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Abstract— We present a stability result for stochastic differential
equations subject to additive persistent noise. Specifically, we
propose a Lyapunov test for noise-to-state stability in pth mo-
ment with respect to an arbitrary subspace. To check the
hypotheses of our result, we develop a method that exploits
equivalence relations between positive semidefinite functions
and a family of seminorms. With this method, we can translate
inequalities between two positive semidefinite functions into
separate sets of geometric conditions that relate each of them
to a seminorm.

I. INTRODUCTION

Stochastic differential equations (SDEs) go beyond ordinary
differential equations (ODEs) to deal with systems subject
to stochastic perturbations. Applications are numerous and
include option pricing in the stock market, networked sys-
tems with noisy communication channels, and, in general,
scenarios whose complexity cannot be captured by deter-
ministic models. By additive persistent noise, we refer to the
situation where the stochastic perturbations are present even
at the equilibria of the underlying ODE and do not decay
with time. Such scenarios arise, for instance, in control-affine
systems when the input is corrupted by additive persistent
noise. Our objective in this paper is to develop notions and
tools to study the stability properties under the presence of
additive persistent noise.

Literature review: In general, it is very difficult to obtain
explicit descriptions of the solutions of SDEs. Fortunately,
well-known Lyapunov techniques used to study the quali-
tative behavior of ODEs [1], [2] can be adapted to show
stability properties of SDEs as well [3], [4], [5]. There are
several types of stability results in SDEs depending on the
notion of stochastic convergence that is being used. The
works [4], [5], [6], [7] consider (asymptotic) stability in
probability, almost sure (asymptotic) stability, and pth mo-
ment (asymptotic) stability. However, none of these notions
are appropriate when additive persistent noise is present
because they require the effect of the noise on the set of
equilibria to vanish, or at least decay, with time. To deal
with this, there is a family of related notions that establish
a ultimate bound for the state of a system in terms of
the size of the “disturbance”. Rephrasing them, there exists
a neighborhood of the set of equilibria that enjoys some
stability property, and the size of this neighborhood depends
on the size of the disturbance. This is ideally suited to
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study the stability properties of interconnected systems and
cascade systems. In this context, Lyapunov techniques are
widely used in controller design for the stabilization of such
systems to the point that some stability concepts are inspired
by dissipativity properties of Lyapunov functions. As an
example, concepts like input-to-state stability (ISS) [8] go
together with concepts like ISS-Lyapunov function, since the
existence of the second implies the former (and in many
cases a converse result is also true [8]). In this spirit, the
notion of practical stochastic input-to-state stability (SISS)
in [9] and [10] generalizes the concept of ISS [8] to systems
represented by an SDE. As a particular case of SISS, when
the input multiplies the covariance of the noise, we get the
concept of noise-to-state-stability (NSS) [11], which focuses
on the dissipative properties of a system in relation to the
magnitude of the covariance of the noise. This is different
from the ISS property for systems that are affine in input,
because the stochastic integral against Brownian motion has
infinite variation, whereas the integral of a legitimate input
for ISS has finite variation.

Statement of contributions: The contributions of this paper
are twofold. Our first contribution concerns the noise-to-state
stability (NSS) properties of systems described by SDEs
with additive persistent noise that only exhibit disturbance
attenuation outside an arbitrary subspace. We introduce the
concepts of NSS in pth moment, and of noise-dissipative and
pthNSS-Lyapunov functions, all with respect to an arbitrary
subspace. We show that noise-dissipative Lyapunov functions
have NSS dynamics and, building on this fact, we establish
that the existence of a pthNSS-Lyapunov function implies
noise-to-state stability in pth moment with respect to an
arbitrary subspace. Our second contribution is a methodology
to check the hypotheses of the above results. We show that
certain pairs of inequalities between positive semidefinite
functions, which are refinements of the notion of proper
function, give rise to equivalence relations. Building on
this study, we characterize the relation between a positive
semidefinite function and a family of seminorms, thereby
allowing us to relate two positive semidefinite functions
that are related to the same family of seminorms. These
seminorms provide a way to measure the distance to the
subspace considered in our first set of contributions. With this
method, we can translate inequalities between two positive
semidefinite functions, which are common in Lyapunov-type
results, into separate sets of conditions that relate each of
them to a seminorm. Most proofs are omitted for reasons of
space and will appear elsewhere.



Organization: The paper is organized as follows. Section II
introduces preliminaries on seminorms, comparison func-
tions, and SDEs. Section III presents the NSS stability result,
and Section IV shows a methodology to help verify its
hypotheses. Finally, Section V discusses our conclusions.

II. PRELIMINARIES

This section outlines basic notation and notions on compar-
ison functions and stochastic differential equations that are
used throughout the paper.

A. Notational conventions

Let R and R≥ 0 be the sets of real and nonnegative real
numbers, respectively. We denote by Rn the n-dimensional
Euclidean space. Rn is a vector space, i.e., for any x, y ∈ Rn,
and any λ, µ ∈ R, the linear combination λx + µy belongs
to Rn. A set U ⊆ Rn is called a subspace if it is itself
a vector space. Given a matrix A ∈ Rn×n, its nullspace
N (A) , {x ∈ Rn : Ax = 0} is a subspace. We denote
by C(Rn;R≥ 0) the set of positive semidefinite continuous
functions defined on Rn. A seminorm is a function S : Rn →
R that is positively homogeneous, i.e., S(λx) = |λ|s(x) for
any λ ∈ R, and satisfies the triangular inequality, S(x+y) ≤
S(x) + S(y) for any x, y ∈ Rn. From these properties can
be deduced that S ∈ C(Rn;R≥ 0). If, moreover, the function
S is positive definite, i.e., S(x) = 0 implies x = 0, then S
is called a norm. The Euclidean norm of x ∈ Rn is denoted
by ‖x‖2, and the Frobenius norm of the matrix A ∈ Rn×m
is |A|F ,

√
trace (ATA) =

√
trace (AAT ). For any matrix

A ∈ Rn×m, the function ‖x‖A , ‖Ax‖2 is a seminorm
because ‖λx‖A = ‖A(λx)‖2 = ‖λAx‖2 = |λ|‖Ax‖2 =
|λ|‖x‖A and ‖x + y‖A = ‖A(x + y)‖2 = ‖Ax + Ay‖2 ≤
‖Ax‖2 + ‖Ay‖2 = ‖x‖A + ‖y‖A.

We also denote by C2(Rn;R≥ 0) the family of all positive
semidefinite functions V defined on Rn that are continuously
twice differentiable. Given a function V ∈ C2(Rn;R≥ 0),
we denote its gradient by ∇V, and its Hessian by ∇2V.
A function f ∈ C(R;R≥ 0) is said to be in O(s) as s → ∞
if there exist s0 ∈ R and κ > 0 such that f(s) < κs for all
s > s0. The operator sup denotes the supremum and ess sup
denotes the essential supremum.

B. Class K, K∞, and convex and concave functions

We now introduce some classes of functions following [1,
Page 144]. We will use them in this paper as a comparison
tool, and their domain is required to be R≥ 0. A continuous
function α : R≥ 0 → R≥ 0 belongs to class K if it is strictly
increasing and α(0) = 0, and it belongs to class K∞ if
α ∈ K and it is unbounded. Also, a continuous function
µ : R≥ 0 × R≥ 0 → R≥ 0 belongs to class KL if for each
fixed t ≥ 0, the function µ(., t) belongs to class K, and
for each fixed s ≥ 0, the function µ(s, .) is decreasing and
limt→∞ µ(s, t) = 0. We will need some important facts:
if α1, α2 belong to class K, then the composition α1 ◦ α2

belongs to class K (notation: (α1 ◦ α2)(x) , α1(α2(x))); if

α3, α4 belong to class K∞, then the inverse function α−13

and the composition α3 ◦ α4 belong to class K∞.

A real-valued function f defined in a convex set X in
a vector space is called convex if f(λx + (1 − λ)y) ≤
λf(x) + (1 − λ)f(y) for each x, y ∈ X and for any
λ ∈ [0, 1], and is called concave if −f is convex. By [12,
Ex. 3.3], if f : [a, b]→ [f(a), f(b)] is an increasing convex
(respectively, concave) function, then the inverse function
f−1 : [f(a), f(b)]→ [a, b] is concave (respectively, convex).
Also, following [12, Section 3], if f, g : R→ R are convex
(respectively, concave) and f is nondecreasing, then the
composition f ◦ g is also convex (respectively, concave).

C. Stochastic differential equations

Here we review some basic notions on SDEs following the
exposition in [6]; other useful references are [3], [13], [14].
Throughout the paper we assume that (Ω,F , {Ft}t≥0,P) is
a complete probability space, which is a probability measure
P defined on the subsets of Ω that belong to the σ-algebra
F ; those are the measurable events of the outcome space
Ω. It is called complete because F contains all the subsets
of Ω of probability 0. The filtration {Ft}t≥0 is a family
of sub-σ-algebras of F satisfying Ft ⊆ Fs ⊆ F for any
0 ≤ t < s < ∞; we assume it is right continuous (i.e.,
Ft = ∩s>tFs for any t ≥ 0) and F0 contains all the subsets
of Ω of probability 0.

A one-dimensional Brownian motion B : Ω × [t0,∞) → R
is an {Ft}-adapted process such that B(ω, t0) = 0 with
probability 1 and the mapping B(ω, .) : [t0,∞) → R is
continuous also with probability 1 (the dependence on ω
is usually omitted). Moreover, for t0 ≤ s < t < ∞, the
increment B(t) − B(s) : Ω → R is independent of Fs (i.e.,
if we define the set Sb , {ω ∈ Ω : B(ω, t) − B(ω, s) ∈
(−∞, b)}, for any b ∈ R, then P(A ∩ Sb) = P(A)P(Sb) for
all A ∈ Fs). In addition, B(t)−B(s) is normally distributed
with zero mean and variance t − s. An m-dimensional
Brownian motion B : Ω × [t0,∞) → Rm is defined as
B(ω, t) = [B1(ω, t), . . . ,Bm(ω, t)]T , where each Bi is a one-
dimensional Brownian motion and {B1(t)}, ..., {Bm(t)} are
independent random variables for each t ≥ t0.

In this paper we consider the n-dimensional SDE

dx(t) = f(x(t), t)dt+G(x(t), t)Σ(t)dB(t), (1)

for all t ∈ [t0,∞), that is notation for the integral equation

x(t) = x0 +

∫ t

t0

f(x(s), s)ds+

∫ t

t0

G(x(s), s)Σ(s)dB(s),

where the second integral is an stochastic integral [6, P. 18].
Assumption 2.1. The initial condition x(t0) = x0 belongs
to Rn; the functions f : Rn × [t0,∞)→ Rn and G : Rn ×
[t0,∞)→ Rn×q are measurable; the function Σ : [t0,∞)→
Rq×m is measurable and essentially locally bounded; and
{B(t)}t≥t0 is an m-dimensional Brownian motion defined
on the probability space. •



Given Assumption 2.1, the next regularity conditions [6, Page
58] guarantee global existence and uniqueness of solutions,
with an additional justification regarding Σ, for each deter-
ministic initial condition of the SDE (1).
Assumption 2.2. For every real number T > t0 and each
integer n ≥ 1, there exists a positive constant KT,n such
that for almost every t ∈ [t0, T ] and all x, y ∈ Rn with
max

{
‖x‖2 , ‖y‖2

}
≤ n, the following bound holds:

max
{
‖f(x, t)− f(y, t)‖22 , |G(x, t)−G(y, t)|2F

}
≤ KT,n‖x− y‖22.

Assume also that for every T > t0, there exists KT > 0
such that for almost every t ∈ [t0, T ] and all x ∈ Rn,

xTf(x, t) + 1
2 |G(x, t)|2F ≤ KT (1 + ‖x‖22). •

Next we present a useful operator in stability analysis. Given
V ∈ C2(Rn;R≥ 0), define the generator of the SDE (1) acting
on the function V as the mapping L[V] : Rn× [t0,∞)→ R
given by

L[V](x, t) , ∇V(x)Tf(x, t)

+ 1
2 trace

(
Σ(t)TG(x, t)T∇2V(x)G(x, t)Σ(t)

)
. (2)

It can be shown that L[V](x, t) gives the expected rate of
change of V along a solution of the SDE (1) that passes
through the point x at time t, so it is a generalization of the
Lie derivative. According to [6, Th. 6.4], if we evaluate V
along the solution {x(t)}t≥t0 of the SDE (1) (that exists and
is unique under Assumptions 2.1 and 2.2), then the process
{V(x(t))}t≥t0 satisfies the SDE

V(x(t)) = V(x(t0)) +

∫ t

t0

L[V](x(s), s)ds+ I(t), (3)

with V(x(t0)) = V(x0), where

I(t) ,
∫ t

t0

∇V(x(s))TG(x(s), s)Σ(s)dB(s). (4)

Equation (3) is known as Itô formula and is the stochastic
version of the chain rule.

III. NOISE-TO-STATE STABILITY VIA NOISE-DISSIPATIVE
LYAPUNOV FUNCTIONS

The next definition generalizes the concept of noise-to-state
stability in [11].
Definition 3.1. (Noise-to-state stability with respect to a
subspace): The system (1) is noise-to-state stable (NSS) in
probability with respect to the subspace U if for any ε > 0
there exist a class KL function µ and a class K function
θ, that might depend on ε, and a matrix A ∈ Rn×n with
N (A) = U , such that

P
{
‖x(t)‖A > µ(‖x0‖A, t− t0)

+ θ
(

ess sup
t0≤s≤t

|Σ(s)|F
)}
≤ ε, (5)

for all t > t0 and any x0 ∈ Rn. Similarly, the system (1)
is pth moment noise-to-state stable (pthNSS) with respect
to the subspace U if there exists a class KL function µ, a
class K function θ and a matrix A ∈ Rn×n with N (A) = U
such that

E
[
‖x(t)‖pA

]
≤ µ(‖x0‖A, t− t0)

+ θ
(

ess sup
t0≤s≤t

|Σ(s)|F
)

(6)

for all t > t0 and any x0 ∈ Rn.

The quantity |Σ(t)|F =
√

trace
(
Σ(t)Σ(t)T

)
is a measure of

the size of the noise because it is related to the infinitesimal
covariance Σ(t)Σ(t)T . Also, the definition above does not
depend on the choice of the matrix A ∈ Rn×n because for
two matrices A,B ∈ Rn×n with N (A) = N (B) = U , the
seminorms are equivalent, i.e., there are constants γ1, γ2 > 0
such that γ1‖x‖A ≤ ‖x‖B ≤ γ2‖x‖A for all x ∈ Rn.
Remark 3.2. (NSS is not a particular case of ISS): The
concept of NSS is not a particular case of input-to-state
stability (ISS) for systems that are affine in the input, namely,

ẋ = f(x, t) +G(x, t)u(t), (7)

where u : [t0,∞) → Rq is measurable and essentially
locally bounded. The reason is the following: on the one
hand, the integral form of (7) is driven by the function∫ t
t0
G(x(s), s)u(s) ds, whose coordinates are differentiable

almost everywhere by the Lebesgue fundamental theorem of
calculus [15, P. 289], and thus they are absolutely continu-
ous [15, P. 292] and have bounded variation [15, Prop. 8.5].
On the other hand, the driving disturbance of the system (1),
at any time tk(t) previous to the first exit of x(t) from
any arbitrarily large ball {x ∈ Rn : ‖x‖2 ≤ k}, is the
function

∫ tk(t)
t0

G(x(s), s)Σ(s)dB(s) whose ith coordinate
has quadratic variation [6, Th. 5.14] equal to∫ tk(t)

t0

m∑
j=1

|
q∑
l=1

G(x(s), s)ilΣ(s)lj |2ds,

which is larger than zero, and so does not have bounded vari-
ation. That is, the driving disturbance that we are considering
is of a different kind. •
Our first goal is to derive the noise-to-state stability proper-
ties in Definition 3.1 via a Lyapunov-type result. To do this
we look at the dissipativity properties of a special kind of
energy functions along the solutions of the SDE (1).
Definition 3.3. (Noise-dissipative Lyapunov functions):
We say that V in C2(Rn;R≥ 0) is a noise-dissipative Lya-
punov function for the SDE (1) if there exist W ∈
C(Rn;R≥ 0) and σ ∈ K such that the following dissipation
inequality holds:

L[V](x, t) ≤ −W(x) + σ
(
|Σ(t)|F

)
(8)

for all (x, t) ∈ Rn × [t0,∞), where

V(x) ≤ α̃(W(x)) ∀x ∈ Rn, (9)

for some concave function α̃ ∈ K∞.



Remark 3.4. (Itô formula and exponential dissipativity):
Interestingly, the conditions (8) and (9) are equivalent to

L[V](x, t) ≤ −α̃−1(V(x)) + σ
(
|Σ(t)|F

)
, (10)

for all x ∈ Rn, where α̃−1 ∈ K∞ is convex. Note
that, since L[V] is not the Lie derivative of V (because
it has a term with the Hessian of V), one cannot directly
conclude from (10) that there exists some continuously twice
differentiable function Ṽ such that

L[Ṽ](x, t) ≤ −cṼ(x) + σ̃
(
|Σ(t)|F

)
,

as it is the case in [16] in the context of ISS. •
The next result is motivated by [17, Th. 4.1]: we extend
it to positive semidefinite Lyapunov functions and relax the
condition on L[V].
Theorem 3.5. (Noise-dissipative Lyapunov functions have
an NSS dynamics): Under Assumptions 2.1 and 2.2, sup-
pose that V is a noise-dissipative Lyapunov function for the
SDE (1). Then there exists a class KL function µ̃ such that

E
[
V(x(t))

]
≤ µ̃

(
V(x0), t− t0

)
+ α̃

(
2σ
(

ess sup
t0≤s≤t

|Σ(s)|F
))

(11)

for all t ≥ t0, where σ and α are as in Definition 3.3.

Of particular interest is the case when the function V is lower
and upper bounded by class K∞ functions of a seminorm.
Definition 3.6. (NSS-Lyapunov functions): We say that V
in C2(Rn;R≥ 0) is a NSS-Lyapunov function in probability
with respect to U for the SDE (1) if V is a noise dissipative
Lyapunov function and, in addition, there is a matrix A ∈
Rn×n with N (A) = U such that, for some α1, α2 ∈ K∞,

α1(‖x‖pA) ≤ V(x) ≤ α2(‖x‖pA) ∀x ∈ Rn. (12)

(The power p is irrelevant when we just care about class K∞
functions, but it does make a difference if we impose α1 to
be convex as we are about to do next.) If, moreover, α1 is
convex in (12), we say that V is a pth moment NSS-Lyapunov
function with respect to U .

As in Definition 3.1, the particular choice of the matrix A
is irrelevant. The dissipativity property dictated by the above
Lyapunov function gives rise to the following stability result
for SDEs with additive persistent noise.
Corollary 3.7. (NSS-Lyapunov function implies NSS with
respect to a subspace): Under Assumptions 2.1 and 2.2,
suppose that V is a NSS-Lyapunov function in probability
with respect to the subspace U for the SDE (1). Then,

(i) the system (1) is NSS in probability with respect to
the subspace U with gain functions

µ(r, s) , α−11

(
2
ε µ̃(α2(r), s)

)
,

θ(r) , α−11

(
2
ε α̃(2σ(r))

)
. (13)

(ii) Moreover, if V is a pth moment NSS-Lyapunov func-
tion, then the system (1) is pth moment NSS with

respect to the subspace U with gain functions µ and θ
as in (13) setting ε = 1.

Proof. (i) Since α1(‖x‖pA) ≤ V(x) for all x ∈ Rn, with
α1 ∈ K∞, then for any ρ̂ > 0 and t ≥ t0 we have that

P
{
‖x(t)‖pA > ρ̂

}
= P

{
α1(‖x(t)‖pA) > α1(ρ̂)

}
≤ P

{
V(x(t)) > α1(ρ̂)

}
≤

E
[
V(x(t))

]
α1(ρ̂)

≤ 1

α1(ρ̂)

(
µ̃
(
α2(‖x0‖A), t− t0

)
+ α̃

(
2σ
(

ess sup
t0≤s≤t

|Σ(s)|F
)))

, (14)

where we have used the strict monotonicity of α1 in the first
equation, Chebyshev’s inequality [18, Chapter 3] in the sec-
ond inequality, and the upper bound for E

[
V(x(t))

]
obtained

in (11) in the last inequality as well as the monotonicity of
µ̃ in the first argument and the fact that V(x) ≤ α2(‖x‖A).
Also, for any function α ∈ K we have that α(2r) +α(2s) ≥
α(r + s) for all r, s ≥ 0. Thus,

ρ(ε, x0, t) , µ
(
‖x0‖A, t− t0

)
+ θ
(

ess sup
t0≤s≤t

|Σ(s)|F
)

≥ α−11

(
1

ε
µ̃
(
α2(‖x0‖A), t− t0

)
+

1

ε
α̃
(

2σ
(

ess sup
t0≤s≤t

|Σ(s)|F
)))

, ρ̂(ε), (15)

and the result follows substituting in (14) ρ̂ , ρ̂(ε) because,
by (15), P

{
‖x(t)‖pA > ρ(ε, x0, t)

}
≤ P

{
‖x(t)‖pA > ρ̂(ε)

}
.

(ii) Since α−11 is concave, applying Jensen’s inequality [18,
Chapter 3] we get that

E
[
‖x(t)‖pA

]
≤ E

[
α−11

(
V(x(t))

)]
≤ α−11

(
E
[
V(x(t))

])
≤ ρ̂(1) ≤ ρ(1, x0, t),

where in the last two inequalities we have used the bound
for E

[
V(x(t))

]
in (14) and the definition of ρ̂(ε) in (15).

IV. POSITIVE SEMIDEFINITE FUNCTIONS AND
SEMINORMS

We have two goals in this section: first, we show that the
inequalities in (12) can be regarded as an equivalence relation
between the candidate function V and ‖.‖pA. This is true in
general when two positive semidefinite functions are related
in this way by class K∞ functions. Second, we characterize
the functions V that verify (12), including the case in which
the class K∞ functions are convex and concave, respectively.
These ideas culminate in a framework to help verify the
conditions (9) and (12) that appear in the definition of noise-
dissipative Lyapunov function, NSS-Lyapunov function in
probability, and pth moment NSS-Lyapunov function.



A. Equivalence classes that are useful in stability analysis

The following relations point towards some refinements of
the notion of proper function which plays an important role
in stability properties like input-to-state stability (ISS) and
integral input-to-state stability (iISS) [19].
Definition 4.1. (Proper functions with respect to each
other): Consider a set D ⊆ Rn (which can be thought to be
Rn) and let V and W in C(D ;R≥ 0) be such that

α1(W(x)) ≤ V(x) ≤ α2(W(x)) ∀x ∈ D, (16)

for some functions α1 and α2 in C(R≥ 0;R≥ 0).

(i) When α1, α2 ∈ K, we say that V is K-dominated
by W, and we write V CK W in D.

(ii) When α1, α2 ∈ K∞, we say that V and W are
K∞-proper with respect to each other, and we write
V ∼K∞ W in D.

(iii) When α1, α2 ∈ K∞ can be taken convex and concave
respectively, we say that V and W are Kcc∞-proper with
respect to each other, and we write V ∼Kcc

∞ W in D.
(iv) When α1(s) , γ1s and α2(s) , γ2s in R≥ 0 for

some constants γ1, γ2 > 0, we say that V and W are
equivalent, and we write V ∼ W in D.

Remark 4.2. (Refinements of the notion of proper func-
tion): When D is a neighborhood of 0, W is the two-norm,
and α1, α2 belong to the classes K or K∞, we recover
the well-known concept of V being a proper function [1].
Whereas the relation ∼K∞ is relevant for ISS, iISS and NSS
in probability, the relation ∼Kcc

∞ is important for NSS in
pth moment. As we saw in Section III, this is because the
inequalities in ∼Kcc

∞ are preserved if we evaluate V and W
along a stochastic process and take expectations. •
Remark 4.3. (The relations are nested): Given V and W
in C(D ;R≥ 0), the following chain of implications hold in D:

V ∼ W ⇒ V ∼Kcc
∞ W ⇒ V ∼K∞ W ⇒ V CK W. •

In the case when D = Rn, and V and W are seminorms,
the relationship ∼ gives rise to the well-known concept of
equivalent seminorms.
Lemma 4.4. (Powers of seminorms with the same
nullspace): Let A and B in Rn×n be two nonzero matrices
with the same nullspace, N (A) = N (B). Then ‖.‖pA ∼ ‖.‖pB
and ‖.‖pA ∼K∞ ‖.‖qB in Rn for any real numbers p, q > 0.

Inspired by the fact that the relationship ∼ is an equivalence
relation, we present the next generalization.
Proposition 4.5. (Equivalence relations): The relationships
∼K∞ and ∼Kcc

∞ in any set D ⊆ Rn are both equivalence
relations.

Proof. We have to show three properties. For convenience,
we represent both relations by ∼∗. We first derive the
algebraic constructions regarding each of the three properties,
and after that we justify how the specific requirements for
both relations ∼K∞ and ∼Kcc

∞ are met.

It is reflexive, i.e., V ∼∗ V. This follows taking α1(s) =
α2(s) = s in R≥ 0, which belongs to K∞ and is both convex
and concave.

It is symmetric, i.e., V ∼∗ W ⇔ W ∼∗ V. This follows
because if the inequalities α1 ◦W ≤ V ≤ α2 ◦W hold in
D, then α−12 ◦V ≤W ≤ α−11 ◦V also hold in D.

It is transitive, i.e., U ∼∗ V and V ∼∗ W ⇒ U ∼∗ W. This
follows because if the inequalities α1 ◦V ≤ U ≤ α2 ◦V and
α̃1 ◦W ≤ V ≤ α̃2 ◦W hold in D, then the inequalities
α1 ◦ α̃1 ◦W ≤ U ≤ α2 ◦ α̃2 ◦W also hold in D.

Taking the inverse of a function or the composition of two
functions preserves the class K∞ as explained in Section II-
B. Thus, the constructions above are valid for the relation
∼K∞ . On the other hand, convexity and concavity that are
required for the relation ∼Kcc

∞ are also guaranteed because, as
a consequence of Section II-B, if α ∈ K∞ is convex (respec-
tively, concave), then α−1 ∈ K∞ is concave (respectively,
convex). Also, if α1, α2 ∈ K∞ are both convex (respectively,
concave), then the compositions α1 ◦α2 and α2 ◦α1 belong
to K∞ and are convex (respectively, concave).

Remark 4.6. (CK is also transitive): The proof above also
shows that the relation CK is reflexive and transitive. •

B. Characterizing K, K∞ and Kcc∞-proper functions with
respect to seminorms

Here we generalize the characterization of proper function
in [1, Lemma 4.3]. Let V ∈ C(D ;R≥ 0), where D ⊂ Rn.
Given a real number p ≥ 1 and a nonzero matrix A ∈ Rn×n,
consider the functions φp,A, ψp,A : R≥ 0 → R≥ 0 given by

φp,A(s) , sup
{x∈D : ‖x‖pA≤s}

V(x),

ψp,A(s) , inf
{x∈D : ‖x‖pA≥s}

V(x).

Using these auxiliary functions, we make a list with the
hypotheses that appear in our characterizations of K, K∞ and
Kcc∞ - proper functions with respect to the seminorm ‖.‖A.

H0A. The set D contains N (A) and the set {x ∈ D :
‖x‖A ≥ s} is nonempty for every s ≥ 0.

H1A. The nullset of V is equal to N (A).

H2A. The function φ1, A is locally bounded and right con-
tinuous at 0, and ψ1, A is positive definite.

H3A. The next limit holds: lims→∞ ψ1, A =∞.

H4A,p. The asymptotic behavior of φp,A and ψp,A is such
that φp,A(s) and s2/ψp,A(s) are both in O(s) as s→∞.

The next result generalizes [1, Lemma 4.3].
Proposition 4.7. (Characterizations): Consider a function
V in C(D ;R≥ 0) that satisfies H0A. Then

(i) V satisfies {HiA}2i=1 ⇔ V CK ‖.‖A in D ;
(ii) V satisfies {HiA}3i=1 ⇔ V ∼K∞ ‖.‖A in D ;

(iii) V satisfies {HiA,p}4i=1 ⇔ V ∼Kcc
∞ ‖.‖pA in D.

The following result culminates our efforts to show a route
to guarantee the inequalities in (9) and (12) in the definition



of dissipative Lyapunov function, NSS-Lyapunov function in
probability, and pth moment NSS-Lyapunov function.
Theorem 4.8. (A bridge between positive semidefinite
functions): Let V and W in C(D ;R≥ 0) verify the hypotheses
H0-H3 for two matrices A, Ã ∈ Rn×n, respectively, with
N (A) = N (Ã). Then for any q > 0 the following relations
hold in D:

V ∼K∞ W, and V ∼K∞ ‖.‖qA, and W ∼K∞ ‖.‖q
Ã
.

If, moreover, V and W verify H4 for the same matrices A
and Ã, respectively, and some p ≥ 1, then the following
relations hold in D:

V ∼Kcc
∞ W, and V ∼Kcc

∞ ‖.‖pA, and W ∼Kcc
∞ ‖.‖p

Ã
.

Remark 4.9. (Quadratic forms in a constrained domain):
Sometimes is more convenient to re-write the functions V
and W in Definition 3.3 as V̂ ∈ C2(D ;R≥ 0) and Ŵ ∈
C(D ;R≥ 0) for an appropriate set D ⊆ Rm with m ≥ n.
For instance, this scenario arises if the functions V and W
can be re-written as quadratic forms in a constrained set in
an extended Euclidean space. In that case, the equivalence
V̂ ∼Kcc

∞ Ŵ in D implies condition (9) of Definition 3.3, and
V̂ ∼Kcc

∞ ‖.‖pA in D implies condition (12) of Definition 3.6.•
Based on the previous observation, we present another ver-
sion of Corollary 3.7 with assumptions that might be easier
to verify in some scenarios.
Corollary 4.10. (Sufficient conditions for pth moment
NSS): Consider the SDE (1) under Assumptions 2.1 and 2.2.
Suppose that there exist V ∈ C2(Rn;R≥ 0), W ∈ C(Rn;R≥ 0)
and σ ∈ K such that the dissipation inequality (8) holds.
Further assume that V and W can be written as V̂ ∈
C2(D ;R≥ 0) and Ŵ ∈ C(D ;R≥ 0), respectively, for some set
D ⊆ Rm with m ≥ n. Then the following implications hold:

(i) If V̂ and Ŵ satisfy the hypotheses H0-H3 for two
matrices A and Ã in Rm×m with N (A) = N (Ã),
then the system (1) is NSS in probability with respect
to the subspace N (A).

(ii) If, moreover, V̂ and Ŵ satisfy H4 for the same
matrices A and Ã, respectively, and some p ≥ 1, then
the system (1) is pth moment NSS with respect to the
subspace N (A).

V. CONCLUSIONS

We have proposed the concept of pth moment NSS-Lyapunov
function, with respect to an arbitrary subspace, and shown
its usefulness to establish a stability property of a class of
systems represented by SDEs subject to additive persistent
noise. Our noise-to-state stability result provides an ultimate
bound, depending on the size of the disturbance, for the
expectation of the pth power of a seminorm of the state.
This bound is achieved regardless of the possibility that
some subspace of the states accumulates the variance of
the noise. This is a meaningful stability property for the
aforementioned class of systems because the presence of
persistent noise makes it impossible to establish a stochastic

notion of asymptotic stability for the set of equilibria of the
underlying differential equation. We have also identified the
inequalities in the assumptions of our stability result as pieces
of equivalence relations, and we have characterized those
relations with respect to a family of seminorms. This has
allowed us to reformulate part of the hypotheses required
by our noise-to-state stability in terms of seminorms. Future
work will include characterizing the overshoot gain and
considering the effect of delays and impulsive right hand
sides in SDEs under this framework.
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