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Abstract— This paper studies the continuous-time distributed
optimization of a sum of convex functions over directed graphs.
Contrary to what is known in the consensus literature, where
the same dynamics works for both undirected and directed
scenarios, we show that the consensus-based dynamics that
solves the continuous-time distributed optimization problem
for undirected graphs fails to converge when transcribed to
the directed setting. This study sets the basis for the design
of an alternative distributed dynamics which we show is
guaranteed to converge, on any strongly connected weight-
balanced digraph, to the set of minimizers of a sum of convex
differentiable functions with globally Lipschitz gradients. Our
technical approach combines notions of invariance and cocoer-
civity with the positive definiteness properties of graph matrices
to establish the results.

I. I NTRODUCTION

Distributed optimization of a sum of convex functions
has applications in a variety of scenarios, including sensor
networks, source localization, and robust estimation, andhas
been intensively studied in recent years, see e.g. [1], [2],[3],
[4], [5], [6]. Most of these works build on consensus-based
dynamics [7], [8], [9], [10] to design discrete-time algorithms
that find the solution of the optimization problem. A recent
exception are the works [11], [12] that deal with continuous-
time distributed optimization on undirected networks. This
paper furthers contributes to this body of work by studying
continuous-time algorithms for distributed optimizationin
directed scenarios.

The unidirectional information flow among agents charac-
teristic of directed networks often leads to significant techni-
cal challenges when establishing convergence and robustness
properties of coordination algorithms. The results of this
paper provide one more example in support of this assertion
for the case of continuous-time consensus-based distributed
optimization. This is somewhat surprising given that, for
consensus, the same dynamics works for both undirected
connected graphs and strongly connected, weight-balanced
directed graphs, see e.g., [7], [8].

Statement of contributions:The contributions of this paper
are the following. We first show that the solutions of the
optimization problem of a sum of locally Lipschitz convex
functions over a directed graph correspond to the saddle
points of an aggregate objective function that depends on the
graph topology through its Laplacian. This function is convex
in its first argument and linear in the second. Moreover, its
gradient is distributed when the graph is undirected. Next,
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we consider the optimization problem over directed graphs,
where we start by providing an example of a strongly con-
nected, weight-balanced directed graph where the distributed
version of the saddle-point dynamics does not converge. This
motivates us to introduce a generalization of the dynamics
that incorporates a design parameter. Our technical analysis
establishes that, when the original functions are differentiable
and convex with globally Lipschitz gradients, the design
parameter can be appropriately chosen so that the resulting
dynamics asymptotically converges to the set of minimizers
of the objective function on any strongly connected and
weight-balanced digraph. Our technical approach combines
notions and tools from stability analysis, algebraic graph
theory, and convex analysis. In particular, we also prove
as an auxiliary result for our main derivations that any
locally Lipschitz function with globally Lipschitz generalized
gradient is differentiable.

Organization: Section II includes basic preliminaries on
analysis, dynamical systems, and graph theory. In Section III,
we review the continuous-time distributed optimization prob-
lem. Section IV reviews the convergence properties of the
continuous-time distributed optimization dynamics for undi-
rected networks. Section V considers the optimization prob-
lem over directed graphs. Section V-A presents an example of
a strongly connected, weight-balanced directed graph where
the distributed version of the saddle-point dynamics does not
converge. Section V-B then introduces a distributed optimiza-
tion dynamics on weight-balanced digraphs and characterize
its convergence properties. Finally, Section VI contains our
conclusions and ideas for future work.

Some of the proofs are omitted for reasons of space and
will appear elsewhere.

II. PRELIMINARIES

We start with some notational conventions. LetR, R≥0,
Z, Z≥1 denote the set of real, nonnegative real, integer, and
positive integer numbers, respectively. We denote by|| · ||
the Euclidean norm onRd, d ∈ Z≥1 and also use the short-
hand notation1d = (1, . . . , 1)T and0d = (0, . . . , 0)T ∈ R

d.
We let Id denote the identity matrix inRd×d. For matrices
A ∈ R

d1×d2 andB ∈ R
e1×e2 , d1, d2, e1, e2 ∈ Z≥1, we let

A⊗B denote their Kronecker product.

A. Basic notions from analysis

A function f : X1 × X2 → R, with X1 ⊂ R
d1 , X2 ⊂ R

d2

closed and convex, isconcave-convexif it is concave in its
first argument and convex in the second one [13]. A point



(x∗
1, x

∗
2) ∈ X1 × X2 is a saddle pointof f if f(x1, x

∗
2) ≤

f(x∗
1, x

∗
2) ≤ f(x∗

1, x2) for all x1 ∈ X1 andx2 ∈ X2.

A function f : Rd → R is locally Lipschitzat x ∈ R
d

if there exists a neighborhoodU of x andCx ∈ R≥0 such
that |f(y) − f(z)| ≤ Cx||y − z||, for y, z ∈ U . f is locally
Lipschitz onRd if it is locally Lipschitz atx for all x ∈ R

d

and globally Lipschitzon R
d if there existsC ∈ R≥0 such

that |f(y)− f(z)| ≤ C||y − z|| for all y, z ∈ R
d.

For a differentiable functionf , a point x ∈ R
d with

∇f(x) = 0 is a critical point of f . A differentiable convex
function f satisfies, for allx, x′ ∈ R

d, the first-order
conditionof convexity,

f(x′)− f(x) ≥ ∇f(x) · (x′ − x). (1)

The notion of cocoercivity [14] plays a key role in our
technical approach later. Forδ ∈ R>0, a differentiable
function f is δ-cocoerciveif, for all x, x′ ∈ R

d,

(x− x′)T (∇f(x)−∇f(x′)) ≥ δ||∇f(x)−∇f(x′)||.

The next result [14, Lemma 6.7] characterizes cocoercive
differentiable convex functions.

Proposition 2.1: (Characterization of cocoercivity):Let f
be a differentiable convex function. Then,∇f is globally
Lipschitz with constantK ∈ R>0 iff f is 1

K
-cocoercive.

B. Stability analysis

Here, we recall some background on continuous-time
dynamical systems following [15]. Consider a system on
X ⊂ R

d given by

ẋ(t) = Ψ(x(t)), (2)

wheret ∈ R≥0 andΨ : X ⊂ R
d → R

d is continuous. A solu-
tion to this dynamical system is a continuously differentiable
curvex : [0, T ] → X which satisfies (2). The set of equilibria
of (2) is denoted byEq(Ψ) = {x ∈ X | Ψ(x) = 0}.

The LaSalle Invariance Principle for continuous-time sys-
tems is helpful to establish the asymptotic stability properties
of systems of the form (2). A setW ⊂ X is positively
invariant with respect toΨ if each solution with initial
condition in W remains inW for all subsequent times.
The Lie derivativeof a continuously differentiable function
V : Rd → R alongΨ at x ∈ R

d is defined byLΨV (x) =
∇V (x) ·Ψ(x).

Theorem 2.2:(LaSalle Invariance Principle):Let W ⊂ X

be a positively invariant under (2) andV : X → R a
continuously differentiable function. Suppose the evolutions
of (2) with initial conditions inW are bounded. Then any
solutionx(t), t ∈ R≥0, starting inW converges to the largest
positively invariant setM contained inSΨ,V ∩ W , where
SΨ,V = {x ∈ X | LΨV (x) = 0}. When M is a finite
collection of points, then the limit of each solution equals
one of them.

C. Graph theory

We present some basic notions from algebraic graph
theory following the exposition in [9]. Adirected graph, or
simply digraph, is a pairG = (V, E), whereV is a finite set
called the vertex set andE ⊆ V×V is the edge set. A digraph
is undirected if (v, u) ∈ E anytime (u, v) ∈ E . We refer
to an undirected digraph as agraph. A path is an ordered
sequence of vertices such that any ordered pair of vertices
appearing consecutively is an edge of the digraph. A digraph
is strongly connectedif there is a path between any pair of
distinct vertices. For a graph, we refer to this notion simply
asconnected. A weighted digraphis a tripletG = (V, E ,A),
where (V, E) is a digraph andA ∈ R

n×n
≥0 is the adjacency

matrixof G, with the property thataij > 0 if (vi, vj) ∈ E and
aij = 0, otherwise. The weighted out-degree and in-degree
of vi, i ∈ {1, . . . , n}, are respectively,dw

out(vi) =
∑n

j=1 aij
and dw

in(vi) =
∑n

j=1 aji. The weighted out-degree matrix
Dout is the diagonal matrix defined by(Dout)ii = dw

out(i), for
all i ∈ {1, . . . , n}. The Laplacian matrix is L = Dout − A.
Note thatL1n = 0. If G is strongly connected, then zero is a
simple eigenvalue ofL. G is undirected ifL = L

T andweight-
balancedif dw

out(v) = dw
in(v), for all v ∈ V. Equivalently,G is

weight-balanced if and only if1T
nL = 0 if and only if L+L

T

is positive semidefinite. Furthermore, ifG is weight-balanced
and strongly connected, then zero is a simple eigenvalue of
L+ L

T . Note that any undirected graph is weight-balanced.

III. PROBLEM STATEMENT AND EQUIVALENT

FORMULATIONS

Consider a network composed byn ∈ Z≥1 agents
v1, . . . , vn whose communication topology is described by
strongly connected digraphG. For each,i ∈ {1, . . . , n}, let
f i : Rd → R be continuously differentiable and convex, and
only available to agentvi. The network objective is to solve
the following optimization problem in a distributed way,

minimize f(x) =
n∑

i=1

f i(x). (3)

Let xi ∈ R
d denote the estimate of agentvi about the value

of the solution to (3) and definexT = ((x1)T , . . . , (xn)T ) ∈
R

nd. The following result provides an alternative formulation
of (3).

Lemma 3.1:Let L ∈ R
n×n be the Laplacian ofG and

defineL = L ⊗ Id ∈ R
nd×nd. The problem (3) onRd is

equivalent to the following problem onRnd,

minimize f̃(x) =

n∑

i=1

f i(xi), (4a)

subject to Lx = 0nd. (4b)

Proof: The proof follows by noting that (i)̃f(1n⊗x) =
f(x) for all x ∈ R

d and (ii) sinceG is strongly connected,
Lx = 0nd if and only if x = 1n ⊗ x, for somex ∈ R

d.

The formulation (4) is appealing because it brings together
the estimates of each agent about the value of the solution to
the original optimization problem. It is worth mentioning that



f̃ is continuously differentiable and convex. Moreover, its
gradient is of the form∇f̃(x) = (∇f1(x1), . . . ,∇fn(xn)).
Since f̃ is convex and the constraints in (4) are linear,
the constrained optimization problem is feasible. The fol-
lowing result provides an equivalent formulation based on
augmented Lagrangian techniques [16].

Proposition 3.2: (Solutions of the distributed optimization
problem as saddle points):Let G be strongly connected and
weight-balanced, and defineF : Rnd × R

nd → R by

F (x, z) = f̃(x) + z
TLx+

1

2
x
TLx. (5)

ThenF is continuously differentiable and convex in its first
argument and linear in its second, and

(i) if (x∗, z∗) is a saddle point ofF , then so is(x∗, z∗+
1n ⊗ a), for anya ∈ R

d.
(ii) if (x∗, z∗) is a saddle point ofF , thenx∗ is a solution

of (4).
(iii) if x

∗ is a solution of (4), then there existsz∗ with
Lz∗ = −∇f̃(x∗) such that(x∗, z∗) is a saddle point
of F .

IV. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON

UNDIRECTED NETWORKS

Here, we review the continuous-time solution to the op-
timization problem proposed in [11], [12] for undirected
graphs. If G is undirected, the gradient ofF in (5) is
distributed overG. Given Proposition 3.2, it is natural to
consider the saddle-point dynamics ofF to solve (3),

ẋ+ Lx+ Lz = −∇f̃(x), (6a)

ż = Lx. (6b)

This dynamics is distributed overG, in the sense that agent
vi can updatexi andzi with knowledge of its own state and
the state of its network neighbors. From Proposition 3.2,
if (x∗, z∗) is an equilibrium of (6), thenx∗ is a solution
to (4). According to [12], the dynamics (6) leads the network
to agree on a global minimum off for the case whenG
is undirected andf is both strictly convex and the sum of
continuously differentiable convex functions. This result, in
fact, also holds true whenG is undirected andf is the sum
of locally Lipschitz convex functions, see [17].

Theorem 4.1:(Asymptotic convergence of(6) on undi-
rected networks):Let G be a connected graph and consider
the distributed optimization problem (3), where eachf i, i ∈
{1, . . . , n} is continuously differentiable and convex. Then,
the projection onto the first component of any trajectory
of (6) asymptotically converges to the set of solutions to (4).
Moreover, iff has a finite number of critical points, the limit
of the projection onto the first component of each trajectory
is a solution of (4).

V. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON

DIRECTED NETWORKS

In this section, we consider the distributed optimization
problem (3) on directed graphs. Note that, whenG is

directed, the gradient ofF defined in (5) is no longer dis-
tributed overG, and indeed the dynamics (6) does no longer
correspond to the saddle-point dynamics. Nevertheless, itis
natural to study whether the dynamics (6) enjoys the same
convergence properties as in the undirected situation (as,for
instance, is the case in the agreement problem [7], [8], [9],
[10]). Surprisingly, this turns out not to be the case, as shown
in Section V-A. This result motivates the introduction in
Section V-B of an alternative provably correct dynamics on
directed graphs.

A. Counterexample

Here, we provide an example of a strongly connected,
weight-balanced digraph on which (6) fails to converge. For
convenience, we letSagree = {(1n ⊗ x,1n ⊗ z) ∈ R

nd ×
R

nd | x, z ∈ R
d} denote the set of agreement configurations.

Our construction relies on the following result.

Lemma 5.1:(Necessary condition for the convergence
of (6) on digraphs):Let G be a strongly connected digraph
and f i = 0, i ∈ {1, . . . , n}. ThenSagree is stable under (6)
iff, for any nonzero eigenvalueλ of the LaplacianL, one has√
3|Im(λ)| ≤ Re(λ).

The next example shows that the criterium of Lemma 5.1
can fail even for strongly connected weight-balanced di-
graphs.

Example 5.2:Consider the strongly connected, weight-
balanced digraph with

A =









0 0.5326 0.1654 0.0004 0.0002
0.0595 0 0.6676 0.0681 0.1230
0.0213 0.0004 0 0.5809 0.3181
0.0248 0.2458 0 0 0.5587
0.5930 0.1394 0.0877 0.1799 0









as adjacency matrix. Note thatλ = 0.8833 ± 0.5197i is an
eigenvalue of the Laplacian. Since

√
3|Im(λ)| − Re(λ) =

0.0171 > 0, Lemma 5.1 implies that (6) fails to converge.•
Lemma 5.1, together with Example 5.2, motivates the

search for alternative dynamics to solve the optimization
problem (3) on directed graphs in a distributed way.

B. Provably correct distributed dynamics on directed graphs

Here, given the result in Section V-A, we introduce an
alternative continuous-time distributed dynamics for strongly
connected weight-balanced digraphs. Letα ∈ R>0 and
consider the dynamics

ẋ+ αLx+ Lz = −∇f̃(x), (7a)

ż = Lx. (7b)

We first show that appropriate choices ofα allow to circum-
vent the problem raised in Lemma 5.1.

Lemma 5.3:(Sufficient conditions for the convergence
of (7) on digraphs with trivial objective function):Let G be a
strongly connected and weight-balanced digraph andf i = 0,
i ∈ {1, . . . , n}. If α ≥ 2

√
2, then Sagree is asymptotically

stable under (7).



Proof: When all fi, i ∈ {1, . . . , n}, are identically
zero, the dynamics (7) is linear and hasSagree as equilib-
ria. Consider the coordinate transformation from(x, z) to
(x,y) = (x, βx+z), with β ∈ R>0 to be chosen later. The
dynamics can be rewritten as

(
ẋ

ẏ

)

= A

(
x

y

)

where

A =

(
−(α− β)L −L

(−β(α− β) + 1)L −βL

)

. (8)

Consider the candidate Lyapunov functionV (x,y) = x
T
x+

y
T
y. Its Lie derivative is the quadratic form defined by the

matrix

Q = I2ndA+AT
I2nd =

(
−(α− β)(L+ LT ) −L+ (−β(α− β) + 1)LT

(−β(α− β) + 1)L− LT −β(L+ LT )

)

.

Selectβ now satisfyingβ2 − αβ + 2 = 0 (this equation has
a real solution ifα ≥ 2

√
2). Then,

Q =

(

−(β
2+2
β

− β) −1

−1 −β

)

⊗ (L+ LT ). (9)

Each eigenvalue η of Q is of the form η =

λ
−(β2+2)±

√
(β2+2)2−4β2

2β , whereλ is an eigenvalue ofL +

L
T . Since G is strongly connected and weight-balanced,

L + LT is positive semidefinite with a simple eigenvalue
at zero, and henceη ≤ 0. By the LaSalle invariance
principle, the solutions of (7) from any initial condition
(x0,y0) ∈ R

nd × R
nd, asymptotically converge to the set

S = {(x,y) | Q(x,y)T = 02nd} ∩ Wz0
. To conclude

the result, we need to show thatS ⊆ Sagree. This follows
from noting that, forβ > 0, Q(x,y)T = 02nd implies that
(L+LT )x = 0nd and(L+LT )y = 0nd, i.e.,(x,y) ∈ Sagree.

The reason behind the introduction of the parameterα
in (7) comes from the following observation: if one tries
to reproduce the proof of Theorem 4.1 for a digraph, one
encounters indefinite terms of the form(x − x

∗)T (L −
LT )(z − z

∗) in the Lie derivative ofV , invalidating it as a
Lyapunov function. However, the proof of Lemma 5.3 shows
that an appropriate choice ofα, together with a suitable
change of coordinates, makes the quadratic from defined
by the identity matrix a valid Lyapunov function. We next
build on these observations to establish our main result: the
dynamics (7) solves in a distributed way the optimization
problem (3) on strongly connected weight-balanced digraphs.

Theorem 5.4:(Asymptotic convergence of(7) on directed
networks):Let G be a strongly connected, weight-balanced
digraph and consider the distributed optimization prob-
lem (3), where eachf i, i ∈ {1, . . . , n}, is convex and
differentiable with globally Lipschitz continuous gradients.
Let K ∈ R>0 be the Lipschitz constant of∇f̃ and define

h : R>0 → R by

h(r) =
1

2
Λ∗(L+ L

T )

(

−r4 + 3r2 + 2

r
+

√
(
r4 + 3r2 + 2

r

)2

− 4



+
Kr2

(1 + r2)
, (10)

whereΛ∗(·) denotes the non-zero eigenvalue with smallest
absolute value. Then, there existsβ∗ ∈ R>0 with h(β∗) = 0
such that, for all0 < β < β∗, the projection onto the
first component of any trajectory of (7) withα = β2+2

β

asymptotically converges to the set of solutions of (4).
Moreover, iff has a finite number of critical points, the limit
of the projection onto the first component of each trajectory
is a solution of (4).

Proof: For convenience, we denote the dynamics (7) by
Ψα-dis-opt : R

nd×R
nd → R

nd×R
nd. Note that the equilibria

of Ψα-dis-opt are precisely the set of saddle points ofF in (5).
Let x∗ = 1n ⊗x∗ be a solution of (4). First, note that given
any initial condition (x0, z0) ∈ R

nd × R
nd, the setWz0

defined by

Wz0
= {(x, z) | (1T

n ⊗ Id)z = (1T
n ⊗ Id)z0},

is invariant under the evolutions of (7). By Proposition 3.2(i)
and (iii), there exists(x∗, z∗) ∈ Eq(Ψα-dis-opt) ∩ Wz0

.
Consider the functionV : Rnd × R

nd → R≥0,

V (x, z) =
1

2
(x− x

∗)T (x− x
∗)

+
1

2
(y(x,z) − y(x∗,z∗))

T (y(x,z) − y(x∗,z∗)),

wherey(x,z) = βx + z andβ ∈ R>0 satisfiesβ2 − αβ +
2 = 0. This function is quadratic, hence smooth. Next,
we consider its Lie derivative alongΨα-dis-opt on Wz0

. For
(x, z) ∈ Wz0

, let

ξ = LΨα-dis-optV (x, z)

= (−αLx− Lz −∇f̃(x),Lx) · ∇V (x, z)

=
1

2

(
(x− x

∗)T , (y(x,z) − y(x∗,z∗))
T
)
A
(
x,y(x,z)

)T

+
1

2

(

x
T ,yT

(x,z)

)

AT
(
x− x

∗,y(x,z) − y(x∗,z∗)

)T

− (x− x
∗)T∇f̃(x)− β(y(x,z) − y(x∗,z∗))

T∇f̃(x),

whereA is given by (8). This equation can be written as

ξ =
1

2

(
(x− x

∗)T , (y(x,z) − y(x∗,z∗))
T
)

Q
(
x− x

∗,y(x,z) − y(x∗,z∗)

)T − (x− x
∗)T∇f̃(x)

+
(
(x− x

∗)T , (y(x,z) − y(x∗,z∗))
T
)
A
(
x
∗,y(x∗,z∗)

)T

− β(y(x,z) − y(x∗,z∗))
T∇f̃(x),

where Q is given by (9). Note thatA(x∗,y(x∗,z∗))
T =

−(Ly(x∗,z∗), βLy(x∗,z∗))
T = (∇f̃(x∗), β∇f̃(x∗))T . Thus,



after substituting fory(x,z), we have

ξ =
1

2

(
(x− x

∗)T , (z − z
∗)T
)T

Q̃
(
x− x

∗, z − z
∗
)T

− (1 + β2)(x− x
∗)T (∇f̃(x)−∇f̃(x∗))

− β(z − z
∗)T (∇f̃(x)−∇f̃(x∗)), (11)

where

Q̃ =

(

−β3 − (β
2+2
β

)− β −(1 + β2)

−(1 + β2) −β

)

⊗ (L+ LT ).

Each eigenvalue of̃Q is of the form

η̃ = λ× −(β4 + 3β2 + 2)±
√

(β4 + 3β2 + 2)2 − 4β2

2β
,

(12)

whereλ is an eigenvalue ofL+ L
T . Using the cocoercivity

of f̃ , we can upper boundξ as,

ξ ≤ 1

2
XT





Q̃11 Q̃12 0

Q̃21 Q̃22 −βInd
0 −βInd − 1

K
(1 + β2)Ind





︸ ︷︷ ︸

Q

X, (13)

whereK ∈ R>0 is the Lipschitz constant for the gradient of
f̃ and

XT = ((x− x
∗), (z − z

∗), (∇f̃(x)−∇f̃(x∗))).

Since(x, z) ∈ Wz0
, we have(1T

n ⊗ Id)(z−z
∗) = 0d and

hence it is enough to establish thatQ is negative semidefinite
on the subspaceW = {(v1, v2, v3) ∈ (Rnd)3 | (1T

n⊗Id)v2 =
0d}. Using the fact that− 1

K
(1+β2)Ind is invertible, we can

expressQ as

Q = N

(
Q̄ 0
0 − 1

K
(1 + β2)Ind

)

NT ,

where

Q̄ = Q̃+
Kβ2

(1 + β2)

(
0 0
0 Ind

)

,

N =





Ind 0 0

0 Ind
βK
1+β2 Ind

0 0 Ind



 .

Noting thatW is invariant underNT (i.e., NTW = W),

all we need to check is that the matrix

(
Q̄ 0

0 −
1
K

(1+β2)Ind

)

is negative semidefinite onW. Clearly, − 1
K
(1 + β2)Ind is

negative definite. On the other hand, on(Rnd)2, 0 is an eigen-
value ofQ̃ with multiplicity 2d and eigenspace generated by
vectors of the form(1n⊗a, 0) and(0,1n⊗b), with a, b ∈ R

d.
However, on{(v1, v2) ∈ (Rnd)2 | (1T

n ⊗ Id)v2 = 0d}, 0
is an eigenvalue ofQ̃ with multiplicity d and eigenspace
generated by vectors of the form(1n ⊗ a, 0). Moreover, on
{(v1, v2) ∈ (Rnd)2 | (1T

n ⊗ Id)v2 = 0d}, the eigenvalues
of Kβ2

(1+β2)

(
0 0
0 Ind

)
are Kβ2

(1+β2) with multiplicity nd− d and0
with multiplicity nd. Therefore, using Weyl’s theorem [18,
Theorem 4.3.7], we deduce that the nonzero eigenvalues of

the sumQ̄ are upper bounded byΛ∗(Q̃)+ Kβ2

(1+β2) . From (12)
and the definition ofh in (10), we conclude that the nonzero
eigenvalues ofQ̄ are upper bounded byh(β). It remains
to show that there existsβ∗ ∈ R>0 with h(β∗) = 0 such
that for all 0 < β < β∗ we haveh(β) < 0. For r > 0
small enough,h(r) < 0, sinceh(r) = − 1

2Λ∗(L + L
T )r +

O(r2). Furthermore,limr→∞ h(r) = K > 0. Hence, the
existence ofβ∗ follows from the Mean Value Theorem.
Therefore we concludeLΨα-dis-optV (x, z) ≤ 0. As a by-
product, the trajectories of (7) are bounded. Consequently, all
assumptions of the LaSalle Invariance Principle are satisfied
and its application yields that any trajectory of (7) starting
from an initial condition(x0, z0) converges to the largest
positively invariant setM in SΨα-dis-opt,V ∩ Wz0

. Note that

if (x, z) ∈ SΨα-dis-opt,V ∩Wz0
, thenNT

(
x−x

∗

z−z
∗

∇f̃(x)−∇f̃(x∗)

)

∈
ker(Q̄)×{0}. From the discussion above, we knowker(Q̄)
is generated by vectors of the form(1n ⊗ a, 0), and hence
this implies thatx = x

∗ + 1n ⊗ a, z = z
∗, and∇f̃(x) =

∇f̃(x∗), from where we deduce thatx is also a solution
to (4). Finally, for (x, z) ∈ M , an argument similar to
the one in the proof of Theorem 4.1 establishes(x, z) ∈
Eq(Ψα-dis-opt). If the set of equilibria is finite, convergence
to a point is also guaranteed.

Figure 1 illustrates the result of Theorem 5.4 for the
network of Example 5.2.

Remark 5.5:(Locally Lipschitz objective functions):Our
simulations suggests that the convergence result in The-
orem 5.4 holds true for any locally Lipschitz objective
function. However, our proof cannot be reproduced for this
case because it would rely on the generalized gradient of the
function being globally Lipschitz which, by Proposition A.1,
would imply that the function is continuously differentiable.
•

Remark 5.6 (Selection ofα in (7)): According to Theo-
rem 5.4, the parameterα is determined byβ asα = β2+2

β
.

In turn, one can observe from (10) that the range of suitable
values forβ increases with higher network connectivity and
smaller variability of the gradient of the objective function.
From a control design viewpoint, it is reasonable to choose
the value ofβ that yields the smallestα while satisfying the
conditions of the theorem statement. •

VI. CONCLUSIONS AND FUTURE WORK

We have studied the distributed optimization of a sum of
convex functions over directed networks using consensus-
based dynamics. Somewhat surprisingly, we have established
that the convergence results established in the literaturefor
undirected networks do not carry over to the directed sce-
nario. Nevertheless, our analysis has allowed us to introduce
a slight generalization of the saddle-point dynamics of the
undirected case which incorporates a design parameter. We
have proved that, for appropriate parameter choices, this
dynamics solves the distributed optimization problem for
differentiable convex functions with globally Lipschitz gra-
dients on strongly connected and weight-balanced digraphs.
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Fig. 1. Execution of (7) for the network of Example 5.2 withf1(x) = ex, f2(x) = (x− 3)2, f3(x) = (x+3)2, f4(x) = x4, f5(x) = 4. (a) and (b)
show the evolution of the agent’s values inx andz, respectively, and (c) shows the value of the Lyapunov function. Here,α = 3, x0 = (1, 2, 0.3, 1, 1)T ,
andz0 = 15. The equilibrium(x∗,z∗) is x

∗ = −0.2005 · 15 andz∗ = (1.1784, 4.3717,−4.1598, 2.2598, 1.3499)T .

Our technical approach relies on a careful combination of
notions from stability analysis, algebraic graph theory, and
convex analysis. Future work will focus on the extension of
the convergence results to locally Lipschitz functions, the
incorporation of local and global constraints, and the design
of distributed algorithms that allow the network to agree on
an optimal value of the design parameter.
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APPENDIX

The generalized gradientof a locally Lipschitz function
f is

∂f(x) = co
{

lim
k→∞

∇f(xk) | xk → x, xk /∈ Ωf ∪ S
}
,

whereΩf is the set of points wheref fails to be differentiable
andS is any set of measure zero. The next result, invoked
in our observation in Remark 5.5, shows that the differentia-
bility hypothesis of Proposition 2.1 cannot be relaxed.

Proposition A.1: (Lipschitz generalized gradient and dif-
ferentiability): Any locally Lipschitz function with globally
Lipschitz generalized gradient is continuously differentiable.

Proof: Let f : Rd → R be a locally Lipschitz function
and has a globally Lipschitz generalized gradient map [19].
Take x ∈ R

d and let us show that∂f(x) is a singleton.
Since f is differentiable almost everywhere, there exists a
sequence of points{xn}∞n=1, wheref is differentiable such
that limn→∞ xn = x. Using the set-valued Lipschitz prop-
erty of ∂f , we have∂f(x) ⊂ ∇f(xn)+K||xn−x||B(0, 1),
whereK ∈ R>0 is the Lipschitz constant andB(0, 1) is the
ball centered at0 ∈ R

d of radius one. Hence, any element
v ∈ ∂f(x) can be written asv = ∇f(xn) +K||xn − x||un,
where un is a unit vector inRd. Now, taking the limit,
v = limn→∞ ∇f(xn). Hence the generalized gradient is
singleton-valued. Differentiability follows now from theset-
valued Lipschitz condition.


