
Optimal leader allocation in UAV formation pairs under no-cost switching

Dean Richert Jorge Cortés

Abstract— This paper considers a group of UAVs that travel
from origin to destination locations. Individual agents can
choose to either fly directly to their destination or pair with
other agents into a leader-follower formation to conserve fuel.
In the latter case, only the follower experiences a cost benefit,
and hence UAVs must negotiate how to fairly allocate the task
of leading. We show that selfish agents cannot reach satisfactory
collaboration agreements, which leads us to propose the notion
of ε-cooperativeness. For this class of UAVs, we introduce the
PARTITION REFINEMENT ALGORITHM to strategically schedule
alternating leading and following intervals that induce cooper-
ation. We show that the proposed strategy is guaranteed to find
leader allocations with the minimum number of leader-follower
switches. Moreover, these allocations are optimal with regards
to the cost that UAVs can attain while collaborating with other
UAVs. Several simulations illustrate our results.

I. INTRODUCTION

We consider a group of robots where agent-to-agent interac-
tions are not necessary, but may be beneficial. Each robot has
an individual task and is only concerned with accomplishing
its task as efficiently as possible. Further, there is a nominal
cost to an agent when it performs the task solo and a lower
cost of performing the task when another robot assists the
agent. We suppose that the cost benefit is only awarded to the
agent that is being assisted. Although there is no immediate
motivation for one robot to assist another, if the assisting
robot has assurance that the other agent will reciprocate in
the future, it may indeed be mutually beneficial for both
agents to cooperate with each other. The degree to which
agents believe the other will reciprocate certainly affects the
amount that one agent is willing to help.
Inspired by the scenario described above, we aim to solve
the following problem: given two agents and a bid from
one, what is the cost that the other agent can expect to
incur if they were to collaborate? Moreover, how can the
task of helping be properly distributed between the agents
to ensure they cooperate? Our prime motivation comes from
UAV formation pairs, where flying in the wake of another
UAV reduces aerodynamic drag and improves fuel economy.
In this setting, leading the formation is costly to an agent
and following is beneficial. A closely related work [1]
considers an algorithm for determining which UAVs should
join in formation given origin and destination locations but
does not address the allocation of the leading task. Other
scenarios where cooperation-inducing task allocation plays
an important role include power scheduling for wireless
networks [2], distributed data processing [3], autonomous
resource transportation, surveillance, and foraging [4].

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, CA 92093, USA,
{drichert,cortes}@ucsd.edu

Literature review. Task allocation as a means to improve in-
dividual and global utilities has been studied extensively [5],
[6], [7]. In particular, [8] motivates the case for flight
formation in UAVs. Recent advances in aircraft control has
made autonomous formation flight viable in real-life scenar-
ios [9], [10]. However, few works consider the behavior of
agents or the task execution once it has been allocated. For
example, [11] studies the emergence of coalitions between
selfish agents, but assumes that once the coalition is formed
the agents act in favor of the common good. If the agents
cannot be trusted to execute their task, [12] shows that
auction algorithms can be compromised in the presence
of “cheaters”. For a particular class of agents, [13] shows
that despite unbalanced relationships, reciprocal altruism can
emerge as a dominated strategy. The fact that the behavior
of agents greatly affects how or whether a task is carried
out has motivated game theorists to offer several notions of
player behavior and study how these affect the outcome [14],
[15], [16]. In this study, the particular notion of equilibrium
and how it relates to the agent behavior plays a key role.
An appropriate choice of equilibrium in one case can cause
significant inefficiencies in another, as illustrated in [17]. The
works [18], [19] discuss ways to remedy these inefficiencies.
Statement of contributions. We start by showing that neither
selfish nor fully cooperative models for agent behavior are
adequate. Selfish robots cannot agree on leader allocations.
Cooperative robots do not realize the goal of performing their
task as efficiently as possible. This leads us to introduce a
behavioral model that we term ε-cooperative, which ensures
collaboration between robots occurs while being consistent
with each robot’s objective. Next, under this model, we
develop the PARTITION REFINEMENT ALGORITHM which
strategically schedules intervals of leading and following for
each UAV so that both agents cooperate. The proposed algo-
rithm generates the minimum number of leader to follower
switches. Finally, we find the optimal cost that an agent
can attain while collaborating with another robot under the
assumption that switching the lead does not incur a fuel
cost. The PARTITION REFINEMENT ALGORITHM is able to
schedule leader allocations so that UAVs are guaranteed to
attain their optimal cost. Several simulations illustrate our
results. For reasons of space, all proofs are omitted and will
appear elsewhere.
Notation. For a, b ∈ Rd, let d(a, b) = ‖a − b‖ denote the
Euclidean distance between a and b. The closed segment
between a, b ∈ Rd is denoted [a, b] and the ray starting at a
in the direction of b−a is ray(a, b−a). Given the Cartesian
product of X ⊂ Rd1 , Y ⊂ Rd2 , let π1 : X × Y ⇒ X and
π2 : X × Y ⇒ Y denote the projections onto X and Y ,

respectively. This definition can be analogously extended to
Cartesian products of multiple spaces. The set of even, odd,
and natural numbers are denoted E, O, and N respectively.
The indicator function of A ⊂ Y , denoted 1A : Y → {0, 1},
is given by 1A(y) = 1 if y ∈ A, and 1A(y) = 0 otherwise.
The positive part of x ∈ R is denoted by x+ = max{0, x}.
Finally, the cardinality of a set A is given by |A|.

II. PROBLEM STATEMENT

Consider a pair of UAVs, each with unique identifiers (UIDs)
i and j evolving in X ⊂ R3. We assume that i and j have
synchronized clocks and can communicate with each other.
A superscript i denotes a quantity associated with agent i.
Thus, the position of UAV i is denoted by xi. Each agent
has an origin, a target location, and an objective which is to
arrive at its target location while consuming the least amount
of fuel. A UAV’s fuel consumption can be reduced by flying
in formation in the wake of another UAV (e.g. reducing
aerodynamic drag during flight). The energy consumption
per unit distance of following in formation is γ ∈ R>0,
whereas flying solo or leading in a formation incurs a fuel
consumption of Γ ∈ R>0. By assumption, Γ > γ.

A. Formations and partitions

A formation is a pair (xr, uh) ∈ X2, where xr is a
rendezvous location and the unit vector uh is the heading
direction of the formation. When we say that i and j are in
formation, we mean that they originated at xr, the distance
between them is effectively zero and they are flying in the
direction of uh.
The execution of a formation (xr, uh) is completely de-
scribed by a partition and the UID of the UAV which leads
the formation first (without loss of generality, from here on
UAV i leads the formation first). A partition is a finite tuple
P = (x1, x2, . . . , xn) ∈ ray(xr, uh) satisfying,

xr = x1, d(xp, xp+1) ≥ δ, xp ∈ (xp−1, xp+1),

for 2 ≤ p < n − 1. The components of P denote when the
two UAVs in formation initiate a swap in the lead (except for
x1 = xr, the rendezvous location, and xn, the location where
the UAVs break formation and fly directly to their targets).
The parameter δ ≥ 0 is called the distance to switch and
represents the distance required for i and j to switch from
leading to following (resp. following to leading). During a
switch, both UAVs consume Γδ ≥ Γ fuel per unit distance.
As such, the cost of switching the lead is δΓδ to both i and j.
For the sake of our model, we use δ = δΓδ = 0 to represent
instantaneous switching with no cost.
We use P(xr, uh) to refer to the set of all partitions of a
formation. When clear from the context, we simply use P .
The trivial partition is P = (xr), where the UAVs fly directly
to their target locations from xr. For brevity, the function
xb : P → ray(xr, uh) returns the breakaway location of the
UAVs given a partition. That is, xb(P) = π|P |(P).
Figure 1 shows the execution of a formation given a partition
as well as the process of UAVs transitioning from following
to leading (resp. leading to following).

We conclude this subsection with the definition of two
functions that will be used subsequently in this paper. Given
a partition and position x ∈ ray(xr, uh), let LS : P ×
ray(xr, uh) → ray(xr, uh) return the location when the last
switch was initiated before x Precisely,

LS(P, x) =
|P |−1∑
p=1

xp1[xp,xp+1)(x).

Also, let N (P, x) =
∣∣P ∩ (xr, x]

∣∣ be the number of switches
that have been initiated up until x.

B. Objective function

At any point x ∈ [xr, xb(P)], a UAV can compute the cost
of the flight from xr to its target if the UAV were to leave
the formation at position x. For i, we represent this cost as
J i

eff : P × ray(xr, uh) → R>0. An analogous function Jj
eff

exists for j. The function J i
eff can be expressed as,

J i
eff(P, x) = Γ DLi(P, x) + Γδ DS(P, x)

+ γ DFi(P, x) + Γd(x, x̄i), (1)

where DLi(P, x) is the distance that i has led the formation
up until x, DFi(P, x) is the distance that i has followed in
the formation up until x, DS(P, x) is the distance that i has
traveled while switching from leader to follower (and vice
versa) up until x, and Γd(x, x̄i) is the fuel required to fly
directly to the target x̄i should i decide to break the formation
at x. Then, for P = (xr, x2, x3, . . .),

DLi(P, x) = min
{
d(xr, x), d(xr, x2)

}
+

N (P,x)∑
p=3
p odd

(
d(xp, xp+1)− δ

)
+

(
d
(
LS(P, x), x

)
− δ

)
+

1E\{0}
(
N (P, x)

)
. (2)

The first term accounts for the case when x ∈ [xr, x2], the
second term is the distance led by i up until LS(P, x), and
the last term is any residual distance led by i after LS(P, x).
The distance traveled due to switching the lead is,

DS(P, x) =δN (P, x)−
(
δ − d

(
LS(P, x), x

))
+

,

where the first term is the distance associated with all
switches that have been initiated and the last term makes
up for the case that i and j are in the process of switching
at x. Finally, we use the relation,

d(xr, x) = DFi(P, x) + DS(P, x) + DLi(P, x), (3)

to define DFi. Although an expression like (2) can be
invoked to define DFi, we use (3) to emphasize the fact
that in a formation, a UAV is either leading the formation,
following in the formation, or in the process of switching.

x̄
j

x̄
i

x1
x2

x3

x4

(a) Red begins leading the formation

x̄
j

x̄
i

x1
x2

x3

x4

(b) A leader switch is initiated at x2

{

x̄
j

x̄
i

δ

x1
x2

x3

x4

(c) δ distance past x2, blue leads the formation

Fig. 1. Example flight behavior of UAVs given a partition P = (x1, x2, x3, x4). The dashed lines represent the proposed flight paths. Upon arrival at
the rendezvous location, the red UAV leads the formation. At x2, the two UAVs deviate slightly from their current heading while the red UAV decreases
its speed and the blue UAV increases its speed. The new speeds are maintained for a distance δ, after which the UAVs return to the original heading and
speed of the formation. Upon completion of the maneuver, the red UAV is now following in the formation and the blue UAV is leading it. There will be
one more leader switch initiated at x3 before the formation is over at x4. Beyond x4, the UAVs fly directly to their respective targets.

C. Problem statement

Suppose that UAV i has notified j that it wishes to consume
F i ∈ R>0 fuel on its flight from xr to x̄i. Then, j would
like to solve the following program,

minimize
P∈P

Jj
eff(P, xb(P)) (4a)

subject to F i = J i
eff(P, xb(P)). (4b)

Implicit in (4) is the assumption that j can trust i to lead the
formation when a partition dictates. In Section III, we discuss
behavioral models of UAVs that can be used to determine
whether or not UAVs will abide by a partition. Under
this model, section IV proposes an algorithm for creating
partitions that ensure UAVs will cooperate. The results of
these sections are combined in Section V to solve (4).

III. BEHAVIOR OF UAVS IN A FORMATION

We now discuss an appropriate model for the behavior
of UAVs which can be used to analyze whether or not
UAVs will abide by a partition. As motivation, consider the
behavioral models we call cooperative and selfish.

Definition III.1 (cooperative and selfish agents). Consider
any formation (xr, uh) between i and j, partitioned by any
P ∈ P(xr, uh). UAV i is cooperative if it will abide by P .
UAV i is selfish if it will abide by P if and only if P satisfies

J i
eff(P, xb(P)) ≤ J i

eff(P, x), ∀x ∈ [xr, xb(P)].

A network of cooperative UAVs is not an appropriate model
for UAVs who have an objective of consuming the least
amount of fuel. We can see this from the following example.

Example III.2 (cooperative agents). Given a partition P =
(xr, x2, x3) of the formation (xr, uh) between i and j,

Jj
eff(P, x3) = γd(xr, x2) + δΓδ

+ Γ(d(x2, x3)− δ) + Γd(x3, x̄
j)

> γd(xr, x2) + Γd(x2, x̄
j) = Jj

eff(P, x2).

where we have used the triangle inequality. Thus, j would
do better (potentially, much better) to break the formation at
x2. As a result, a UAV being cooperative is at odds with the
objective of consuming the least amount of fuel. •

The other end of the spectrum is no better as we show next.

Lemma III.3 (all UAVs cannot be selfish). Consider a
formation (xr, uh) between two selfish UAVs. If {x̄i, x̄j} ∩
ray(xr, uh) = ∅, the only partition the two UAVs will abide
by is the trivial one, P = (xr).

The reader may recognize similarities between the above
result and the repeated Prisoner’s Dilemma game in which
the Nash equilibrium is to defect at every stage [15]. Such
an example is a testament to the inefficiency of the Nash
equilibrium in some cases. The discussion above motivates
the introduction of the concept of ε-cooperative.

Definition III.4 (ε-cooperative) Consider any formation
(xr, uh) between i and j, partitioned according to any
P ∈ P(xr, uh). UAV i is ε-cooperative for some ε ≥ 0
if it will abide by P if and only if P satisfies,

J i
eff(P, xb(P)) ≤ J i

eff(P, x) + ε, ∀x ∈ [xr, xb(P)].

In other words, an ε-cooperative UAV will abide by a
partition so long as there is no point in the formation where
its effective cost is ε less than the final effective cost it will
get upon completion of the formation (using this model, one
can model selfish behavior as 0-cooperative and cooperative
behavior as ∞-cooperative). Note that marginal cost pricing
and Pigouvian taxes [15] achieve the same desired result
as ε-cooperative does. However, we prefer this formulation
because it places an emphasis on the UAV behavior rather
than a “tax” applied as a negative externality which has a
less meaningful interpretation in the context of this problem.
We refer to the set of partitions that both UAVs will abide
by as cooperation-inducing. Formally,

Pc(εi, εj) = {P ∈ P : J i
eff(P, xb(P)) ≤ J i

eff(P, x) + εi,

Jj
eff(P, xb(P)) ≤ Jj

eff(P, x) + εj ,

for all x ∈ [xr, xb(P)]}.

In words, if i and j are εi-cooperative and εj-cooperative
respectively, then both i and j will abide by P ∈ Pc(εi, εj).
When clear from the context, we simply write Pc. The
problem we want to solve can be reformulated as

minimize
P∈Pc(εi,εj)

Jj
eff(P, xb(P)) (5a)

subject to F i = J i
eff(P, xb(P)) (5b)

where we restrict P ∈ Pc ⊂ P .

IV. BUILDING COOPERATION-INDUCING PARTITIONS

As an intermediate step in solving the optimization prob-
lem (5), here we provide a strategy termed the PARTITION
REFINEMENT ALGORITHM to construct partitions that induce
cooperation, P ∈ Pc(εi, εj), and also satisfy,

J i
eff(P, xb(P)) = F i, (6a)

Jj
eff(P, xb(P)) = F j , (6b)

when given input data D = (xr, uh, x̄i, x̄j , εi, εj , F i, F j).
Once equipped with this strategy, we show how solving (5)
boils down to finding its optimal value. We refer to data D for
which a partition in Pc exists satisfying (6) admissible. The
set of all admissible data is denoted by Da. It is interesting
to note that partitions in Pc satisfying (6) might specify
different numbers of leader switches. Even for the same
number of leader switches, different partitions might exist
because of the flexibility of the constraints that define Pc.
Section IV-A introduces a procedure to create partitions, not
necessarily in Pc, that satisfy (6). Then, Section IV-B builds
on this procedure to propose the PARTITION REFINEMENT
ALGORITHM that finds a partition in Pc. Finally, Section IV-
C analyzes the properties of our strategy.

A. Creating partitions with known costs

First, we discuss a method for creating partitions in P
satisfying (6). The method we employ is captured by the
function CP : Da×N → P2 which uses admissible data and
the desired number of leader switches to return two partitions
in P satisfying (6) (the reason we are interested in two will
be made clear later).
Our reasoning is as follows. Before trying to construct the
desired partition, we need to determine the total leading
distances of each UAV along the formation. Once this is
synthesized, we build partitions that correspond to them. Let
us then begin by reformulating the effective cost functions
in terms of the distances led by each one of the UAVs. Let
f i, f j : R2

>0 → R be defined by,

f i(µ, ν :D, N) = Γµ + (N − 2)δΓδ + γν

+ Γd
(
xr + (µ + (N − 2)δ + ν)uh, x̄i

)
,

f j(µ, ν :D, N) = γµ + (N − 2)δΓδ + Γν

+ Γd(xr + (µ + (N − 2)δ + ν)uh, x̄j).

The above definitions are motivated by the following fact: If
a partition P satisfies,

DLi(P, xb(P)) = µ, DLj(P, xb(P)) = ν,

and DS(P, xb(P)) = Nδ, then f i corresponds to
J i

eff(P, xb(P)). Thus, to ensure (6), we are interested in the
solutions to the system of equations,

f i(µ, ν : D, N) = F i, (7a)

f j(µ, ν : D, N) = F j . (7b)

Lemma IV.1 (two possible breakaway locations). Given
D ∈ Da and N ∈ N, there exist two and only two solutions
to (7).

It is now clear why CP must create two partitions; a
partition corresponding to each solution of (7). Denote
the two solutions to (7) as (µ1(D, N), ν1(D, N)) and
(µ2(D, N), ν2(D, N)). Here, we choose one method to cre-
ate the desired partitions. Let (x1, . . . , xN) = CP1(D, N) ⊂
ray(xr, uh) be given by x1 = xr, and

x2 = x1 + µ1(D, N)uh,

x3 = x2 + (ν1(D, N) + δ)uh,

and d(xn, xn+1) = δ for 3 ≤ n ≤ N − 1. That is,
we schedule i and j to lead their respective segments at
the beginning, placing the remaining leader switches at the
end of the formation. An analogous CP2 is defined using
(µ2(D, N), ν2(D, N)). Note that the solutions to (7) may
not be different. In this case, CP1(D, N) = CP2(D, N).

B. The PARTITION REFINEMENT ALGORITHM

Here, we design an algorithm to refine the initial partitions
of CP, creating a partition which induces cooperation. We
begin with a high-level description.

[Informal description]: Find initial partitions with
one leader switch using CP. If either partition
induces cooperation, terminate. Otherwise, find
two partitions with an additional leader switch us-
ing CP. While maintaining (6), strategically refine
the elements of the partitions. If cooperation can
be induced, the algorithm terminates. Otherwise,
repeat the process of finding two partitions with
an additional leader switch using CP.

We refer to this strategy as the PARTITION REFINEMENT
ALGORITHM and formally describe it as Algorithm 1.

Algorithm 1: PARTITION REFINEMENT ALGORITHM

input : D ∈ Da

output: P

1 N := 3
2 repeat
3 foreach m ∈ {1, 2} do
4 P := (x1, . . . , xN) = CPm(D, N) %initialize
5 for n = 1, . . . , N − 3 do % refine elements

6 xn+2 := xn+3−(Lmax(P, n)+δ(1−n)+)uh

7 xn+1 := xn + (Lmax(P, n) + δ(1− n)+)uh

8 if P ∈ Pc then terminate
9 end

10 end
11 N := N + 1 % try additional switch

12 end

In what follows we discuss the algorithm’s execution and
motivate its design. Because the initializations CP1,CP2

ensure that (6) is satisfied, the trick is to move the elements
of the partitions while maintaining (6). To this end, we
propose moving the elements of the initial partition in pairs.
That is, if we move xn+1 for a certain distance, we make
sure to move xn+2 the same distance (see lines 6-7). Thus,

80

85

90

95

100

Formationxr xb(P)

E
ff
ec

ti
v
e

C
o
st

|P | =3

(a) Red UAV will not cooperate.

80

85

90

95

100

Formationxr xb(P)

E
ff
ec

ti
v
e

C
o
st

|P | =4

(b) Blue UAV will not cooperate.

80

85

90

95

100

Formationxr xb(P)

E
ff
ec

ti
v
e

C
o
st

|P | =5

(c) Both UAVs will cooperate.

Fig. 2. Partitions obtained during the execution of the PARTITION REFINEMENT ALGORITHM as the number of leader switches increase. Input to the
algorithm is D = ((0, 0), (1, 0), (100, 10), (90,−20), 0.2, 0.3, 80, 90) with parameters Γ = 1, γ = 0.5, Γδ = 1.7, δ = 0.2. The thin blue solid line is
F i = Ji

eff(P, xb(P)) and the thin dotted blue line is F i − εi. A UAV’s effective cost transitions from increasing to decreasing at leader switch locations.
A close observation at the switch locations shows the cost associated with switching the lead. If a UAV’s cost drops below its dotted line, it will not
cooperate. For |P | = 5, the last switch occurs just before the breakaway location, which is all that is needed to ensure cooperation compared to |P | = 4.

the distances led/followed/switched remain constant for both
UAVs. Our algorithm starts at the rendezvous location xr

and computes the maximum lead distance of UAVs, given by
Lmax : P × N → R. This function is described in general
as follows. Suppose i is scheduled to lead on a segment
[xn+δuh, xn+1]. Then Lmax(P, n) is the maximum distance
that i could lead without j’s effective cost falling below the
threshold F j − εj . Defined implicitly, for n ≥ 3 odd,

F j − εj = Jj
eff(P, xn + δuh)− Γd(xn + δuh, x̄j)

+ γLmax(P, n) + Γd(xn + (Lmax(P, n) + δ)uh, x̄j).

An analogous expression for Lmax exists when n ≥ 2 is
even by replacing superscripts j with i. Finally, for n = 1,

F j − εj = γLmax(P, 1) + Γd(xr + Lmax(P, 1)uh, x̄j).

We would like to move xn+1 to xn + (Lmax(P, n) + δ)uh

while maintaining (6). Thus we also move xn+2 to preserve
the original distance between xn+1 and xn+2 (lines 6-7).
The process continues by computing these maximum lead
distances for subsequent switch points (line 5). If at any
time the partition is in Pc, the algorithm terminates (line 8).
Otherwise, we increase the number of leader switches in the
partition and repeat (line 11). The terminating criteria for
PARTITION REFINEMENT ALGORITHM is P ∈ Pc.

Remark IV.2 (Execution of the PARTITION REFINEMENT
ALGORITHM under no-cost switching). For instantaneous
leader switching (δ = δΓδ = 0), there is a noteworthy
simplification to the PARTITION REFINEMENT ALGORITHM.
In this case, the solutions to (7) are the same every time
CP1,CP2 are invoked (i.e., the breakaway locations remain
constant). Thus, each computation of Lmax (lines 6-7) up
until the second last switch are a repetition of past maximum
lead distances computations. Saving these values for later use
makes the “loop” of lines 5-9 a single calculation. •

Figure 2 shows simulation results of the algorithm in use.
Increasing the number of switches from 1 to 3 allows for a
partition that induces cooperation to be found.

C. Algorithm analysis

Here we analyze the properties of the PARTITION REFINE-
MENT ALGORITHM regarding termination and computation
rounds. We use round to refer to every time the algorithm
executes line 8 (we use this line as an indicator flag, not
because it is of particular computational complexity).

Proposition IV.3 (Algorithm terminates given admissible
data). For input D, the PARTITION REFINEMENT ALGO-
RITHM terminates with P ∈ Pc satisfying (6) iff D ∈
Da. Moreover, |P | = #s(D), where #s(D) is the mini-
mum number of switches specified by any partition in Pc

satisfying (6). The number of rounds upon termination of
the PARTITION REFINEMENT ALGORITHM is less than or
equal to, (

#s(D)− 2
)(

#s(D)− 1) if δ > 0,
2(#s(D)− 2) if δ = 0.

The above results are relevant both from a practical and a
computational viewpoint. In particular, the resulting partition
will ensure that UAVs do not switch the lead more than
strictly necessary. Moreover, the computation of the partition
requires a number of steps that is proportional its cardinality
squared. Of key importance, the algorithm’s termination
property given admissible data reduces the problem of solv-
ing (5) to finding its optimal value, which is addressed next.

V. OPTIMAL PARTITIONS

The last step towards fully solving (5) is determining its
optimal value. We use P∗ to denote a solution of (5) with
optimal value F j

∗ = Jj
eff(P∗, xb(P∗)). As a candidate lower

bound on F j
∗ , we look to (4) for inspiration. To this end, the

following result is particularly powerful.

Proposition V.1 (Optimal value under no-cost switching).
Given (xr, uh, x̄i, x̄j , εi, εj , F i), let U∗ (resp. F j

∗) be the
optimal value of (4) (resp. (5)). If max{εi, εj} > 0 and
δ = 0 then F j

∗ = U∗. Otherwise, F j
∗ ≥ U∗.

For the no-cost switching case, it remains to specify how to
solve (4). The following result reveals that the optimal value
of (4) is obtained from the solution of a convex program.

Lemma V.2 Given (xr, uh, x̄i, x̄j , εi, εj , F i), let U∗ be the
optimal value of (4). Then U∗ is also the optimal value of
the following convex program,

minimize
∆∈R≥0

(Γ+γ)∆ + δΓδ + Γd(xr + (∆ + δ)uh, x̄i)

+ Γd(xr + (∆ + δ)uh, x̄j)− F i.

80

85

90

95

100

Formationxr xb(P)

E
ff
ec

ti
v
e

C
o
st

|P | = 9

(a) Partition attaining red’s optimal cost.

0 20 40 60 80 100

−20

−10

0

10

xr xb(P)

x̄
i

x̄
j

(b) Resulting flight paths of UAVs under the optimal partition.

Fig. 3. An optimal partition solving (5). The input and parameters to the
PARTITION REFINEMENT ALGORITHM are the same as in Figure 2 except
δ = 0, εi = εj = 0.05 and F j = F j

∗ . The small values of εi, εj show
the ability of our algorithm to induce cooperation even when the UAVs are
nearly selfish. With small εi and εj , many leader switches are needed to
induce cooperation, with higher frequency near xb(P).

Combining Proposition V.1 and Lemma V.2, Figure 3 shows
simulation results of the PARTITION REFINEMENT ALGO-
RITHM creating a solution to (5) under no-cost switching.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the problem of optimally allocating the
leader role of UAV pairs flying in formation in order to
guarantee a fuel benefit. Each UAV could choose to fly solo
or in formation with another UAV. In formation, different
costs are associated with “leading”, “following”, or switching
between these two states. We introduced the notion of ε-
cooperative UAVs and showed that it results in the successful
collaboration of agents. We designed the PARTITION REFINE-
MENT ALGORITHM to schedule alternating leading intervals
for each UAV in the formation. The proposed strategy is
guaranteed to find an allocation of the leading task with the
minimum number of leader-follower switches. Additionally,
the resulting allocation is optimal with regards to flying cost

when switching the lead does not incur a fuel cost. Future
work will include exploring the optimality of our strategy
in the cost-of-switching case and its extension to higher-
dimensional formations involving more than two agents. We
view the PARTITION REFINEMENT ALGORITHM as a building
block for more complex scenarios where a network of agents
bargain with different offers about the possibility of jointly
performing a task. We plan to explore the convergence of
the resulting bargaining dynamics as agents try to determine
which other agent is the best to collaborate with.

ACKNOWLEDGMENTS

This research was supported by NSF award CMMI-0908508.

REFERENCES

[1] G. Ribichini and E. Frazzoli, “Efficient coordination of multiple-
aircraft systems,” in IEEE Conf. on Decision and Control, (Maui,
Hawaii), pp. 1035–1040, 2003.

[2] M. Nokleby, A. L. Swindlehurst, Y. Rong, and Y. Hua, “Cooperative
power scheduling for wireless MIMO networks,” in IEEE Global
Telecommunications Conference, (Washington, D.C.), pp. 2982–2986,
nov 2007.

[3] W. W. Chu, L. J. Holloway, L. Min-Tsung, and K. Efe, “Task allocation
in distributed data processing,” IEEE Transactions on Computers,
vol. 13, pp. 57–69, November 1980.

[4] M. A. Batalin and G. S. Sukhatme, “Coverage, exploration and
deployment by a mobile robot and communication network,” Telecom-
munication Systems Journal, vol. 26, no. 2, pp. 181–196, 2004. Special
Issue on Wireless Sensor Networks.

[5] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[6] P. R. Ma, E. Y. S. Lee, and M. Tsuchiya, “A task allocation model
for distributed computing,” IEEE Transactions on Computers, vol. 31,
pp. 41–47, January 1982.

[7] E. H. Ostergaard, M. J. Mataric, and G. S. Sukhatme, “Distributed
multi-robot task allocation for emergency handling,” in IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems, (Maui, HI), pp. 821–826,
October 2001.

[8] D. Hummel, “Aerodynamic aspects of formation flight in birds,”
Journal of Theoretical Biology, vol. 104, pp. 321–347, October 1983.

[9] F. Giulietti, L. Pollini, and M. Innocenti, “Autonomous formation
flight,” IEEE Control Systems Magazine, vol. 20, pp. 34–44, December
2000.

[10] F. Borrelli, T. Keviczky, and G. J. Balas, “Collision-free UAV forma-
tion flight using decentralized optimization and invariant sets,” in IEEE
Conf. on Decision and Control, (Atlantis, Paradise Island, Bahamas),
pp. 1099–1104, December 2004.

[11] O. Shehory and S. Kraus, “Methods for task allocation via agent
coalition formation,” Artificial Intelligence, vol. 101, pp. 165–200,
1998.

[12] M. H. Rothkopf, “Thirteen reasons why the Vickrey-Clarke-Groves
process is not practical,” Operations Research, vol. 55, pp. 191–197,
March-April 2007.

[13] R. D. Morton, G. A. Bekey, and C. M. Clark, “Altruistic task allocation
despite unbalanced relationships within multi-robot communities,” in
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, (St. Louis,
USA), pp. 5849–5854, October 2009.

[14] L. Samuelson, Evolutionary Games and Equilibrium Selection. MIT
Press, 1997.

[15] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory. Cambridge University Press, 2007.

[16] C. F. Camerer, Behavioral Game Theory: Experiments in Strategic
Interaction. Princeton University Press, 2003.

[17] J. R. Correa, A. S. Schulz, and N. E. Stier-Moses, “On the inefficiency
of equilibria in congestion games,” in Integer Programming and
Combinatorial Optimization, vol. 3509 of Lecture Notes in Computer
Science, pp. 171–177, New York: Springer, 2005.

[18] W. J. Baumol, “On taxation and the control of externalities,” The
American Economic Review, vol. 62, pp. 307–322, June 1972.

[19] T. Groves, “Incentives in teams,” Econometrica, vol. 41, pp. 617–631,
July 1973.

