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Stealthy deception in hypergames under

informational asymmetry

Bahman Gharesifard Jorge Cortés

Abstract

This paper considers games of incomplete information, where one player (the deceiver) has an

informational advantage over the other (the mark) and intends to employ it for belief manipulation. We

use the formalism of hypergames to represent the asymmetric information available to players. This

framework allows us to formalize various notions of belief manipulation that revolve around the idea

of the deceiver being able to make the mark believe that a particular action has lost its advantageous

character. In the case when the deceiver does not mind revealing information to the mark as the game

evolves, we provide a necessary condition and a sufficient condition for deceivability. In the case when

the deceiver acts in a stealthy way, i.e., restricts its actions to those that do not contradict the belief of the

mark, we fully characterize when deception is possible and design the worst-case max-strategy

to find a sequence of deceiving actions. Our correctness guarantees for this strategy are based on a precise

characterization of the acyclic structure of subjective hypergames. An example illustrates our results.

I. INTRODUCTION

Informational asymmetry in strategic scenarios provide opportunities for manipulating beliefs

or inducing certain desired perceptions. In this paper, we consider a class of games where one

player (the deceiver) wishes to misrepresent certain information in order to gain a strategic

advantage over the opponent (the mark). Formalizing such scenarios in a way which is mathe-

matically precise presents many challenges. Here, we employ the language of hypergames. In our

setup, the informational advantage of the deceiver allows it to anticipate the effect that its actions
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will have on the mark’s belief structure. In this sense, the deception goal can be understood as

steering the evolution of a specific dynamical system into a desired set of outcomes. Scenarios

of interest includes bargaining, cybersecurity, human decision making, and social interactions.

Literature review: The notion of hypergame goes back to [1] and is mostly used in the context

of conflict analysis [2], [3]. In a hypergame, players can have different levels of perception

about their opponents’ game, in the sense that they might have perceptions about the opponents’

preferences or about what the opponents think about their preferences, and so on. Hypergames

are particularly useful in scenarios where players are absolutely certain about their opponents’

perceptions, while these certainties may be mutually inconsistent. Some well-known examples

of the application of hypergame analysis include the Normandy invasion and the Cuban missile

crisis [3]. Hypergames are also relevant when players play security strategies or when the cost

of risky actions is high, such as wartime negotiation [4] and cybersecurity [5].

The explicit modeling of misperception makes hypergames appropriate for the study of decep-

tion. Deception in the context of games with incomplete information has been scarcely studied.

The inconsistent structure of beliefs can lead to counterintuitive behaviors, as shown in [6]. The

work [7] studies deception via strategic communication, in which a ‘sophisticated’ player sends

either truthful or false messages to the opponents. The vulnerability of strategic decision makers

to persuasion is investigated in [8]. The recent work [9] constructs a theory of deception for

games with incomplete information where players form expectations about the average behavior

of the other players based on past histories. Scenarios where one player has access to certain

information and can distort it before it is passed on to others. Deception also arises in games of

imperfect information are studied in [10] and [11]. Within this class, early references include [12],

[13]. The works of [14], [15] and [16] provide examples of how informational asymmetries can

be used to induce false perceptions in the opponent and lead to strategic deception. The works

of [17] and [18] provide efficient deception-robust schemes for a class of discrete dynamic

stochastic games under imperfect observations.

Statement of contributions: We consider games of incomplete information where players have

different perceptions about the scenarios they are involved in. We study a class of 2-player

hypergames where the deceiver has full information about the mark’s game and intends to

induce a certain belief in it. Each player’s belief structure is encoded in a special class of
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digraph that we term H-digraph. The mark is rational, observes the actions taken by the deceiver,

assumes it acts rationally (although it may not), and updates its H-digraph accordingly. From the

deceiver’s viewpoint, the mark’s actions are rational. Since the deceiver does not have knowledge

of the strategy that the mark follows to choose its actions, it adopts a probabilistic model. This

framework sets the stage for the first contribution of the paper, which is the introduction of

precise notions of deception to capture different forms of belief manipulation. These notions

allow us to identify a necessary condition and a sufficient condition for manipulating a particular

edge in the mark’s H-digraph. Motivated by the observation that an action by the deceiver that

contradicts the current mark’s belief structure might trigger complex changes in its H-digraph,

we next study scenarios where the deceiver purposefully restricts its actions to those that are

aligned with the mark’s beliefs. We term these actions stealthy. Our second contribution is the

characterization of when deception via stealthy actions is possible. This result allows us to cast

the search for stealthy sequences that achieve deception as the problem of finding a path in the

mark’s H-digraph between the current outcome and a desired goal set. Our third contribution

is then the design of the worst-case max-strategy to find such a stealthy sequence of

actions. The correctness guarantees for this strategy are based on the graph-theoretic properties

of H-digraphs, that we also characterize. Specifically, our fourth contribution shows that the

H-digraph associated to the perceived game of each player contains no weak improvement cycle

which, when players preferences are strict, means that the H-digraph is acyclic. This result draws

an interesting analogy with ordinal potential games. An example illustrates our results.

Organization: Section II presents preliminaries on graph theory and hypergames. Section III

introduces various notions of deception and belief manipulation. Section IV presents a necessary

condition for deceivability and a sufficient condition for surely deceivability in case the deceiver

takes actions that may change the belief structure of the mark. We also present a full characteri-

zation of deceivability in the case when the deceiver acts in a stealthy way. Section V introduces

the worst-case max-strategy to allow the deceiver to find a stealthy deceiving strategy.

Section VI gather our conclusions and ideas for future work. Finally, Appendix A contains an

instrumental result which unveils the acyclic structure of H-digraphs.
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II. PRELIMINARIES

In this section, we review basic notions from graph theory and hypergames. We begin with

some basic notation. We let R, R>0, and R≥0 denote the set of reals, positive reals, and non-

negative reals, respectively. We denote by Z≥k the set of integers greater than or equal to k ∈ R.

We denote by In×n the identity matrix in Rn×n, n ∈ Z≥1. A preorder � on a set X is a reflexive

and transitive binary relation. We use σ = (x1, x2, . . .), where x1, x2, . . . ∈ X , to denote a

sequence of elements in X . The length of a finite sequence σ is the number of elements in σ.

A. Basic graph notions

We review some graph-theoretic notions following [19]. A directed graph, or simply digraph,

G is a pair (V,E), where V is a finite set, called the vertex set, and E ⊆ V × V , called the

edge set. Given (u, v) ∈ E, u is an in-neighbor of v and v is an out-neighbor of u. The set of

in-neighbors and out-neighbors of v are denoted, respectively, by N in(v) and N out(v). The in-

degree and out-degree of v are the number of in-neighbors and out-neighbors of v, respectively.

The (unweighted) adjacency matrix of G is the matrix Adj(G) ∈ R|V |×|V |≥0 defined as follows:

for each vi, vj ∈ V , Adj(G)ij = 1 if (vi, vj) ∈ E, and Adj(G)ij = 0 otherwise. A directed path

in a digraph, or in short path, is an ordered sequence of vertices so that any two consecutive

vertices are an edge of the digraph. A vertex u is reachable from v if there exists a path starting

at v and ending at u. A cycle in a digraph is a directed path that starts and ends at the same

vertex and has no other repeated vertex. A digraph without any cycle is acyclic.

B. Hypergame theory

In this section, we review the basic notions of hypergame theory following [3], [20], [1].

A (finite) game [21], [22] is a triplet G = (V,Soutcome,P) with the following elements: V =

{A1, . . . , An} is a set of n ∈ Z≥1 players, Soutcome = S1 × . . . × Sn is the outcome set with

cardinality N = |Soutcome| ∈ Z≥1, where Si is a finite set of actions available to player Ai ∈ V ,

and P = (P1, . . . , Pn), with Pi = (x1, . . . , xN)T ∈ SP, the preference vector of player Ai, where

SP ⊂ SNoutcome denotes the set of all elements of SNoutcome with pairwise different entries. We denote

by πi the natural projection of Soutcome onto the strategy set Si of the ith player. We also use π−i

to denote the natural projection of Soutcome onto S−i = S1× S2× · · · × Ŝi× · · · × Sn, where the
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hat denotes that Si is excluded from the product. Each preference vector Pi is equipped with

a preorder �Pi such that, if x has a lower entry index that y in Pi, then x �Pi y. With this

definition, the emphasis is put on the order of preferences among outcomes, rather than on the

actual payoff that players obtain for each specific outcome.

A 0-level hypergame is simply a finite game. A 1-level hypergame with n players is a set

H1 = {G1, . . . ,Gn}, where Gi = (V, (Soutcome)i,Pi), for i ∈ {1, . . . , n}, is the subjective finite

game of player Ai ∈ V , and V is a set of n players; (Soutcome)i = S1i × . . . × Sni, with Sji

the finite set of strategies available to Aj , as perceived by Ai; Pi = (P1i, . . . , Pni), with Pji

the preference vector of Aj , as perceived by Ai. Throughout this paper, we assume that all

players have the same outcome set, and we denote it by Soutcome. Being each subjective game a

finite game, these preference vectors are equipped with a preorder. In a 1-level hypergame, each

player Ai ∈ V plays the game Gi with the perception that it is playing a game with complete

information, which is not necessarily true. This is in contrast with Bayesian games [23], [24],

where the players’ perceptions about other player preferences are probabilistic. The definition

of a 1-level hypergame can be extended to higher-level hypergames, where some of the players

have access to additional information that allow them to form perceptions about other players’

perceptions, other players’ perceptions about them, and so on. One can, inductively, extend the

definition of 1-level hypergame as follows: a k-level hypergame with n players, k ≥ 1, is a set

Hk = {Hk1
1 , . . . , H

kn
n }, where ki ≤ k − 1 and at least one ki is equal to k − 1. The hypergame

Hk is called homogeneous if ki = k − 1 for all i ∈ {1, . . . , n}.

Example 2.1 (Sample hypergame): Consider a 1-level hypergame H1 = {H0
A1
, H0

A2
} with

two players, A1 and A2, which choose their strategies from the sets SA1 = {a1, a2, a3} and

SA2 = {b1, b2}, respectively. The outcome set is given by Soutcome = {x1, x2, x3, x4, x5, x6},

where

x1 = (a1, b1), x2 = (a2, b1), x3 = (a3, b1),

x4 = (a1, b2), x5 = (a2, b2), x6 = (a3, b2).

Players A1 and A2’s preference vectors are, respectively, given by

PA1A1 = (x1, x5, x6, x2, x3, x4)
T and PA2A1 = (x4, x5, x6, x1, x2, x3)

T ,

PA2A2 = (x4, x5, x2, x1, x3, x6)
T and PA1A2 = PA1A1 .
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Note that player A2’s perception about the preferences of player A1 is correct. The 0-level

hypergames of each player are then given by H0
A1

= ({A1, A2},Soutcome, (PA2A1 ,PA1A1)) and

H0
A2

= ({A1, A2},Soutcome, (PA1A2 ,PA2A2)). •

1) Sequential rationality: Consider a k-level hypergame Hk between players {A1, . . . , An}

with outcome set Soutcome. Without loss of generality and for simplicity, we assume that Hk is

homogeneous. For x ∈ Soutcome, we denote by Soutcome|πi(x) the set of outcomes y ∈ Soutcome

such that πi(y) = πi(x). For a sequence σ of length k on the set {A1, . . . , An}, let PAiσ,

i ∈ {1, . . . , n}, denote the preferences of Ai as perceived by σ in Hk. For instance, PA1A2A1

corresponds to what player A1 perceives that player A2 thinks about player A1’s preferences in

a 2-level hypergame H2. Given that the set of outcomes is common to all players, we use the

shorthand notation (PA1σ, . . . ,PAnσ) to denote the 0-level hypergame

H0
σ = ({A1, . . . , An},Soutcome, (PA1σ, . . . ,PAnσ)),

often referred to as the subjective hypergame perceived by σ. With a slight abuse of notation,

�Aiσ denotes the binary relation �PAiσ
on Soutcome.

Given two distinct outcomes x, y ∈ Soutcome, y 6= x, y is an improvement from x for player

Ai perceived by σ in H0
σ if and only if π−i(y) = π−i(x) and y �Aiσ x. An outcome x ∈ Soutcome

is rational for player Ai in H0
σ if there exists no improvement from x for this player. Finally,

x ∈ Soutcome is sequentially rational for Ai in H0
σ if and only if for each improvement y from

x for Ai in H0
σ there exists z ∈ Soutcome which sanctions y, i.e., πi(z) = πi(y) and x �Aiσ z

such that for all j ∈ {1, . . . , n} \ {i}, either πj(z) = πj(y), or the outcome zAj ∈ Soutcome|πi(y),

where πj(zAj) = πj(z) and πl(zAj) = πl(y), for all l ∈ {1, . . . , n} \ {j}, is an improvement

from y in Soutcome|πi(y) for Aj . We denote the set of all sequentially rational outcomes for Ai

in H0
σ by SeqAi(H

0
σ). A rational outcome is also sequentially rational. A player is rational if it

only takes actions associated to sanction-free improvements. It is known [3], [20] that all 0-level

hypergames have at least one sequentially rational outcome.

2) H-digraphs: The notion of H-digraph introduced in [25], generalized here to n players,

contains the information about the improvements from an outcome to other outcomes, the

equilibria, and the sanctions. Consider a homogeneous k-level hypergame Hk between players

{A1, . . . , An}. Given σ, a sequence of length k on the set of player, and i ∈ {1, . . . , n}, we

assign to each x ∈ Soutcome a positive number rank(x,PAiσ) ∈ R>0, called rank, such that, for
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Fig. 1. H-digraphs of (a) player A1 and (b) player A2 in the hypergame described in Example 2.1. Vertical (respectively,

horizontal) edges correspond to actions of player A1 (respectively, player A2).

each Soutcome 3 y 6= x, we have rank(y,PAiσ) > rank(x,PAiσ) if x �Aiσ y. The n-dimensional

digraph GH0
σ

= (Soutcome, EH0
σ
) is the H-digraph associated to the 0-level hypergame H0

σ, where

• each vertex x ∈ Soutcome is labeled with (rank(x,PA1σ), . . . , rank(x,PAnσ)), and

• (x, y) belongs to EH0
σ

if and only if πi(x) 6= πi(y), for some i ∈ {1, . . . , n}, π−i(x) = π−i(y),

and there exists a perceived improvement y from x for player Ai in H0
σ for which there

exists no sanction of players A−i, perceived by σ.

Figure 1 shows the H-digraphs of each player in Example 2.1.

Sequentially rational outcomes can be easily characterized by looking at the H-digraph. In

fact, given x ∈ Soutcome and i ∈ {1, . . . , n}, one has

x ∈ SeqAi(H
0
σ) if and only if N out(x) ∩ Soutcome|π−i(x) = ∅.

It is worth mentioning that the complexity of computing H-digraphs is in Θ(|Soutcome|2), see [25].

3) Equilibria: An outcome x ∈ Soutcome is unstable for Ai, perceived by σ, in H0
σ, i ∈

{1, . . . , n} if it is not sequentially rational and is an equilibrium of H0
σ if it is sequentially rational

for all players Ai, i ∈ {1, . . . , n}, with respect to H0
σ. Note that more than one equilibrium might

exist. In terms of the H-digraph, an outcome is an equilibrium of H0
σ if and only if its out-degree

in GH0
σ

is zero. An outcome is an equilibrium of Hk if it is sequentially rational in all H0
σ, where

σ = AiAi . . . Ai, i ∈ {1, . . . , n} is a sequence of length k on {A1, . . . , An}. One can similarly

define the notion of equilibrium for any intermediate level hypergame Hk1
η , where k1 < k and

η is sequence of length at most k − 1 on {A1, . . . , An}. Note that an outcome might be an
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equilibrium of Hk and not an equilibrium of Hk1
η and vice versa. For brevity, we sometimes

omit the wording ‘with respect to H0
σ’ and ‘perceived by σ’ when it is clear from the context.

Other notions of equilibria have been considered for hypergames, see [3].

Example 2.2: (Example 2.1 revisited): Consider the 1-level hypergame H1 = {H0
A1
, H0

A2
} of

Example 2.1. Let us illustrate the notions introduced so far. Observing the H-digraph of player A2,

see Figure 1(b), the outcome x3 is perceived as unstable for A1 by player A2, since player A1 is

perceived to have a sanction-free improvement to x2 from x3. Instead, the outcome x5 is perceived

as sequentially rational for A1 by A2, since there is no sanction-free improvement to any other

outcome for A1. The set of equilibria of H2 is given by {x1, x5} = SeqA1
(H0

A1
)∩SeqA2

(H0
A2

).

•

III. MODELING DECEPTION AND BELIEF MANIPULATION

This section introduces the notions of deception and belief manipulation upon which we base

our analysis. The scenario we consider is as follows: a deceiver D and a mark M are engaged in

a hypergame. The deceiver has full knowledge of the preferences of the mark. Both players can

perfectly observe the actions taken by the other player. According to Section II-B, the mark’s

belief structure is encoded in its H-digraph. It is therefore natural to formally define belief

manipulation in terms of specific changes that the deceiver wants to induce in the topology of

this digraph. Before doing so, however, two mechanisms need to be specified: how the mark

incorporates the lessons learned from the actions taken by the deceiver into its H-digraph and

how the deceiver models the strategy followed by the mark to choose its actions.

After formally introducing in Section III-A the elements of the problem scenario, we describe

the two mechanisms mentioned above in Sections III-B and III-C, respectively. With all the

ingredients in place, Section III-D introduces the notions of deception.

A. Problem setup

Consider a 2-player, 2-level hypergame H2 = {H0
M , H

1
D}, where H1

D = {H0
MD, H

0
DD} is such

that H0
MD = H0

M (i.e., the deceiver has full information about the mark’s preferences). Note

that, because of the special form of H2, its equilibria are exactly the same as the equilibria

of H1
D = {H0

M , H
0
D}. In line with the notion of sequential rationality, we assume throughout
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this paper that, in all sequences of outcomes, players take actions sequentially, one after the

other. Note that scenarios where one player takes multiple actions before the other player can

be accommodated within this assumption. A finite sequence of outcomes σ = (x0, x1, . . . , xk)

is called stealthy if (x`, x`+1) ∈ EH0
M

, for all ` < k − 1, and (xk−1, xk) /∈ EH0
M

. Note that, in

a stealthy sequence, the mark’s belief structure is not contradicted by the outcomes up to the

last one.

When convenient, we use the notation σD and σD to denote, respectively, sequences where the

deceiver is the first and last to take an action. The notation σDD then means that the deceiver is

the first and last to take an action. Similar notations can be defined for the mark. Given a finite

sequence σ = (x0, x1, . . . , xk), we say that z ∈ Soutcome is aligned with σ at time ` ∈ {1, . . . , k}

if z = x`. Without loss of generality, we assume that the deceiver is the first to take an action.

B. Mark’s learning via swap update

Here, we describe the mechanism that the mark implements to update its perception given

the actions taken by the deceiver. Following [25], we employ the swap learning method because

of its simplicity and because any other learning mechanism on hypergames can be described

as a composition of swap updates. From the point of view of the mark, using swap learning is

reasonable given that this method is guaranteed to decrease its misperception provided that the

other player behaves rationally. Swap learning can also be defined for the deceiver, but in this

case, given that it has full information about the other player’s game, it does not make sense to

implement it.

Consider first the case where the mark has made a single observation, corresponding to an

action by the deceiver changing the outcome from x to y. The mark thus concludes that the

deceiver prefers (πM(x), πD(y)) (which in this case is equal to y) over x. Therefore, the mark can

incorporate this information into its hypergame and update its perception about the preferences

of the deceiver. We start by an algebraic construction. Let V be a set of cardinality N and let
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W ⊂ V N with pairwise different elements. For x1, x2 ∈ V , let swapx1 7→x2 : W → W be

(swapx1 7→x2(v))k = vk if vk 6= x1, x2,

(swapx1 7→x2(v))i =

vj if vi = x1, vj = x2 and i < j,

vi if vi = x1, vj = x2 and i > j,

(swapx1 7→x2(v))j =

vi if vi = x1, vj = x2 and i < j,

vj if vi = x1, vj = x2 and i > j.

We refer to swapx1 7→x2 as the x1 to x2 swap map. The swap learning map SwM
x,y : SP → SP

for the mark is given by

SwM
x,y(P) = swapx 7→(πM (x),πD(y))(P). (1)

Next, consider the case where the mark has made multiple observations of actions by the

deceiver. Let ODM denote the mark’s observation set, composed of a collection of binary relations

in PDD. The preference vector PDM is compatible with the observation set ODM if the binary

relations in ODM hold in PDM . As established in [25], in this case the mark can use any sorting

algorithm which employs swap updates of the form (1) as basic operations to obtain a preference

vector which is compatible with its observation set. We denote the corresponding swap update

map for M by SwM
ODM and the resulting H-digraph after the mark updates its perception by

SwM
ODM (GH0

M
). Also, given a sequence of outcomes σ starting from x ∈ Soutcome, we sometimes

use, with a slight abuse of notation, SwM
x,σ to denote the mapping SwM

ODM , where ODM is the

observation set of the mark corresponding to σ.

According to the swap learning method, an action taken by the deceiver that contradicts the

mark’s perception will trigger an update of its preference vectors. Given that the deceiver has the

informational advantage of knowing a priori the full mark’s game, it can indeed pre-compute the

effect that any particular action will have on the mark’s beliefs before executing it. However, as

mentioned in Section II-B2, this procedure becomes computationally expensive. Instead, if the

outcomes of the game correspond to a stealthy sequence σD = (x0, x1, . . . , xk), k ∈ Z≥1, then

SwM
x`−1,x`

(EH0
M

) = EH0
M

, for all ` ∈ {1, . . . , k − 1}, i.e., the mark does not see its perception

contradicted up to the (k − 1)th outcome. At the last outcome, instead,

SwM
xk−1,xk

(EH0
M

) = SwM
x0,σD

(EH0
M

) 6= EH0
M
. (2)
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In addition to the associated computational savings for the deceiver (the H-digraph remains the

same), stealthy sequences have the advantage of not warning the mark about the possibility of

deception since its perceptions are not contradicted up to the last moment.

C. Modeling the mark’s actions via probability distributions

Although the deceiver has complete information about the mark’s game, it does not know the

specific strategy that the mark follows to choose its actions. For instance, if multiple sanction-

free improvements are available to the mark, it might not necessarily pick its most preferred

sequentially rational outcome (a less favorite improvement now may allow its to achieve a

larger payoff in the future). Unaware of the mark’s strategy, the deceiver assigns a probability

distribution to the edges of the H-digraph of the mark as follows. Let PMD(Xn+1 = y | Xn = x),

for y ∈ Soutcome|πD(x), denote the probability that the outcome of the hypergame changes from

x to y by the action πM(y) of the mark, as perceived by the deceiver. Given what the deceiver

knows about the mark’s game, we have that for all (x, y) /∈ EH0
M

, PMD(Xn+1 = y | Xn = x) = 0.

Note that, for all x ∈ Soutcome,
∑

y∈Soutcome|πD(x)
PMD(Xn+1 = y | Xn = x) = 1. The probability

distribution PMD is selected by the deceiver by applying some rule (e.g., ‘assign more probability

to the most preferred outcome’) to the H-digraph of the opponent. The results of the paper are

independent of the specific rule used and so we leave it unspecified.

The deceiver can choose its own actions based on its preferences in any way it sees fit. For

later use, we formally describe this via a probability distribution PD on any action πD(y) which

changes the outcome from x to y. Note that this can, in particular, be a vector with one entry

of 1 and the rest 0, and that it can be re-selected at each round of the game. Since players only

use the current state of the game to decide about their next action, the sequence of repeated

outcomes of the game is a Markov chain, possibly time-varying as the H-digraph of the mark

can evolve with time. We gather here a few notational conventions that will be useful later. The

probability transition kernel TP of a probability distribution P is

TP(x`, x`′) = P(Xn+1 = x` |Xn = x`′),

where x`, x`′ ∈ Soutcome. One can inductively define

T kP (x`, x`′) : = P(Xn+k = x` |Xn = x`′).
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If there exists k ∈ Z≥1 with T kP (x`, x`′) > 0, the outcome x` is reachable from x`′ . We denote

the set of all outcomes reachable from x`′ with respect to the transition probability TP by

RTP(x`′) = {x` ∈ Ω | ∃k` ∈ Z≥1, T k`P (x`, x`′) > 0}.

Finally, note that the fact that the H-digraph does not change when the hypergame is played

according to a stealthy sequence implies that, in such cases, the distribution PMD does not change

either. This motivates the definition of a subset S PMD(Soutcome) of sequences with

S PMD(Soutcome) = {(x0, x1, x2, . . .) |

TPMD
(x`+1, x`) > 0, ∀` ∈ Z≥0 such that πD(x`) = πD(x`+1)}.

If σ ∈ S PMD(Soutcome), we call σ a PMD-sequence. With this definition, the deceiver perceives

a positive probability to the actions of the mark contained in σ. From now on, when we use the

term ‘stealthy sequence’ we mean ‘stealthy PMD-sequence’.

D. Surely and strong edge-deceivability

We are finally ready to introduce precise mathematical notions of belief manipulation in the

scenario described in Section III-A. Our notions revolve around the deceivability of edges in the

mark’s H-digraph that correspond to sanction-free improvements that it could potentially take.

Definition 3.1 (Edge-deceivability): An edge (x, y) ∈ EH0
M

, πD(x) = πD(y), is deceivable

by the deceiver in H0
M from x0 ∈ Soutcome if there exists a sequence of outcomes σD =

(x0, x1, x2, . . . , x2k+1), k ∈ Z≥0, where

(i) (x2`−1, x2`) ∈ SwM
x0,σD(`−1)(EH0

M
), where σD(`− 1) = (x0, x1, x2, . . . , x2`−1), and

(ii) TPMD
(x2`, x2`−1) > 0,

for all ` ∈ {1, . . . , k}, such that (x, y) /∈ SwM
x0,σD

(EH0
M

). We refer to σD as a deceiving sequence.

Let us elaborate on the properties of the deceiving sequence σD in the above definition: (i)

states that the mark uses its updated H-digraph and takes an action to shift the outcome to a

sanction-free improvement; (ii) states that the deceiver perceives a positive probability to the

actions of the mark contained in σD. There is an abuse of notation due to the fact that PMD can

change with the evolution of the H-digraph. Also, here we have assumed that the deceiver takes

the last action. This is without loss of generality; if the edge (x, y) has been deceived, a further

action by the mark will have no effect on this fact.
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We let ED,x0
dec (H0

M) ⊆ EH0
M

denote the set of all deceivable edges in H0
M from x0. We say that

(x, y) is surely deceivable by the deceiver in H0
M from x0 if it is deceivable with probability

one, i.e., with (ii) in Definition 3.1 substituted by (ii’) TPMD
(x2`, x2`−1) = 1. We denote the set

of all such edges by ED,x0
sdec (H0

M) ⊆ EH0
M

. The following definition captures the situation where

an edge is deceivable regardless of the initial condition.

Definition 3.2: (Strong edge-deceivability): The edge (x, y) is strong deceivable by the de-

ceiver in H0
M if it is deceivable from any outcome x0 ∈ Soutcome and is surely strong deceivable

if it is strong deceivable with probability one. The set of strong deceivable and surely strong

deceivable edges are denoted, respectively, by ED
stdec(H

0
M) and ED

sstdec(H
0
M).

Definitions 3.1 and 3.2 are the basic building blocks towards the deceiver being able to make

an unstable outcome sequentially rational for the mark. One can indeed define in a similar way

the notion of outcome-deceivability: an outcome is deceivable if all the out-edges corresponding

to the opponent’s sanction-free improvements can be deceived. Throughout the paper, we focus

on edge-deceivability.

In the above definitions, the sequence of outcomes is arbitrary. As have already discussed,

this might require a substantial computational effort on the part of the deceiver. This problem

can be addressed by restricting the set of candidate sequences to be stealthy. The problems we

are then interested in solving are the following:

(i) given an edge in the H-digraph that corresponds to an action of the mark, what are the set

of initial outcomes from which the edge is surely deceivable by the deceiver? Similarly,

when is an outcome strong deceivable?

(ii) when is it possible to perform deception via a stealthy sequence?

(iii) given answers to the previous questions, how can the deceiver find a (stealthy) strategy to

deceive the mark?

Before addressing these questions, we illustrate some of the notions introduced so far with an

example.

Example 3.3: (Notions of deceivability in hypergames): Consider a 2-level hypergame H2 =

{H0
M , H

1
D} between the mark and the deceiver, with H0

MD = H0
M and outcome set Soutcome =

SM × SD = {1, . . . , 50}, where SM and SD are the action sets of the mark and the deceiver,

respectively, and |SM | = 5 and |SD| = 10. The preference vectors PMM and PDM are shown
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in Figure 2. The H-digraph GH0
M

is shown in Figure 3. Regarding the actions of the mark, the
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Fig. 2. Preference vectors PMM (left) and PDM (right). The horizontal axis shows the outcomes and the vertical axis shows

the rank of outcomes.
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Fig. 3. H-digraphs GH0
M

. The mark plays rows, the deceiver plays columns. The deceiver intends to remove the edge (29, 26) ∈

EH0
M

(left plot, dashed) via a stealthy sequence, starting from outcome 14.

deceiver perceives that outcomes with lower rank in PMM have higher probability of occurring.

Formally, the deceiver assigns the probability

TPMD
(`′, `) =

50− rank(`′,PMM)∑
l∈N out(`)∩Soutcome|πD(`)

(50− rank(l,PMM))
,

to the event that the outcome changes from ` to `′ by the action πM(`′) of the mark, where

`′ ∈ Soutcome|πD(`). The deceiver now wishes to find out if the edge (29, 26) ∈ EH0
M

is deceivable

in H0
M from 14 ∈ Soutcome, i.e, if (29, 26) ∈ ED,x0

dec (H0
M). The deceiver also aims to remove this

edge (Figure 3, dashed) via a stealthy sequence, starting from outcome 14. •
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IV. WHEN IS IT POSSIBLE TO PERFORM DECEPTION?

In this section, we identify a necessary condition and a sufficient condition for edge-deceivability

by means of an arbitrary sequence of outcomes. When, instead, the sequence is restricted to be

stealthy, we are able to provide a full characterization of when deceivability is possible.

A. Deceivability conditions

We start this section by stating several relationships between the edge-deceivability notions

introduced in Section III-D.

Lemma 4.1 (Deceivability inclusions): For all x0 ∈ Soutcome, the following inclusions hold

ED
sstdec(H

0
M) ⊆ ED,x0

sdec (H0
M), ED

stdec(H
0
M) ⊆ ED,x0

dec (H0
M).

The proof follows directly from Definitions 3.1 and 3.2. We next identify a necessary condition

for edge-deceivability.

Lemma 4.2: (Necessary condition on the edge for edge-deceivability): Let x0 ∈ Soutcome and

assume (x, y) ∈ ED,x0
dec (H0

M). Then, HMdec(x, y) := {u ∈ Soutcome|πM (y) | u ≺PMM
x} 6= ∅.

Proof: We reason by contradiction. Suppose u �PMM
x for all u ∈ Soutcome|πM (y). Therefore,

the deceiver has no sanction against the improvement from x to y for the mark, and thus the edge

(x, y) ∈ SwM
x0,σ

(EH0
M

), for any sequence of outcomes σ and any initial outcome x0 ∈ Soutcome.

Given the result in Lemma 4.1, the condition identified in Lemma 4.2 is also necessary for

strong deceivability. Next, we identify a condition on the initial outcome which guarantees surely

deceivability of an edge.

Lemma 4.3: (Sufficient condition on the initial outcome for surely deceivability): Let (x, y) ∈

EH0
M

, with πD(x) = πD(y), such that HMdec(x, y) 6= ∅. Then (x, y) ∈ ED,ỹ
sdec(H0

M), for all ỹ ∈

TMdec(y) := {w ∈ Soutcome|πM (y) | w �PDM y}.

Proof: Note that z ≺PDM y for z ∈ HMdec(x, y), since otherwise, the improvement y from x

of the mark would be sanctioned by the perceived improvement z from y of the deceiver and this

would imply (x, y) 6∈ EH0
M

. Suppose the deceiver takes an action from ỹ ∈ TMdec(y) that changes

the outcome to z ∈ HMdec(x, y). Since (ỹ, z) /∈ EH0
M

, the mark uses the swap learning map to

update its perceptions about the deceiver. But then (x, y) /∈ SwM
ỹ,z(EH0

M
), since the outcome z
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with z �SwM
ỹ,z(PDM ) y is now perceived by the mark as a sanction of the deceiver against the

improvement y from x by the mark. As a result, σD = (ỹ, z) is a deceiving sequence for the

deceiver and thus the result follows.

Next, we turn our attention to stealthy sequences of outcomes. The following result shows

that the two conditions identified above for arbitrary sequences essentially provide a full char-

acterization of when deception is possible using stealthy sequences.

Theorem 4.4: (Characterization of deceivability via stealthy sequences): Let x0 ∈ Soutcome and

(x, y) ∈ EH0
M

, πD(x) = πD(y). The following are equivalent:

(i) (x, y) is deceivable from x0 via a stealthy sequence;

(ii) HMdec(x, y) 6= ∅ and

T Mdec (y, x0) := TMdec(y) ∩
(
{x0} ∪ RTPMD

TPD
(x0)

)
6= ∅,

for a probability distribution PD such that PD(Xn+1 = z | Xn = r) > 0 for any (r, z) ∈

EH0
M

.

Proof: We first show that (i) implies (ii). Suppose (x, y) ∈ EH0
M

. First of all, note that since,

by assumption, (x, y) is deceivable from x0, the necessary conditions of Lemma 4.2 for (x, y)

hold, i.e., HMdec(x, y) 6= ∅. If x0 ∈ TMdec(y), then T Mdec (y, x0) 6= ∅ and the result follows. Suppose

x0 /∈ TMdec(y). By Definition 3.1, there exists a stealthy sequence σD = (x0, . . . , xk−1, xk) such

that (x, y) /∈ SwM
x0,σD

(EH0
M

) and S = (x0, . . . , xk−1) is a path in GH0
M

. Note that xk−1 ∈ TMdec(y)

and xk ∈ HMdec(x, y), since otherwise, the action of the deceiver from xk−1 to xk is sanction

free and thus, by definition of a swap learning map and equation (2), (x, y) ∈ SwM
x0,σD

(EH0
M

),

a contradiction with the assumption. Next, let ỹ = xk−1 (observe that k ≥ 3). We show that

ỹ ∈ RTPMD
TPD

(x0). Suppose PD is a probability distribution such that PD(Xn+1 = z | Xn =

r) > 0, for all r and all z ∈ Soutcome|πM (r) with (r, z) ∈ EH0
M

. By definition of a PMD-sequence,

TPMD
(x`, x`+1) > 0 and πD(x`) = πD(x`+1), for all ` ∈ {1, . . . , k}. Thus there is a strictly

positive probability that ỹ is reachable from x0 via the path S = (x0, . . . , xk−2, ỹ), πD(xk−2) =

πD(ỹ). Thus there exists some K ∈ Z≥1 such that

(TPMD
TPD)K(ỹ, x0) > 0,

i.e., ỹ ∈ RTPMD
TPD

(x0). As a result, T Mdec (y, x0) 6= ∅.
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Conversely, let us show that (ii) implies (i). The results hold by Lemma 4.3 if x0 ∈ TMdec(y).

Suppose x0 /∈ TMdec(y). We need to show that there exists a stealthy sequence of outcomes

σD such that (x, y) /∈ SwM
x0,σD

(EH0
M

). First, note that, by Lemma 4.2, there exists an outcome

z ∈ Soutcome|πM (y) such that z ≺PMM
x. By assumption, there exists an outcome ỹ ∈ TMdec(y) that

can be reached from x0, for a probability distribution PD described above, i.e., there exists a

path S = (x0, . . . , xk−1, ỹ) in GH0
M

such that TPMD
(x`+1, x`) > 0, for all ` ∈ {0, . . . , k−2} with

πD(x`) = πD(x`+1). If the deceiver takes an action that changes the outcome from ỹ to z, then,

by definition, z is a sanction against the perceived improvement y from x for the mark; thus

(x, y) /∈ SwM
ỹ,z(EH0

M
). Next, we define σD = (x0, . . . , xk−1, ỹ, z), which is a stealthy sequence

starting from x0, since S = (x0, . . . , xk−1, ỹ) is a path in GH0
M

and by construction (ỹ, z) is

not an edge in GH0
M

. Finally, since (x, y) /∈ SwM
ỹ,z(EH0

M
), σD is also a deceiving sequence, as

claimed.

The choice of PD in Theorem 4.4(ii) ensures that all actions of the deceiver are considered

when determining if a stealthy sequence exists to deceive the mark. Once such sequence is

found, the deceiver can assign probability one to each of its actions prescribed in the sequence.

Theorem 4.4 shows that, given x0 ∈ Soutcome, any action of the deceiver from T Mdec (y, x0) to

HMdec(x, y) removes the edge (x, y) from the H-digraph GH0
M

. One can then characterize the set

of all initial outcomes from which the edge (x, y) is deceivable as

IMdec(x, y) = {x0 ∈ Soutcome | HMdec(x, y) 6= ∅ 6= T Mdec (y, x0)}.

Consequently, finding a stealthy sequence from x0 ∈ IMdec(x, y) is equivalent to finding a path

in the H-digraph GH0
M

that reaches T Mdec (y, x0) from x0. Since the outcome of the hypergame

is influenced by the actions of the mark and these, from the point of view of the deceiver, are

probabilistic, a reasonable strategy is to find a stealthy sequence that maximizes the minimum

probability of achieving the deception goal. It must be observed that the success of such strategy

relies on the particular structure of H-digraphs, which is what we tackle next.

V. THE WORST-CASE MAX-STRATEGY

Here, we provide an algorithmic approach that can be used by the deceiver to determine a

stealthy sequence to deceive the mark.
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Consider the scenario described in Section III. Suppose at time ` ≥ 0 the outcome of the

2-player 2-level hypergame is x(`). Without loss of generality, assume that the deceiver takes

actions when ` ∈ 2Z≥0 and the mark takes actions when ` ∈ 2Z≥0 + 1. In this situation,

Theorem 4.4 characterizes the edges of the H-digraph of the mark that are deceivable by the

deceiver via a stealthy sequence. In this scenario, a reasonable strategy for the deceiver at each

round is to take an action that maximizes the minimum probability of achieving the deception

goal. Informally, this strategy can be described as follows:

[Informal description]: Initially, the deceiver has a stealthy sequence (possibly empty)

stored in its memory (along which it would like the hypergame to evolve). At each

round,

(i) if there is a deceiving action that takes the current outcome to HMdec(x, y), the

deceiver takes it to deceive the mark, c.f. Lemma 4.3;

(ii) otherwise, the deceiver checks if the mark’s last action is aligned with the stored

sequence. If it is, the deceiver takes the next action prescribed by the sequence.

If it is not (and this includes the case when the stored sequence is empty), the

deceiver considers the outcomes w ∈ Soutcome where it can take the game to by

an action aligned with the mark’s H-digraph, and computes the stealthy sequence

with minimum probability of reaching an outcome in T Mdec (y, x0) from each w (this

is instantiated as the empty sequence if no such sequence exists). The deceiver

stores the sequence with maximum probability. If this probability is positive, the

deceiver takes the action prescribed by it, otherwise the algorithm terminates

without success.

We call this strategy the worst-case max-strategy and, after introducing some notions,

formally describe it in Algorithm 1.

To model the fact that the outcome of the hypergame is influenced by the actions of the mark,

let us introduce the map ΦPMD
: S PMD(Soutcome)→ R,

ΦPMD
(x0, . . . , xk) =

k−1∑
`=0

πD(x`)=πD(x`+1)

ln (TPMD
(x`+1, x`)) . (3)

This map captures the probability of reaching an outcome via a PMD-sequence.

The rationale behind the name ‘worst-case max-strategy’ is made explicit next.
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Algorithm 1: worst-case max-strategy

Input: GH0
M

, PMD, (x, y) ∈ EH0
M

, x0 ∈ Soutcome, N out(x0) ∩ Soutcome|πM (x0) 6= ∅
Initialization: αmaxmin = −∞, σD = ∅, x(0) = x0

1 check HMdec(x, y) 6= ∅; else, announce (x, y) not deceivable

At time: ` ∈ 2Z≥0
2 if x(`) ∈ TMdec(y) then

3 take action that makes x(`+ 1) ∈ HMdec(x, y)

4 else

5 if σD 6= ∅ and x(`) is aligned with σD then

6 take action prescribed by σD

7 else

8 foreach w ∈ Soutcome|πM (x(`)), (x(`), w) ∈ EH0
M

do

9 αmin = +∞
10 foreach ỹ ∈ TMdec(y) do

11 if there is path in GH0
M

from w to ỹ then

12 find σMM from w to ỹ minimizing ΦPMD

13 if ΦPMD
(σMM ) ≤ αmin then

14 αmin = ΦPMD
(σMM )

15 end

16 end

17 end

18 if αmin 6= +∞ and αmin ≥ αmaxmin then

19 αmaxmin = αmin, η = σ

20 end

21 end

22 if αmaxmin 6= −∞ then

23 σD = (x(`), η) take action prescribed by σD

24 else

25 announce (x, y) is not deceivable from x(`)

26 end

27 end
28 end
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Lemma 5.1: (Algorithm 1 maximizes the minimum probability of deception): The following

are equivalent:

(i) σD = (x0, x1, x2, . . . , x2k) ∈ S PMD(Soutcome), where k ∈ Z≥1, x2k ∈ TMdec(y), and (x`, x`+1) ∈

EH0
M

for ` ∈ {0, . . . , 2k − 1}, is a minimizer of ΦPMD
;

(ii) σD corresponds to the longest path from x0 to x2k ∈ TMdec(y), in (Soutcome, EH0
M
,MH0

M
),

where, for `, `′ ∈ {1, . . . |Soutcome|}, (MH0
M

)``′ = | ln (TPMD
(z`′ , z`)) |, if πD(z`) = πD(z`′),

and is zero otherwise.

Note that, in Lemma 5.1, (i) is equivalent to stating that σD is a minimizer of Πk
i=1TPMD

(x2i, x2i−1),

and (ii) implies that finding solutions to the worst-case max-strategy is equivalent to

finding a longest path on a digraph. By virtue of Theorem A.2, this problem is well-posed and

can be solved efficiently.

Next, we show that the worst-case max-strategy is complete, in the sense that it

always finds a stealthy sequence that deceives a surely deceivable edge.

Theorem 5.2: (Surely deceivable edges via worst-case max-strategy): The edge (x, y) ∈

EH0
M

, πD(x) = πD(y), is surely deceivable from x0 ∈ Soutcome via a stealthy sequence of D iff

HMdec(x, y) 6= ∅ and either x0 ∈ TMdec(y) or

max
x1∈Soutcome|πM (x0)

min
σD

ΦPMD
(σD) = 0,

where σD = (x0, x1, x2, . . . , x2k) ∈ S PMD(Soutcome), k ∈ Z≥1, x2k ∈ TMdec(y), (x`, x`+1) ∈ EH0
M

,

` ∈ {0, . . . , 2k − 1}.

Proof: Suppose (x, y) ∈ EH0
M

, πD(x) = πD(y), is surely deceivable from x0 via a stealthy

sequence. By Lemma 4.2, HMdec(x, y) 6= ∅. Suppose x0 /∈ TMdec(y). By Theorem 4.4 and by the def-

inition of surely deceivability, there exists a sequence of outcomes σD = (x0, x1, x2, . . . , x2k) ∈

S PMD(Soutcome), k ∈ Z≥1, x2k ∈ TMdec(y), where

(i) (x`, x`+1) ∈ EH0
M

, for all ` ∈ {0, . . . , 2k − 1};

(ii) TPMD
(x2`, x2`−1) = 1, for all ` ∈ {1, . . . , k}.

By (3), ΦPMD
(σD) = 0. Since TPMD

(x2`, x2`−1) = 1, for all ` ∈ {1, . . . , k}, if the deceiver

chooses its sequential actions aligned with σD at each time, then the sequence will reach x2k

with probability one, and thus it is the unique sequence starting at x0 reaching x2k which

includes x1. This, along with the fact that ΦPMD
(σD) ≤ 0 for any σD, proves the result.
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Conversely, if x0 ∈ TMdec(y), since HMdec(x, y) 6= ∅, the result follows from Lemma 4.3. Suppose

x0 /∈ TMdec(y). Then, by assumptions, σD is a stealthy sequence from x0 which reaches x2k ∈

T Mdec (y, x0), with probability one. Since HMdec(x, y) 6= ∅, the result follows by Theorem 4.4 and

the definition of surely deceivability.

The following results demonstrates that the worst-case max-strategy can also char-

acterize the surely deceivable edges when the opponent is using a best-response strategy. The

proof is similar to Theorem 5.2 and is omitted here.

Proposition 5.3: (Best-response strategies and the worst-case max-strategy): If the

mark takes the sanction-free action associated to its most preferred outcome at all times and the

deceiver knows about this, then (x, y) ∈ ED,x0
sdec (H0

M), x0 ∈ Soutcome, via a stealthy sequence of

the deceiver if and only if HMdec(x, y) 6= ∅ and either x0 ∈ TMdec(y) or

max
x1∈Soutcome|πM (x0)

min
σD

ΦP∗MD
(σD) = 0,

where P∗MD assigns one to the edges of GH0
M

associated to the most preferred sanction-free

actions of the mark and σD = (x0, x1, x2, . . . , x2k) ∈ S PMD(Soutcome), k ∈ Z≥1, x2k ∈ TMdec(y),

(x`, x`+1) ∈ EH0
M

for all ` ∈ {0, . . . , 2k − 1}.

Remark 5.4 (Strong deceivability): The execution of the worst-case max-strategy from

all the outcomes in Soutcome fully characterizes the set IMdec(x, y). Note that, by definition, IMdec(x, y) =

Soutcome iff (x, y) is strongly deceivable via a stealthy sequence. •

Example 5.5: (Example 3.3 revisited): Consider the scenario discussed in Example 3.3. Sup-

pose the game initially starts at outcome x0 = 14 and the deceiver wishes to deceive the mark

by removing the edge (29, 26) ∈ EH0
M

via a stealthy sequence. Since

HM
dec(29, 26) = {z ∈ Soutcome|πM (26) | z ≺PMM

29} = {11, 31, 41} 6= ∅,

the necessary condition of Lemma 4.2 for (29, 26) is satisfied. According to Theorem 4.4, we

compute

TMdec(26) = {w ∈ Soutcome|πM (26) | w �PDM 26} = {1, 6, 26, 36}.

The actions of the deceiver from 14 aligned with the mark’s H-digraph are

N out(14) ∩ Soutcome|πM (14) = {9, 24, 39}.
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Fig. 4. SwM
36,11(GH0

M
) is shown. The mark plays rows, the deceiver plays columns, and PMM and PDM are given in Figure 2.

The deceiver intends to remove the edge (29, 26) ∈ EH0
M

(left plot, dashed) via a stealthy sequence, starting from outcome 14.

After reaching the outcome 36, the edge (29, 26) ∈ EH0
M

is removed (right plot) by the action πD(11) of the deceiver.

By executing the worst-case max-strategy, the deceiver finds that the action that max-

imizes the minimum probability of reaching any of the outcomes in TMdec(26) is πD(24), where

it perceives that the repeated play of the game will reach outcome 36 via the path

S = (14, 24, 25, 40, 36),

with probability 0.52. Note that, since the outcome 36 is reachable via S and belongs to TMdec(26),

by definition 36 ∈ T Mdec (26, 14). In particular, the characterization of deceivability in Theorem 4.4

is satisfied. If the repeated play goes according to the deceiver’s perception, after reaching 36, the

deceiver takes an action that changes the outcome to any of the outcomes in HM
dec(29, 26), e.g.,

if the deceiver chooses to take the action πD(11) (note that (36, 11) /∈ EH0
M

), then the mark’s

H-digraph after updating its perception via swap learning is shown in Figure 4. If the mark

takes an action not aligned with the sequence S at any round, according to the worst-case

max-strategy, the deceiver will recompute the stealthy sequence and take the ensuing action

accordingly. •

VI. CONCLUSIONS

We have studied scenarios of active deception in 2-person 2-level hypergames with asymmetric

information between a deceiver and a mark. Building on the framework of hypergames and

its explicit modeling of player misperception, we have introduced novel formal notions that

capture various forms of deception and belief manipulation. We have provided a necessary

condition and a sufficient condition for deceivability for the case when the deceiver might take
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actions that contradict the perception of the mark. In addition, we have fully characterized

when deception is possible for the case when, instead, the deceiver acts in a stealthy way

and only takes actions aligned with its opponent’s perception. Finally, we have designed the

worst-case max-strategy that the deceiver can use to find a stealthy sequence that

maximizes the minimum probability of achieving its deception goal. The correctness of this

strategy follows from the fact that the H-digraph associated to a finite subjective hypergame

does not contain any weak improvement cycle. Future work will study the impact of signaling

costs on the deceiver, the design of strategies for performing outcome deceivability deception

via non-stealthy strategies, and the applications of our results to human behavior modeling.
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APPENDIX

In this appendix we study the topological structure of H-digraphs and show that they are

acyclic. Because the results of this section are of independent interest, and have relevance beyond

the deception scenario considered in this paper, we carry over our discussion for k-level n-player

hypergames. We start by defining two special sequences of outcomes.

Definition A.1: (Nondeteriorating paths and weak improvement cycles in subjective hypergames):

A strategic path S = (x1, x2, . . .) in Soutcome is nondeteriorating for H0
σ if (x`, x`+1) ∈ EH0

σ
,

for all ` ∈ Z≥1. A finite sequence of outcomes S = (x1, x2, . . . , xm, x1), m ∈ Z≥1, is a weak

improvement cycle for H0
σ if it is nondeteriorating and x`+1 �Aiσ x` for some ` ∈ {1, . . . ,m−1}

and i ∈ {1, . . . , n}.
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Note that, if the preorders �Aiσ, i ∈ {1, . . . , n}, are all strict, every nondeteriorating path

of the form (x1, x2, . . . , xm, x1) is a weak improvement cycle. We next characterize the acyclic

structure of 0-level hypergames with two players.

Theorem A.2: (Subjective hypergames with two players contain no weak improvement cycle):

Consider a k-level hypergame Hk between players A1 and A2. Let H0
σ be a 0-level subjective

hypergame perceived by σ, a sequence of length at most k on {A1, A2}. Then H0
σ contains no

weak improvement cycle.

Proof: We reason by contradiction. Suppose S = (x1, x2, x3, . . . , xp, x1) is a weak im-

provement cycle for H0
σ. Without loss of generality, we assume that players take alternate turns

to take actions along the path. In other words, for 1 ≤ ` ≤ p − 2, if π1(x`) 6= π1(x`+1) (resp.

π2(x`) 6= π2(x`+1)), then π2(x`+1) 6= π2(x`+2) (resp. π1(x`+1) 6= π1(x`+2)). Our assumption is

justified by the fact that, if π1(x`) 6= π1(x`+1) 6= π1(x`+2), then x`+2 is a perceived improvement

from x` for player A1 and thus the outcome x`+1 can be removed from the path S, with the

result corresponding to a weak improvement cycle for H0
σ. Note that, in particular, our assumption

implies p ≥ 4 is even.

Suppose A2 is the first player to take an action, i.e., π2(x1) 6= π2(x2) (the reasoning for

the case when the first player is A1 is analogous). Since S is a weak improvement cycle,

x2 �A2σ x1. Moreover, since π1(x2) 6= π1(x3), we have that x3 �A1σ x2. As a result, we deduce

that x3 �A2σ x1; otherwise, A2’s perceived improvement x2 from x1 is not sanction-free. With

a similar argument, one can deduce that, for ` ∈ {1, . . . , p−2
2
},

(i) x2`, x2`+1 �A2σ x2`−1;

(ii) x2`+1, x2`+2 �A1σ x2`;

(iii) xp, x1 �A2σ xp−1 and x1, x2 �A1σ xp.

Since S is an improvement cycle, there must exist at least one l ∈ {1, . . . , p − 1} such that

either xl+1 �A1σ xl with π1(xl) 6= π1(xl+1) or xl+1 �A2σ xl with π2(xl) 6= π2(xl+1). Assume we

are in the first case, i.e., l is odd, (the argument for the case when l is even is the same). Then,

using (ii), one concludes that xp �A1σ x2, which contradicts (iii).

When the preorders �Aiσ, i ∈ {1, . . . , n}, are all strict, the existence of no weak improvement

cycle implies that the associated H-digraph is, in fact, acyclic. We generalize the result above

to the case of an arbitrary number of players using an inductive procedure.
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Theorem A.3: (Subjective hypergames contain no weak improvement cycle): Consider a k-

level hypergame Hk with n players {A1, . . . , An}. Then none of the subjective 0-level hypergame

H0
σ, where σ is a sequence of length at most k on {A1, . . . , An}, contains a weak improvement

cycle.

Proof: Let {A1, A2, . . . , An} be a set of n ∈ Z≥3 players and H0
σ = (PA1σ, . . . ,PAnσ).

We denote by Sreachable
outcome |πi(x) ⊆ Soutcome|πi(x) the set of all outcomes in Soutcome|πi(x) which can

be reached from x ∈ Soutcome in the digraph GH0
σ

by a directed path whose vertices belong to

Soutcome|πi(x). Consider a sequence of outcomes S = (x1, x2, . . . , xm) for H0
σ, with m ∈ Z≥1.

Similarly to the two players’ case, without loss of generality, we assume that if player Ai takes

an action that changes the outcome from x` to x`+1, ` ∈ {1, . . . ,m− 1}, then a different player

Aj , j ∈ {1, . . . , n} \ {i} takes the next action.

We proceed with the proof by induction on n. By Theorem A.2, the claim holds for n = 2.

Suppose that the claim holds for any subjective 0-level hypergame with n = N − 1 players,

and let us show that it also holds when n = N . If we fix the action of one player, say Ai,

then players A−i are playing a 0-level hypergame with N − 1 players, which contains no weak

improvement cycle by the assumption of induction.

Without loss of generality, assume that player A2 is the player that takes the action changing

the outcome from x1 to x2. Let S′ = (x1, x2, . . . , xm′) be a sequence of outcomes of largest

cardinality m′ with the property that, for all `′ ∈ {1, . . . ,m′−1}, x`′ and x`′+1 are two consecutive

outcomes in S such that π2(x`′) 6= π2(x`′+1). Note that, by the induction assumption, for

any x`′ , x`′+1 ∈ S′, the corresponding subsequence (x`′ , . . . , x`′+1) of S contains no weak

improvement cycle. Thus it is enough to show that S′ cannot be a weak improvement cycle. We

reason by contradiction. Assume then that S′ is a weak improvement cycle. First, we claim that

x`′+1 �A2σ x`′ , for all x`′ , x`′+1 ∈ S′. For any outcome xl ∈ S∩Sreachable
outcome |π2(x`′ ), l ∈ {1, . . . ,m

′},

we have that xl �A2σ x`. In particular, there exists an outcome x∗l ∈ S∩Sreachable
outcome |π2(x`′ ) such that

π−2(x
∗
l ) = π−2(x`′+1), x`′+1 �A2σ x

∗
l , and x∗l �A2σ x`. Thus we conclude that x`′+1 �A2σ x`′ ,

as claimed. By a similar argument, one can conclude that x1 �A2σ xm′ . Since S′ is a weakly

improvement cycle by hypothesis of contradiction, there exist at least two consecutive outcomes

x, y ∈ S′, such that player A2 is perceived to strictly prefer y to x. Using now an argument

similar to the one in Theorem A.2, this leads to a contradiction.
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Note that a corollary of Theorem A.3 is the known fact [20] that 0-level hypergames have at

least one equilibrium.

Remark A.4: (Connection to ordinal potential games): A game G = (V,Soutcome,P) is ordinal

potential, cf. [26], if there exists a real-valued function P : Soutcome → R such that for all i ∈

{1, . . . , n} and ai, bi ∈ Si, we have (ai, a−i) �Pi (bi, a−i) if and only if P(ai, a−i) > P(bi, a−i).

The function P is called the ordinal potential function for G. It is known [26] that G is ordinal

potential if and only if it does not have any weak improvement cycle. Suppose GH0
σ

is the H-

digraph associated to a subjective hypergame H0
σ with n players V = {A1, . . . , An} and let

G = (V,Soutcome,P) be the game defined by x2 �Pi x1 with π−i(x1) = π−i(x2), πi(x1) 6= πi(x2)

for vi ∈ V if and only if (x1, x2) ∈ GH0
σ
. Then, G is an ordinal potential game since, by

Theorem A.3, the digraph GH0
σ

contains no weak improvement cycle. •

An improving adjustment scheme in H0
σ is any method that, given an initial outcome x1 ∈

Soutcome, generates a nondeteriorating sequence of outcomes S = (x1, x2, . . .). A best-response

scheme is a special case of this notion, see, for example, [27]. We state next an immediate

consequence of Theorem A.3 which captures how each individual player may learn the equilibria

of its subjective hypergame.

Corollary A.5: (Learning in subjective hypergames): Any improving adjustment scheme in H0
σ

converges to an equilibrium.
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