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~ Abstract— This paper considers a class of strategic scenarios of function using (sub)gradient dynamics has also been
in which two cooperative groups of agents have opposing studied in discrete time [11], [13], [14]. The distributed
objectives with regards to the optimization of a common  .qmq tation of Nash equilibria in noncooperative games has

objective function. In the resulting zero-sum game, individual b . tigated in diff t text f 1
agents collaborate with neighbors in their respective network een investigated in different contexts, see for exampi¢ [

and have only partial knowledge of the state of the agents in [16], [17].
the other network. We consider scenarios where the interaction Regarding the literature on distributed optimization, the

topology within each cooperative network is given by a strongly  design of distributed dynamics for optimization of a sum
connected and weight-balanced directed graph. We introduce a of convex functions has been studied intensively in recent

provably-correct distributed dynamics which converges to the
set of Nash equilibria when the objective function is strictly Y&&rs, see e.g. [18], [19], [20]. These are consensus-hiysed

concave-conve, differentiable, with globally Lipschitz gradient. hamics, see [21], [22], [23], [24], and are typically design
The technical approach combines tools from algebraic graph in discrete time. Exceptions are the works [25], [26], [7]

theory, dynamical systems, convex analysis, and game theory. on continuous-time distributed optimization on undirecte
networks and [27] on directed networks.

] ) o . Statement of contributionsthe contributions of this paper
The nature of interactions between individual agents in ge threefold. We start by formulating a distributed zeuos
variety of networked scenarions is strategic and not necessgame for two networks with directed topologies engaged in
ily cooperative. Examples of strategic interactions odeur 5 sirategic scenario. The networks’ objectives are to kithe
biological systems, e.g., selfishness and stealth in ¢ec aximize or minimize a common objective function which
motion [1] and competitive interactions between cells angan pe written as a sum of concave-convex functions. Indi-

organs [2], cybersecurity [3], and collective bargainingla \jqual agents collaborate with neighbors in their respecti
opinion dynamics in heterogeneous networks [4], [S], [E]network and have partial knowledge of the state of the
This paper considers a class of such strategic scenariggents in the other network. We provide characterizations
where_two networks o_f agents,.wnh directed topologies angs the Nash equilibria of the game as saddle points of
opposing goals, are involved in a zero-sum game, Whefg, newly-introduced functions that play a key role in the
the objective function is a sum of concave-convex fU”Ct'O”%\Igorithm design. Secondly, we introduce a generalization
Within each network, agents cooperate with their neighbokg o saddle-point dynamics corresponding to these furetion
and have partial information abou_t the stat_e of the agents #at also incorporates a design parameter. This strategg ha
the opposing network. Our goal is to design a continuougjice consensus plus gradient-based interpretation. Ubing
time distributed dynamics that can be used by the network$,sgjle Invariance Principle, we show that by appropratel
to converge to t.he set of Nash equilibria. Spemﬂcqlly, Wehoosing this parameter, the proposed dynamics asymptot-
seek to' generalize the results of [7] to allow for dlrecteqlca"y converges to the set of Nash equilibria for any pair
topologies. of strongly connected weight-balanced adversarial né¢svor
Literature review: This work is related to the literature gng strictly concave-convex differentiable objectivedtion
on zero-sum games and distributed optimization. The cogyith globally Lipschitz gradient. Interestingly, the inpday
vergence of the continuous-time best-response dynamics fgetween the connectivity of the underlying networks and the
zero-sum games with concave-convex payoff functions isipschitz constant of the gradient of the objective funatio
shown in [8]. The results can be extended to quasiconvexiays a key role in determining the values of the design
quasiconcave payoff functions, as recently shown in [9harameter. Finally, we provide a generalization to concave
Continuous-time gradient flow dynamics has also been use@nvex functions of the known characterization of cocoer-
for finding Nash equilibria of zero-sum games [10], [11]cjvity for concave functions, which plays a key role in our

This dynamics may fail to converge for general concavechnical approach. The proofs are omitted for reasons of
convex functions [12] but is convergent when both convexitgpace and will appear elsewhere.

and concavity assumptions are strict. This convergenadtres

also holds true when the payoff function is linear in one Il. PRELIMINARIES

argument and its Hessian is positive-definite in the oth&},[1  \We start with some notational conventions. [t R,

[12]. It is also worth noting that finding the saddle pointZ, Z>1 denote the set of real, nonnegative real, integer,
Bahman Gharesifard and Jorge @sriare with the Department of Me- and positive integer numbers, respectively. We denote by
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zeros to the rest of its components. We denotd|by| the asconnectedA weighted digraphs a tripletg = (V, £, A),
Euclidean norm ofR?, d € Z>; and also use the short-handwhere (V, ) is a digraph andA € RZ}" is the adjacency
notation1, = (1,...,1)7 and0y = (0,...,0)T € R%. We matrixof G, with the property that;; > 0 if (v;,v;) € € and
let 1, denote the identity matrix iiR?*<¢. For matricesA €  a;; = 0, otherwise. The weighted out-degree and in-degree
R41*d2 and B € R %2, dy,da, e1,e2 € Z>1, We letA@ B of v, i € {1,...,n}, are respectivelydd,(v;) = Z?:l aij
denote their Kronecker product. A functign: X, xX; — R, and dj(v;) = >_7_, a;;. The weighted out-degree matrix
with X; € R4, X, C R% closed and convex, isoncave- Dy is the diagonal matrix defined bDou)i; = d¥,(i), for
convexif it is concave in its first argument and convex in theall i € {1,...,n}. The Laplacian matrix is L = Doy — A.
second one [28]. A poinfe], z3) € X1 x X, is asaddle point  Note thatL1, = 0. If G is strongly connected, then zero is a
of fif f(z,23) < f(af,x3) < f(x],z2) for all z; € X;  simple eigenvalue df. G is undirected il. = L” andweight-
andz, € Xp. A function f : RY — R is globally Lipschitz balancedif d¥,(v) = d%(v), for allv € V. Equivalently,G is
on R if for all y,z € R? there existsC' € Rx( such that weight-balanced if and only 7L = 0 if and only if L4 L”
|f(y) — f(2)| < Clly — 2||. For a differentiable functiorf, is positive semidefinite. Furthermore dfis weight-balanced
a pointz € R? with Vf(z) = 0 is acritical point of f. A and strongly connected, then zero is a simple eigenvalue of
differentiable convex functiorf satisfies, for alle, 2’ € RY, L + LT. Note that any undirected graph is weight-balanced.
the first-order conditionof convexity,
) ) C. Zero-sum games
f@) = flz) 2 Vf(z) - (2" — ). @) We recall some game theoretic notions from [30]. An
A. Stability analysis player game is a tripleG = (P, X,U), whereP is the set
_ __of players,;n = |P| € Zsg, X = X1 X ... x Xp, X; C R% is
Here, we recall some background on continuous-timg, o get of (pure) strategies of playere P, d; € Z-1, and

dynamicql systems following [29]. Consider a system oRr _ (ur,...,un), wherewu; : X — R is the payoff function
X c R? given b , :

g y of playeruv;, i € {1,...,n}. The gameG is called azero-

#(t) = W(z(t)), (2) sum gamef S ui(z) =0, for all z € X. If z; € X;, we

denote byz_; the strategy set of all players except An
wheret € R> and¥ : X € R? — R is continuous. A solu- outcomez* € X is called a (pureNash equilibriumof G if

tion to this dynamical system is a continuously differeiiéga for all i € {1,...,n} and allz; € X; we have
curvez : [0, T] — X which satisfies (2). The set of equilibria . .
of (2) is denoted byEq(¥) = {z € X | ¥(z) = 0}. wilzi, o) 2 wi(ws, aZy).

The LaSalle Invariance Principle for continuous-time syspne can extend this notion tmixed Nash equilibria by
tems is helpful to establish the asymptotic stability prige  assignment of probabilities to pure strategies [30]. Irs thi
of systems of the form (2). A seli’ C X is positively paper, we focus on a particular class of two-players zen-su
invariant with respect toW if each solution with initial games which have at least one pure Nash equilibrium. The

condition in W remains in1/" for all subsequent times. following well-known Minmax Theorem [31] characterizes
The Lie derivativeof a continuously differentiable function that the gameG = ({v1,v2}, X1 x X, (u, —u)) has a pure

V:R? — R along ¥ atz € R? is defined byLyV (z) =  Nash equilibrium.
VV(z)- ¥(z). _ o Theorem 2.2:(Minmax theorem):Let X; C R% and
Theorem 2.1:(LaSalle Invariance Principle)tet W C  x, R, dy,dy € Z1, be nonempty, closed, bounded,

X be positively invariant under (2) anf : X — R a and convex. Ifu : X; x X, — R is continuous and the sets
continuously differentiable function. Suppose the evohs {a/ € Xy | u(@',y) > o} and {2’ € X5 | u(z,y’) < o} are

Of (2) W|th |n|t|a| Conditions |nW are bounded. Then any convex for a”x c le Yy c X2, anda c R, then
solutionz(t), t € R>o, starting in/¥ converges to the largest

positively invariant setM contained inSg y N W, where mjxmjnu(z»y) = H{yinmjxu(x,y)-

Sev = {x € X | LgV(x) = 0}. When M is a finite ‘

collection of points, then the limit of each solution equals [Il. PROBLEM STATEMENT

one of them. Consider two networksX; and ¥, composed of
agents{vy, ..., v,, } and agent§wy, ..., wy,, }, respectively.

B. Graph theory Throughout this papery:; and X, are either connected

We present some basic notions from algebraic graplmdirected graphs, c.f. Section IV, or strongly connected
theory following the exposition in [23]. Alirected graphor  weight-balanced digraphs, c.f. Section V. Since the latter
simply digraph is a pairG = (V, £), whereV is a finite set case includes the first one, throughout this section, we
called the vertex set artd C Vx V is the edge set. A digraph assume the latter. The state %f, denoted byz;, belongs
is undirectedif (v,u) € & anytime (u,v) € £. We refer to X; C R%, d; € Z>;. Likewise, the state oE,, denoted
to an undirected digraph asgraph A path is an ordered by z,, belongs toX, C R%, dy € Z>;. In this paper, we
sequence of vertices such that any ordered pair of verticds not get into the details of what these states represent (as
appearing consecutively is an edge of the digraph. A digraghparticular case, the network state could correspond to the
is strongly connectedf there is a path between any pair of collection of the states of agents in it). In addition, eagard
distinct vertices. For a graph, we refer to this notion simplv; in £; has an estimate; € R% of what the network state



is, which may differ from the actual valus . Similarly, each one. The individual objective function of the two agentsgon
agentw; in X, has an estimate} € R¢ of what the network from X1, the other from>,) making decisions on the power
state is. Within each network, neighboring agents can shaevels of theith channel is the channel capacity itself. For

their estimates. Networks can also obtain information &bou € {1,...,n — 1}, this takes the form
each other. This is modeled by means of a bipartite directed , B
graph Xeng called engagemengraph, with disjoint vertex fH(z,y) = log (1 + P ),
sets{v1,...,v,, } and {ws,...,w,,}, Where every agent i

has at least one out-neighbor. According to this model, df" S0mea, b € {1,2}. Herex = (z1,2) andy = (y1, y2).
agent in¥; obtains information from its out-neighbors in IO ¢ = 7. it takes instead the form
Yeng @bout their estimates of the stateXf, and vice versa. ™ (@,y) = log (1 n B(P —mizy — (n—1—my)zs) )
For eachi € {1,...,n1}, let fi : X; x X, — R be ’ On+C—mayr — (n—1—ma)yz/
a locally Lipschitz concave-convex function only avaibl Note that S fi(z,y) is the total capacity of then
to agentv; € ;. Similarly, let f3 : X; x Xo = R be  communication channels. .
a locally Lipschitz concave-convex function only avai@bl .
to agentw; € %, j € {1,...,n5}. The networksy:; and A. Reformulation of th@-network zero-sum game
Y, are engaged in a zero-sum game with payoff function In this section, we describe how agents in each net-
U: Xy xXy =R work use the information obtained from their neighbors
ns na to compute the value of their own objective functions.
Ui, 22) = Y filw1,22) = fi(z1,22), (3) Based on these estimates, we introduce a reformulation of
i—1 J=1 the Gagvnet = (X1, X2, Xeng, U) Which is instrumental for

where ¥; wishes to maximizeU, while ¥, wishes to es;czabhr?hmg sqrrge gf ourlresu”Itsl._. hi
minimize it. The objective of the networks is therefore to ach agent in;; has a locally Lipschitz, concave-convex

H £, md dan: H : .
settle upon a Nash equilibrium, i.e., to solve the followinUnction fi : R% x R%" — R with the properties:

maxmin problem « (Extension of own payoff function): for anyz; € R%,
To € Rd2,
max min U(zy,x2). (4) s ;
T EXy T2EXz ( ) fi(x1, 1, @ x2) = f1(x1,22). (5a)
We refer to the this zero-sum game as theetwork zero- « (Distributed over Yeng): there existsf; : R% x
sum gameand denote |tdbyGadv.net = (2211,22,26,19, U). RENZeg@)l _y R such that, for anys; € R x, €
We assume thakK; C R% and Xo C R% are compact Rd2n2
convex. For convenience, let; = (z},...,27*)T and ' Fi g i
' AR, T1,22) = (w1, 7 (22)), 5b
@y = (b, ..., 252)T denote vector of agent estimates about ' file ;)Nomfl( i (@2)) (5b)
the state of the respective networks. with i : R%n2 5 R 2 Seng(v)] the projection ofr, to

Remark 3.1:(Applications to distributed problems in the the values received by; from its out-neighbors ieng.
presence of adversariejultiple scenarios involving net-  Each agent irt, has a functionfg CRET  RY2 s R

worked systems and intelligent adversaries in sensor netith similar properties. The collective payoff function$ o
works, filtering, finance, and communications [32], [33]the two networks are

can be cast into the strategic framework described above. ~ moo
Here we present a class of examples from communications Ui(z1,x2) = Z fi(z], z2), (6a)
inspired by [34, Section 5.5.3]. ConsiderGaussian com- i=1

munication channels, each with signal powerc R~ and . LR )

noise powen); € R, for i € {1,...,n}. The capacity of Us(wy, ) = Y (a1, 2)). (6b)
each channel is proportional Yog(1+ 3p; /(c; +n;)), where =1

B € Rso ando; > 0 is the receiver noise. Note that capacityin general, the functiong’; and U, need not be the same.
is concave inp; and convex inn;. Both signal and noise However,Ul(1n1®x1,1n1®x2) — (72(1711 @1, 1,, @T3),
powers must satisfy a budget constraint, i), p;i = P for anyz; € R%, 2, € R%. When both functions coincide,
and }>1' \n; = C, for some givenP,C € R.o. TWO the next result shows that the original game can be lifted to
networks ofn agents are involved in this scenario, odB, a (constrained) zero-sum game.

selecting signal powers to maximize capacity, the othet one | emma 3.2:(Reformulation of the2-network zero-sum
%, selecting noise powers to minimize it. The netwdtk  game):Assume that the individual payoff functiodig? }™:

. . . . =1
hag decided tham_l channgls will have signal power, {fﬁ}?il satisfying (5) are such that the network payoff
while 7 —1 —m, will have signal powet:,. The remaining ¢,ncfions defined in (6) satisfif, — U, and letd denote
nth channel has its power determined to satisfy the budgﬁ.{is common function. Then, the problem (4) BA: x R¢
constraint, i.e.P —myzy — (n —1 —m)w,. Likewise, the i o0 jivalent to the following problem o™ x Rm2dz
network .o does something similar witin, channels with o
noise powety;, n—1—ms channels with noise powes, and max min, Uz, x2),
one last channel with noise pow&rmay; — (n—1—my)ys. FLER 2R
Each network is aware of the partition made by the other subject to Lizy = Opya;,  Lo®z = Onyay,  (7)



with L, = L, ® l4, andL, the Laplacian o, ¢ € {1,2}. (i) X1 andXl, are connected and undirected,
We denote byéad\,_net: (31,22, Zeng, U) the constrained (i) U : X{* x X532 — R, X; and X, compact convex
zero-sum game defined by (7) and refer to this situation by ~ subsets of, respectiveli’* andR“, is a differentiable
saying thatGagy-net can be lifted toGagv-net Our objective strictly concave-convex function, distributed oveg,g
is to design a coordination algorithm that is implementable and alsoX; and X, in the sense of (6).
with the information that agents i, and %, possess and Then the projection onto the first and third components of
leads them to find a Nash equilibrium @aav-nes Which  the solutions to (8) asymptotically converges to the sofuti
corresponds to a Nash equilibrium @f,g,.netby Lemma 3.2, of 7).
Achieving this goal, however, is nontrivial because indal |t is worth mentioning that this result, in fact, also holds
agents, not networks themselves, are the decision makejigie wheny; and ¥, are undirected and is the sum of
From the point of view of agents in each network, the obrcally Lipschitz concave-convex functions, see [7].
jective is to agree on the states of both their own network and
the other network, and that the resulting states corresppnd V. DISTRIBUTED NASH SEEKING DYNAMICS FOR
a Nash equilibrium o1G agy-net DIRECTED GRAPHS
We finish this section by presenting a characterization of In this section, we introduce a continuous-time Nash
the Nash equilibria 06 agv-nes instrumental for proving some seeking dynamics implementable over strongly connected
of our upcoming results. and weight-balanced directed topologies. This dynamics is
Proposition 3.3: (Characterization of the Nash equilibriadistributed over each individual network and can find the
of Gadv-ney: FOr £;, ¥ strongly connected and weight- Nash equilibria of the zero-sum game, provided that the pay-

balanced, defind’, and F; by off function is differentiable, strictly concave-convewjth
. . 1 . globally Lipschitz gradient. This result generalizes thesN
Fi(z1,21,@2) = ~U(z1,22) + T L1zt + 5 Lizy, seeking saddle-point dynamics of (8) to directed topokagie
- 1 We start by modifying the dynamics of (8) as
Fy(xg, 20, 21) = U(xy, @2) + 23 Lozo + 598%142932- ) -
T + aLlccl -+ lel = VUml (ﬂ?l,mg), (9a)
Then, F; and F; are convex in their first argument, lin- .
. . A . . z1 = Ll.’Bl, (gb)
ear in their second one, and concave in their third one. ) N
Moreover, assumdzx?, z, x5, z5) satisfies the following @y + oLy + Lzy = —VUg, (z1,%2),  (90)
saddle propertyfor (Fy, F): (23, 27) is a saddle point of 29 = Loz, (9d)

(x1,21) — Fi(x1, z1,25) and (x5, z3) is a saddle point of
(CCQ,ZQ) — F2($27 zZ9, (I?T) Then,
(i) (x3,27 + 1,, ® a1,x5,25 + 1, ® ag) satisfies the
saddle property fofFy, F,) for any a; € R%, ay €

wherea € R+ is a design parameter and the payoff function
is differentiable with globally Lipschitz gradient. Theason
behind including the parameterin the dynamics is that (8)
may fail to converge when transcribed to directed graphs,

d
R j a*nd_ . - for the same reason that the continuous-time saddle-point
(ii) (z7,23) is a Nash equilibrium ofragy-net distributed optimization dynamics may fail on undirected
Furthermore, graphs, see [27].

(iii) if (x%,x3) is a Nash equilibrium o agy.nerthen there Next, we show that a suitable choice of this design
exists z7, z; such that(x7, z], x5, 25) satisfies the parameter, makes this dynamics convergent.
saddle property fof Fy, F5). Theorem 5.1:(Asymptotic convergence of the directed
distributed Nash seeking dynamics}onsider the zero-sum
gameGagy-net= (X1, X2, Xeng U), Where
(i) ¥; and X, are strongly connected and weight-
balanced,
U : X' x X532 — R, X; and X, compact convex
subsets of, respectivelR? and R?, is a differen-
tiable strictly concave-convex function with globally
Lipschitz gradient, distributed oveXeng and alsoX;

IV. DISTRIBUTED NASH SEEKING DYNAMICS FOR
UNDIRECTED GRAPHS

Here, we review following [7] a dynamics which solves (7)
when:; and X, are undirected. In this scenario, the gradi- (ii)
ents of ', and Fy, are, respectively, distributed ov&y; and
Y. By Proposition 3.3, it is natural to consider the saddle-
point dynamics forF; and F; to solve (4), i.e.,

&1+ Lz, + Lyz) = Vg, U(xy, @), (8a) and >, in the sense of (6).
2 = Lixy, (8b) Leth:Rso— R be defined by
@3 + Loms + Lozs = —Vo,U(xy,@2),  (8¢) hr) = Lgmin (_ rt 4302 42 (10)
4y = Loas, (8d) 2 r
wherez;,z; € R4, j € {1,2}. The following result 4o (st +2 2_4 . Kr?
establishes the convergence properties of this dynamics. r (1+47r2)’

Theorem 4.1:(Asymptotic convergence of the undirected
distributed Nash seeking dynamicgonsider the zero-sum AP = min;_; o{A.(L; + L])}, whereA. () denotes the
gameGagv-net= (X1, X2, Yeng U), Where smallest non-zero eigenvalue ahle R+ is the Lipschitz



constant for the gradient df. Then there exist$* € R,
with h;(8*) = 0, j € {1,2}, such that for all0 < g < B!

£*, the projection onto the first and third components of the fl( L y) =log(1 + z )

solutions of (9) witha = 2 [j 2 asymptotically converges to 1t y; )

the solution of (7). P2 y) ,1Og(1 + - B3 )+ 2 og(1+ B3 2,
Remark 5.2:(Comparison with the best-response dynam- 3 2ty 3 o2+ Y5

ics): The advantage of using the gradient flow is that it avoids loe(1 ﬁ 3

the cumbersome computation of the best-response map. ThISfl ) =log( + 1+ g)

however, does not come for free. There are concave-convex _ Bad 2 Bad

functions for which the (distributed) gradient flow dynamic /1 (z*,y) = =3 10%(1 i yz) + 3 log(1+ p—— ),

unlike the best-response dynamics, fails to converge to the s s
B(P — 2xy — 2a3)
saddle point, see [12] for an example. . f1( 5 y) =log (1 + - 5)
Remark 5.3:(Scenarios with more than two adversarial ~ o1+ C—yi— 3y3
networks):t is known that there are continuous-time zero- fi(z,y') =fi(z',y), f3(z,v®) = 22>, v),
sum games with three players and strictly concave-convex _, B2 1 Bak

payoff functions, for which even the best-response dynamic /2 (¥ %) =3 log(1 + oy + yz) + 3 log(1 + oo+ 42 ),

fails to converge, see [9]. This leaves little hope for ex- 1 5 2 5 4 2

tensions of Theorems 4.1 and 5.1 Aonetwork zero-sum  fl(z, y*) = log(1 + Py 2) + 5 log(1+ B3 s

games, With\N € Z>3. . ) 3 oxt+y;,” 3 o2+ Ys
We finish this section with an example. 2z, y°) =f (2%, y).

Example 5.4:(Distributed adversarial selection of sig-
nal and noise power vi&9)): Recall the communication
scenario described in Remark 3.1. Considerchannels,
{v1,v2,vs3,v4,v5}, for which the network¥; has decided
that {v1,v3} have signal power; and{v2,v4} have signal
power xo. Channelvs has its signal power determined to
satisfy the budget constraiiit € R+, i.e., P — 2x; — 2.

Note that these functions are strictly concave and thus the
zero-sum game defined has a unique saddle point on the set
[0, P2 x [0,C]2. These functions satisfy (5) arid, = U.
Figure 2 shows the convergence of the dynamics (9) to the
Nash equilibrium of the resulting-network zero-sum game.

Similarly, the network:, ha_s decided that; has noise V. CONCLUSIONS AND FUTURE WORK

poweryy, {ve, v3,v4} have noise poweys, andvs has noise

powerC —y; — 3ys to meet the budget constraiﬁte R>0 We have considered a class of strategic scenarios in which
We letx = (21, 2%, 23, 2%, 2 ) andy = (w2 v3 vty ) two networks of agents are involved in a zero-sum game.
wherez® = (ml,xQ) [0, P] andy® = (yl,yz) [0,C)?, The networks’ objectives are to either maximize or minimize
for eachi € {1,...,5}. a common objective function. Individual agents collaberat

The networks®; and X, which are weight-balanced and with neighbors in their respective network and have partial
strongly connected, and the engagement topolBgy, are knowledge of the state of the agents in the other network.

shown in Figure 1. Note that, according to this topologyheacSpecifically, we have considered directed networks where
information flows unidirectionally. We have introduced the

directed distributed Nash-seeking dynamics and shown that
for appropriate parameter choices, this dynamics is guaran
teed to converge to the Nash equilibrium for strictly corezav
convex and differentiable objective functions with gldipal
Lipschitz gradients. Future work will include relaxing the
assumptions on the problem data under which convergence
is guaranteed, including the smoothness, strict concavity
convexity properties, and sum decomposition of the objecti
function, and exploring the application of our results to-va
Fig. 1. TheS;, 52 andSeng for the case study of Example 5.4 are shown.I0US areas, including competitive social networks, coiec
Edges which correspond @eng are dashed. bargaining, and collaborative pursuit-evasion.

agent can observe the power employed by its adversary in its ACKNOWLEDGMENTS
_channel_and, add|t|onally: the agents in Cha”“e‘m obtain This work was supported in part by Award FA9550-10-1-
information about the estimates of the opponent in chatinel
0499.
and vice versa. The payoff functions of the agents are given
in Remark 3.1, where we take; = o1, for i € {1, 3,5}, REFERENCES
ando; = o9, for i € {2,4}, with 01,02 € Rso.

This example fits into the approach described in Seclll R. Stocker and W. M. Durham, “Tumbling or stealthScience
P PD vol. 325, pp. 400402, 2009.

tion IlI-A by Cons'de”ng the fOHOW'ng extended payOﬁ [2] L. A.Johnson, “Competition interactions between calisath, growth,
functions: and geography,Sciencevol. 324, pp. 1679-1682, 2009.
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and C
the value of the Lyapunov function. Herey

(@) (b)

2. Execution of (9) over the networked strategic sdenaescribed

3 in (9) and initially, a°

©

in Example 54, witth = 8, 01 = 1, 00 = 4, P = 6,

4. (a) and (b) show the evolution of the agent's estimates of dtee of networksX; and X2, respectively, and (c) shows

= ((1,0.5),(0.5,1),(0.5,0.5), (0.5, 1), (0.5, 1)) T, 29 010,
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