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Abstract— This paper proposes an approach for improved meth-  ideas from event- and self-triggered strategies. The ldsé

ods of performing event- and self-triggered communication and  js that agents make promises to one another about where their
control on networked systems. Current self-triggered stratgies future states will be and warn each other when they need
are known to be quite conservative whereas event-triggered to be brok Adgents th this inf tion t i
approaches are costly to implement on distributed systems that 0 be ro' en. gen; en use this m orma |(?n 0 compl.! e
rely on wireless communication for information transmission. the next time they will need updated information from their
To overcome these limitations, we propose a novel class of team- neighbors. The benefits of the team-triggered scheme are
triggered coordination laws that combine ideas from event- and  threefold. First, agents do not require continuous infdioma
self-triggered control, are implementable on networked systems, - 554t neighboring agents. This is in contrast to many event-
and maintain desired levels of performance. We characterize the tri d trol strateaies for distributed t th
asymptotic convergence properties of team-triggered strategs rlggere_ con rQ stra eg'es or distributed systems W

and show that they perform no worse than Se|f_triggered on continuous |nf0rmat|0n. Second, the amount Of Wll’eleSS
approaches in terms of required communication. Simulations on  communication required by our algorithm can be much less
a multi-agent formation control problem illustrate our results.  than self-triggered strategies by taking a less conseevati
approach. Lastly, the system is still guaranteed to preserv
the stability properties of the other strategies. We itiatst

our results through simulation. For reasons of space, the

A growing field of research is the design and implementatioRroofs have been omitted and will appear elsewhere.

of aperiodic controllers for networked sensors and actsato Notation: We let R, R~y, and Z~, denote the sets of
This interest is motivated by the emphasis on efficient angal, nonnegative real, and nonnegative integer numbers,
autonomous operations. Energy usage is correlated with thespectively. The two-norm of a vector is denoted|jby-.

rate at which sensors take samples, computers recomp@#&en» € R? ands € Rx, B(z,§) denotes the closed ball
control inputs, and signals are transmitted over a networkentered at with radiusd. Given a setS, we denote byS|
Periodically performing these tasks is costly and not alwayits cardinality. We letP®(.S), respectivelyP*®(S), denote the
necessary. This paper merges ideas from event- and sej6llection of compact, respectively, compact and conmgcte
triggered control into a novel approach for real-time implesubsets ofS. For S;, S, C R?, the Hausdorff distance is

mentation of distributed controllers in networked systems 5 ; ;
. . . . . d = i — i — .
Literature review: This paper builds on results from discrete- 1(51,92) maX{jélg Jnf lle =yl oD aes, Il =y}

event systems [1], event-triggered control [2], [3], ant-se ) _ )
triggered control [4], [5], [6], [7] of sensor and actuatorThe Hausdorff distance is a metric on the set of all non-empty

networks. These works trade computation for less commurfiompPact subset% ate. G|ve£1 t"‘o’lo bounded set-valued func-
cation, sensing, or actuator effort while preserving ditgbi 1ONS C1,C2 € C(I C RiPY(R7)), we define the distance
These ideas have also studied decentralized systems frQ§fWeen them agnunc(C'r, C2) = sup;er di (C1(?), Ca(?)).
both event-triggered [8] and self-triggered control persp AN Undirected graplyy = (V, E) is a pair consisting of a set
tives [9]. These works differ from our setup in that there®f VerticesV = {1,..., N} and a set of edges C V' x V
is only one plant to be controlled wirelessly through auch thatif(i,j) € E, then(j, i) € E. The set of neighbors
sensor/actuator network. An idea to apply event-triggerin®f @ vertexi is given by N'(i) = {j € V | (i,j) € E}.

N n; to— (s e )

to decentralized systems with multiple plants is presentédVen v € [1;—, R™", we letvy, = (vi, {v;};en(;)) denote
in [10]; however, agents require continuous informatio"€ COmponents of that correspond te and its neighbors.
about each others’ states in order to be implemented. In [11]
[12] the authors apply self-triggered strategies to penfor Il. PROBLEM STATEMENT
distributed control while guaranteeing a desired level of : . L

. . In this paper we consider a distributed control problem
performance. The works [13], [14], closer in spirit to the pap P

. . . . o carried out over a wireless network. Consid&T agents
ideas presented in this paper, consider distributed systewhose communication topology is described by an undi-

in which each subsystem broadcasts information to thellécted graptg. The fact thati, /) belongs toF models the
neighbors only when certain local events are triggered. ability of agents: and j to communicate with one another.

Statement of contributions: We propose a novel scheme forThe set of all agents thatcan communicate with is then
networked systems, termed team-triggered, that combingfen by its set of neighbor&/ (i) in the graphg. The state

, , of agenti € {1,..., N}, denotedr;, belongs to a closed set
The authors are with the Department of Mechanical and Aecaspa

p _
Engineering, University of California, San Diego, CA 92098Sa, i C R™. The network stater = (x1,..., ) therefore
{cnowzari, cortes}@csd. edu belongs toX’ = [[,_, &;. By the above discussion, agent

I. INTRODUCTION



can access’,, when it communicates with its neighbors. WeBy definition of «P®', at the times when the information
assume each agent has access to its own state at all timeszailable to the agents is exact (i.&%4 (tias) = ' (tiast)

We consider linear dynamics for ea¢ke {1,..., N}, fdor all i € {1,...,N}), the inequality (2b) implies that
. TV (x(tasy) < 0 if z(tas) € D. The_n, during the time
&y = fi(zi,ui) = Axi + By, (1) interval t € (fass tnex), @s the errorsei (t) — a;(t) begin

with A; € R% x| B, c R™*™: andu, € U;. Hereld; CR™ 0 grow, the communication period must be chosen small

is a compact set of allowable controls for agentve assume €nough such that (3) remains less thaat all times.

that the pair(A;, B;) is controllable with controls taking A shortcoming of this method is that the period cannot be

values in4;. We further assume the existence cfafe-mode  determined in a distributed way, but requires information

controlleru$’: X; — U; such thatf;(z;,u$'(z;)) = 0, i.e., a about the full network. Furthermore, because the period mus
controller able to keep agetis state fixed. be chosen regardless of the current state of the network, it

The network goal is to drive the agents’ states to som@ust be small enough to deal with worst-case scenarios.
desired closed sd? C A that captures different coordination ) o
tasks. The scope of this paper is not to design the controllBr Event-triggered communication and control

to achieve this, but rather explore various implementation | stead of using a fixed period, event-triggered laws do not
Given the agent dynamics (1), the graphand the seD, our communicate for new information or update their control
starting point is the availability of a control law that dg& laws until it is imperative. Let as; be the last time at which all
the system asymptotically tB. Formally, letm = va:l m;, agents received information from their neighbors. Unlike i
and assume that a continuous mep: X — R™ and a the periodic approach, the next timgy at which an update
continuously differentiable functio” : X — R, bounded should occur is not known a priori. Until then, agent

from below, exist such that for alle {1,...,N}andz ¢ D, {1,..., N} uses the zero-order hold estimate and control
ViV (z) (Aizi + Biuj () <0, (2a) Bt = 2j(tas),  uf(t) = ul (T (tiast),
N
Z ViV (x) (Aiz; + Bjuj(x)) < 0. (2b)  fort € [tiast tnext). The timetneq at which an update becomes
=1 necessary is determined by the first time aftgf when the

time derivative ofV along the trajectory of (1) with, =
u®®"is no longer negative. Formally, the event for when
agents should request updated information is

We assume that both the control law and the gradient
VV are distributed ove§ meaning that for each the ith
component of these objects only dependSnQn rather than

on z. With a slight abuse of notation, we write; (z,) N
andV,V (z,) to emphasize this fact when convenient. This Zviv(x(tnext)) (Aiz;(tnext) + Biu$*(tiasy)) = 0. (4)
means that agent can computeu; and V,V with just i=1

information about its neighbors ig. We refer tou™ as  ynfortunately, (4) cannot be checked in a distributed way
the continuous communication and control law because facause it requires global information. Instead, we must
requires exact information at all times to be implemented. gesign events that can be checked locally. Lettifg be
some time at which agent receives updated information,
thext > tiaet IS the first time such that

This section reviews existing methods for implementing i ; event i

controllers when continuous information is not available. ViV (@ (thex)) (A (fhex) + Bitef" " tias)) = 0. (5)
This means that as long as each ageran ensure the local
event (5) has not yet occurred, it is guaranteed that (4) bias n
The easiest way to relax the continuous communicatioyet occurred either. The shortcoming of this approach is tha

IIl. PERIODIC, EVENT-, AND SELF-TRIGGERED CONTROL

A. Periodic communication and control

requirement is to use a periodic strategy in which agengach agent € {1,..., N} needs to have continuous access
communicate with a constant peri@de R-. In this case, to information about the state of its neighbdv¥s) in order
agents only get updated information evéryseconds. to evaluateV;V (z) = V;V(z},) and check condition (5).

Let 415t be the last time at which agentreceived updated ThiS makes the event-triggered approach impractical when
information from its neighbors. The next time it receivedhis information is only available through communication.

information is thenthext = tiast + 7. In-between updates, it
uses the zero-order hold estimate and control
() = a5 (tast), uP(t) = ul (B (1)), The self-triggered approach seeks to identify criteria taa
_ o be checked autonomously by individual agents in order to
for ¢ € [tasy thex). The time derivative of the Lyapunov gecide when updated information is necessary. To achieve
function along the trajectories of (1) with = uP*" is this, the basic idea is to remove the requirement on con-
d N _ tinuous availability of information to check the test (5) by
%V(x(t)) = Z ViV (i (t)) (Aszi(t) + Biub®'(t)) . (3)  providing agents with possibly inexact information abde t
i=1 state of their neighbors. To do so, we introduce the notion of

C. Sdf-triggered communication and control



reachability sets. Given € X;, let R;(s,y) be the reachable C°([t,o0); P®(X;)). This means that agent promises to
set of points under (1) starting frogin s seconds, agent; that its state at any timg& > ¢ will satisfy z;(t') €
Xit](¢'). Similarly, a control promise that agerit makes
. — i .. . J
Ri(s,y) ={z € & [ Ju; : [2’ s] = U; such that to agenti at timet is conveyed by a set-valued, continuous
2= elisy 4 / A=) By, (r)dr ). functior_l Ui[t] € CO([t, 00); P°(U;)). This means that agent
Jo Jj promises to agentto only use controls;(t') € U}[t](t')
Agents then create sets that are guaranteed to contain tHé# all ¢ > t. Given the dynamics of ageritand stater; (f)
neighbors’ states. Lef,., be the last time at which agent at timet, agent; can compute the state promise for> ¢,
received state information; (ti,s) from its neighbors, then XUH() = {z € A, | Tuy : [t.1] = Uj

X5 (8,2 (tas)) = Ryj(t — tiasy 2 (tiasd) &5 (6) with w;(s) € UI[£](s) for s € [t,#] such that
is guaranteed to contain; (¢) for all ¢ > ¢} We refer to
these asguaranteed sets. For simplicity, we Ieth-(t) =
X (t, 2 (ths)) When the starting state; (t,s) and timetj,q;
do not need to be emphasized. We denoteXdy(t) =
(2i(t), {X%(t)}jeni)) the guaranteed set information avail-
able to an agentat timet. In between updates, agentises

t/
z= eAj(tl_t)mj(t) +/ eAj(t/_T)Bj’U,j(T)dT}. (8)
t

For simplicity, when the time at which the promise is
received is not relevant, we use the notati®f{.] and U?|:]
or simply X;? and UJ’ respectively. All promise information

the zero-order hold estimate and control availale to agenti € {l,...,N} at some timet is
_ | o given by X [Jjjtoe) = (@ift00) {Xjljit00) i) €
() = wi(thas),  u3™(t) = u] (Fh (thasy)» o ([t,oo);HjeN(iw{i} ]PCC(Xj)). To extract information

for t € [the thex). At time tio, agenti computes the next from this about a specific time’, we use X}[-](t") or
time t!.o, > ti,, at which information should be acquired viaSimply X (') = (z:(t'), {Xj[-](#')} jen))- The generality
, , of the above definitions allow promise sets to be arbitrarily
sup ViV (yn) (Aii(thex) + Biut™(thae)) = 0. (7)  complex. Here, we restrict ourselves to promise sets that ca

un €Xy (tren) be described with a finite number of parameters.
By (2a), we know at time.; that (7) becomes simply A promise rule is a method to create promises. Formally,
ViV (it )(Aifvi(ffast) + Buus®(t ) <0. a state promise rule for agente {1,..., N} generated

at time ¢ is a continuous (with respect to the distance
If all agents use this triggering criterium for updatinganf  d;,,. between set-valued functions) map of the fora :

mation, it is guaranteed tha V' (z(t)) < 0 at all times. ¢ (1t,00); Thexon PCC(X_)) €O (]t 00); P (X))
. . . . ) y LlieN () u{y i , 5 .
The condition (7) is appealing because it can be solved byhis means that if agenj must send information to

agenti with the information it possesses at tinfg,. Once agent; at time ¢, it sends the state promis& i[t] =
determined, ageritschedules to request updated informatiorRsv(ijv[‘]Ht )). A control promise rule for agenj €
from its neighbors at time... The problem with the self- f N ’Ooen.erated at time is a continuous magi® :
triggered approach is that the resulting times are often con '/ b e 0 . o
servative because the guaranteed sets can grow Iarge;qui&l _([t» 00); HieN(j)U{j} P (Xi?) — C ([t @);P (%)).

as they capture all possible trajectories of neighborirenggg  This means that when agerit must send information to

The following section takes a less conservative approach @Jenti at time ¢, it sends the control promis&’;[t] =

order to increase this time between updates. Rj(X/{[HHt,OO)). We make the assumption that, in the ab-
sence of communication delays or noise in the state mea-
IV. TEAM-TRIGGERED COORDINATION surements, the promises generated by these rules have the

This section presents the novel team-triggered approa&{()perty thatX; [£1(t) = {=; (1)}

Agents make promises tp their neighpors about_their fuwr@xample IV.1 (Static ball-radius promise rule) Here we
states and inform them if these promises are violated latggscribe a simple control promise rule, termed the statle ba
(hence the connection with event-triggered control). Wit 54iys rule, to create promises that can be described with
information provided by the promises, each agent computgsfinite number of parameters. Givene {1,...,N}, a
the next time that an update is required to guarantee thentinuous control laws; : [ N }PCC(X,) S R™

ici i i ' S LLEN (Ul v '
monotonicity of the Lyapunov functio introduced in  5nq 5 - 0, the static ball-radius control promise rule for
Section Il (hence the connection with self-triggered coliitr agentj generated at time is

A. Promises R(X [ 00)) () = Blus (X3 (1)),6) N U, (9)

A promise can be either a time-varying set of states (statfo! ¢’ = t. Note that this promise is a fixed ball of raditis
promise) or controls (control promise) that an agent send the control spacé/; centered at the control signal used
to another agent. Specifically, a state promise that agentdt time . This promise can be sent with two parameters
makes to agent at time ¢ is a set-valued, continuous (2SSuming is known by all agents), the statg() at timet,
(with respect to the Hausdorff distance) functigij[t] ¢ ~and the control action,;(X3/(t)) at that time. .



B. Controllers on set-valued information models can compute its evolution under the controllgr via

Here we discuss the type of controllers that the team-z;(t) =e(~fesdz; (i)
triggered approach relies on. The underlying idea is, that -t
since agents possess set-valued information about tleecstat + /
other agents through promises, controllers themselvagého Flast
be defined on sets, rather than on points. Our starting poiNote that this evolution of agentan be viewed as a promise
is then a continuous controller** : H N PCC(Xj) — that it makes to itself, |eX;[](t) = {xl(t)} With this in
R™ that satisfies, for all € {1,..., N}, place, agent can schedule the next timé,,, at which it
will need updated information from its neighbors. To do so,

ViV(x) (Aiz; + Biui*({x})) <0, (10a) we define, for anWiv € [;cp(iyugiy PE(X)),

N su *ok

= wherey; is the element ofj\- corresponding te. The trigger
In other words, if exact, singleton-valued information isfor when agent needs new information from its neighbors
available to the agents, theri* guarantees the monotonicis similar to (7), where promise sets are used instead of
evolution of V. We assume that** is distributed overg. guaranteed ones. Specifically, the time at which infornmatio
As before, this means that for eaéhc {1,...,N}, the isrequested if., = max{tiq+Tuser t*}, WhereTy e > 0
ith componentu?* can be computed with information in is an a priori chosen parameter that we discuss below and
[T jenciyuqiy P(X;) rather than in the full space. t* is implicitly defined as the first time* > ¢, such that

Controllers of the form described above can be obtained L;VP(XEA(t*)) = 0. (14)
using a number of design methods. We do not enter into the

specific details, but briefly mention how one such controllefs long as (14) has not yet occurred for all agents

can be derived from the availability of the controllet :  {1,..., N} for some timet and the promises have not been
X — R™ introduced in Section Il. LeE : Hj,\’zl Pe(X;) — broken, (10a) and (10b) and the continuity of (13) guarantee
X be a continuous map that is distributed owgrand

AT Bt (Xoe(T))dr, > thee (12)

N
satisfieﬁ, for each e {1,..., N}, that E;(Y) € Y; for each %V(x(t)) < Zﬁivsup(X/i\/(t)) <0.
Y e [[;=, P(X;) and E;({y}) = v for eachy € X Let i1

The parametely seir > 0 is theself-triggered dwell time. We
introduce it because, in general, it is possible tat ¢,
implying that continuous communication would be required.
The dwell time is used to prevent this behavior. Note that
L;VSUP(X3(t')) < 0 is only guaranteed whil& € [t[, t*].
Therefore, in caseé" <t + Tuser, the agent uses the safe-
Example V.2 (Controller definition with the ball-radius ~ mode control during’ € (t*, t{,; + Tuseif to leave its state
promise rule) Here we construct a controller™ using (11) fixed. This design ensures the monotonicity of the evolution
when promises are generated according to the ball-radiaé V' along the network execution. The team-triggered con-

control rule, cf. Example IV.1. To do so, note that it istroller is therefore defined, for € [t} thex). DY

W (Y) = u*(BE(Y)). 1)

Note that this controller satisfies (10a) and (10b) becatise
satisfies (2a) and (2b).

sufficient to define the ma@ : [, P%(X;) — X; only R ) ;
for tuples of sets of the form jgii/en in (8), where the ey = M (X (1), !f CiVS”p(XN(t)) <0, (15)
corresponding control promise is defined by (9). Definby ' uSt(wi(t), i L;VUP(X (1) >0
Ej(X1[t)(t), ..., Xn[t](t) D. Event-triggered information updates
A1) ¢ At =) ; The discussion up to this point has assumed that all promises
= ;j(t) +/t e Bjuj(Xy(t))dr, are kept at all times, but this may not be the case. Con-
sider an agent € {1,...,N} that has sent a promise
which is guaranteed to be iN,[t|(t') for t' > t. e X/[tas] to a neighboring agenj at some timets. If
agenti ends up breaking its promise at tinie > tjas; i.€.,
C. Sdf-triggered information updates z;(t*) ¢ X][ts](t*), then it is responsible for sending a

new promiseX; [tnex] t0 agentj at time tnex = max{tjast+
Here we discuss how agents use the promises received frAflevens t* }, WhereTy event> 0 is an a priori chosen parameter
other agents to generate self-triggered information retgue that we discuss below. This implies that agémhust keep
in the future. Let,, be some time at which agenteceives track of promises made to its neighbors and monitor them
updated information (i.e., promises) from its neighbormstilJ in case they are broken. This mechanism is implementable
the next time information is obtained, agenhas access to since each agent only needs information about its own state
the collection of sets(}, describing its neighbors’ states andand its promises to determine whether the trigger is safisfie



The parametely event> 0 is the event-triggered dwell time.  Proposition V.2 Consider a networked system as described
We introduce it because, in general, the tithe tjos: between in Section Il executing the TEAM-TRIGGERED LAW (cf.
when agenti makes and breaks a promise to an aggnt Algorithm 1) with dwell times Ty, Tqevent > 0. Then any
might be arbitrarily small. However, to prevent aggrftom  bounded network evolution with uniformly bounded promises
operating under incorrect information about agéfor ¢ €  asymptotically approaches D.
[t*, tiast+ Ty.even), We introduce a warning message WARN
that agent must send to agentwhen it breaks its promise The next result ensures that continuous communication is
at timet* < tast+ T event If @gent; receives such a warning never required under tHEBEAM-TRIGGERED LAW.
message, it redefines the promiX?i as follows,

Lemma V.3 (Not Zeno) Consider a networked system as

X)) = U R(t =", zi), (16) described in Section Il executing the TEAM-TRIGGERED
€ XI[)(E) LAW (cf. Algorithm 1) with dwell times Ty, Toevent > 0.
for ¢ > t*, until the new message arrives at timg, =  Then the network does not exhibit Zeno behavior.
tiast + Ta.evens By definition of reachable set, the promise
X7[-](t) is guaranteed to contair;(t) for ¢ > ¢t*. VI. SIMULATIONS
V. CONVERGENCE ANALYSIS In this section we present simulations of the team- and

self-triggered approaches in a planar multi-agent foromati
The combination of the self- and event-triggered inforemati control problem. Our starting point is the distributed coor
updates described above together with the contrallf™  gination algorithm based on graph rigidity analyzed in [15]
defined in (15) yields theEAM-TRIGGERED LAW, presented Consider4 agents communicating over the complete graph
in Algorithm 1. We next analyze its convergence propertiesyhich seek to attain a rectangle formation of side lengths
1 and2. The dynamics of each agent is a single integrator
z; = u; forall i € {1,..., N}, where||u;||2 < umax = 50.
(Self-trigger information update) _ The safe-mode controller is then simph’ = 0. The
At any time agenti € {1,..., N} receives new promise(syj[t] from  gjstrihyted continuous-time controller that makes thevoek
neighbor(s); € (@), agent performs: asymptotically achieve the desired formation is given by

Algorithm 1 : TEAM-TRIGGERED LAW

1: compute own state evolutiop; (¢') for ¢ > ¢ using (12)

2: compute first timet* > ¢ such thatC; VSU(X 4, (t*)) = 0 uwi () = T — 212 = d2.) unit(z, — 17
3: schedule information request to neighbors ritax{t* — ¢, Ty seir} l( ) Z <|| J ZHQ ”) ( J z)’ (17)
seconds JEN(9)

4: apply controlleru®*™(t") for ¢/ & [t, ¢ + max{t* — 1, Tysef}) where d;; is the pre-specified desired distance between
(Respond to information request) Y

At any time ¢ a neighborj € A(i) requests information, agent ~adentsi and j, andunit(v) denotes the unit vector in the

performs: _ direction of v. In turn, this controller corresponds to the
1: send new promis&(;[t] = R} (X} [](t,0)) to agentj gradient descent law fov : (RQ)N — R,
(Event-trigger information update) N
At all times ¢, agenti performs: 1 9 212
1: if there existsj € N(i) such thatz;(t) ¢ X7[-](¢) then V(z) = 9 Z (ij — iz — dij) ’
2:  if agenti has sent a promise tpat some timéast € (t — Ty evens t] (i,J)eE
then . .
3 send warning message WARN to aggrit time ¢ used to establish the correctnessdfFor the team-triggered
4 schedule to send new promis&;[tast + Tueet = approach, the controller'®™ is defined by (15), where
S RAX N (taset T evenso0) ) 10 B98N N tasr+Tuevenc—t SECONDS  controllery** is given by (11) as described in Example IV.2.
else ) ) . L . .
6: send new promis&? [t] = R$(X4/[],0)) to agentj at time ~ Figure 1 shows the number of communications required in
- ené " the self-triggered approach and the team-triggered approa
8 end if using dwell times ofly seif = 0.03 and T event= 0.0003 and
(Respond to warning message) the static ball-radius promise of Example IV.1 witk= 0.50.

At any timgt agent: ¢ {1,..., N} receives a warning message WARN To compare the two strategies, we Ng be the number of
from agent;j € N'(7) times agent has requested new information ang, be the
1: redefine promise se{’}[](t') =UgexifnRit' —tzj) fort" >t number of messages an agenhas sent to a neighboring
agent because it broke its promise. Given that each agent has
Our first result establishes the monotonic evolutiorvof 3 Neighbors, the total number of messages for an execution
is then given byNcomm = >,_; 3N§ + Ni. Remarkably,
Proposition V.1 Consider a networked system as described ~ the team-triggered approach outperforms the self-trigayer
in Section 1l executing the TEAM-TRIGGERED LAW (cf. approach, both in terms of required communication and
Algorithm 1). Then, the function V' is monotonically non-  time to convergence. Figure 1(a) shows that very quickly
increasing along the network evolution. all agents are requesting information as often as they can in
the self-triggered approach, due to the conservative eatur
Next we characterize the convergence properties of coordhe request time computations. Figure 1(b), instead, shows
nation strategies designed with the team-triggered approaa much better behavior in the team-triggered approach.
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Fig. 1. Plots (a) and (b) show, respectively, the number dfteghered information requests made by each agent in tHerggered and team-triggered
implementations. Plot (c) shows the number of event-triggenedsages sent by each agent in the team-triggered implemantidd (d) compares the
evolution of the Lyapunov function for both implementations.

Interestingly, only agent requests information due to theis just a specific case of thEEAM-TRIGGERED LAW in

self-triggered update times being far less conservatités T which no promises are made. Future work will be devoted
means the other agents are only receiving information whea incorporating delays and relaxing the somewhat specific
promises to them are broken, cf. Figure 1(c). conditions on the Lyapunov function and the safe-mode

availability in the dynamics of subsystems.
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