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Abstract

This paper studies the continuous-time distributed ogétidn of a sum of convex functions over
directed graphs. Contrary to what is known in the consengegature, where the same dynamics
works for both undirected and directed scenarios, we shaw tthe consensus-based dynamics that
solves the continuous-time distributed optimization peab for undirected graphs fails to converge
when transcribed to the directed setting. This study sedshidisis for the design of an alternative
distributed dynamics which we show is guaranteed to comyeog any strongly connected weight-
balanced digraph, to the set of minimizers of a sum of convffigrdntiable functions with globally
Lipschitz gradients. Our technical approach combinesonsetiof invariance and cocoercivity with the
positive definiteness properties of graph matrices to éskathe results.

. INTRODUCTION

Distributed optimization of a sum of convex functions hapleations in a variety of scenarios,
including sensor networks, source localization, and rbkegtimation, and has been intensively
studied in recent years, see e.g. [1], [2], [3], [4], [5],,[B1], [8]. Most of these works build on
consensus-based dynamics [9], [10], [11], [12] to desigTrdite-time algorithms that find the
solution of the optimization problem. Recent exceptionstheeworks [13], [14] that deal with
continuous-time strategies on undirected networks. Tapepfurther contributes to this body of
work by studying continuous-time algorithms for distribdtoptimization in directed scenarios.

The unidirectional information flow among agents charastier of directed networks often
leads to significant technical challenges when establisbamvergence and robustness properties
of coordination algorithms. The results of this paper pdevone more example in support of
this assertion for the case of continuous-time consenassebdistributed optimization. This is
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somewhat surprising given that, for consensus, the samanugs works for both undirected
connected graphs and strongly connected, weight-balatdicecked graphs, see e.g., [9], [10].
The contributions of this paper are the following. We firsbwhthat the solutions of the
optimization problem of a sum of locally Lipschitz convexntitions over a directed graph (or
digraph) correspond to the saddle points of an aggregaeetg function that depends on the
graph topology through its Laplacian. This function is cexwn its first argument and linear
in the second. Moreover, its gradient is distributed whengdhaph is undirected. Secondly, we
study the convergence properties of the saddle-point diygsamhen the graph is undirected
and provide a complete, original proof of its asymptoticreotness when the original functions
are locally Lipschitz (i.e., not necessarily differentgband convex. Finally, we consider the
optimization problem over directed graphs. We first prosadeexample of a strongly connected,
weight-balanced digraph where the distributed versionhef $addle-point dynamics does not
converge. This motivates us to introduce a generalizatiothe dynamics that incorporates
a design parameter. We show that, when the original funsteme differentiable and convex
with globally Lipschitz gradients, the design parametar ba appropriately chosen so that the
resulting dynamics asymptotically converges to the set imlirmzers of the objective function
on any strongly connected and weight-balanced digraphase ¢he gradients are only locally
Lipschitz on compact sets, then the convergence is senailylGur technical approach combines
notions and tools from set-valued stability analysis, latgee graph theory, and convex analysis.

[I. PRELIMINARIES

We start with notational conventions. LBtandRR-, denote the set of reals and nonnegative
reals, respectively. We Igft - || denote the Euclidean norm di?, 1, = (1,...,1)T, 04 =
(0,...,0)T € R?, andl, denote the identity matrix ifR¥*¢. For A € R1*% and B € Re1*¢2,
A® B is the Kronecker product. A functiofi : X; x X, — R, with X; ¢ R%, X, C R% closed
and convex, isconcave-conve¥ it is concave in its first argument and convex in the second
one. Asaddle point(x}, z3) € X; x X of f satisfiesf(x,z5) < f(aF,23) < f(x7,z2) for all
x1 € X, andz, € X,. A set-valued magf : RY = RY takes elements dR? to subsets ofR9.

A. Graph theory

We review basic notions from graph theory [11]. dkected graph or digraph is a pair
G = (V,€&), whereV is the vertex set and C V x V is the edge set. A digraph isdirectedif
(v,u) € € anytime(u,v) € £. An undirected digraph is graph A path is an ordered sequence
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of vertices such that any pair of vertices appearing corisetylis an edge. A digraph istrongly
connectedif there is a path between any pair of distinct vertices. Fagraph, this notion is
referred to axonnectedA weighted digraphg = (V, £, A) consists of a digrapky, £) and an
adjacency matrixA € RL5" with a;; > 0 if (v;,v;) € € anda;; = 0, otherwise. The weighted
out-degree and in-degree of are respectivelydg(v;) = > 7, a;; and dig(vi) = >0, aji.
The weighted out-degree matriR, is diagonal with(Doy)i;; = di (i), for i € {1,...,n}. The
Laplacianmatrix isL = Doy — A. Note thatL1, = 0. If G is strongly connected, then zero is a
simple eigenvalue of. G is undirected ifL = LT andweight-balancedf d%,(v) = d%(v), for
all v € V. Any undirected graph is weight-balanced. The following aquivalent: (i} weight-
balanced, (ii)1ZL = 0, and (iii) L + L positive semidefinite, see e.g., [11, Theorem 1.37§ If
is weight-balanced and strongly connected, then zero isplsieigenvalue of + L.

B. Nonsmooth analysis

We recall some notions from nonsmooth analysis [15]. A fiomctf : R? — R is locally
Lipschitzat » € R? if there exists a neighborhodd of » andC, € R~ such that f(y)— f(z)| <
Cully — 2||, for y,2 € U. f is locally Lipschitz onR? if it is locally Lipschitz atx for all
r € R? and globally Lipschitzon R¢ if for all y,2z € R? there existsC € R, such that
|f(y) — f(2)] < Clly — z||. Locally Lipschitz functions are differentiable almosteeywhere. If
1y denotes the set of points whefefails to be differentiable, thgeneralized gradienof f is

of (z) = co{]}Lr&Vf(xk) | xp = x, 2, ¢ QU ST,
where S is any set of measure zero and co denotes convex hull.

Lemma 2.1:(Continuity of the generalized gradient mapg)et f : RY — R be a locally
Lipschitz function atr € R?. Then the set-valued mapf : R = R is upper semicontinuous
and locally bounded at € R¢ and moreoverd f(z) is nonempty, compact, and convex.

For f: R? x R — R andz € R?, we letd, f(z,2) denote the generalized gradientof-
f(z, z). Similarly, for x € R?, we letd, f(z, z) denote the generalized gradientof> f(z, 2).
A critical point = € R? of f satisfiesO € 9f(z). A function f : R? — R is regular at z € R if
for all v € R? the right directional derivative of, in the direction ofv, exists atr and coincides
with the generalized directional derivative ffat = in the direction ofv, see [15] for definitions
of these notions. A convex and locally Lipschitz functionzas regular [15, Proposition 2.3.6].

Lemma 2.2:(Finite sum of locally Lipschitz functions)-et { '}, be locally Lipschitz at: €
Re. Thend (>0, f)(z) € S0, 0fi(x), and equality holds iff’ is regular fori € {1,...,n}
(here, the summation of sets is the set of points of the ffth, g;, with g; € 9f*(2)).
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A locally Lipschitz and convex functiory satisfies, for allz,2’ € R? and ¢ € 9f(z), the
first-order conditionof convexity,

fa') = flz) 2 £ (2" — 2). (1)

The notion of cocoercivity [16] plays a key role in our teataliapproach later. Far € R, a
locally Lipschitz functionf is §-cocoerciveif, for all z,2’ € R? andg, € 0f(z), g € Of ('),

(I - x/)T(gw - gx’) > 5(9&: - ga:’)T(gx - gx’)'

The next result [16, Lemma 6.7] characterizes cocoercifferdntiable convex functions.
Proposition 2.3: (Characterization of cocoercivity)et f be a differentiable convex function.
Then,V f is globally Lipschitz with constank’ € R iff fis %-cocoercive.

C. Set-valued dynamical systems

Here, we recall some background on set-valued dynamictdmgsfollowing [17]. A continuous-
time set-valued dynamical system ¥nc R¢ is a differential inclusion

#(t) € V(x(t)) (2)

wheret € Ry, and ¥ : X ¢ R? = R? is a set-valued map. A solution to this dynamical system
is an absolutely continuous curve: [0, 7] — X which satisfies (2) almost everywhere. The set
of equilibria of (2) is denoted byq(V) = {x € X |0 € ¥(x)}.

Lemma 2.4:(Existence of solutionsfFor ¥ : R¢ = R¢ upper semicontinuous with nonempty,
compact, and convex values, there exists a solution to (@) fany initial condition.

The LaSalle Invariance Principle is helpful to establisé #isymptotic convergence of systems
of the form (2). A setV C X is weakly positively invariantinder (2) if, for eache € W, there
exists at least one solution of (2) starting framentirely contained inl/. Similarly, W is
strongly positively invarianunder (2) if, for eachr € W, all solutions of (2) starting from:
are entirely contained inl/. Finally, the set-valued Lie derivativef a differentiable function
V : R? — R with respect to¥ atz € R is LoV (z) = {vTVV (z) | v € U(x)}.

Theorem 2.5:(Set-valued LaSalle Invariance Principlé)et W C X be strongly positively
invariant under (2) anf : X — R a continuously differentiable function. Suppose the etohs
of (2) are bounded anthax LV (z) < 0 or LgV (x) = 0, for all z € W. Let Syy = {z €
X | 0 € LV (z)}. Then any solutionz(t), ¢ € Ry, starting in1/ converges to the largest
weakly positively invariant sefl/ contained inSyy N W. When M is a finite collection of
points, then the limit of each solution equals one of them.
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[1l. PROBLEM STATEMENT AND EQUIVALENT FORMULATIONS

Consider a network composed by agentsvy,...,v, whose communication topology is
described by a strongly connected digraphAn edge(v;,v;) represents the fact that can
receive information fromv;. For eachi € {1,...,n}, let f*: R? — R be locally Lipschitz and
convex, and only available to agent The network objective is to solve

minimize f(x) = Z fi(x), 3

in a distributed way. Let’ € R¢ denote the estimate of agemtabout the value of the solution
to (3) and lete” = ((21)T, ..., (2™)T) € R™. Next, we provide an alternative formulation of (3).

Lemma 3.1:Let L € R™ " be the Laplacian off and defineL = L ® I; € R, The
problem (3) onR? is equivalent to the following problem dR™?,

minimize f(x) = Z fi(z"), subject to Lz = 0,,,. 4)
i=1

Proof: The proof follows by noting that (iy (1, ® z) = f(z) for all 2 € R? and (ii) since
G is strongly connected,z = 0,4 if and only if z = 1,, ® z, for somexz € R, [ |

The formulation (4) is appealing because it brings togetherestimates of each agent about
the value of the solution to the original optimization preol. Note thatf is locally Lipschitz
and convex. Moreover, from Lemma 2.2, the elements of itegdized gradient are of the form
Gz = (g1, .., %) € Of(x), whereg!, € dfi(z%), fori € {1,...,n}. Sincef is convex and
the constraints in (4) are linear, the constrained optitianaproblem is feasible [18].

The next result introduces a function which correspondééd fagrangian function associated
to the constrained optimization problem (4) plus an addéloquadratic term that vanishes if
the agreement constraint is satisfied. Interestingly, #uelle points of this function correspond
to the solutions of the constrained optimization problemw& show next.

Proposition 3.2: (Solutions of the distributed optimization problem as sagaints):Let G be
strongly connected and weight-balanced, and definéR™ x R" — R by

F(x,z) = f(x) + "Lz + %mTLa:. (5)
Then F' is locally Lipschitz and convex in its first argument and &nén its second, and
(i) if (z*,2*) is a saddle point of", then so is(z*, 2* + 1,, ® a), for anya € R,
(i) if (x*,z*) is a saddle point o, thenx* is a solution of (4).
(iii) if x* is a solution of (4), then there exists with Lz* € —df(z*) such that(x*, z*) is

a saddle point off.
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Proof: First, note that forG weight-balancedL + L7 is positive semi-definite. Since the
sum of convex functions is convex, one deduces thails convex in its first argument. By
inspection, F is linear in its second argument. The statement (i) is imatediTo show (ii),
using thatG is strongly connected, one can see that the saddle poinfs afe of the form
(z*, z*) with * = 1,, ® 2*, 2* € R?, andLz* € —df(x*). The last inclusion implies that there
existgt. € Ofi(x*), i € {1,...,n}, such thatLz* = —(gl., ..., ¢")T. Noting that

1l @)L= 1@ 1)(L®ly) = 1TL @ 1y = 04xn,

we deduced, = (17 ® l;)Lz* = — >, ¢’.. As a result, using Lemma 2.2* is a solution
of (4). Finally, (iii) follows by notingz* = 1,, ® z* and the fact thad € df(z*) implies that
there existsz* € R™ with Lz* € —df(z*), yielding that(x*, z*) is a saddle point of’. =

V. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON UNDIRECTED NETWORKS

Here, we consider the case of undirected graphé. i undirected, the gradient df in (5)
is distributed ovelj. Given Proposition 3.2, it is natural to consider the sagbdlimt dynamics
of F' to solve (3),

&+ Lx+Lze—0f(x), (6a)
2 = La. (6b)

Note that (6) is a set-valued dynamical system. Lemmas 2d12a# guarantee the existence
of solutions. Moreover, from Proposition 3.2, (i£*, z*) is an equilibrium of (6), therx* is a
solution to (4). This continuous-time dynamics was origingroposed in [13] (see also [14]), un-
fortunately without a formal analysis of its convergenceparties. Here, we provide a complete,
original convergence proof for the case wheérs the sum of locally Lipschitz convex functions.
The proof also serves to illustrate later the challengesolrirsg the distributed optimization
problem over directed graphs.

Theorem 4.1:(Asymptotic convergence db) on graphs):.Let G be a connected graph and
consider the optimization problem (3), where eg¢hi € {1,...,n} is locally Lipschitz and
convex. Then, the projection onto the first component of aajettory of (6) asymptotically
converges to the set of solutions to (4). Moreoverf thias a finite number of critical points, the
limit of the projection onto the first component of each tcapey is a solution of (4).

Proof: For convenience, we denote the dynamics (6)¥y.opt : R™ x R™ = R4 x R,
Letx* = 1,,®2* be a solution of (4). By Proposition 3.2(iii), there existssuch thatz*, z*)
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Eq(Vais-opt)- First, note that given any initial conditiofa,, zo) € R™ x R"?, the set
We = {(2,2) | (1; @ la)z = (1, @ 1a)20} (7)
is strongly positively invariant under (6). Consider thee fanctionV : R" x R™ — R,

Vix, z) = %(m —x)(x — ") + %(z — 297 (z - 2%). (8)

The functionV” is smooth. Let us examine its set-valued Lie derivative.damhé E%is_opy(m, z),
there existe) = (—La — Lz — §a, L) € Wgis.op(T, 2), With §,, € df(z), such that

E=vIVV(x,2) = —(z—x)'(Le + Lz + §,) + (2 — 2*) L. 9)

Since F' is convex in its first argument anble + Lz + g, € 0, F(x, z), using the first-order
condition of convexity (1), we dedudec* — )" (Lz + Lz + §,) < F(z*,2) — F(x, 2). On the
other hand, the linearity of" in its second argument implies thet — z*)"Lx = F(x,2) —
F(x,z*). Therefore,(, < F(x*,z) — F(x*, z*) + F(x*, z*) — F(x, z*). Since the equilibria
of Wyis.opt are the saddle points df, we deduce thaf < 0. Since¢ is arbitrary, we conclude
max E\pdiS_OmV(m,z) < 0. As a by-product, the trajectories of (6) are bounded. Caureseity,
all assumptions of the set-valued version of the LaSallariance Principle, cf. Theorem 2.5,
are satisfied. This result then implies that any trajectdr{6p starting from an initial condition
(zo, 29) converges to the largest weakly positively invariant 8ein Sy, ,.v N W,. Our final
step consists of characterizing. Let (x,z) € M. ThenF(z*, z*) — F(x,z*) =0, i.e.,

fx*) = f(x) — () 'La — %mTLw = 0. (10)

Define nowG : R™ x R™ — R by G(x,2) = f(x) + 2z’ Lz. Note thatG is convex in
its first argument and linear in its second, and that it hassdree saddle points &s. As a
result, G(z*, z*) — G(x, z*) < 0, or equivalently,f(x*) — f(x) — (2*)TLa < 0. Combining
this with (10), we haveL.z = 0 and — f(z) + f(z*) = 0, i.e.,  is solution to (4). Since\/
is weakly positively invariant, there exists at least a 8otu of (6) starting from(x, z) that
remains inM. This implies that, along the solution, the components sémain in agreement,
i.e., z(t) = 1, ® a(t) with a(t) € R? a solution of (3). Applyingl? @ I; on both sides of
1, ® a(t) + Lz € —9f(x(t)), we deducena(t) € — 3.1, dfi(a(t)). Lemma A.2 then implies
thata(t) = 0, i.e., Lz € —9f(x) and thus(z, z) € Eq(Vgsop). Finally, if the set of equilibria
is finite, the last statement holds true. [ |
Remark 4.2:(Asymptotic convergence of saddle-point dynamid$)e work [19] studies saddle-
point dynamics and guarantees asymptotic convergence &uldlespoint when the function’s
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Hessian in one argument is positive definite and the funaidmear in the other. Such result,
however, cannot be applied to establish Theorem 4.1 bedhasgenerality of the hypotheses
on f mean thatF' might not satisfy these conditions. Instead, our proof shtivat a careful
study of the invariance properties of the flow yields the esresult. °

V. CONTINUOUS-TIME DISTRIBUTED OPTIMIZATION ON DIRECTED NETWORKS

Here, we consider the optimization problem (3) on digrapileend is directed, the gradient
of I defined in (5) is no longer distributed ov@rbecause it contains terms that involé and
hence requires agents to receive information from its igieors. In fact, the dynamics (6),
which is distributed overg, does no longer correspond to the saddle-point dynamics'.of
Nevertheless, it is natural to study whether (6) enjoys #raesconvergence properties as in the
undirected setting (as, for instance, is the case in thesaggrt problem [9], [10]). Surprisingly,
this turns out not to be the case, as shown in Section V-A. fds8lt motivates the introduction
in Section V-B of an alternative provably correct dynamicsveeight-balanced directed graphs.

A. Counterexample

Here, we provide an example of a strongly connected, wdighgnced digraph on which (6)
fails to converge. For convenience, we &tree= {(1, @ 2,1, ® 2) € R™ x R™ | 2, 2 € R?}
denote the set of agreement configurations. Our construcgites on the following result.

Lemma 5.1:(Necessary condition for the convergencd@fon digraphs)iet G be a strongly
connected digraph anfi = 0,7 € {1,...,n}. ThenSagreis stable under (6) iff, for any nonzero
eigenvalue) of the Laplacian_, one hasy/3|Im(\)| < Re()).

Proof: By assumption, the dynamics (6) is linear with matfix' ') ® L and hasSagree
as equilibria. The eigenvalues of the matrix are of the fdr(r¥2—1 + */752) with \ an eigenvalue
of L. (because the eigenvalues of a Kronecker product are jusprtiduct of the eigenvalues
of the corresponding matrices). Sinke= L ® l;, each eigenvalue dL is an eigenvalue of.
Finally, Re(A(5 & ¥2)) = L(+v/3Im()\) — Re())), from which the result follows. m

It is not difficult to construct examples of convex functiahgt have zero contribution to the
linearization of (6) around the solution. Therefore, sughtems cannot be convergent if they
fail the criterium identified in Lemma 5.1. The next exampht®ws that this criterium can falil
even for strongly connected weight-balanced digraphs.
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Example 5.2:Consider the strongly connected, weight-balanced digraigtn w

0 0.5326 0.1654 0.0004 0.0002
0.0595 0 0.6676 0.0681 0.1230
A= 10.0213 0.0004 0 0.5809 0.3181
0.0248 0.2458 0 0 0.5587
0.5930 0.1394 0.0877 0.1799 0

as adjacency matrix. Note that= 0.8833 £+ 0.5197: is an eigenvalue of the Laplacian. Since
V3|Im(A)| — Re()\) = 0.0171 > 0, Lemma 5.1 implies that (6) fails to converge. .

B. Provably correct distributed dynamics on directed graph

Here, given the result in Section V-A, we introduce an aléxu@ continuous-time distributed
dynamics for strongly connected weight-balanced digrapbs reasons that will be made clear
later in Remark 5.5, we restrict our attention to the case wherfunctionsf?, i € {1,...,n}
are continuously differentiable. Let € R., and consider the dynamics

&+ aLlx+ Lz = —-Vf(x), (11a)
z = L. (11b)

The existence of solutions is guaranteed by Lemmas 2.1 @ndA\& first show that appropriate
choices ofa allow to circumvent the problem raised in Lemma 5.1.

Lemma 5.3:(Sufficient conditions for the convergence(@fl) on digraphs with trivial objective
function): Let G be a strongly connected and weight-balanced digraphfardo, i € {1,...,n}.
If o > 2v/2, thenSagreeis asymptotically stable under (11).

Proof: When all f;, i € {1,...,n}, are identically zero, the dynamics (11) is linear and has

Sagree@s equilibria. Consider the coordinate transformation ffamz) to (z,y) = (z, Sz + 2),
with g € Ry, to be chosen later. The dynamics can be rewritten as

<w> =A (:c) , where A= < —(a-B)L L ) . (12)
Y Y (=fla—=p)+ DL —pL

Consider the candidate Lyapunov functidi(z,y) = =’z + yTy. Its Lie derivative is the
quadratic form defined by the matrix

“la=AEL+LY) L (-fla=8)+ 1>LT> |

= lygA + Ally,g =
Q ondA + 2nd ((—5(a—ﬁ)+1)L—LT _ﬂ(L—l—LT)
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Selects now satisfyings? — a8 + 2 = 0 (this equation has a real solutiondf> 21/2). Then,

(B2 _ 1
Q= & —5) ® (L+L"). (13)
1 B
Each eigenvalug of Q is of the formy = A\~ 2EVEFRP45 1 bare ) is an eigenvalue of

28
L+L7T. Sinceg is strongly connected and weight-balanckd; L is positive semidefinite with

a simple eigenvalue at zero, and hencg 0. By the LaSalle invariance principle, the solutions
of (11) from any initial condition(z,,yo) € R™ x R™, asymptotically converge to the set
S={(z,y) | Q(z,y)" = 09,4} NW,,. To conclude the result, we need to show tHaf S.gree
This follows from noting that, for3 > 0, Q(x,y)” = 04,4 implies that(L + L”)z = 0,4 and
(L+ L")y = 0,4, i.e., (z,Y) € Sagree ]

The reason behind the introduction of the parametean (11) comes from the following
observation: if one tries to reproduce the proof of Theorefinfdr a digraph, one encounters
indefinite terms of the fornjz — z*)” (L — L”)(z — 2*) in the Lie derivative of/’, invalidating
it as a Lyapunov function. However, the proof of Lemma 5.3vehthat an appropriate choice
of «, together with a suitable change of coordinates, makes ul€rgtic form defined by the
identity matrix a valid Lyapunov function. We next build dmese observations to establish our
main result: the dynamics (11) solves in a distributed way diptimization problem (3) on
strongly connected weight-balanced digraphs.

Theorem 5.4:(Asymptotic convergence ofl1) on weight-balanced digraphs)et G be a
strongly connected, weight-balanced digraph and considepptimization problem (3), where
eachf’, 1 € {1,...,n}, is convex and differentiable with globally Lipschitz contous gradient.
Let K € R., be the Lipschitz constant &7 f and defineh : R., — R by

1 443219 44 3r2 4 2\ 2 Kr?
i) = AL L) TR (PR ) B e

r r 1+47r2)’

where A, (-) denotes the non-zero eigenvalue with smallest absoluteevalhen, there exists
p* € Ry with h(5*) = 0 such that, for alb < g < %, the projection onto the first component
of any trajectory of (11) withn = % asymptotically converges to the set of solutions of (4).
Moreover, if f has a finite number of critical points, the limit of the prdjea onto the first
component of each trajectory is a solution of (4).

Proof: For convenience, we denote the dynamics (11¥hyiis.opt : R™ x R™ — R x R,
Note that the equilibria ofl, qis.opt are precisely the set of saddle points Bfin (5). Let
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x* = 1,®z* be a solution of (4). First, note that given any initial cdiwh (x,, z,) € R™xR",
the setiV,, defined by (7) is invariant under the evolutions of (11). Bygorsition 3.2(i) and (iii),
there existgz*, 2*) € Eq(¥,-dis-opt) N Wa,. Consider the functio : R x R" — R,
1 . L1
V(a:, Z) = é(w - & )T<w -z ) + §(y(x,z) - y(:c*,z*))T(y(a:,z) - y(:c*,z*))a
wherey,,.) = Sz + z and 8 € R, satisfiess? — a8 +2 = 0. This function is quadratic, hence

smooth. Next, we consider its Lie derivative aloWg.gis.op: ON W,. For (x, z) € W, let

§ =Ly goopV (T, 2) = (—aLx — Lz — Vf(x),Lz)'VV(x, z)

1 T . -
- 5 <(CIZ - w*>T7 (y(m,z) - y(a:*,z*)>T> A (w7 y(m,z)) - (:B - )TVf(CL')
1 T ,T T * r T §
+ B) (w 7y(m,z)> A (:I} — T, Y(z,z) — y(m*,z*)> - 6(y(m,Z) - y(m*,Z*)) Vf(z),
where A is given by (12). This equation can be written as
1 T . -
5 :E <(33 — m*)T; (y(:c,z) - y(m’gz*))T) Q <Q3 — a‘;’"7 Y(w,z) — y(w*7z*)> - (m —_ )TVf(l‘)

T
+ (<w — )", (Y(z) — y(m*,z*))T) A ("’" y(m*,zﬂ) ~ BY(z) — Y 2m)' VS (@),

whereQ is given by (13). Note thall(z*, Y(z+ )" = —(Ly(e* 2, SLY(@- =)' = (Vf(x*), BV f(x*))T.
Thus, after substituting foy, .), we have
1

13 =3 ((:13 -z, (2 - z*)T>TQ (:v — ¥,z — z*)T

—(1+ ) (@ -2 (Vf() - V(@) - Bz - 2)"(Vf(x) - Vf()). (15

where

Q:(ﬂ?—ﬁ?ﬂ—ﬁ —(1+ 8
—(1+57) =5
Each eigenvalue of) is of the form

(B*+ 362 +2) £ /(B*+ 382 +2)2 — 432
283 ’

where\ is an eigenvalue of + L7. Using the cocoercivity off, we can upper bound as,

) ® (L+L").

=Ax— (16)

T

1 r—x* Qll Qw 0 r—x
§ < 5 z—2z" C~221 QQQ —Blng z—2z" , (A7)
V() - V() 0 Bl —%1+)ha) \Vi(@) - V()

oK
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where K € R., is the Lipschitz constant for the gradient pf

Since (z, z) € W,,, we have(1! ® I;)(z — 2*) = 0, and hence it is enough to establish
that Q is negative semidefinite on the subspate= {(vy,v2,v3) € (R™)? | (17 @ 14)vy = 04}
Using the fact that—%(l + B?)l,,q is invertible, we can expredQ as

A l,g O 0
Q 0 oA~ KB* (0 0 .
@ (0 —=(1 +62)Ind> Q=@ (1+3?) (0 |nd> ’ 8 'r(;d 1+|/32'nd
nd

Noting that)V is invariant undetN7 (i.e., NTW = W), all we need to check is that the matrix
<§ —%(iﬂ?)lnd) is negative semidefinite owV. Clearly, —+(1 + 5%)l,4 is negative definite.
On the other hand, offiR"¥)?2, 0 is an eigenvalue of) with multiplicity 2d and eigenspace
generated by vectors of the forfl, ® a,0) and (0,1, ® b), with a,b € R¢. However, on
{(v1,v2) € (R™)? | 1T @ I)v, = 04}, 0 is an eigenvalue of) with multiplicity ¢ and
eigenspace generated by vectors of the fotm a, 0) Moreover on{(vy,v9) € (R™)? | (1T
lq)va = 04}, the eigenvalues o{% (5,°)) are (1+B2 with multiplicity nd — d and 0 with
multiplicity nd. Therefore, using Weyl's theorem [20, Theorem 4.3.7], weude that the nonzero
(Hﬁg) From (16) and the definition
of h in (14), we conclude that the nonzero eigenvalues)oére upper bounded bi(3). It
remains to show that there exists € R., with h(5*) = 0 such that for all0 < 5 < 3*

we haveh(f) < 0. For r > 0 small enough(r) < 0, sinceh(r) = —3A (L + LT)r +

eigenvalues of the sur are upper bounded by, (Q) +

O(r?). Furthermore]im,_,,, h(r) = K > 0. Hence, the existence ¢f* follows from the Mean

Value Theorem. Therefore we concludg V(x,z) < 0. As a by-product, the trajectories

a-dis-opt
of (11) are bounded. Consequently, all assumptions of theall@a3nvariance Principle are
satisfied and its application yields that any trajectory If)(starting from an initial condition

(xo, 29) converges to the largest positively invariant sétin Sy, ,..v N Wz,. Note that if

*

(2,2) € S, geony N Wi, then NT (vf(f)—%ﬂm*)) € ker(Q) x {0}. From the discussion
above, we knowker(Q) is generated by vectors of the forfh, ® a,0), and hence this implies
thate = =* + 1, ® a, 2 = z*, and Vf(z) = Vf(z*), from where we deduce that is
also a solution to (4). Finally, fofx, z) € M, an argument similar to the one in the proof of
Theorem 4.1 establishésg:, z) € Eq(V,.gis-opy)- If the set of equilibria is finite, convergence to
a point is also guaranteed. [ |
Remark 5.5 (Locally Lipschitz objective function®ur simulations suggests that the conver-

gence result in Theorem 5.4 holds true for locally Lipsclubjective functions. However, our
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proof cannot be reproduced for this case because it woulcdorethe generalized gradient being
globally Lipschitz which, by Proposition A.1, would implyat the function is differentiable.
Remark 5.6 (Locally Lipschitz gradientslfrom the proof of Theorem 5.4, one can observe
that if the requirement on the Lipschitzness of the gradiérgachf?, i € {1,...,n} is relaxed
from globally to locally on compact sets, then the convecgeresult is semiglobal. In other
words, given an arbitrary compact sét ¢ R™ x R"¢, one can always fings* (that would
depend onC) such that, for0 < g < g*, C belongs to the region of attraction of the set of
saddle points for the dynamics (11). This relaxed requirgnee satisfied, for instance, by any
twice continuously differentiable function. °
Remark 5.7 (Selection ef in (11)): According to Theorem 5.4, the parameteris deter-
mined byg asa = %. In turn, one can observe from (14) that the range of suitablees
for g increases with higher network connectivity and smalleralality of the gradient of the
objective function. From a control design viewpoint, it asonable to choose the value of
that yields the smallest while satisfying the conditions of the theorem statement. .
Remark 5.8 (Discrete-time counterpart (8) and (11)): It is worth noticing that the discretiza-
tion of (6) for undirected graphs (performed in [13] for these of continuously differentiable,
strictly convex functions) and (11) for weight-balancedrdphs gives rise to different discrete-
time optimization algorithms from the ones considered i [2], [3], [4], [5], [6]. °
Figure 1 illustrates the result of Theorem 5.4 for the neknafr Example 5.2.

45

25
20 '\
1500
10

5 10 15 20 25 3 5 10 15 20 25 3 5 10 15 20 25 3

(a) (b) (©

Fig. 1. Execution of (11) for the network of Example 5.2 to optimize) = S°°_, f*(z), wheref!(z) = €”, f*(z) = (z—3)?,
f3(z) = (x+3)?, f4(z) = 2*, f*(x) = 4. Note that these functions are all smooth and convex, with locally Lipschatients
on compact sets, cf. Remark 5.6. (a) and (b) show the evolution ofidgbat’s values inc and z, respectively. (c) shows the
value of f along the agents’ estimates of the optimizer plotted in (a) (solid lines), eVnusmverging towards the same
optimal value, and the value of the Lyapunov function (dashed line).iffiial condition isxzo = (1,2,0.3,1, 1)T, zo = 15,
and the parameter is = 3. The asymptotic agreement value is the equilibriged, 2*), with * = —0.2005 - 15 andz* =
(1.1784,4.3717,—4.1598, 2.2598, 1.3499)T. Note that—0.2005 is the global optimizer off, with f(—0.2005) = 22.9003.
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VI. CONCLUSIONS AND FUTURE WORK

We have studied the distributed optimization of a sum of eanfunctions over directed
networks using consensus-based dynamics. Somewhat ssnghyj we have established that
the convergence result for undirected networks does nay carer to the directed scenario.
Nevertheless, our analysis has allowed us to introduceghtgiieneralization of the saddle-point
dynamics of the undirected case which incorporates a dgmgameter. We have proved that,
for appropriate parameter choices, this dynamics solvesdtbtributed optimization problem
for differentiable convex functions with globally Lipst¢higradients on strongly connected and
weight-balanced digraphs. Our technical approach relires @areful combination of stability
analysis, algebraic graph theory, and convex analysisir€uwtork will focus on the extension of
the convergence results to locally Lipschitz functionshe tveight-balanced directed case and
to general digraphs, the incorporation of local and glolmadstraints, the design of distributed
algorithms that allow the network to agree on an optimal @atithe design parameter, the dis-
cretization of the algorithms, and the study of the conwectvith dynamic consensus strategies.
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APPENDIX

The next result shows that the differentiability hypotlesi Proposition 2.3 cannot be relaxed.
Proposition A.1 (Lipschitz generalized gradient and défeiability): Any locally Lipschitz
function with globally Lipschitz generalized gradient isntinuously differentiable.

Proof: Let f : R? — R be locally Lipschitz with a globally Lipschitz generalizgdadient
map [17]. Taker € R? and let us show thalf(x) is a singleton. Sincg is differentiable almost
everywhere, there exists a sequeticg}> , wheref is differentiable withlim,, ., =, = x. Us-
ing the set-valued Lipschitz property @f, we haved f () C V f(z,,)+K||z,,—z| B(0, 1), where
K € R is the Lipschitz constant anB(0, 1) is the ball centered dt € R¢ of radius1. Hence,
any element € 9f(z) can be written as = V f(z,,) + K ||, — z||un, With u,, € R?, ||u,|| = 1.
Now, taking the limit,y = lim,_,., V f(z,). Hence the generalized gradient is singleton-valued.
Continuous differentiability now follows from the set-valli Lipschitz condition. |

Lemma A.2 (Generalized gradient flow from a critical pointet f : R? — R be locally
Lipschitz and convex, and let be a minimizer off. Then, the only solution of(t) € —0f(z(t))
starting fromz* is z(t) = «*, for all ¢t > 0.

Proof: We reason by contradiction. Assumé) is not identicallyz*. Sincef is monotoni-
cally nonincreasing along the gradient flow, the trajectonst stay in the set of minimizers ¢f
and hence — f(x(t)) is constant. Let’ be the smallest time such tha® f(z*) > v = @(t') # 0.
Using [21, Lemma 1], we have = < f(z(t)) = o7¢, for all £ € df(z*). In particular, for

¢ = —v, we get0 = —||v||3, which is a contradiction. ]
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