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Abstract— This paper studies the continuous-time distributed we consider the optimization problem over directed graphs,
optimization of a sum of convex functions over directed graphs. where we start by providing an example of a strongly con-
Contrary to what is known in the consensus literature, where nected, weight-balanced directed graph where the disébu
the same dynamics works for both undirected and directed Y . h .
scenarios, we show that the consensus-based dynamics thatvers_Ion of the Sa(_jdle-pomt dynam'cs.doe_s not converges Th'
solves the continuous-time distributed optimization problem Motivates us to introduce a generalization of the dynamics
for undirected graphs fails to converge when transcribed to that incorporates a design parameter. Our technical asalys
the directed setting. This study sets the basis for the design establishes that, when the original functions are difftéadie
of an alternative distributed dynamics which we show is and convex with globally Lipschitz gradients, the design

guaranteed to converge, on any strongly connected weight- . .
balanced digraph, to the set of minimizers of a sum of convex parameter can be appropriately chosen so that the resulting

differentiable functions with globally Lipschitz gradients. Our ~ dynamics asymptotically converges to the set of minimizers
technical approach combines notions of invariance and cocoer- of the objective function on any strongly connected and

civity with the positive definiteness properties of graph matrices  weight-balanced digraph. Our technical approach combines
to establish the results. ; i ; ;

notions and tools from stability analysis, algebraic graph
theory, and convex analysis. In particular, we also prove
as an auxiliary result for our main derivations that any

Distributed optimization of a sum of convex functionslocally Lipschitz function with globally Lipschitz gendized
has applications in a variety of scenarios, including sens@radient is differentiable.
networks, source localization, and robust estimation,f@sl  Organization: Section Il includes basic preliminaries on
been intensively studied in recent years, see e.g. [1][32], analysis, dynamical systems, and graph theory. In Sedtion |
[4], [5], [6]. Most of these works build on consensus-basede review the continuous-time distributed optimizationlpr
dynamics [7], [8], [9], [10] to design discrete-time algbrns  lem. Section IV reviews the convergence properties of the
that find the solution of the optimization problem. A recentontinuous-time distributed optimization dynamics fodiin
exception are the works [11], [12] that deal with continuousrected networks. Section V considers the optimization prob
time distributed optimization on undirected networks. sThilem over directed graphs. Section V-A presents an example of
paper furthers contributes to this body of work by studying strongly connected, weight-balanced directed graphevher
continuous-time algorithms for distributed optimizatiom the distributed version of the saddle-point dynamics dags n
directed scenarios. converge. Section V-B then introduces a distributed opdami

The unidirectional information flow among agents characion dynamics on weight-balanced digraphs and charaeteriz
teristic of directed networks often leads to significanhtge its convergence properties. Finally, Section VI contains o
cal challenges when establishing convergence and rotasstngonclusions and ideas for future work.
properties of coordination algorithms. The results of this Some of the proofs are omitted for reasons of space and
paper provide one more example in support of this assertiatill appear elsewhere.
for the case of continuous-time consensus-based distdbut
optimization. This is somewhat surprising given that, for [I. PRELIMINARIES
consensus, the same dynamics works for both undirected

connected graphs and strongly connected, weight-balanced/Ve start with some notational conventions. [Rt R,
directed graphs, see e.g., [7], [8]. Z, Z>, denote the set of real, nonnegative real, integer, and

I I . positive integer numbers, respectively. We denote||by|
Statement of contributionsthe contributions of this paper the Euclidean norm of?, d € Z-, and also use the short-

are the following. We first show that the solutions of th%and notationty — (1 1)T and0, — (0 0)7 ¢ Rd
optimization problem of a sum of locally Lipschitz convex e let | deno;le the’i.dé;ltit matri; mdx’d’ .l.:’or matricés
functions over a directed graph correspond to the saddlzfyE Rdldxdg and B ¢ Relxez di door e E 7 we let
points of an aggregate objective function that depends en thy % B denote their Kronecker 1p’r0?j’uét’ 2 21

graph topology through its Laplacian. This function is aaxv '

in its first argument and linear in the second. Moreover, it

gradient is distributed when the graph is undirected. Next,

I. INTRODUCTION

. Basic notions from analysis

A function f : X3 x Xs — R, with X; € R%, X, c R%
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(z%,23) € X1 x Xy is asaddle pointof f if f(zy,23) < C. Graph theory

k) < * for all Xy and Xs. . . .
f(af,25) < f(a7,22) T1 € A T2 € X2 We present some basic notions from algebraic graph

A function f : RC{ — R is locally Lipschitzat z € R? theory following the exposition in [9]. Alirected graph or
if there exists a neighborhodd of x and C, € RZO such simply digraph, is a pairG = (V, &), whereV is a finite set
that [ f(y) — f(2)] < Cully — =], for y,z € U. fis locally  cajied the vertex set arfiC V' xV is the edge set. A digraph
Lipschitz onR¢ if it is locally Lipschitz atz for all z € R? 5 yndirectedif (v,u) € £ anytime (u,v) € £. We refer
andglobally Lipschitzon R? if there existsC' € R>o such g an undirected digraph asggaph A path is an ordered
that | f(y) — f(2)| < Clly — || for all y, z € R sequence of vertices such that any ordered pair of vertices
For a differentiable functionf, a pointz € R? with  appearing consecutively is an edge of the digraph. A digraph
Vf(xz) =0 is acritical point of f. A differentiable convex is strongly connectedf there is a path between any pair of
function f satisfies, for allz,2’ € R9, the first-order distinct vertices. For a graph, we refer to this notion sinpl

conditionof convexity, asconnectedA weighted digraptis a tripletG = (V, £, A),
where (V, €) is a digraph and\ € RY;" is the adjacency
f(@') = f(x) > V() (' — ). (1) matrixof G, with the property that,; > 0if (v;,v;) € € and
a;; = 0, otherwise. The weighted out-degree and in-degree
The notion of cocoercivity [14] plays a key role in ourof v;, i € {1,...,n}, are respectivelydy (v;) = Z?zl @i
technical approach later. Fof € R, a differentiable and djy(v;) = >77_, a;;. The weighted out-degree matrix
function f is d-cocoerciveif, for all z, 2’ € R?, Dout is the diagonal matrix defined bout)i; = d(i), for
all i € {1,...,n}. The Laplacian matrix is L = Doy — A.
(x — 2\ (Vf(z) = V@) > 6||Vf(z) - V). Note thatL1,, = 0. If G is strongly connected, then zero is a

simple eigenvalue df. G is undirected if. = L™ andweight-
The next result [14, Lemma 6.7] characterizes cocoercivealancedif d,(v) = djx(v), for all v € V. Equivalently,G is
differentiable convex functions. weight-balanced if and only if”'L = 0 if and only if L+L7”

Proposition 2.1: (Characterization of cocoercivity)-et f is positive semidefinite. Furthermorggfis vyeight-palanced
be a differentiable convex function. TheR,f is globally ~&nd strongly connected, then zero is a simple eigenvalue of

Lipschitz with constants € R iff f is --cocoercive. L 4+ L. Note that any undirected graph is weight-balanced.
I1l. PROBLEM STATEMENT AND EQUIVALENT
B. Stability analysis FORMULATIONS
Here, we recall some background on continuous-time Consider a network composed by € Z, agents
dynamical systems following [15]. Consider a system off1:- - - v, WhOSe communication topology is described by
X c R given by strongly connected digrapi. For each; € {1,...,n}, let
fi: R — R be continuously differentiable and convex, and
@(t) = U(z(t)), @) only available to agent;. The network objective is to solve
the following optimization problem in a distributed way,
wheret € R>( and¥ : X ¢ R? — R% is continuous. A solu- no
tion to this dynamical system is a continuously differelita minimize f(x) = _ f' (). 3)
curvez : [0, T] — X which satisfies (2). The set of equilibria i=1
of (2) is denoted byq(V) = {z € X | ¥(z) = 0}. Let z¢ € R? denote the estimate of agemtabout the value
The LaSalle Invariance Principle for continuous-time sysof the solution to (3) and define” = ((z")7, ..., (2™)7) €

tems is helpful to establish the asymptotic stability prtips  R™“. The following result provides an alternative formulation
of systems of the form (2). A selV C X is positively of (3).

invariant with respect toW if each solution with initial Lemma 3.1:Let L € R™*" be the Laplacian ofj and
condition in W remains inW for all subsequent times. gefineL, = L ® I, € R"?*"d, The problem (3) orR? is
The Lie derivativeof a continuously differentiable function equivalent to the following problem oR™<,

V:R? - R along ¥ atx € R? is defined byLyV (z) =

VV(z) - ¥(z). minimize f(x) = z:j”(xl)7 (4a)
Theorem 2.2:(LaSalle Invariance Principlelet W C X i=1
be a positively invariant under (2) andd : X — R a subject to Lz = 0,,4. (4b)

continuously differentiable function. Suppose the evohsg _ -

of (2) with initial conditions inW are bounded. Then any Proof: The prC(l)of follows by noting that (i (1, @) =
solutionz(t), ¢ € R, starting in?¥” converges to the largest /(%) for all € R® and (ii) sinceg is strongly connected,
positively invariant setV contained inSy . N W, where L% = 0Ond if and only if x = 1, ® z, for somez € R?. W

Seyv = {x € X | LgV(z) = 0}. When M is a finite The formulation (4) is appealing because it brings together
collection of points, then the limit of each solution equalghe estimates of each agent about the value of the solution to
one of them. the original optimization problem. It is worth mentionirftpt



f is continuously differentiable and convex. Moreover, itglirected, the gradient of' defined in (5) is no longer dis-
gradient is of the fornV f(x) = (Vf'(2!),...,Vf"(z™)). tributed overG, and indeed the dynamics (6) does no longer
Since f is convex and the constraints in (4) are linearcorrespond to the saddle-point dynamics. Nevertheless, it
the constrained optimization problem is feasible. The folnatural to study whether the dynamics (6) enjoys the same
lowing result provides an equivalent formulation based ononvergence properties as in the undirected situatiorfdas,
augmented Lagrangian techniques [16]. instance, is the case in the agreement problem [7], [8], [9],

Proposition 3.2: (Solutions of the distributed optimization [10])- Surprisingly, this turns out not to be the case, aswho
problem as saddle pointsiet G be strongly connected and N Section V-A. This result motivates the introduction in
weight-balanced, and definé : R x R" — R by Section V-B of an alternative provably correct dynamics on

directed graphs.

1
F(x,2) = f(x) + 2TLe + 2" La. (5)
() (=) 2 A. Counterexample
Then F' is continuously differentiable and convex in its first

argument and linear in its second, and Here, we provide an example of a strongly connected,

o _ . _ weight-balanced digraph on which (6) fails to converge. For
(i) if (z*,2") is a saddle point of", then so iz, 2"+  convenience, we l6Bagree = {(1, ® 7,1, ® z) € R™ x

_ 1,®a), foranya € R%. _ ~ R™|z,zeR? denote the set of agreement configurations.
(ii) if (z*,2*)is a saddle point of", thenz* is a solution  Our construction relies on the following result.
of (4).

Lemma 5.1:(Necessary condition for the convergence
of (6) on digraphs):Let G be a strongly connected digraph
and f =0, i € {1,...,n}. ThenSagreeis stable under (6)
iff, for any nonzero eigenvalug of the Laplaciarl, one has

IV. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON \/§|IH1(/\)| < Re()\)
UNDIRECTED NETWORKS The next example shows that the criterium of Lemma 5.1

] . ) ) can fail even for strongly connected weight-balanced di-
Here, we review the continuous-time solution to the opgraphs.

timization problem proposed in [11], [12] for undirected
graphs. If G is undirected, the gradient of" in (5) is
distributed overG. Given Proposition 3.2, it is natural to

(i) if z* is a solution of (4), then there exists’ with
Lz* = =V f(x*) such that(z*, z*) is a saddle point
of F.

Example 5.2:Consider the strongly connected, weight-
balanced digraph with

consider the saddle-point dynamics Bfto solve (3), 0 0.5326 0.1654 0.0004 0.0002
. o ; 0.0595 0 0.6676 0.0681 0.1230
¢+ Lot Lz =-Vf(z), ©a) 4 _ 100213 00004 0 05800 0.3181
z = La. (6b) 0.0248 0.2458 0 0  0.5587
This dynamics is distributed ové}, in the sense that agent 0.5930 0.1394 0.0877 0.1799 0

v; can updater’ andz* with knowledge of its own state and as adjacency matrix. Note that= 0.8833 + 0.5197i is an
the state of its network neighbors. From Proposition 3.Zjgenvalue of the Laplacian. Sinag3|[Im(\)| — Re(\) =

if (z*,27) is an equilibrium of (6), thenc™ is a solution (0171 > 0, Lemma 5.1 implies that (6) fails to converge.
to (4). According to [12], the dynamics (6) leads the network Lemma 5.1, together with Example 5.2, motivates the

to agree on a global minimum of for the case wherg : . N
: . . ) search for alternative dynamics to solve the optimization
is undirected andf is both strictly convex and the sum of . ! o

problem (3) on directed graphs in a distributed way.

continuously differentiable convex functions. This reésin

fact, also h.OIdS true whed is unplirected and is the sum g Provably correct distributed dynamics on directed graph
of locally Lipschitz convex functions, see [17].

Theorem 4.1:(Asymptotic convergence of6) on undi- Here,. given Fhe resu_lt in _Se(;tion V-A, we introduce an
rected networks)Let G be a connected graph and considef!térnative continuous-time distributed dynamics foosgly
the distributed optimization problem (3), where egéhi ¢ ~ connected weight-balanced digraphs. letc R, and
{1,...,n} is continuously differentiable and convex. ThenConsider the dynamics
the projection onto the first component of any trajectory &+ oLz + Lz = —Vf(z), (7a)
of (6) asymptotically converges to the set of solutions fo (4 .

Moreover, if f has a finite number of critical points, the limit z =1Lz, (7b)
of the projection onto the first component of each trajectoryve first show that appropriate choiceswfllow to circum-
is a solution of (4). vent the problem raised in Lemma 5.1.

Lemma 5.3:(Sufficient conditions for the convergence
of (7) on digraphs with trivial objective function)-et G be a
strongly connected and weight-balanced digraph ging 0,

In this section, we consider the distributed optimizatiori € {1,...,n}. If a > 2v/2, then Sagree IS asymptotically
problem (3) on directed graphs. Note that, whénis stable under (7).

V. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON
DIRECTED NETWORKS



Proof: When all f;, i € {1,...,n}, are identically h:Rsq— R by
zero, the dynamics (7) is linear and hégyee as equilib-

H H . . 1 4 2 2
ria. Consider the coordinate transformation frgm, z) to h(r) ==AL (L +LT) (_7" +3r° + n
(x,y) = (x, Bz + 2z), with 5 € Ry to be chosen later. The 2 r
[ itt
dynamics can be rewritten as 41302 4 2\ 2 K2
, —=) 4]+ =, (10)
)=+ )Y
Yy Yy

where A.(-) denotes the non-zero eigenvalue with smallest
absolute value. Then, there exigts € R with h(8*) =0
A —(a— B)L -L ®) such that, for all0 < g8 < pg*, the projection ontg the
S\ (-Bla=p)+ 1L —-pL)" first component of any trajectory of (7) with = 52
_ _ asymptotically converges to the set of solutions of (4).
Consider the candidate Lyapunov functiifz, y) = "2+ Moreover, if f has a finite number of critical points, the limit
y"y. Its Lie derivative is the quadratic form defined by theof the projection onto the first component of each trajectory

where

matrix is a solution of (4).
g At ATl = Proof: For convenience, we denote the dynamics (7) by
@ = lonad + A" lzna - o~ Vadisopt: R™ xR — R™ x R™. Note that the equilibria
< —(a—=pB)(L+L") . —L+ (-fla- 5%* DL ) . of U, gisoprare precisely the set of saddle pointsfofn (5).
(=B(a—pB)+1)L - L —B(L+L7) Letz* = 1, ®2* be a solution of (4). First, note that given

any initial condition (zg, z9) € R™® x R™, the setW,,

a2 B . .
Selects now satisfying8= — a5 + 2 = 0 (this equation has defined by

a real solution ifa: > 21/2). Then,

Q= (_(ﬂﬂj_ﬁ) :;) ©@L+LT). (9

We = {(sz) ‘ (171: ® ld)z = (13: ® ld)z0}7

is invariant under the evolutions of (7). By Proposition(8.2
. . and (iii), there exists(x*,z*) € Eq(¥Yadisop) N W, .
Each eigenvaluen of @ is of the form n = Consi(dg.r the functioﬂ/(: R4 >)< 1 —q>(}1¢R>od,IS ! '

AZEHDE Q;ﬁQH)LM?, where ) is an eigenvalue of +

LT, Since G is strongly connected and weight-balanced, V(z,z) =
L + L7 is positive semidefinite with a simple eigenvalue

at zero, and hencegy < 0. By the LaSalle invariance +
principle, the solutions of (7) from any initial condition

(zo,y0) € R™ x R"?, asymptotically converge to the set

S = {(@,y) | Q@ y)" = 004} N Wy, To conclude 5 _ 5 Fhis function is quadratic, hence smooth. Next,
the result, we need to show that C Sagree This follows o consider its Lie derivative alony ,-dis-opt ON W, . For
from noting that, for3 > 0, Q(x,y)” = 05,4 implies that (z,2) € Wy, let
(L+L7)z = 0,4 and(L+LT)y = 0,,4,i.€.,(x,y) € Sagree ’
u &= E\I’cy-dls-optv(a:’ z)

The reason behind the introduction of the parameter —(—aLz — Lz — Vf(a:),La:) YV (z, 2)
in (7) comes from the following observation: if one tries
to reproduce the proof of Theorem 4.1 for a digraph, one = 3 (@ =), (Yz2) — Y 2) ") A (:c,y(%z))T
encounters indefinite terms of the forfx — =*)* (L — 1 "
LT)(z — z*) in the Lie derivative ofV/, invalidating it as a +3 (wT, y(q;yz)> AT (2 = 2 Y(@z) — Y@@ 2))
Lyapunov function. However, the proof of Lemma 5.3 shows ST 7 Tw 7
that an appropriate choice of, together with a suitable ~ — (£ = %) V(@) = B(Y@.2) ~ Y- 2))" VI (),
change of coordinates, makes the quadratic from define N . . .
by the identity matrix a valid Lyapunov function. We nextwdnereA Is given by (8). This equation can be written as
build on these observations to establish our main reswdt: th 1 o -
dynamics (7) solves in a distributed way the optimizatiors =3 (=2, (Y@.2) — Y@ 2)")
problem (3) on strongly connected weight-balanced digsaph 0 (w " Yom) — Yo Z*))T . gE*)va(w)

(@ —2") (@ —a")

N =) =

(y(w,z) - y(w*,z*))T(y(m,z) - y(w*,z*))v

wherey(, .y = fx + z and 3 € R, satisfiess® — a8 +

Theorem 5.4:(Asymptotic convergence di7) on directed T T .
networks):Let G be a strongly connected, weight-balanced T (@ —2")", (Ya.z) — y(?*,z*)) ) A (T Y(ar 2))
digraph and consider the distributed optimization prob- —5(y(m,z)—y(w*,z*))TVf(x),
lem (3), where eachf?, i € {1,...,n}, is convex and
differentiable with globally Lipschitz continuous gradts. where Q is given by (9). Note thatd(z*,y( - )’ =
Let K € R, be the Lipschitz constant 67 f and define  —(Ly(z- -y, BLY (o~ o))" = (Vf(z*), BV f(z*))T. Thus,

T



after substituting fory(,, ), we have the sum@ are upper bounded by*(Q) 1+52) From (12)
and the definition of: in (10), we conclude that the nonzero

€= % (x -z, (2 — z%) )T Qx—x* z— z*)T eigenvalues ofQ are upper bounded b¥(g). It remains
. . to show that there exist§* € R with h(5*) = 0 such

~ (148 (@ —a) (Vi ~) Vi) that for all0 < 8 < B* we ha\igh(ﬂ) < 0. Forr > 0

— Bz — 2T (Vf(x) — Vf(x*)), (11) small enoughh(r) < 0, sinceh(r) = —3A.(L + LT)r +

O(r?). Furthermore lim, . h(r) = K > 0. Hence, the

where existence ofg3* follows from the Mean Value Theorem.
83— (ﬁ2+2) —B —(1+8?) Lo LT Therefore we concludely, ..,V (z,2) < 0. As a by-
Q= —(1+ 52) -8 (L+L7). product, the trajectories of (7) are bounded. Consequeaitly
assumptions of the LaSalle Invariance Principle are sadisfi
Each eigenvalue of) is of the form and its application yields that any trajectory of (7) stagti
4357 40 4 T3 T 15 from an initial condition(xo, zp) converges to the largest
=X —(B"+35°+2) \é(ﬁﬁ +352+2)? 45 7 positively invariant setM in Sy, 4o o v N W, *Note that
i T z—z*
(12) if (2, 2) € S, geomv N Wa,, thenN i s e )) €
where \ is an eigenvalue of + L”. Using the cocoercivity ker(@Q) x {0}. From the discussion above, we knawr(Q)
of f we can upper bound as, |s_ggner§ted by vectors of the for(d, ® a,0), and hence
- . this implies thatr = =* + 1, ® a, z = z*, andV f(x) =
1 Qu Q2 0 Vf(z*), from where we deduce that is also a solution
¢£< §XT Q21 Qoo —Blpa X, (13) to (4). Finally, for (xz,z) € M, an argument similar to
0 Bl —%(1+pB)la the one in the proof of Theorem 4.1 establistiesz) €
S Eq(¥,-dis-opy)- If the set of equilibria is finite, convergence
to a point is also guaranteed. [ ]
\}yf;enrgK € R>o Is the Lipschitz constant for the gradient of Figure 1 illustrates the result of Theorem 5.4 for the

network of Example 5.2.
X' = ((x—a*),(z - 2"),(Vf(z) - Vf(z))). Remark 5.5:(Locally Lipschitz objective functions)Our
simulations suggests that the convergence result in The-

H T *) . . . .
Since(z, z) € Wy, we have(l, @1q)(z —2") =0sand  grem 5.4 holds true for any locally Lipschitz objective
hence it is enough to establish tl@ts negative semidefinite fnction. However, our proof cannot be reproduced for this

on the subspacey = {(”1717127”3) < (erd).g | (1£®|d)”2 = case because it would rely on the generalized gradient of the
04}. Using the fact that-7 (14 5%)l,,4 is invertible, we can  fnction being globally Lipschitz which, by Proposition1A.
expressQ as would imply that the function is continuously differentiab
Q=N <Q 0 ) NT °
- 0 —%(1+48)ha ’ Remark 5.6 (Selection of in (7)): According to Theo-
where rem 5.4, the parameter is determined bys asa = B4z
In turn, one can observe from (10) that the range of suitable
Q=0 Kp? ( 0) I forg incr with higher network connectivity and
Q=0+ values forg increases with higher network connectivity a
1 + [32 Ind smaller variability of the gradient of the objective furatti
From a control design viewpoint, it is reasonable to choose
( lnd 1WI . the value ofg that yields the smallest while satisfying the
L conditions of the theorem statement. °
Noting thatWV is invariant underN™ (i.e., N"W = W), V]. CONCLUSIONS AND FUTURE WORK

. Q
all we need to check is that the matr{x ) . o
¢ (148%)lna We have studied the distributed optimization of a sum of

is negative semidefinite onV. Clearly, — (1 + 8%)lha IS convex functions over directed networks using consensus-
negative definite. On the other hand, @f'?)?, 0 is an eigen- pased dynamics. Somewhat surprisingly, we have estatilishe
value of @ with multiplicity 2d and eigenspace generated bythat the convergence results established in the literdture
vectors of the forn{1,,®a, 0) and(0, 1,,&b), with a,b € R%.  undirected networks do not carry over to the directed sce-
However, on{(vi,v2) € (R"))? | (1] @ lg)va = 04}, 0 nario. Nevertheless, our analysis has allowed us to intedu
is an eigenvalue of) with multiplicity d and eigenspace a slight generalization of the saddle-point dynamics of the
generated by vectors of the for(@,, ® a,0). Moreover, on yndirected case which incorporates a design parameter. We
{(v1,022) € (R™)? | (1f2® la)ve = Od} the eigenvalues have proved that, for appropriate parameter choices, this
of ﬁﬂz) (§,°) are +/32) with multiplicity nd —d and0  dynamics solves the distributed optimization problem for
W|th multiplicity nd. Therefore, using Weyl's theorem [18, differentiable convex functions with globally Lipschitzeg
Theorem 4.3.7], we deduce that the nonzero eigenvalues dients on strongly connected and weight-balanced digraphs
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Fig. 1. Execution of (7) for the network of Example 5.2 with(z) = €, f2(z) = (z — 3)?, f3(z) = (z +3)2, f4(x) = z%, f°(x)
show the evolution of the agent’s valuesarand z, respectively, and (c) shows the value of the Lyapunov fonctHere,a = 3, o = (
and zp = 15. The equilibrium(z*, z*) is * = —0.2005 - 15 and z* = (1.1784,4.3717, —4.1598, 2.2598, 1.3499) 7",
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o

= 4. (a) and (b)
1,2,0.3,1,1)7,
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