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Abstract— This paper considers a class of strategic scenarios
in which two cooperative groups of agents have opposing
objectives with regards to the optimization of a common
objective function. In the resulting zero-sum game, individual
agents collaborate with neighbors in their respective network
and have only partial knowledge of the state of the agents in
the other network. We consider scenarios where the interaction
topology within each cooperative network is given by a strongly
connected and weight-balanced directed graph. We introduce a
provably-correct distributed dynamics which converges to the
set of Nash equilibria when the objective function is strictly
concave-convex, differentiable, with globally Lipschitz gradient.
The technical approach combines tools from algebraic graph
theory, dynamical systems, convex analysis, and game theory.

I. I NTRODUCTION

The nature of interactions between individual agents in a
variety of networked scenarions is strategic and not necessar-
ily cooperative. Examples of strategic interactions occurin
biological systems, e.g., selfishness and stealth in collective
motion [1] and competitive interactions between cells and
organs [2], cybersecurity [3], and collective bargaining and
opinion dynamics in heterogeneous networks [4], [5], [6].
This paper considers a class of such strategic scenarios
where two networks of agents, with directed topologies and
opposing goals, are involved in a zero-sum game, where
the objective function is a sum of concave-convex functions.
Within each network, agents cooperate with their neighbors
and have partial information about the state of the agents of
the opposing network. Our goal is to design a continuous-
time distributed dynamics that can be used by the networks
to converge to the set of Nash equilibria. Specifically, we
seek to generalize the results of [7] to allow for directed
topologies.

Literature review: This work is related to the literature
on zero-sum games and distributed optimization. The con-
vergence of the continuous-time best-response dynamics for
zero-sum games with concave-convex payoff functions is
shown in [8]. The results can be extended to quasiconvex-
quasiconcave payoff functions, as recently shown in [9].
Continuous-time gradient flow dynamics has also been used
for finding Nash equilibria of zero-sum games [10], [11].
This dynamics may fail to converge for general concave-
convex functions [12] but is convergent when both convexity
and concavity assumptions are strict. This convergence result
also holds true when the payoff function is linear in one
argument and its Hessian is positive-definite in the other [11],
[12]. It is also worth noting that finding the saddle point
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of function using (sub)gradient dynamics has also been
studied in discrete time [11], [13], [14]. The distributed
computation of Nash equilibria in noncooperative games has
been investigated in different contexts, see for example [15],
[16], [17].

Regarding the literature on distributed optimization, the
design of distributed dynamics for optimization of a sum
of convex functions has been studied intensively in recent
years, see e.g. [18], [19], [20]. These are consensus-baseddy-
namics, see [21], [22], [23], [24], and are typically designed
in discrete time. Exceptions are the works [25], [26], [7]
on continuous-time distributed optimization on undirected
networks and [27] on directed networks.

Statement of contributions:The contributions of this paper
are threefold. We start by formulating a distributed zero-sum
game for two networks with directed topologies engaged in
a strategic scenario. The networks’ objectives are to either
maximize or minimize a common objective function which
can be written as a sum of concave-convex functions. Indi-
vidual agents collaborate with neighbors in their respective
network and have partial knowledge of the state of the
agents in the other network. We provide characterizations
of the Nash equilibria of the game as saddle points of
two newly-introduced functions that play a key role in the
algorithm design. Secondly, we introduce a generalizationof
the saddle-point dynamics corresponding to these functions
that also incorporates a design parameter. This strategy has a
nice consensus plus gradient-based interpretation. Usingthe
LaSalle Invariance Principle, we show that by appropriately
choosing this parameter, the proposed dynamics asymptot-
ically converges to the set of Nash equilibria for any pair
of strongly connected weight-balanced adversarial networks
and strictly concave-convex differentiable objective function
with globally Lipschitz gradient. Interestingly, the interplay
between the connectivity of the underlying networks and the
Lipschitz constant of the gradient of the objective function
plays a key role in determining the values of the design
parameter. Finally, we provide a generalization to concave-
convex functions of the known characterization of cocoer-
civity for concave functions, which plays a key role in our
technical approach. The proofs are omitted for reasons of
space and will appear elsewhere.

II. PRELIMINARIES

We start with some notational conventions. LetR, R≥0,
Z, Z≥1 denote the set of real, nonnegative real, integer,
and positive integer numbers, respectively. We denote by
ı : Rd1 → R

d2 , d1, d2 ∈ Z≥1, d2 ≥ d1, any natural inclusion
which maps each vector inRd1 to a vector inRd2 by adding



zeros to the rest of its components. We denote by|| · || the
Euclidean norm onRd, d ∈ Z≥1 and also use the short-hand
notation1d = (1, . . . , 1)T and0d = (0, . . . , 0)T ∈ R

d. We
let Id denote the identity matrix inRd×d. For matricesA ∈
R

d1×d2 andB ∈ R
e1×e2 , d1, d2, e1, e2 ∈ Z≥1, we letA⊗B

denote their Kronecker product. A functionf : X1×X2 → R,
with X1 ⊂ R

d1 , X2 ⊂ R
d2 closed and convex, isconcave-

convexif it is concave in its first argument and convex in the
second one [28]. A point(x∗

1, x
∗
2) ∈ X1×X2 is asaddle point

of f if f(x1, x
∗
2) ≤ f(x∗

1, x
∗
2) ≤ f(x∗

1, x2) for all x1 ∈ X1

andx2 ∈ X2. A function f : Rd → R is globally Lipschitz
on R

d if for all y, z ∈ R
d there existsC ∈ R≥0 such that

|f(y) − f(z)| ≤ C||y − z||. For a differentiable functionf ,
a pointx ∈ R

d with ∇f(x) = 0 is a critical point of f . A
differentiable convex functionf satisfies, for allx, x′ ∈ R

d,
the first-order conditionof convexity,

f(x′)− f(x) ≥ ∇f(x) · (x′ − x). (1)

A. Stability analysis

Here, we recall some background on continuous-time
dynamical systems following [29]. Consider a system on
X ⊂ R

d given by

ẋ(t) = Ψ(x(t)), (2)

wheret ∈ R≥0 andΨ : X ⊂ R
d → R

d is continuous. A solu-
tion to this dynamical system is a continuously differentiable
curvex : [0, T ] → X which satisfies (2). The set of equilibria
of (2) is denoted byEq(Ψ) = {x ∈ X | Ψ(x) = 0}.

The LaSalle Invariance Principle for continuous-time sys-
tems is helpful to establish the asymptotic stability properties
of systems of the form (2). A setW ⊂ X is positively
invariant with respect toΨ if each solution with initial
condition in W remains inW for all subsequent times.
The Lie derivativeof a continuously differentiable function
V : Rd → R alongΨ at x ∈ R

d is defined byLΨV (x) =
∇V (x) ·Ψ(x).

Theorem 2.1:(LaSalle Invariance Principle):Let W ⊂
X be positively invariant under (2) andV : X → R a
continuously differentiable function. Suppose the evolutions
of (2) with initial conditions inW are bounded. Then any
solutionx(t), t ∈ R≥0, starting inW converges to the largest
positively invariant setM contained inSΨ,V ∩ W , where
SΨ,V = {x ∈ X | LΨV (x) = 0}. When M is a finite
collection of points, then the limit of each solution equals
one of them.

B. Graph theory

We present some basic notions from algebraic graph
theory following the exposition in [23]. Adirected graph, or
simply digraph, is a pairG = (V, E), whereV is a finite set
called the vertex set andE ⊆ V×V is the edge set. A digraph
is undirected if (v, u) ∈ E anytime (u, v) ∈ E . We refer
to an undirected digraph as agraph. A path is an ordered
sequence of vertices such that any ordered pair of vertices
appearing consecutively is an edge of the digraph. A digraph
is strongly connectedif there is a path between any pair of
distinct vertices. For a graph, we refer to this notion simply

asconnected. A weighted digraphis a tripletG = (V, E ,A),
where (V, E) is a digraph andA ∈ R

n×n
≥0 is the adjacency

matrixof G, with the property thataij > 0 if (vi, vj) ∈ E and
aij = 0, otherwise. The weighted out-degree and in-degree
of vi, i ∈ {1, . . . , n}, are respectively,dw

out(vi) =
∑n

j=1 aij
and dw

in(vi) =
∑n

j=1 aji. The weighted out-degree matrix
Dout is the diagonal matrix defined by(Dout)ii = dw

out(i), for
all i ∈ {1, . . . , n}. The Laplacian matrix is L = Dout − A.
Note thatL1n = 0. If G is strongly connected, then zero is a
simple eigenvalue ofL. G is undirected ifL = L

T andweight-
balancedif dw

out(v) = dw
in(v), for all v ∈ V. Equivalently,G is

weight-balanced if and only if1T
nL = 0 if and only if L+L

T

is positive semidefinite. Furthermore, ifG is weight-balanced
and strongly connected, then zero is a simple eigenvalue of
L+ L

T . Note that any undirected graph is weight-balanced.

C. Zero-sum games

We recall some game theoretic notions from [30]. Ann-
player game is a tripletG = (P,X, U), whereP is the set
of players,n = |P | ∈ Z≥2, X = X1 × . . .×Xn, Xi ⊂ R

di is
the set of (pure) strategies of playervi ∈ P , di ∈ Z≥1, and
U = (u1, . . . , un), whereui : X → R is the payoff function
of player vi, i ∈ {1, . . . , n}. The gameG is called azero-
sum gameif

∑n

i=1 ui(x) = 0, for all x ∈ X. If xi ∈ Xi, we
denote byx−i the strategy set of all players exceptvi. An
outcomex∗ ∈ X is called a (pure)Nash equilibriumof G if
for all i ∈ {1, . . . , n} and allxi ∈ Xi we have

ui(x
∗
i , x

∗
−i) ≥ ui(xi, x

∗
−i).

One can extend this notion tomixed Nash equilibria by
assignment of probabilities to pure strategies [30]. In this
paper, we focus on a particular class of two-players zero-sum
games which have at least one pure Nash equilibrium. The
following well-known Minmax Theorem [31] characterizes
that the gameG = ({v1, v2},X1 × X2, (u,−u)) has a pure
Nash equilibrium.

Theorem 2.2:(Minmax theorem): Let X1 ⊂ R
d1 and

X2 ⊂ R
d2 , d1, d2 ∈ Z≥1, be nonempty, closed, bounded,

and convex. Ifu : X1 × X2 → R is continuous and the sets
{x′ ∈ X1 | u(x′, y) ≥ α} and{x′ ∈ X2 | u(x, y′) ≤ α} are
convex for allx ∈ X1, y ∈ X2, andα ∈ R, then

max
x

min
y

u(x, y) = min
y

max
x

u(x, y).

III. PROBLEM STATEMENT

Consider two networksΣ1 and Σ2 composed of
agents{v1, . . . , vn1

} and agents{w1, . . . , wn2
}, respectively.

Throughout this paper,Σ1 and Σ2 are either connected
undirected graphs, c.f. Section IV, or strongly connected
weight-balanced digraphs, c.f. Section V. Since the latter
case includes the first one, throughout this section, we
assume the latter. The state ofΣ1, denoted byx1, belongs
to X1 ⊂ R

d1 , d1 ∈ Z≥1. Likewise, the state ofΣ2, denoted
by x2, belongs toX2 ⊂ R

d2 , d2 ∈ Z≥1. In this paper, we
do not get into the details of what these states represent (as
a particular case, the network state could correspond to the
collection of the states of agents in it). In addition, each agent
vi in Σ1 has an estimatexi

1 ∈ R
d1 of what the network state



is, which may differ from the actual valuex1. Similarly, each
agentwj in Σ2 has an estimatexj

2 ∈ R
d2 of what the network

state is. Within each network, neighboring agents can share
their estimates. Networks can also obtain information about
each other. This is modeled by means of a bipartite directed
graphΣeng, called engagementgraph, with disjoint vertex
sets {v1, . . . , vn1

} and {w1, . . . , wn2
}, where every agent

has at least one out-neighbor. According to this model, an
agent inΣ1 obtains information from its out-neighbors in
Σeng about their estimates of the state ofΣ2, and vice versa.

For eachi ∈ {1, . . . , n1}, let f i
1 : X1 × X2 → R be

a locally Lipschitz concave-convex function only available
to agentvi ∈ Σ1. Similarly, let f j

2 : X1 × X2 → R be
a locally Lipschitz concave-convex function only available
to agentwj ∈ Σ2, j ∈ {1, . . . , n2}. The networksΣ1 and
Σ2 are engaged in a zero-sum game with payoff function
U : X1 × X2 → R

U(x1, x2) =

n1
∑

i=1

f i
1(x1, x2) =

n2
∑

j=1

f j
2 (x1, x2), (3)

where Σ1 wishes to maximizeU , while Σ2 wishes to
minimize it. The objective of the networks is therefore to
settle upon a Nash equilibrium, i.e., to solve the following
maxmin problem

max
x1∈X1

min
x2∈X2

U(x1, x2). (4)

We refer to the this zero-sum game as the2-network zero-
sum gameand denote it byGadv-net = (Σ1,Σ2,Σeng, U).
We assume thatX1 ⊂ R

d1 and X2 ⊂ R
d2 are compact

convex. For convenience, letx1 = (x1
1, . . . , x

n1

1 )T and
x2 = (x1

2, . . . , x
n2

2 )T denote vector of agent estimates about
the state of the respective networks.

Remark 3.1:(Applications to distributed problems in the
presence of adversaries):Multiple scenarios involving net-
worked systems and intelligent adversaries in sensor net-
works, filtering, finance, and communications [32], [33]
can be cast into the strategic framework described above.
Here we present a class of examples from communications
inspired by [34, Section 5.5.3]. Considern Gaussian com-
munication channels, each with signal powerpi ∈ R≥0 and
noise powerηi ∈ R≥0, for i ∈ {1, . . . , n}. The capacity of
each channel is proportional tolog(1+βpi/(σi+ηi)), where
β ∈ R>0 andσi > 0 is the receiver noise. Note that capacity
is concave inpi and convex inηi. Both signal and noise
powers must satisfy a budget constraint, i.e.,

∑n

i=1 pi = P
and

∑n

i=1 ηi = C, for some givenP,C ∈ R>0. Two
networks ofn agents are involved in this scenario, one,Σ1,
selecting signal powers to maximize capacity, the other one,
Σ2, selecting noise powers to minimize it. The networkΣ1

has decided thatm1 channels will have signal powerx1,
while n− 1−m1 will have signal powerx2. The remaining
nth channel has its power determined to satisfy the budget
constraint, i.e.,P −m1x1 − (n− 1−m1)x2. Likewise, the
networkΣ2 does something similar withm2 channels with
noise powery1, n−1−m2 channels with noise powery2, and
one last channel with noise powerC−m2y1−(n−1−m2)y2.
Each network is aware of the partition made by the other

one. The individual objective function of the two agents (one
from Σ1, the other fromΣ2) making decisions on the power
levels of theith channel is the channel capacity itself. For
i ∈ {1, . . . , n− 1}, this takes the form

f i(x, y) = log
(

1 +
βxa

σi + yb

)

,

for somea, b ∈ {1, 2}. Herex = (x1, x2) andy = (y1, y2).
For i = n, it takes instead the form

fn(x, y) = log
(

1 +
β(P −m1x1 − (n− 1−m1)x2)

σn + C −m2y1 − (n− 1−m2)y2

)

.

Note that
∑n

i=1 f
i(x, y) is the total capacity of then

communication channels. •

A. Reformulation of the2-network zero-sum game

In this section, we describe how agents in each net-
work use the information obtained from their neighbors
to compute the value of their own objective functions.
Based on these estimates, we introduce a reformulation of
the Gadv-net = (Σ1,Σ2,Σeng, U) which is instrumental for
establishing some of our results.

Each agent inΣ1 has a locally Lipschitz, concave-convex
function f̃ i

1 : Rd1 × R
d2n2 → R with the properties:

• (Extension of own payoff function): for anyx1 ∈ R
d1 ,

x2 ∈ R
d2 ,

f̃ i
1(x1,1n2

⊗ x2) = f i
1(x1, x2). (5a)

• (Distributed over Σeng): there existsfi1 : R
d1 ×

R
d2|N

in
Σeng

(vi)| → R such that, for anyx1 ∈ R
d1 x2 ∈

R
d2n2 ,

f̃ i
1(x1,x2) = fi1(x1, π

i
1(x2)), (5b)

with πi
1 : Rd2n2 → R

d2|N
out
Σeng

(vi)| the projection ofx2 to
the values received byvi from its out-neighbors inΣeng.

Each agent inΣ2 has a functionf̃ j
2 : Rd1n1 × R

d2 → R

with similar properties. The collective payoff functions of
the two networks are

Ũ1(x1,x2) =

n1
∑

i=1

f̃ i
1(x

i
1,x2), (6a)

Ũ2(x1,x2) =

n2
∑

j=1

f̃ j
2 (x1, x

j
2). (6b)

In general, the functions̃U1 and Ũ2 need not be the same.
However,Ũ1(1n1

⊗x1,1n1
⊗x2) = Ũ2(1n1

⊗x1,1n1
⊗x2),

for anyx1 ∈ R
d1 , x2 ∈ R

d2 . When both functions coincide,
the next result shows that the original game can be lifted to
a (constrained) zero-sum game.

Lemma 3.2:(Reformulation of the2-network zero-sum
game):Assume that the individual payoff functions{f̃ i

1}
n1

i=1,
{f̃ j

2}
n2

j=1 satisfying (5) are such that the network payoff
functions defined in (6) satisfỹU1 = Ũ2, and letŨ denote
this common function. Then, the problem (4) onRd1 ×R

d2

is equivalent to the following problem onRn1d1 × R
n2d2 ,

max
x1∈X

n1

1

min
x2∈X

n2

2

Ũ(x1,x2),

subject to L1x1 = 0n1d1
, L2x2 = 0n2d2

, (7)



with Lℓ = Lℓ ⊗ Idℓ
andLℓ the Laplacian ofΣℓ, ℓ ∈ {1, 2}.

We denote byG̃adv-net = (Σ1,Σ2,Σeng, Ũ) the constrained
zero-sum game defined by (7) and refer to this situation by
saying thatGadv-net can be lifted toG̃adv-net. Our objective
is to design a coordination algorithm that is implementable
with the information that agents inΣ1 andΣ2 possess and
leads them to find a Nash equilibrium of̃Gadv-net, which
corresponds to a Nash equilibrium ofGadv-netby Lemma 3.2.
Achieving this goal, however, is nontrivial because individual
agents, not networks themselves, are the decision makers.
From the point of view of agents in each network, the ob-
jective is to agree on the states of both their own network and
the other network, and that the resulting states correspondto
a Nash equilibrium ofGadv-net.

We finish this section by presenting a characterization of
the Nash equilibria of̃Gadv-net, instrumental for proving some
of our upcoming results.

Proposition 3.3: (Characterization of the Nash equilibria
of G̃adv-net): For Σ1, Σ2 strongly connected and weight-
balanced, defineF1 andF2 by

F1(x1, z1,x2) = −Ũ(x1,x2) + x
T
1 L1z1 +

1

2
x
T
1 L1x1,

F2(x2, z2,x1) = Ũ(x1,x2) + x
T
2 L2z2 +

1

2
x
T
2 L2x2.

Then, F1 and F2 are convex in their first argument, lin-
ear in their second one, and concave in their third one.
Moreover, assume(x∗

1, z
∗
1 ,x

∗
2, z

∗
2) satisfies the following

saddle propertyfor (F1, F2): (x∗
1, z

∗
1) is a saddle point of

(x1, z1) 7→ F1(x1, z1,x
∗
2) and(x∗

2, z
∗
2) is a saddle point of

(x2, z2) 7→ F2(x2, z2,x
∗
1). Then,

(i) (x∗
1, z

∗
1 + 1n1

⊗ a1,x
∗
2, z

∗
2 + 1n2

⊗ a2) satisfies the
saddle property for(F1, F2) for any a1 ∈ R

d1 , a2 ∈
R

d2 , and
(ii) (x∗

1,x
∗
2) is a Nash equilibrium of̃Gadv-net.

Furthermore,

(iii) if (x∗
1,x

∗
2) is a Nash equilibrium of̃Gadv-net then there

exists z
∗
1 , z

∗
2 such that(x∗

1, z
∗
1 ,x

∗
2, z

∗
2) satisfies the

saddle property for(F1, F2).

IV. D ISTRIBUTED NASH SEEKING DYNAMICS FOR

UNDIRECTED GRAPHS

Here, we review following [7] a dynamics which solves (7)
whenΣ1 andΣ2 are undirected. In this scenario, the gradi-
ents ofF1 andF2 are, respectively, distributed overΣ1 and
Σ2. By Proposition 3.3, it is natural to consider the saddle-
point dynamics forF1 andF2 to solve (4), i.e.,

ẋ1 + L1x1 + L1z1 = ∇x1
Ũ(x1,x2), (8a)

ż1 = L1x1, (8b)

ẋ2 + L2x2 + L2z2 = −∇x2
Ũ(x1,x2), (8c)

ż2 = L2x2, (8d)

where xj , zj ∈ R
njdj , j ∈ {1, 2}. The following result

establishes the convergence properties of this dynamics.
Theorem 4.1:(Asymptotic convergence of the undirected

distributed Nash seeking dynamics):Consider the zero-sum
gameG̃adv-net= (Σ1,Σ2,Σeng, Ũ), where

(i) Σ1 andΣ2 are connected and undirected,
(ii) Ũ : X

n1

1 × X
n2

2 → R, X1 and X2 compact convex
subsets of, respectively,Rd1 andRd2 , is a differentiable
strictly concave-convex function, distributed overΣeng

and alsoΣ1 andΣ2 in the sense of (6).

Then the projection onto the first and third components of
the solutions to (8) asymptotically converges to the solution
of (7).

It is worth mentioning that this result, in fact, also holds
true whenΣ1 andΣ2 are undirected andU is the sum of
locally Lipschitz concave-convex functions, see [7].

V. D ISTRIBUTED NASH SEEKING DYNAMICS FOR

DIRECTED GRAPHS

In this section, we introduce a continuous-time Nash
seeking dynamics implementable over strongly connected
and weight-balanced directed topologies. This dynamics is
distributed over each individual network and can find the
Nash equilibria of the zero-sum game, provided that the pay-
off function is differentiable, strictly concave-convex,with
globally Lipschitz gradient. This result generalizes the Nash
seeking saddle-point dynamics of (8) to directed topologies.

We start by modifying the dynamics of (8) as

ẋ1 + αL1x1 + L1z1 = ∇Ũx1
(x1,x2), (9a)

ż1 = L1x1, (9b)

ẋ2 + αLx2 + Lz2 = −∇Ũx2
(x1,x2), (9c)

ż2 = L2x2, (9d)

whereα ∈ R>0 is a design parameter and the payoff function
is differentiable with globally Lipschitz gradient. The reason
behind including the parameterα in the dynamics is that (8)
may fail to converge when transcribed to directed graphs,
for the same reason that the continuous-time saddle-point
distributed optimization dynamics may fail on undirected
graphs, see [27].

Next, we show that a suitable choice of this design
parameter, makes this dynamics convergent.

Theorem 5.1:(Asymptotic convergence of the directed
distributed Nash seeking dynamics):Consider the zero-sum
gameG̃adv-net= (Σ1,Σ2,Σeng, Ũ), where

(i) Σ1 and Σ2 are strongly connected and weight-
balanced,

(ii) Ũ : X
n1

1 × X
n2

2 → R, X1 and X2 compact convex
subsets of, respectively,Rd1 and R

d2 , is a differen-
tiable strictly concave-convex function with globally
Lipschitz gradient, distributed overΣeng and alsoΣ1

andΣ2 in the sense of (6).

Let h : R>0 → R be defined by

h(r) =
1

2
Λmin
∗

(

−
r4 + 3r2 + 2

r
(10)

+

√

(

r4 + 3r2 + 2

r

)2

− 4



+
Kr2

(1 + r2)
,

Λmin
∗ = minj=1,2{Λ∗(Lj + L

T
j )}, whereΛ∗(·) denotes the

smallest non-zero eigenvalue andK ∈ R>0 is the Lipschitz



constant for the gradient of̃U . Then there existsβ∗ ∈ R>0

with hj(β
∗) = 0, j ∈ {1, 2}, such that for all0 < β <

β∗, the projection onto the first and third components of the
solutions of (9) withα = β2+2

β
asymptotically converges to

the solution of (7).
Remark 5.2:(Comparison with the best-response dynam-

ics): The advantage of using the gradient flow is that it avoids
the cumbersome computation of the best-response map. This,
however, does not come for free. There are concave-convex
functions for which the (distributed) gradient flow dynamics,
unlike the best-response dynamics, fails to converge to the
saddle point, see [12] for an example. •

Remark 5.3:(Scenarios with more than two adversarial
networks): It is known that there are continuous-time zero-
sum games with three players and strictly concave-convex
payoff functions, for which even the best-response dynamics
fails to converge, see [9]. This leaves little hope for ex-
tensions of Theorems 4.1 and 5.1 toN -network zero-sum
games, withN ∈ Z≥3. •

We finish this section with an example.
Example 5.4:(Distributed adversarial selection of sig-

nal and noise power via(9)): Recall the communication
scenario described in Remark 3.1. Consider5 channels,
{v1, v2, v3, v4, v5}, for which the networkΣ1 has decided
that {v1, v3} have signal powerx1 and{v2, v4} have signal
power x2. Channelv5 has its signal power determined to
satisfy the budget constraintP ∈ R>0, i.e.,P − 2x1 − 2x2.
Similarly, the networkΣ2 has decided thatv1 has noise
powery1, {v2, v3, v4} have noise powery2, andv5 has noise
powerC−y1−3y2 to meet the budget constraintC ∈ R>0.
We letx = (x1, x2, x3, x4, x5) andy = (y1, y2, y3, y4, y5),
wherexi = (xi

1, x
i
2) ∈ [0, P ]2 and yi = (yi1, y

i
2) ∈ [0, C]2,

for eachi ∈ {1, . . . , 5}.
The networksΣ1 andΣ2, which are weight-balanced and

strongly connected, and the engagement topologyΣeng are
shown in Figure 1. Note that, according to this topology, each

Σ1 Σ2Σeng

v1

v4

v2

v3

v5

w1

w2

w5

w4

w3

Fig. 1. TheΣ1, Σ2 andΣeng for the case study of Example 5.4 are shown.
Edges which correspond toΣeng are dashed.

agent can observe the power employed by its adversary in its
channel and, additionally, the agents in channel2 can obtain
information about the estimates of the opponent in channel4
and vice versa. The payoff functions of the agents are given
in Remark 3.1, where we takeσi = σ1, for i ∈ {1, 3, 5},
andσi = σ2, for i ∈ {2, 4}, with σ1, σ2 ∈ R>0.

This example fits into the approach described in Sec-
tion III-A by considering the following extended payoff
functions:

f̃1
1 (x

1,y) = log(1 +
βx1

1

σ1 + y11
),

f̃2
1 (x

2,y) =
1

3
log(1 +

βx2
2

σ2 + y42
) +

2

3
log(1 +

βx2
2

σ2 + y22
),

f̃3
1 (x

3,y) = log(1 +
βx3

1

σ1 + y32
),

f̃4
1 (x

4,y) =
1

3
log(1 +

βx4
2

σ2 + y22
) +

2

3
log(1 +

βx4
2

σ2 + y42
),

f̃5
1 (x

5,y) = log
(

1 +
β(P − 2x5

1 − 2x5
2)

σ1 + C − y51 − 3y52

)

,

f̃1
2 (x, y

1) =f̃1
1 (x

1,y), f̃3
2 (x, y

3) = f̃3
1 (x

3,y),

f̃2
2 (x, y

2) =
2

3
log(1 +

βx2
2

σ2 + y22
) +

1

3
log(1 +

βx4
2

σ2 + y22
),

f̃4
2 (x, y

4) =
1

3
log(1 +

βx2
2

σ2 + y42
) +

2

3
log(1 +

βx4
2

σ2 + y42
),

f̃5
2 (x, y

5) =f̃5
1 (x

5,y).

Note that these functions are strictly concave and thus the
zero-sum game defined has a unique saddle point on the set
[0, P ]2 × [0, C]2. These functions satisfy (5) and̃U1 = Ũ2.
Figure 2 shows the convergence of the dynamics (9) to the
Nash equilibrium of the resulting2-network zero-sum game.
•

VI. CONCLUSIONS AND FUTURE WORK

We have considered a class of strategic scenarios in which
two networks of agents are involved in a zero-sum game.
The networks’ objectives are to either maximize or minimize
a common objective function. Individual agents collaborate
with neighbors in their respective network and have partial
knowledge of the state of the agents in the other network.
Specifically, we have considered directed networks where
information flows unidirectionally. We have introduced the
directed distributed Nash-seeking dynamics and shown that,
for appropriate parameter choices, this dynamics is guaran-
teed to converge to the Nash equilibrium for strictly concave-
convex and differentiable objective functions with globally
Lipschitz gradients. Future work will include relaxing the
assumptions on the problem data under which convergence
is guaranteed, including the smoothness, strict concavity-
convexity properties, and sum decomposition of the objective
function, and exploring the application of our results to var-
ious areas, including competitive social networks, collective
bargaining, and collaborative pursuit-evasion.

ACKNOWLEDGMENTS

This work was supported in part by Award FA9550-10-1-
0499.

REFERENCES

[1] R. Stocker and W. M. Durham, “Tumbling or stealth,”Science,
vol. 325, pp. 400–402, 2009.

[2] L. A. Johnson, “Competition interactions between cells:death, growth,
and geography,”Science, vol. 324, pp. 1679–1682, 2009.



0 20 40 60 80 100 120
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

(a)

0 20 40 60 80 100 120
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(b)

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

(c)

Fig. 2. Execution of (9) over the networked strategic scenario described in Example 5.4, withβ = 8, σ1 = 1, σ2 = 4, P = 6,
and C = 4. (a) and (b) show the evolution of the agent’s estimates of thestate of networksΣ1 and Σ2, respectively, and (c) shows
the value of the Lyapunov function. Here,α = 3 in (9) and initially, x

0 = ((1, 0.5), (0.5, 1), (0.5, 0.5), (0.5, 1), (0.5, 1))T , z
0
1 = 010,

y
0 = ((1, 0.5), (0.5, 1), (0.5, 1), (0.5, 0.5), (1, 0.5))T and z

0
2 = 010. The equilibrium (x∗, z∗

1 ,y
∗,z∗

2) is x
∗ = (1.3371, 1.0315)T ⊗ 15,

y
∗ = (1.5027, 0.3366)T ⊗ 15, z

∗

1 = (0.7508, 0.5084, 0.1447, 0.5084, 0.1447,−0.1271,−0.5201,−0.1271,−0.5201,−0.7626)T and z
∗

2 =
(0.1079,−0.0987,−0.0002, 0.2237, 0.0358, 0.2875,−0.0360, 0.0087,−0.1076,−0.4213).

[3] S. Roy, C. Ellis, S. Shiva, D. Dasgupta, V. Shandilya, andQ. Wu, “A
survey of game theory as applied to network security,” inProceedings
of the 43rd International Conference on System Sciences, (Koloa,
Kauai, Hawaii), Jan. 2010.

[4] M. Broecheler, O. Shakarian, and V. S. Subrahmanian, “A scalable
framework for modeling competitive diffusion in social networks,” in
IEEE International Conf. on Social Computing, (Minneapolis, MN),
pp. 295 – 302, Aug. 2010.

[5] D. Acemoglu, A. Ozdaglar, and A. ParandehGheibi, “Spreadof
(mis)information in social networks,”Games and Economic Behavior,
vol. 7, no. 2, 2010. 194-227.

[6] D. Acemoglu, G. Como, F. Fagnani, and A. Ozdaglar, “Opin-
ion fluctuations and disagreement in social networks,”Mathemat-
ics of Operation Research, Sept. 2010. Submitted. Available at
http://arxiv.org/abs/1009.2653.

[7] B. Gharesifard and J. Cortés, “Distributed convergence to Nash
equilibria by adversarial networks with undirected topologies,” in
American Control Conference, (Montréal, Canada), pp. 5881–5886,
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