion coordination strategies for group clustering and
deployment. The coalition formation game has probabilistic
actions to avoid deadlock situations that may arise when
agents act synchronously. The proposed algorithmic solution
is provably correct, does not rely on a common reference
frame and is robust to agents joining or leaving the envi-
ronment. Simulations have illustrated these features along
with the dependency of the average coalition formation time
on N , κ, andb. Future work will be devoted to analytically
characterizing this time complexity, as well as investigating δ
policies which optimize the coalition formation process. We
also plan to further explore the impact of noncooperative
game-theoretic ideas in other motion coordination problems.
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APPENDIX A
PROPERTIES OFgttg

This appendix contains useful properties ofgttg. Before
stating these, we begin with a basic geometric fact.

Lemma A.1 Givend > 0 andp1, p2, q ∈ R
n, for i ∈ {1, 2},

let p+
i = min{‖q−pi‖, d} vr(q−pi)+pi. Then‖p+

1 −p+
2 ‖ ≤

‖p1 − p2‖.

Lemma A.1 is used in determining how much the circumra-
dius of a coalition decreases and how much they get closer
to the goal pointq after moving according togttg.

Proposition A.2 Given P = (p1, . . . , pk) and q ∈ Q,
let P+ = (p+

1 , . . . , p+
k ) be given byp+

i = gttg(pi, P, q),
i{1, . . . , n}. ThenCR(P+) ≤ CR(P ) − δ1 and

P+ ⊂ B(q, ‖CC(P ) − q‖ + CR(P ) − δ1 − δ2),

with δ1 = maxi∈{1,...,k} min{‖CC(P ) − pi‖, d1(r)} and
δ2 = min{‖q − CC(P )‖, d2(r)}.


