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Abstract

This paper studies the problem of simultaneous input and state estimation (SISE) for nonlinear dynamical systems with
and without direct input-output feedthrough. We take a Bayesian perspective to develop a sequential joint input and state
estimation approach. Our scheme gives rise to a nonlinear Maximum a Posteriori optimization problem, which we solve using
a classical Gauss-Newton method. The proposed approach generalizes a number of SISE methods presented in the literature.
We illustrate the effectiveness of the proposed scheme for nonlinear systems with direct feedthrough in an oceanographic flow
field estimation problem involving submersible buoys that measure position intermittently and acceleration continuously.
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1 Introduction

This paper deals with the problem of nonlinear simul-
taneous input and state estimation (NL-SISE), which is
concerned with simultaneously and sequentially estimat-
ing the unknown inputs and states of a nonlinear system
from only the output measurements. Our motivation for
this work comes from oceanographic applications where
a group of submersible drogues are deployed to acquire
data to reconstruct the three-dimensional flow field in a
region of the ocean. The unknown ocean flows act as ex-
ternal inputs in the dynamic model of the drogue. Hence,
the aim is to reconstruct the flow velocities (inputs) and
the drogues’ trajectories and velocities (states) given
their position and acceleration measurements.

Literature review: The broad range of applications of
simultaneous input and state estimation (SISE) in ar-
eas such as disturbance rejection, weather forecasting,
and oceanography has stimulated continued research
interest in this topic during the past decades. Early
work in (Friedland, 1969) studies state estimation with
unknown inputs which are modeled by stochastic pro-
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cesses with known wide-sense description (e.g., mean
and covariance). Kitanidis (1987) employs minimum
variance unbiased estimation (MVUE) to deal with the
scenario of completely unknown inputs. Based on (Ki-
tanidis, 1987), recent MVUE-based works (Darouach
and Zasadzinski, 1997; Cheng et al., 2009) establish
the conditions for the existence of unbiased estimators
and the stability of the filters developed therein. In
the above mentioned works, only the state estimation
is conducted, leaving the unknown input estimation
untackled. As input information is often as important
as state information, SISE puts the emphasis on joint
estimation of both. A majority of works consider linear
discrete-time dynamical systems. An early contribution
in this respect is (Mendel, 1977), in which a Kalman
filter (KF) based approach is developed to estimate the
states and white noises disturbances of a linear system,
with the assumption of known noise covariance. Most
current works treat the case of completely unknown in-
puts and build on existing state estimation techniques.
Among them, we highlight KF (Hsieh, 2000, 2010,
2011), moving horizon estimation (MHE) (Pina and
Botto, 2006), H∞-filtering (You et al., 2008), sliding
mode observers (Floquet et al., 2007), andMVUE (Gilli-
jns and De Moor, 2007a,b). The MVUE-based filters
in (Gillijns and De Moor, 2007a,b) are optimal among
all linear unbiased state and input estimators in the
sense of minimum mean square error. SISE for non-
linear systems is more challenging. As is well known,
the extended KF (EKF) for nonlinear systems proceeds
by linearizing about the current state estimate and us-
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ing the KF on the resulting system. However, such a
linearization based technique is not truly useful in ex-
tending the Gillijns-De Moor’s algorithms to nonlinear
systems, because unknown inputs make it futile to lin-
earize nonlinear functions where the state and input are
coupled. Among the few results in the literature that
study NL-SISE, we highlight (Corless and Tu, 1998; Ha
and Trinh, 2004) on a special class of nonlinear systems
that consists of a nominally linear part and a nonlin-
ear part: the former work regards the nonlinear term
as unknown state-dependent input to estimate, while
the latter considers a Lipschitz nonlinear function with
respect to both state and input.

Statement of contributions: The contributions of this
paper are three-fold. First, a Bayesian framework is
developed to deal with SISE. Our treatment extends
the Bayesian approach employed in various other works
for state and parameter estimation to jointly estimate
the inputs and the states. Second, the NL-SISE-wDF
algorithm and the NL-SISE-w/oDF algorithm are pro-
posed within the Bayesian framework for nonlinear sys-
tems with and without direct input-output feedthrough,
with the observation that research relevant to NL-SISE
is still insufficient to date. Third, this paper combines
theoretical studies and the application of oceanic flow
field reconstruction. The proposed algorithms, as de-
manded by the application, have advantages in concep-
tual simplicity and practical effectiveness, and maintain
a good balance between estimation performance and
computational complexities.

2 Bayesian Paradigm for Nonlinear Systems
with Direct Feedthrough

We consider nonlinear systems with direct feedthrough
of the form

{
xk+1 = f(uk,xk) +wk,

yk = h(uk,xk) + vk,
(1)

where u ∈ R
m is the input vector, x ∈ R

n is the state
vector, y ∈ R

p is measurement vector, and w ∈ R
n

and v ∈ R
m are mutually independent zero-mean white

Gaussian noise sequences, with covariances Qk and Rk,
respectively. The mappings f : Rm × R

n → R
n and h :

R
m×R

n → R
p are the state transition andmeasurement

functions, respectively, which is assumed to be C1. We
also assume ∇uh has full rank. For the above system,
our objective is to design a NL-SISE filter to estimate uk

and xk from the measurement set Yk = {y1,y2, · · · ,yk}
for each k.

Bayesian statistics have historically provided a frame-
work for developing estimation schemes such as the
classical KF and particle filters (Candy, 2009). A
Bayesian estimator proceeds by estimating the prob-
ability density functions (pdf’s) of unknown variables

conditioned on available measurements. The goal in this
section is to sequentially compute p(uk,xk|Yk) from
p(uk−1,xk−1|Yk−1). Like in Bayesian state estimation,
this can also be accomplished in a two-step procedure
of prediction and update.

Prediction is to determine p(xk|Yk−1). By the Chapman-
Kolmogorov equation (Honerkamp, 1993), we have

p(xk|Yk−1) =

∫∫

p(xk|uk−1,xk−1,Yk−1)

· p(uk−1,xk−1|Yk−1)duk−1dxk−1.

We have p(xk|uk−1,xk−1,Yk−1) = p(xk|uk−1,xk−1),
since xk depends on uk−1 and xk−1, as the state equa-
tion in (1) is Markovian with order one. Hence, it follows
that

p(xk|Yk−1) =

∫∫

p(xk|uk−1,xk−1)

· p(uk−1,xk−1|Yk−1)duk−1dxk−1, (2)

where p(xk|uk−1,xk−1) can be determined via (1).

At time instant k, the measurement yk can be used to
update p(xk|Yk−1) and, at the same time, to jointly
estimate the conditional pdf of uk (since it is the first
measurement containing information about uk) via
p(uk,xk|Yk). To proceed, we make the following as-
sumption:

(A1) {uk} is a white process, independent of x0, {wk}
and {vk}.

Here, ‘white’ means that uk and ul are independent ran-
dom variables for k 6= l. Such a whiteness assumption is
inspired by (Robinson, 1957), which has been a founda-
tion for many seismic data processing algorithms. The
intuitions underlying it are: (1) uk, completely unknown
to us, may assume all possible values; (2) from the knowl-
edge of uk we cannot predict ul for k 6= l. A similar
treatment of {uk} as a stochastic process is proposed
in (Friedland, 1969), yet with its wide-sense description
assumed known. By (A1), uk is independent of xk and
Yk−1 (Gut, 2005, Theorem 10.4, pp. 71).

Using the Bayes’ rule repeatedly, we obtain

p(uk,xk|Yk) =
p(yk|uk,xk,Yk−1)p(uk,xk|Yk−1)

p(yk|Yk−1)
.

Note that p(yk|uk,xk,Yk−1) = p(yk|uk,xk) due to the
fact that yk entirely depends on uk and xk, and that
p(uk,xk|Yk−1) = p(xk|Yk−1)p(uk) as a result of uk’s
independence from xk and Yk−1. Consequently,

p(uk,xk|Yk) =
p(yk|uk,xk)p(xk|Yk−1)p(uk)

p(yk|Yk−1)
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It is seen that p(uk)/p(yk|Yk−1) plays the role of a pro-
portionality coefficient because

p(uk)

p(yk|Yk−1)
=

1
∫∫

p(yk|uk,xk)p(xk|Yk−1)dukdxk

.

Thus we have

p(uk,xk|Yk) ∝ p(yk|uk,xk)p(xk|Yk−1), (3)

where p(yk|uk,xk) can be determined from the output
equation in (1), and p(xk|Yk−1) is obtained in the pre-
diction procedure (2).

Sequentially updating (2) and (3) not only provides
the Bayesian solution to SISE in the presence of direct
feedthrough, but also yields a statistical framework,
within which different SISE methods can be developed.
Our next step is to derive the NL-SISE-wDF algorithm
using MAP by virtue of (2) and (3).

3 NL-SISE Algorithm for Nonlinear Systems
with Direct Feedthrough

This section develops the NL-SISE-wDF algorithm for
nonlinear systems with direct feedthrough. We begin
with some multivariate Gaussian distribution assump-
tions and then proceed to describe the prediction and
update steps of our scheme developed in the context of
the Bayesian paradigm of Section 2.

3.1 Assumptions

We make the following assumptions:

(A2) p(uk,xk|Yk) ∼ N

([

ûk

x̂+
k

]

,

[

Pu

k Pux

k

(Pux

k )⊤ Px+
k

])

,

(A3) p(yk|uk,xk) ∼ N (h(uk,xk),Rk),

(A4) p(xk|Yk−1) ∼ N
(
x̂−

k ,P
x−

k

)
,

where ûk is the estimate of uk given Yk with associated
covariance Pu

k , x̂
−

k and x̂+
k are the estimates of xk given

Yk−1 and Yk with covariances Px−

k and Px+
k , respec-

tively.

Ideally, if knowledge of p(uk,xk|Yk) is available for each
k, ûk and x̂+

k can be simply obtained by MAP or condi-
tional mean calculation. However, it is often intractable
to compute p(uk,xk|Yk) accurately for nonlinear sys-
tems. In order to overcome the problem, (A2)-(A4) are
made to approximately describe the pdf’s, thus paving
the way for development of a sequentially updating NL-
SISE algorithm from the Bayesian paradigm. Gaussian-
ity assumptions analogous to (A2)-(A4) are commonly

held in estimation algorithms for nonlinear systems,
e.g., (Anderson and Moore, 1979; Bell and Cathey,
1993; Spinello and Stilwell, 2010).

3.2 Prediction Step

To develop the state prediction procedure, let us use (2).
Define

x̂−

k = argmax
xk

p(xk|Yk−1). (4)

Consider the first-order Taylor series expansion of
f(uk,xk) around (ûk, x̂

+
k )

f(uk,xk) ≈ f(ûk, x̂
+
k ) +∇f(ûk, x̂

+
k )

[

uk − ûk

xk − x̂+
k

]

, (5)

where ∇f =
[

∇uf ∇xf

]

. Then by (A2), (2) and (5), the

solution to (4) is given by

x̂−

k = f(ûk−1, x̂
+
k−1), (6)

with associated prediction error covariance Px−

k given
by

Pk ≈ ∇f(ûk−1, x̂
+
k−1)

[

Pu

k−1 Pux

k−1

(Pux

k−1)
⊤ Px+

k−1

]

· ∇f⊤(ûk−1, x̂
+
k−1) +Qk−1. (7)

The equations (6) and (7) constitute the prediction for-
mulae together, computing the state predicts and pre-
diction error covariances, respectively. The computation
at time instant k utilizes only ûk−1 and x̂+

k−1, thus cut-
ting down on storage of past data to relieve the compu-
tational burden.

3.3 Update Step

Define [

ûk

x̂+
k

]

= arg max
uk,xk

p(uk,xk|Yk). (8)

The approach used in (Bell and Cathey, 1993; Spinello
and Stilwell, 2010) can be modified to address the above
maximization problem to obtain ûk and x̂+

k , by apply-
ing the Gauss-Newton method to approximate the MAP
estimates.

Referring to (3) and (A3)-(A4), we define the MAP cost
function L(uk,xk) = p(uk,xk|Yk). Hence,

L(uk,xk) = λ · exp
[

−α⊤

k R
−1
k αk − β⊤

k (P
x−

k )−1βk

]

,
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where λ combines all the constants,αk = yk−h(uk,xk)
and βk = xk − x̂−

k . It is easier to deal with the logarith-
mic cost function ℓ(uk,xk) = − lnL(uk,xk):

ℓ(uk,xk) = δ + r⊤(uk,xk)r(uk,xk), (9)

where δ = − lnλ and

r(uk,xk) =

[

R
−

1

2

k αk

(Px−

k )−
1

2βk

]

.

Then an equivalence to (8) is given by

[

ûk

x̂+
k

]

= arg min
uk,xk

ℓ(uk,xk). (10)

An analytical solution to the nonlinear MAP optimiza-
tion in (10) is often rather difficult to derive. How-
ever, indeed being a nonlinear least-squares problem, it
can be numerically addressed using the Gauss-Newton
method (Björck, 1996).

To find ûk and x̂+
k , the classical Gauss-Newton method

iteratively computes the sequences of approximations

û
(i)
k and x̂

+(i)
k , where (i) denotes the iteration step.

Specifically,

ξ̂
(i+1)

k = ξ̂
(i)

k −
[

∇⊤

ξ r
(

ξ̂
(i)

k

)

∇ξr
(

ξ̂
(i)

k

)]−1

· ∇⊤

ξ r
(

ξ̂
(i)

k

)

· r
(

ξ̂
(i)

k

)

, (11)

where ξk =
[

u⊤

k x⊤

k

]⊤

, and ∇ξr =
[

∇ur ∇xr

]

.

We may let the initial guesses be û
(0)
k = 0 and x̂

+(0)
k =

x̂−

k for convenience, though they can be set to arbitrary
values. The iteration continues until the iteration step
(i) reaches the preselected maximum imax or the differ-
ence between two consecutive iterations is less than a
preselected small value ǫ > 0. Then û

(i)
k and x̂

+(i)
k ob-

tained in the final iteration will be assigned to ûk and
x̂+
k , respectively.

The iteration process in (11) refines the input and state
estimates continually by re-evaluating the joint estima-
tor around the latest estimated input and state operating
point. Despite demanding more computational power,
the iteration based refinement enhances not only the es-
timation performance but also the robustness to nonlin-
earities. A balance will also be achieved between com-
putational complexities and estimation performance by
selecting a proper stopping condition.

The estimation error covariance is equal to the inverse
of the Fisher information matrix, as is common in MAP

estimators under Gaussian distributions (Mutambara,
1998). Then we have

[

Pu

k Pux

k

(Pux

k )
⊤

Px+
k

]

= I
−1(ûk, x̂

+
k ), (12)

where the Fisher information matrix I is defined as

I =

[

I
u

I
ux

(Iux)
⊤

I
x

]

= E

([

∇⊤
u
ℓ

∇⊤
x ℓ

]
[

∇uℓ ∇xℓ
]
)

. (13)

The explicit formulae for the gradients are as follows:

∇ur =

[

−R−
1

2∇uh

0

]

, ∇xr =

[

−R−
1

2∇xh

(Px−)
−

1

2

]

,

∇uℓ = r⊤∇ur = α⊤R−1∇uh,

∇xℓ = r⊤∇xr = α⊤R−1∇xh+ β⊤
(
Px−

)−1
.

Hence, I is given by

I =

[

∇⊤
u
hR−1∇uh ∇⊤

u
hR−1∇xh

∇⊤
x
hR−1∇uh ∇⊤

x
hR−1∇xh+ (Px−)

−1

]

.

(14)

Remark 1 (Improvements to the Gauss-Newton
method).While the basic Gauss-Newton iteration shown
in (11) solves linear problems within only a single itera-
tion and has fast local convergence on mildly nonlinear
problems, it may suffer from divergence for some nonlin-
ear problems. To improve the convergence performance,
a damping coefficient α(i) > 0 can be added:

ξ̂
(i+1)

k = ξ̂
(i)

k − α(i)
[

∇⊤

ξ r
(

ξ̂
(i)

k

)

∇ξr
(

ξ̂
(i)

k

)]−1

· ∇⊤

ξ r
(

ξ̂
(i)

k

)

· r
(

ξ̂
(i)

k

)

. (15)

It can be proven that the damped Gauss-Newton itera-
tion keeps moving to the critical point in a descent di-
rection for sufficiently small α(i) > 0, thus guaranteeing
its local convergence. In fact, it is usually globally con-
vergent. Yet α(i) must be selected with caution to ensure
the viability of the damped Gauss-Newton, and a few
methods have been proposed, e.g., the Armijo-Goldstein
step length principle. A further improvement is to intro-
duce a stabilizing term:

ξ̂
(i+1)

k = ξ̂
(i)

k − α(i)
[

∇⊤

ξ r
(

ξ̂
(i)

k

)

∇ξr
(

ξ̂
(i)

k

)

+ δ(i)D(i)
]−1

· ∇⊤

ξ r
(

ξ̂
(i)

k

)

· r
(

ξ̂
(i)

k

)

,

4



whereby the rank deficiency problem of
(

∇⊤

ξ r∇ξr
)

that may appear in (11) and (15) can be avoided, given
that δ(i) > 0 and D(i) is a specified SPD matrix. This
is known as the trust region method or Levenberg-
Marquardt method. For more details about Gauss-
Newton-type methods, the reader is referred to (Björck,
1996). •

3.4 The NL-SISE-wDF algorithm

Putting Sections 3.2 and 3.3 together yields the
NL-SISE-wDF algorithm, formally described in Table 1,
for nonlinear systems of the form (1).

Initialize: k = 0, ξ̂
+

0 = E(ξ0), P
ξ+
0 = p0I, where p0 is

typically a large positive value
repeat

k ← k + 1

Prediction:
State prediction via (6)
Computation of prediction error covariance via (7)

Update:

Initialize: i = 0, û
(0)
k

= 0, x̂
+(0)
k

= x̂−

k

while i < imax

(

or
∥

∥

∥
ξ̂
+(i)

k
− ξ̂

+(i−1)

k

∥

∥

∥
> ǫ > 0

)

do

Gauss-Newton based joint input and state estima-
tion via (11)
i← i+ 1

end while
ûk = û

(imax)
k

, x̂+
k
= x̂

+(imax)
k

Computation of joint estimation error covariance via
(12)-(14)

until no more measurements arrive

Table 1
NL-SISE-wDF algorithm (NL-SISE for Nonlinear Systems
with Direct Feedthrough).

The NL-SISE-wDF algorithm introduces a novel
Bayesian perspective to addressing the SISE problems,
since a large body of recent work considers the problem
from the viewpoint of filter design and optimal gain
selection. Another advantage is that it can be applied
to nonlinear systems in general form, instead of being
restricted to some special ones.

The work (Gillijns and De Moor, 2007b) presents an op-
timal recursive SISE filter design approach for linear sys-
tems with direct feedthrough. The following result shows
that the NL-SISE-wDF algorithm is a generalization of
the Gillijns-De Moor’s algorithm. Its proof is given in
the Appendix.

Theorem 1 The NL-SISE-wDF algorithm applied to a
linear system with direct feedthrough yields the same in-
put and state estimation as in (Gillijns and De Moor,
2007b).

Remark 2 (Generality of the Bayesian paradigm). The
algorithm in (Gillijns and De Moor, 2007b) is based on
MVUE. Thus Theorem 1 partially reflects the fact that
the Bayesian paradigm in (2)-(3) offers a general frame-
work to solve SISE problems. This is further stressed by
the fact that the Gillijns-De Moor’s algorithm can be
directly developed from the Bayesian paradigm in con-
junction with MAP estimation, without using the nu-
merical Gauss-Newton method, under the assumptions:
(1) x0 ∼ N (x̂+

0 ,P
x+
0 ); (2) {wk} and {vk} are zero-mean

white Gaussian; (3) x0, {wk} and {vk} are indepen-
dent of each other; (4) {uk} is white Gaussian and in-
dependent of x0, {wk} and {vk}. Compared to the as-
sumptions made for the classical Kalman filter, (4) is
the only additional requirement, which ensures that the
state propagation and output measurement sequences
are Gaussian distributed. •

4 Nonlinear SystemswithoutDirect Feedthrough

Consider a nonlinear system described by equations of
the form {

xk+1 = f(uk,xk) +wk,

yk = h(xk) + vk,
(16)

where no direct feedthrough exists. In this situation, the
input estimation is delayed by one time unit, consider-
ing that the first measurement containing information
about uk−1 is yk. Therefore, it is needed to sequentially
update p(uk−1,xk|Yk). We impose the same assump-
tion as (A1) to uk for the system in (16), i.e., {uk} is a
white process independent of x0, {wk} and {vk}. The
Bayesian paradigm constructed accordingly is given by

p(uk−1,xk|Yk) ∝ p(yk|xk)

∫

p(xk|uk−1,xk−1)

· p(xk−1|Yk−1)dxk−1. (17)

It is also assumed that

p(uk−1,xk|Yk) ∼ N

([

ûk−1

x̂k

]

,

[

Pu

k−1 Pux

k−1,k

(Pux

k−1,k)
⊤ Px

k

])

,

(18)

p(yk|xk) ∼ N (h(xk),Rk) . (19)

From (17), a MAP cost function can be defined as done
previously in (9), that is,

ℓ(uk−1,xk) = δ + r⊤(uk−1,xk)r(uk−1,xk). (20)

Here, δ is a constant and

r(uk−1,xk) =

[

R
−

1

2

k ρk

Π−
1

2 (uk−1)ζk

]

,

5



where ρk = yk − h(xk), ζk = xk − f(uk−1, x̂k−1), and
Π(uk) = ∇xf(uk, x̂k)P

x

k∇
⊤
x f(uk, x̂k) + Qk. Using the

Gauss-Newton method to compute the estimates ûk−1

and x̂k,

σ̂
(i+1)
k = σ̂

(i)
k −

[

∇⊤

σr
(

σ̂
(i)
k

)

∇σr
(

σ̂
(i)
k

)]−1

· ∇⊤

σr
(

σ̂
(i)
k

)

· r
(

σ̂
(i)
k

)

, (21)

where σk =
[

u⊤

k−1 x⊤

k

]⊤

and ∇σr =
[

∇ur ∇xr

]

.

An optional initial condition is given by σ̂
(0)
k = 0, and

the finally obtained σ̂
imax

k will then be assigned to ûk−1

and x̂k. A small damping coefficient and a stabilizing
term can also be added to overcome possible divergence
and matrix singularity problems. The associated estima-
tion error covariance matrix can be computed by evalu-
ating the Fisher information matrix at ûk−1 and x̂k, i.e.,




Pu

k−1 Pux

k−1,k
(

Pux

k−1,k

)⊤

Px

k



 = I
−1(ûk−1, x̂k), (22)

where the definition of I is identical to (13).

The l-th column of the gradient matrix of r with respect
to (w.r.t.) u is given by,

∂r

∂ul

=

[

0

−Π−
1

2
∂f
∂ul

− 1
2Π

1

2Π−1 ∂Π
∂ul

Π−1ζ

]

.

The following relation is used here:

∂X
1

2

∂τ
= −

1

2
X

1

2X−1 ∂X

∂τ
X−1,

where X is a symmetric positive definite matrix depen-
dent on τ (Spinello and Stilwell, 2010). The l-th column
of the gradient matrix of r w.r.t. x is

∂r

∂xl

=

[

−R−
1

2
∂h
∂xl

Π−
1

2 el

]

, ∇xr =

[

−R−
1

2∇xh

Π−
1

2

]

,

where el is the standard basis vector with a 1 in the l-th
element and 0’s elsewhere. The lj-th entries of∇⊤

u
r∇ur,

∇⊤
u r∇xr and ∇⊤

x r∇xr are expressed as, respectively,

∂r⊤

∂ul

∂r

∂uj

=
∂f⊤

∂ul

Π−1 ∂f

∂uj

+
1

2
ζ⊤Π−1

·

(
∂Π

∂ul

Π−1 ∂f

∂uj

+
∂Π

∂uj

Π−1 ∂f

∂ul

)

+
1

4
ζ⊤Π−1 ∂Π

∂ul

Π−1 ∂Π

∂uj

Π−1ζ,

∂r⊤

∂ul

∂r

∂xj

= −
∂f⊤

∂ul

Π−1ej −
1

2
ζ⊤Π−1 ∂Π

∂ul

Π−1ej ,

∂r⊤

∂xl

∂r

∂xj

=
∂h⊤

∂xl

R−1 ∂h

∂xj

+ e⊤l Π
−1ej ,

∇⊤

x r∇xr = ∇⊤

x hR
−1∇xh+Π−1.

Then we have

∂ℓ

∂ul

= r⊤
∂r

∂ul

= −ζ⊤Π−1 ∂f

∂ul

−
1

2
ζ⊤Π−1 ∂Π

∂ul

Π−1ζ,

∂ℓ

∂xl

= r⊤
∂r

∂xl

= −ρ⊤R−1 ∂h

∂xl

+ ζ⊤Π−1el,

∇xℓ = −ρ⊤R−1∇xh+ ζ⊤Π−1.

To compute the Fisher informationmatrix, E
(
∇⊤

u ℓ∇uℓ
)
,

E
(
∇⊤

u ℓ∇xℓ
)
and E

(
∇⊤

x ℓ∇xℓ
)
are needed. Their lj-th

entries are

E

(
∂ℓ⊤

∂ul

∂ℓ

∂uj

)

=
∂f⊤

∂ul

Π−1 ∂f

∂uj

+
1

4
tr

(
∂Π

∂ul

Π−1 ∂Π

∂uj

Π−1

)

,

E

(
∂ℓ⊤

∂ul

∂ℓ

∂xj

)

= −
∂f⊤

∂ul

Π−1ej ,

E

(
∂ℓ⊤

∂xl

∂ℓ

∂xj

)

=
∂h⊤

∂xl

Π−1 ∂h

∂xj

+ e⊤l Π
−1ej ,

E
(
∇⊤

x
ℓ∇xℓ

)
= ∇⊤

x
hR−1∇xℓ+Π−1.

The above equations lead to the NL-SISE-w/oDF
algorithm, summarized in Table 2.

Initialize: k = 0, σ̂0 = E(σ0), P
σ
0 = p0I, where p0 is a

large positive value
repeat

k ← k + 1
Initialize: i = 0, û

(0)
k

= 0, x̂
(0)
k

= 0

while i < imax

(

or
∥

∥

∥
σ̂

+(i)
k
− σ̂

+(i−1)
k

∥

∥

∥
> ǫ > 0

)

do

Gauss-Newton based joint input and state estima-
tion via (21)
i← i+ 1

end while
ûk = û

(imax)
k

, x̂k = x̂
(imax)
k

Computation of joint estimation error covariance via
(22)

until no more measurements arrive

Table 2
NL-SISE-w/oDF algorithm (NL-SISE for Nonlinear Systems
without Direct Feedthrough).

In (Gillijns and De Moor, 2007a), a sequential SISE al-
gorithm is proposed for linear systems without direct
feedthrough. The derivation is also based on filter de-
sign and MVUE as in (Gillijns and De Moor, 2007b). In
fact, the NL-SISE-w/oDF algorithm reduces to (Gilli-
jns and De Moor, 2007a) in the linear case, as we show

6



(a) (b)

Fig. 1. (a) Schematic view of the buoyancy-controlled drogue;
(c) scenario for estimation of a cubic unidirectional flow do-
main using the drogues (solid circles: drogues; dashed lines:
trajectory of a drogue).

next. The proof is similar to that of Theorem 1 and is
therefore omitted here.

Theorem 2 If the NL-SISE-w/oDF algorithm is ap-
plied to a linear system without direct feedthrough, it
yields the same input and state estimation as in (Gillijns
and De Moor, 2007a).

It should be pointed out that the optimal state estima-
tion gain matrix in (Gillijns and DeMoor, 2007a) cannot
be determined uniquely. One among all possible options
is given by Eqn. (20) therein, which matches the state es-
timation gain that is obtained with the NL-SISE-w/oDF
algorithm.

Remark 3 (Generality of the Bayesian paradigm – con-
tinued).Gillijns andDeMoor (2007a) give the same state
update as (Kitanidis, 1987; Darouach and Zasadzinski,
1997) and the same input update as (Hsieh, 2000). The-
orem 2 indicates that these methods can be regarded as
special cases of the NL-SISE-w/oDF algorithm. By anal-
ogy, if the conditions (1)-(4) proposed in Remark 2 are
also valid for the system in (16), the algorithm in (Gilli-
jns and De Moor, 2007a) can be directly derived from
the Bayesian paradigm by MAP estimation. •

5 Application to Flow Field Estimation with
Buoyancy-Controlled Drogues

The study of flow fields is a fundamental problem in
oceanography. Flows play a key role in phenomena such
as the transportation of nutrients, the motion of biologi-
cal species in their early life, and the diffusion of contam-
inants and algal blooms. To reconstruct flow fields, we
consider a group of buoyancy-controlled drogues (Col-
gan, 2006; Han et al., 2010) capable of arbitrary ver-
tical migration behaviors in the ocean, see Fig. 1(a).
While under water, the drogues can store a time record
of depth, acceleration, and other relevant oceanographic
quantities such as temperature and salinity. When they
rise to surface, the information is transmitted to a cen-
tral server for analysis and assimilation. Although it is
not a technical requirement, we consider a cubic unidi-
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Fig. 2. Flow field resulting from density gradients: (a) depth–
time cross section of the density profile; (b) depth-time cross
section of the along-front velocity field.

rectional flow domain, in which the flow is along a spe-
cific direction through the entire cross section with a
continuous velocity and in parallel streamlines, as shown
in Fig. 1(b).

5.1 Drogue dynamics

For a drogue, the flow velocity vd(z) along the direction
of its displacement d is time-stationary and dependent
only on the drogue depth z. The dynamics of the drogue
within the flow field is described in (Booth, 1981):

md̈(t) = c ·
∣
∣
∣vd(z(t))− ḋ(t)

∣
∣
∣ ·
(

vd(z(t))− ḋ(t)
)

, (23)

where m is the constant rigid mass and c is the drag pa-
rameter that quantifies the drag or resistance exercised
on the drogue in the flow field. The motion of the drogue
is characterized by an irregularly submerging/surfacing
pattern — it submerges and moves underwater for a
certain duration, then surfaces, and repeats the process
again. No matter whether it is underwater or on the
surface, the depth z and acceleration d̈ are measurable;
however, the position d can only be measured when it is
at surface.

From (23), we define two state variables x1 := d and

x2 := ḋ. Further, vd(z, t) can be viewed as the unknown
external input into the drogue dynamics, naturally im-
plying the definition of u := vd(z). Via finite-difference
discretization with sampling period of T , the following
state-space model is obtained to describe the dynamics
of the drogue:

Σ :

{
xk+1 = f(uk,xk) +wk,

yk = h(uk,xk) + vk,
(24)

7



0 5 10 15 20 25 30 35 40 45
0

10

20

30

40

50

60

70

80

Time
D

ep
th

(a)

0 10 20 30 40 50
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

F
lo

w
ve

lo
ci

ty
(u

)

 

 

True
Estimated

(b)

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

Time

P
o
si
ti
o
n

(x
1
)

 

 

True

Estimated

(c)

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

V
el

o
ci

ty
(x

2
)

 

 

True
Estimated

(d)

Fig. 3. (a) depth profile; (b) u vs. û; (c) x1 vs. x̂1; (d) x2 vs.
x̂2.
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Fig. 4. Flow field estimation: (a)-(b) estimated at noise levels
of R = 0.001, 0.01, respectively.

Here,

f(uk,xk) =

[

x1,k + T · x2,k

x2,k + T · c
m

· |uk − x2,k| · (uk − x2,k)

]

,

h(uk,xk) =







ϕk(uk,xk) when underwater,
[

ϕk(uk,xk)

φ(uk,xk)

]

when at surface,

with ϕk(uk,xk) = c
m

· |uk − x2,k| · (uk − x2,k) and
φk(uk,xk) = x1,k.

Note that independent white Gaussian noises w and v
are added in (24). This is a nonlinear model with un-
known input and direct feedthrough. The NL-SISE-wDF
algorithm is applicable to acquire the information es-
timates of not only the velocities of the flow field (un-
known input variable) but also the trajectory and veloc-
ities of the drogue (state variables).

5.2 Numerical Simulation

The cross-sectional view of the considered cubic flow
domain is shown in Fig. 2. It has dimensions of (0, 5.0×
104)m× (0, 80)m. Fig. 2(a) illustrates the fronts, which
are regions of strong horizontal density gradients in the
ocean. They are usually sites of strong currents and eddy
formation. Under the combined influence of the density
gradient and Coriolis force, an along-front velocity field
is generated, as given in Fig. 2(b), where the velocities
are directed downward through the plane of the paper.

Let 51 drogues be deployed evenly along the width di-
rection. The following parameters are used in the simu-
lations presented next: mass of drogue m = 1.5Kg, drag
parameter c = 30N · s2/m2, sampling time T = 0.01s,
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process noise covariance Q = 0.001 and measurement
noise covariance R = 0.001 (Han et al., 2010). Inserting
the parameters into the state space model in (24), we
then apply the NL-SISE-wDF algorithm to each drogue.

Let us first examine the simulation on the drogue re-
leased at the middle point (2.5 × 104m) which has the
depth profile in Fig. 3(a) (other profile options are cer-
tainly allowed). Fig. 3(b)-3(d) makes comparisons be-
tween the actual and estimated values for u, x1 and x2,
respectively. It is observed that the estimated values ap-
proach fast to the true ones for all the input and state
variables. Identical results are obtained for the other
drogues, and thus omitted here to save space.

Putting together the input estimation results of all
drogues, we can reconstruct the entire flow field. The
estimated flow field is shown in Fig. 4(a). From direct
comparison with the true one in Fig. 2(b), it is seen that
the estimation delicately captures the changes of the
velocities at the central area, with an adequate accu-
racy achieved in general. To evaluate the NL-SISE-wDF
algorithm further, we let R = 0.01, respectively, to
investigate the reconstruction performance. The results
are illustrated in Fig. 4(b), from which we see that
the overall estimation performance is still satisfactory,
despite some deterioration as a result of the increase
in noise level. The simulations show the efficacy of the
proposed NL-SISE-wDF algorithm to provide reliable
estimates for the challenging problem of flow field esti-
mation using buoyancy-controlled drogues.

6 Conclusions

We have investigated the simultaneous input and state
estimation problem for nonlinear systems with and with-
out direct feedthrough. Building on a general Bayesian
statistical paradigm for SISE of nonlinear systems, we
have designed two algorithms that construct state and
input estimators using Maximum a Posteriori optimiza-
tion. The algorithms are sequential, consisting of pre-
diction and update stages; furthermore, each update in-
volves iterative searching as a result of using a Gauss-
Newton method to minimize the nonlinear MAP cost
function. We have shown that the proposed algorithms
generalize existing methods for input and/or state esti-
mation of linear systems. We have illustrated the sound-
ness of the NL-SISE-wDF algorithm in an oceanographic
flow field estimation problem where flow velocity profiles
are estimated from the motion of a group of buoyancy-
controlled drogues. Satisfactory performance is observed
in the simulations.

Future work will include joint input and state observ-
ability analysis. This topic has been partially solved for
linear systems but remains an open challenge for non-
linear systems. Another topic of interest is extension of

other well-regarded linear SISE approaches to nonlinear
systems.

Appendix – Proof of Theorem 1

Proof of Theorem 1: Consider applying Algorithm 1
to the linear discrete-time system in (Gillijns and De
Moor, 2007b). In this case, the gradients are given by

∇xf = Ak, ∇uf = Gk, ∇xh = Ck, ∇uh = Hk.

Following (6)-(7), the state prediction is now given by

x̂−

k = Ak−1x̂
+
k−1 +Gk−1ûk−1,

and the prediction error covariance is

Px−

k =
[

Ak−1 Gk−1

]
[

Px+
k−1 Pxu

k−1

Pux

k−1 Pu

k−1

][

A⊤

k−1

G⊤

k−1

]

+Qk−1.

The prediction equations match the time update
in (Gillijns and De Moor, 2007b).

For joint input and sate estimation, the Gauss-Newton
method can be implemented in a single iteration for the
linear system. Thus (11) is transformed into

[

ûk

x̂+
k

]

=

[

0

x̂−

k

]

−

[

Φ11 Φ12

Φ21 Φ22

]−1 [

Ω1

Ω2

]

(
yk −Ckx̂

−

k

)
,

where

Φ11 = H⊤

k R
−1
k Hk, Φ12 = Φ⊤

21 = H⊤

k R
−1
k Ck,

Φ21 = Φ⊤

12, Φ22 = C⊤

k R
−1
k Ck + (Px−

k )−1,

Ω1 = −H⊤

k R
−1
k , Ω2 = −C⊤

k R
−1
k .

Let ∆ be the inverse of Φ. Then we have

∆11 = (Φ11 −Φ12Φ
−1
22 Φ21)

−1 = (H⊤

k R̃
−1
k Hk)

−1,

∆12 = −∆11Φ12Φ
−1
22

= −(H⊤

k R̃
−1
k Hk)

−1H⊤

k R
−1
k CkΦ

−1
22 ,

∆21 = ∆⊤

12,

∆22 = Φ−1
22 +Φ−1

22 Φ21∆11Φ12Φ
−1
22

= Φ−1
22 +Φ−1

22 C
⊤

k R
−1
k Hk(H

⊤

k R̃
−1
k Hk)

−1

·H⊤

k R
−1
k CkΦ

−1
22 ,

where R̃k := CPx−

k C⊤

k + Rk, as is defined in Gillijns
and De Moor (2007b). The input estimation formula can
be expressed as

ûk = −(∆11Ω1 +∆12Ω2)
︸ ︷︷ ︸

Mk

(yk −Ckx̂
−

k )
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= Mk(yk −Ckx̂
−

k ).

It is verifiable that Mk =
(

H⊤

k R̃
−1
k Hk

)−1

H⊤

k R̃
−1
k .

For state estimation, we have

x̂+
k = x̂−

k −(∆21Ω1 +∆22Ω2)
︸ ︷︷ ︸

Lk

(yk −Ckx̂
−

k ).

It follows that

Lk = Φ−1
22 C

⊤

k R
−1
k (I−HkMk) = Kk(I−HkMk),

where Kk = Φ−1
22 C

⊤

k R
−1
k = Px−

k C⊤

k R̃
−1
k .

Hence,

x̂+
k = x̂−

k + Lk(yk −Ckx̂
−

k )

= x̂−

k +Kk(I−HkMk)(yk −Ckx̂
−

k )

= x̂−

k +Kk(yk −Ckx̂
−

k −Hkûk).

It is seen that the input and state estimation formulae
are exactly those in (Gillijns and De Moor, 2007b).

Finally, we investigate the estimation error covariances.
It is found in the linear situation, the Fisher information
matrix I is equivalent to Φ. Therefore,

Pu

k = ∆11 = (H⊤

k R̃
−1
k Hk)

−1,

Px

k = ∆22 = Px−

k −Kk(R̃k −HkP
u

kH
⊤

k )K
⊤

k ,

Pxu

k = (Pux

k )⊤ = ∆21 = −KkHkP
u

k .

since Φ−1
22 = Px−

k − KkR̃kK
⊤

k . The above covariance
formulae are their exact match counterparts in (Gillijns
and De Moor, 2007b). The proof is complete. �
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