
Team-triggered coordination of networked systems

Cameron Nowzari Jorge Cortés

Abstract— This paper proposes an approach for improved meth-
ods of performing event- and self-triggered communication and
control on networked systems. Current self-triggered strategies
are known to be quite conservative whereas event-triggered
approaches are costly to implement on distributed systems that
rely on wireless communication for information transmission.
To overcome these limitations, we propose a novel class of team-
triggered coordination laws that combine ideas from event- and
self-triggered control, are implementable on networked systems,
and maintain desired levels of performance. We characterize the
asymptotic convergence properties of team-triggered strategies
and show that they perform no worse than self-triggered
approaches in terms of required communication. Simulations on
a multi-agent formation control problem illustrate our results.

I. I NTRODUCTION

A growing field of research is the design and implementation
of aperiodic controllers for networked sensors and actuators.
This interest is motivated by the emphasis on efficient and
autonomous operations. Energy usage is correlated with the
rate at which sensors take samples, computers recompute
control inputs, and signals are transmitted over a network.
Periodically performing these tasks is costly and not always
necessary. This paper merges ideas from event- and self-
triggered control into a novel approach for real-time imple-
mentation of distributed controllers in networked systems.

Literature review: This paper builds on results from discrete-
event systems [1], event-triggered control [2], [3], and self-
triggered control [4], [5], [6], [7] of sensor and actuator
networks. These works trade computation for less communi-
cation, sensing, or actuator effort while preserving stability.
These ideas have also studied decentralized systems from
both event-triggered [8] and self-triggered control perspec-
tives [9]. These works differ from our setup in that there
is only one plant to be controlled wirelessly through a
sensor/actuator network. An idea to apply event-triggering
to decentralized systems with multiple plants is presented
in [10]; however, agents require continuous information
about each others’ states in order to be implemented. In [11],
[12] the authors apply self-triggered strategies to perform
distributed control while guaranteeing a desired level of
performance. The works [13], [14], closer in spirit to the
ideas presented in this paper, consider distributed systems
in which each subsystem broadcasts information to their
neighbors only when certain local events are triggered.

Statement of contributions: We propose a novel scheme for
networked systems, termed team-triggered, that combines

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, CA 92093, USA,
{cnowzari,cortes}@ucsd.edu

ideas from event- and self-triggered strategies. The basicidea
is that agents make promises to one another about where their
future states will be and warn each other when they need
to be broken. Agents then use this information to compute
the next time they will need updated information from their
neighbors. The benefits of the team-triggered scheme are
threefold. First, agents do not require continuous information
about neighboring agents. This is in contrast to many event-
triggered control strategies for distributed systems thatrely
on continuous information. Second, the amount of wireless
communication required by our algorithm can be much less
than self-triggered strategies by taking a less conservative
approach. Lastly, the system is still guaranteed to preserve
the stability properties of the other strategies. We illustrate
our results through simulation. For reasons of space, the
proofs have been omitted and will appear elsewhere.

Notation: We let R, R≥0, and Z≥0 denote the sets of
real, nonnegative real, and nonnegative integer numbers,
respectively. The two-norm of a vector is denoted by‖ · ‖2.
Givenx ∈ R

d andδ ∈ R≥0, B(x, δ) denotes the closed ball
centered atx with radiusδ. Given a setS, we denote by|S|
its cardinality. We letPc(S), respectivelyPcc(S), denote the
collection of compact, respectively, compact and connected,
subsets ofS. For S1, S2 ⊂ R

d, the Hausdorff distance is

dH(S1, S2)=max{ sup
x∈S1

inf
y∈S2

‖x− y‖2, sup
y∈S2

inf
x∈S1

‖x− y‖2}.

The Hausdorff distance is a metric on the set of all non-empty
compact subsets ofRd. Given two bounded set-valued func-
tions C1, C2 ∈ C0(I ⊂ R;Pc(Rd)), we define the distance
between them asdfunc(C1, C2) = supt∈I dH(C1(t), C2(t)).
An undirected graphG = (V,E) is a pair consisting of a set
of verticesV = {1, . . . , N} and a set of edgesE ⊂ V × V
such that if(i, j) ∈ E, then(j, i) ∈ E. The set of neighbors
of a vertex i is given byN (i) = {j ∈ V | (i, j) ∈ E}.
Given v ∈

∏N
i=1 R

ni , we let viN = (vi, {vj}j∈N (i)) denote
the components ofv that correspond toi and its neighbors.

II. PROBLEM STATEMENT

In this paper we consider a distributed control problem
carried out over a wireless network. ConsiderN agents
whose communication topology is described by an undi-
rected graphG. The fact that(i, j) belongs toE models the
ability of agentsi and j to communicate with one another.
The set of all agents thati can communicate with is then
given by its set of neighborsN (i) in the graphG. The state
of agenti ∈ {1, . . . , N}, denotedxi, belongs to a closed set
Xi ⊂ R

ni . The network statex = (x1, . . . , xN ) therefore
belongs toX =

∏N
i=1 Xi. By the above discussion, agenti



can accessxi
N when it communicates with its neighbors. We

assume each agent has access to its own state at all times.

We consider linear dynamics for eachi ∈ {1, . . . , N},

ẋi = fi(xi, ui) = Aixi +Biui, (1)

with Ai∈R
ni×ni , Bi∈R

ni×mi , andui∈Ui. Here,Ui⊂R
mi

is a compact set of allowable controls for agenti. We assume
that the pair(Ai, Bi) is controllable with controls taking
values inUi. We further assume the existence of asafe-mode
controllerusf

i : Xi → Ui such thatfi(xi, u
sf
i (xi)) = 0, i.e., a

controller able to keep agenti’s state fixed.

The network goal is to drive the agents’ states to some
desired closed setD ⊂ X that captures different coordination
tasks. The scope of this paper is not to design the controller
to achieve this, but rather explore various implementations.

Given the agent dynamics (1), the graphG, and the setD, our
starting point is the availability of a control law that drives
the system asymptotically toD. Formally, letm =

∑N
i=1 mi,

and assume that a continuous mapu∗ : X → R
m and a

continuously differentiable functionV : X → R, bounded
from below, exist such that for alli ∈ {1, . . . , N} andx /∈ D,

∇iV (x) (Aixi +Biu
∗
i (x)) ≤ 0, (2a)

N∑

i=1

∇iV (x) (Aixi +Biu
∗
i (x)) < 0. (2b)

We assume that both the control lawu∗ and the gradient
∇V are distributed overG meaning that for eachi, the ith
component of these objects only depends onxi

N , rather than
on x. With a slight abuse of notation, we writeu∗

i (x
i
N )

and∇iV (xi
N ) to emphasize this fact when convenient. This

means that agenti can computeu∗
i and ∇iV with just

information about its neighbors inG. We refer tou∗ as
the continuous communication and control law because it
requires exact information at all times to be implemented.

III. PERIODIC, EVENT-, AND SELF-TRIGGERED CONTROL

This section reviews existing methods for implementing
controllers when continuous information is not available.

A. Periodic communication and control

The easiest way to relax the continuous communication
requirement is to use a periodic strategy in which agents
communicate with a constant periodT ∈ R>0. In this case,
agents only get updated information everyT seconds.

Let tlast be the last time at which agenti received updated
information from its neighbors. The next time it receives
information is thentnext = tlast + T . In-between updates, it
uses the zero-order hold estimate and control

x̂i
j(t) = xj(tlast), uper

i (t) = u∗
i (x̂

i
N (t)),

for t ∈ [tlast, tnext). The time derivative of the Lyapunov
function along the trajectories of (1) withu = uper is

d

dt
V (x(t)) =

N∑

i=1

∇iV (xi
N (t))

(
Aixi(t) +Biu

per
i (t)

)
. (3)

By definition of uper, at the times when the information
available to the agents is exact (i.e.,x̂i

N (tlast) = xi
N (tlast)

for all i ∈ {1, . . . , N}), the inequality (2b) implies that
d
dt
V (x(tlast)) < 0 if x(tlast) 6∈ D. Then, during the time

interval t ∈ (tlast, tnext), as the errorŝxi
j(t) − xj(t) begin

to grow, the communication period must be chosen small
enough such that (3) remains less than0 at all times.

A shortcoming of this method is that the period cannot be
determined in a distributed way, but requires information
about the full network. Furthermore, because the period must
be chosen regardless of the current state of the network, it
must be small enough to deal with worst-case scenarios.

B. Event-triggered communication and control

Instead of using a fixed period, event-triggered laws do not
communicate for new information or update their control
laws until it is imperative. Lettlast be the last time at which all
agents received information from their neighbors. Unlike in
the periodic approach, the next timetnext at which an update
should occur is not known a priori. Until then, agenti ∈
{1, . . . , N} uses the zero-order hold estimate and control

x̂i
j(t) = xj(tlast), uevent

i (t) = u∗
i (x̂

i
N (tlast)),

for t ∈ [tlast, tnext). The timetnext at which an update becomes
necessary is determined by the first time aftertlast when the
time derivative ofV along the trajectory of (1) withu =
uevent is no longer negative. Formally, the event for when
agents should request updated information is

N∑

i=1

∇iV (x(tnext))
(
Aixi(tnext) +Biu

event
i (tlast)

)
= 0. (4)

Unfortunately, (4) cannot be checked in a distributed way
because it requires global information. Instead, we must
design events that can be checked locally. Lettingtilast be
some time at which agenti receives updated information,
tinext ≥ tilast is the first time such that

∇iV (x(tinext))
(
Aixi(t

i
next) +Biu

event
i (tilast)

)
= 0. (5)

This means that as long as each agenti can ensure the local
event (5) has not yet occurred, it is guaranteed that (4) has not
yet occurred either. The shortcoming of this approach is that
each agenti ∈ {1, . . . , N} needs to have continuous access
to information about the state of its neighborsN (i) in order
to evaluate∇iV (x) = ∇iV (xi

N ) and check condition (5).
This makes the event-triggered approach impractical when
this information is only available through communication.

C. Self-triggered communication and control

The self-triggered approach seeks to identify criteria that can
be checked autonomously by individual agents in order to
decide when updated information is necessary. To achieve
this, the basic idea is to remove the requirement on con-
tinuous availability of information to check the test (5) by
providing agents with possibly inexact information about the
state of their neighbors. To do so, we introduce the notion of



reachability sets. Giveny ∈ Xi, let Ri(s, y) be the reachable
set of points under (1) starting fromy in s seconds,

Ri(s, y) = {z ∈ Xi | ∃ui : [0, s] → Ui such that

z = eAisy +

∫ s

0

eAi(s−τ)Biui(τ)dτ}.

Agents then create sets that are guaranteed to contain their
neighbors’ states. Lettilast be the last time at which agenti
received state informationxj(t

i
last) from its neighbors, then

X
i
j(t, xj(t

i
last)) = Rj(t− tilast, xj(t

i
last)) ⊂ Xj (6)

is guaranteed to containxj(t) for all t ≥ tilast. We refer to
these asguaranteed sets. For simplicity, we letXi

j(t) =
X

i
j(t, xj(t

i
last)) when the starting statexj(t

i
last) and timetilast

do not need to be emphasized. We denote byX
i
N (t) =

(xi(t), {X
i
j(t)}j∈N (i)) the guaranteed set information avail-

able to an agenti at timet. In between updates, agenti uses
the zero-order hold estimate and control

x̂i
j(t) = xj(t

i
last), uself

i (t) = u∗
i (x̂

i
N (tilast)),

for t ∈ [tilast, t
i
next). At time tilast, agenti computes the next

time tinext ≥ tilast at which information should be acquired via

sup
yN∈X

i
N
(tinext)

∇iV (yN )
(
Aixi(t

i
next) +Biu

self
i (tilast)

)
= 0. (7)

By (2a), we know at timetilast that (7) becomes simply

∇iV (xi
N i(tilast))

(
Aixi(t

i
last) +Biu

self
i (tilast)

)
≤ 0.

If all agents use this triggering criterium for updating infor-
mation, it is guaranteed thatd

dt
V (x(t)) ≤ 0 at all times.

The condition (7) is appealing because it can be solved by
agenti with the information it possesses at timetilast. Once
determined, agenti schedules to request updated information
from its neighbors at timetinext. The problem with the self-
triggered approach is that the resulting times are often con-
servative because the guaranteed sets can grow large quickly
as they capture all possible trajectories of neighboring agents.
The following section takes a less conservative approach in
order to increase this time between updates.

IV. T EAM-TRIGGERED COORDINATION

This section presents the novel team-triggered approach.
Agents make promises to their neighbors about their future
states and inform them if these promises are violated later
(hence the connection with event-triggered control). Withthe
information provided by the promises, each agent computes
the next time that an update is required to guarantee the
monotonicity of the Lyapunov functionV introduced in
Section II (hence the connection with self-triggered control).

A. Promises

A promise can be either a time-varying set of states (state
promise) or controls (control promise) that an agent sends
to another agent. Specifically, a state promise that agentj
makes to agenti at time t is a set-valued, continuous
(with respect to the Hausdorff distance) functionXi

j [t] ∈

C0([t,∞);Pcc(Xj)). This means that agentj promises to
agenti that its state at any timet′ ≥ t will satisfy xj(t

′) ∈
Xi

j [t](t
′). Similarly, a control promise that agentj makes

to agenti at time t is conveyed by a set-valued, continuous
function U i

j [t] ∈ C0([t,∞);Pc(Uj)). This means that agent
j promises to agenti to only use controlsuj(t

′) ∈ U i
j [t](t

′)
for all t′ ≥ t. Given the dynamics of agentj and statexj(t)
at time t, agenti can compute the state promise fort′ ≥ t,

Xi
j [t](t

′) = {z ∈ Xj | ∃uj : [t, t
′] → Uj

with uj(s) ∈ U i
j [t](s) for s ∈ [t, t′] such that

z = eAj(t
′−t)xj(t) +

∫ t′

t

eAj(t
′−τ)Bjuj(τ)dτ}. (8)

For simplicity, when the time at which the promise is
received is not relevant, we use the notationXi

j [·] andU i
j [·]

or simplyXi
j andU i

j , respectively. All promise information
available to agenti ∈ {1, . . . , N} at some timet is
given by Xi

N [·]|[t,∞) = (xi|[t,∞), {X
i
j [·]|[t,∞)}j∈N (i)) ∈

C0
(
[t,∞);

∏
j∈N (i)∪{i} P

cc(Xj)
)

. To extract information

from this about a specific timet′, we useXi
N [·](t′) or

simply Xi
N (t′) = (xi(t

′), {Xi
j [·](t

′)}j∈N (i)). The generality
of the above definitions allow promise sets to be arbitrarily
complex. Here, we restrict ourselves to promise sets that can
be described with a finite number of parameters.

A promise rule is a method to create promises. Formally,
a state promise rule for agentj ∈ {1, . . . , N} generated
at time t is a continuous (with respect to the distance
dfunc between set-valued functions) map of the formRs

j :

C0
(
[t,∞);

∏
i∈N (j)∪{j} P

cc(Xi)
)

→ C0 ([t,∞);Pcc (Xj)).
This means that if agentj must send information to
agent i at time t, it sends the state promiseXi

j [t] =

Rs
j(X

j
N [·]|[t,∞)). A control promise rule for agentj ∈

{1, . . . , N} generated at timet is a continuous mapRc
j :

C0
(
[t,∞);

∏
i∈N (j)∪{j} P

cc(Xi)
)

→ C0 ([t,∞);Pc (Uj)).
This means that when agentj must send information to
agent i at time t, it sends the control promiseU i

j [t] =

Rc
j(X

j
N [·]|[t,∞)). We make the assumption that, in the ab-

sence of communication delays or noise in the state mea-
surements, the promises generated by these rules have the
property thatXi

j [t](t) = {xj(t)}.

Example IV.1 (Static ball-radius promise rule) Here we
describe a simple control promise rule, termed the static ball-
radius rule, to create promises that can be described with
a finite number of parameters. Givenj ∈ {1, . . . , N}, a
continuous control lawuj :

∏
i∈N (j)∪{j} P

cc(Xi) → R
mj ,

and δ > 0, the static ball-radius control promise rule for
agentj generated at timet is

Rsb
j (X

j
N [·]|[t,∞))(t

′) = B(uj(X
j
N (t)), δ) ∩ Uj , (9)

for t′ ≥ t. Note that this promise is a fixed ball of radiusδ
in the control spaceUj centered at the control signal used
at time t. This promise can be sent with two parameters
(assumingδ is known by all agents), the statexj(t) at timet,
and the control actionuj(X

j
N (t)) at that time. •



B. Controllers on set-valued information models

Here we discuss the type of controllers that the team-
triggered approach relies on. The underlying idea is, that
since agents possess set-valued information about the state of
other agents through promises, controllers themselves should
be defined on sets, rather than on points. Our starting point
is then a continuous controlleru∗∗ :

∏
j∈{1,...,N} P

cc(Xj) →
R

m that satisfies, for alli ∈ {1, . . . , N},

∇iV (x) (Aixi +Biu
∗∗
i ({x})) ≤ 0, (10a)

N∑

i=1

∇iV (x) (Aixi +Biu
∗∗
i ({x})) < 0. (10b)

In other words, if exact, singleton-valued information is
available to the agents, thenu∗∗ guarantees the monotonic
evolution of V . We assume thatu∗∗ is distributed overG.
As before, this means that for eachi ∈ {1, . . . , N}, the
ith componentu∗∗

i can be computed with information in∏
j∈N (i)∪{i} P

cc(Xj) rather than in the full space.

Controllers of the form described above can be obtained
using a number of design methods. We do not enter into the
specific details, but briefly mention how one such controller
can be derived from the availability of the controlleru∗ :
X → R

m introduced in Section II. LetE :
∏N

j=1 P
cc(Xj) →

X be a continuous map that is distributed overG and
satisfies, for eachi ∈ {1, . . . , N}, thatEi(Y ) ∈ Yi for each
Y ∈

∏N
j=1 P

cc(Xj) andEi({y}) = yi for eachy ∈ X . Let

u∗∗(Y ) = u∗(E(Y )). (11)

Note that this controller satisfies (10a) and (10b) becauseu∗

satisfies (2a) and (2b).

Example IV.2 (Controller definition with the ball-radius
promise rule) Here we construct a controlleru∗∗ using (11)
when promises are generated according to the ball-radius
control rule, cf. Example IV.1. To do so, note that it is
sufficient to define the mapE :

∏N
j=1 P

cc(Xj) → Xj only
for tuples of sets of the form given in (8), where the
corresponding control promise is defined by (9). DefineE by

Ej(X1[t](t
′), . . . , XN [t](t′))

= eAj(t
′−t)xj(t) +

∫ t′

t

eAj(t
′−τ)Bjuj(X

j
N (t))dτ,

which is guaranteed to be inXj [t](t
′) for t′ ≥ t. •

C. Self-triggered information updates

Here we discuss how agents use the promises received from
other agents to generate self-triggered information requests
in the future. Lettilast be some time at which agenti receives
updated information (i.e., promises) from its neighbors. Until
the next time information is obtained, agenti has access to
the collection of setsXi

N describing its neighbors’ states and

can compute its evolution under the controlleru∗∗ via

xi(t) =eAi(t−tilast)xi(t
i
last)

+

∫ t

tilast

eAi(t−τ)Biu
∗∗
i (Xi

N (τ))dτ, t ≥ tilast. (12)

Note that this evolution of agenti can be viewed as a promise
that it makes to itself, i.e.,Xi

i [·](t) = {xi(t)}. With this in
place, agenti can schedule the next timetinext at which it
will need updated information from its neighbors. To do so,
we define, for anyYN ∈

∏
j∈N (i)∪{i} P

cc(Xj),

LiV
sup(YN ) = sup

yN∈YN

∇iV (yN ) (Aiyi +Biu
∗∗
i (YN )) , (13)

whereyi is the element ofyN corresponding toi. The trigger
for when agenti needs new information from its neighbors
is similar to (7), where promise sets are used instead of
guaranteed ones. Specifically, the time at which information
is requested istinext = max{tilast+Td,self, t

∗}, whereTd,self > 0
is an a priori chosen parameter that we discuss below and
t∗ is implicitly defined as the first timet∗ ≥ tilast such that

LiV
sup(Xi

N (t∗)) = 0. (14)

As long as (14) has not yet occurred for all agentsi ∈
{1, . . . , N} for some timet and the promises have not been
broken, (10a) and (10b) and the continuity of (13) guarantee

d

dt
V (x(t)) ≤

N∑

i=1

LiV
sup(Xi

N (t)) < 0.

The parameterTd,self > 0 is theself-triggered dwell time. We
introduce it because, in general, it is possible thatt∗ = tilast,
implying that continuous communication would be required.
The dwell time is used to prevent this behavior. Note that
LiV

sup(Xi
N (t′)) ≤ 0 is only guaranteed whilet′ ∈ [tilast, t

∗].
Therefore, in caset∗ < tilast+Td,self, the agent uses the safe-
mode control duringt′ ∈ (t∗, tilast+ Td,self] to leave its state
fixed. This design ensures the monotonicity of the evolution
of V along the network execution. The team-triggered con-
troller is therefore defined, fort ∈ [tilast, t

i
next), by

uteam
i (t) =

{
u∗∗
i (Xi

N (t)), if LiV
sup(Xi

N (t)) ≤ 0,

usf
i (xi(t)), if LiV

sup(Xi
N (t)) > 0.

(15)

D. Event-triggered information updates

The discussion up to this point has assumed that all promises
are kept at all times, but this may not be the case. Con-
sider an agenti ∈ {1, . . . , N} that has sent a promise
Xj

i [tlast] to a neighboring agentj at some timetlast. If
agenti ends up breaking its promise at timet∗ > tlast, i.e.,
xi(t

∗) /∈ Xj
i [tlast](t

∗), then it is responsible for sending a
new promiseXj

i [tnext] to agentj at timetnext = max{tlast+
Td,event, t

∗}, whereTd,event> 0 is an a priori chosen parameter
that we discuss below. This implies that agenti must keep
track of promises made to its neighbors and monitor them
in case they are broken. This mechanism is implementable
since each agent only needs information about its own state
and its promises to determine whether the trigger is satisfied.



The parameterTd,event> 0 is theevent-triggered dwell time.
We introduce it because, in general, the timet∗−tlast between
when agenti makes and breaks a promise to an agentj
might be arbitrarily small. However, to prevent agentj from
operating under incorrect information about agenti for t ∈
[t∗, tlast+ Td,event), we introduce a warning message WARN
that agenti must send to agentj when it breaks its promise
at timet∗ < tlast+Td,event. If agentj receives such a warning
message, it redefines the promiseXi

j as follows,

Xj
i [·](t) =

⋃

xi∈X
j

i
[·](t∗)

R(t− t∗, xi), (16)

for t ≥ t∗, until the new message arrives at timetnext =
tlast + Td,event. By definition of reachable set, the promise
Xj

i [·](t) is guaranteed to containxi(t) for t ≥ t∗.

V. CONVERGENCE ANALYSIS

The combination of the self- and event-triggered information
updates described above together with the controlleruteam

defined in (15) yields theTEAM-TRIGGERED LAW, presented
in Algorithm 1. We next analyze its convergence properties.

Algorithm 1 : TEAM-TRIGGERED LAW

(Self-trigger information update)
At any time t agenti ∈ {1, . . . , N} receives new promise(s)Xi

j [t] from
neighbor(s)j ∈ N (i), agenti performs:

1: compute own state evolutionxi(t
′) for t′ ≥ t using (12)

2: compute first timet∗ ≥ t such thatLiV
sup(Xi

N (t∗)) = 0
3: schedule information request to neighbors inmax{t∗ − t, Td,self}

seconds
4: apply controlleruteam(t′) for t′ ∈ [t, t+max{t∗ − t, Td,self})

(Respond to information request)
At any time t a neighbor j ∈ N (i) requests information, agenti
performs:

1: send new promiseXj
i [t] = Rs

i(X
i
N [·][t,∞)) to agentj

(Event-trigger information update)
At all times t, agenti performs:

1: if there existsj ∈ N (i) such thatxi(t) /∈ Xj
i [·](t) then

2: if agenti has sent a promise toj at some timetlast ∈ (t−Td,event, t]
then

3: send warning message WARN to agentj at time t
4: schedule to send new promiseXj

i [tlast + Td,event] =
Rs

i(X
i
N [·]|[tlast+Td,event,∞)) to agentj in tlast+Td,event−t seconds

5: else
6: send new promiseXj

i [t] = Rs
i(X

i
N [·]|[t,∞)) to agentj at time

t
7: end if
8: end if

(Respond to warning message)
At any time t agenti ∈ {1, . . . , N} receives a warning message WARN
from agentj ∈ N (i)

1: redefine promise setXi
j [·](t

′) = ∪xj∈Xi
j
[·](t)Rj(t

′−t, xj) for t′ ≥ t

Our first result establishes the monotonic evolution ofV .

Proposition V.1 Consider a networked system as described
in Section II executing the TEAM-TRIGGERED LAW (cf.
Algorithm 1). Then, the function V is monotonically non-
increasing along the network evolution.

Next we characterize the convergence properties of coordi-
nation strategies designed with the team-triggered approach.

Proposition V.2 Consider a networked system as described
in Section II executing the TEAM-TRIGGERED LAW (cf.
Algorithm 1) with dwell times Td,self, Td,event > 0. Then any
bounded network evolution with uniformly bounded promises
asymptotically approaches D.

The next result ensures that continuous communication is
never required under theTEAM-TRIGGERED LAW.

Lemma V.3 (Not Zeno) Consider a networked system as
described in Section II executing the TEAM-TRIGGERED

LAW (cf. Algorithm 1) with dwell times Td,self, Td,event > 0.
Then the network does not exhibit Zeno behavior.

VI. SIMULATIONS

In this section we present simulations of the team- and
self-triggered approaches in a planar multi-agent formation
control problem. Our starting point is the distributed coor-
dination algorithm based on graph rigidity analyzed in [15].
Consider4 agents communicating over the complete graph
which seek to attain a rectangle formation of side lengths
1 and 2. The dynamics of each agent is a single integrator
ẋi = ui for all i ∈ {1, . . . , N}, where‖ui‖2 ≤ umax = 50.
The safe-mode controller is then simplyusf

i ≡ 0. The
distributed continuous-time controller that makes the network
asymptotically achieve the desired formation is given by

u∗
i (x) =

∑

j∈N (i)

(
‖xj − xi‖

2
2 − d2ij

)
unit(xj − xi), (17)

where dij is the pre-specified desired distance between
agentsi and j, and unit(v) denotes the unit vector in the
direction of v. In turn, this controller corresponds to the
gradient descent law forV :

(
R

2
)N

→ R≥0,

V (x) =
1

2

∑

(i,j)∈E

(
‖xj − xi‖

2
2 − d2ij

)2
,

used to establish the correctness ofu∗. For the team-triggered
approach, the controlleruteam is defined by (15), where
controlleru∗∗ is given by (11) as described in Example IV.2.

Figure 1 shows the number of communications required in
the self-triggered approach and the team-triggered approach
using dwell times ofTd,self = 0.03 andTd,event= 0.0003 and
the static ball-radius promise of Example IV.1 withδ = 0.50.
To compare the two strategies, we letN i

S be the number of
times agenti has requested new information andN i

E be the
number of messages an agenti has sent to a neighboring
agent because it broke its promise. Given that each agent has
3 neighbors, the total number of messages for an execution
is then given byNcomm =

∑4
i=1 3N

i
S + N i

E . Remarkably,
the team-triggered approach outperforms the self-triggered
approach, both in terms of required communication and
time to convergence. Figure 1(a) shows that very quickly
all agents are requesting information as often as they can in
the self-triggered approach, due to the conservative nature of
the request time computations. Figure 1(b), instead, shows
a much better behavior in the team-triggered approach.



 

 

Agent 1
Agent 2
Agent 3
Agent 4

5
10
15
20
25
30
35
40
45
50

0.5 1 1.5

(a)

NS

Time
0

 

 

Agent 1
Agent 2
Agent 3
Agent 4

5

10

15

20

25

0.5 1 1.5

(b)

NS

Time
0

 

 

Agent 1
Agent 2
Agent 3
Agent 4

5

10

15

20

25

0.5 1 1.5

(c)

NE

Time
0

 

 

Team-triggered
Self-triggered

10
20
30
40
50
60
70
80
90

0.5 1 1.5

(d)

V

Time
0

Fig. 1. Plots (a) and (b) show, respectively, the number of self-triggered information requests made by each agent in the self-triggered and team-triggered
implementations. Plot (c) shows the number of event-triggeredmessages sent by each agent in the team-triggered implementation. Plot (d) compares the
evolution of the Lyapunov function for both implementations.

Interestingly, only agent1 requests information due to the
self-triggered update times being far less conservative. This
means the other agents are only receiving information when
promises to them are broken, cf. Figure 1(c).

0.26

0.3

0.34

0.38

0.42

0 0.2 0.6 0.8 1

(a)

V (1.5)

λ
0.4

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

(b)

Ncomm

λ

Fig. 2. Plots of (a) the value of the Lyapunov function at a fixed time (1.5
sec) and (b) the total number of messages exchanged in the network by this
time for the team-triggered approach with varying tightness of promisesλ.

Figure 2 illustrates the role that the tightness of promises
has on the network performance. With the notation of
Example IV.1, letλ = δ

2 , so thatλ = 0 corresponds to
exact promises andλ = 1 corresponds to no promises at
all (i.e., the self-triggered approach). Figure 2 comparesthe
value of the Lyapunov function after a fixed amount of
time (1.5 seconds) and the total number of messages sent
Ncomm between agents by this time for varying tightness
of promises. One can observe that a suitable choice ofλ
optimizes the rate of convergence while still requiring less
communication than the self-triggered approach.

VII. C ONCLUSIONS

We have proposed the team-triggered approach as a result
of the combination of event and self-triggered control on
networked systems. When information between subsystems
must be obtained through wireless communication, it is
costly to perform event-triggered communication, and self-
triggered communication strategies are typically conserva-
tive. The team-triggered approach combines ideas from both
event and self-triggered strategies into a useful, imple-
mentable strategy that requires less communication than self-
triggered communication while maintaining desired levelsof
performance. The backbone of the team-triggered approach
is the quality of promises that agents make to one another.
Furthermore, we showed that self-triggered communication

is just a specific case of theTEAM-TRIGGERED LAW in
which no promises are made. Future work will be devoted
to incorporating delays and relaxing the somewhat specific
conditions on the Lyapunov function and the safe-mode
availability in the dynamics of subsystems.

ACKNOWLEDGMENTS

This research was supported by NSF award CCF-0917166.

REFERENCES

[1] C. G. Cassandras and S. Lafortune,Introduction to Discrete-Event
Systems. Springer, 2 ed., 2007.

[2] P. Wan and M. D. Lemmon, “Event-triggered distributed optimization
in sensor networks,” inSymposium on Information Processing of
Sensor Networks, (San Francisco, CA), pp. 49–60, 2009.

[3] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Event-
triggered control for discrete-time systems,” inAmerican Control
Conference, (Baltimore, MD), pp. 4719–4724, July 2010.

[4] M. Velasco, P. Marti, and J. M. Fuertes, “The self triggered task model
for real-time control systems,” inProceedings of the 24th IEEE Real-
Time Systems Symposium, pp. 67–70, 2003.

[5] R. Subramanian and F. Fekri, “Sleep scheduling and lifetime maxi-
mization in sensor networks,” inSymposium on Information Process-
ing of Sensor Networks, (New York, NY), pp. 218–225, 2006.

[6] X. Wang and M. D. Lemmon, “Self-triggered feedback controlsystems
with finite-gain L2 stability,” IEEE Transactions on Automatic Control,
vol. 54, no. 3, pp. 452–467, 2009.

[7] A. Anta and P. Tabuada, “To sample or not to sample: self-triggered
control for nonlinear systems,”IEEE Transactions on Automatic
Control, vol. 55, no. 9, pp. 2030–2042, 2010.

[8] M. Mazo Jr. and P. Tabuada, “Decentralized event-triggered control
over wireless sensor/actuator networks,”IEEE Transactions on Auto-
matic Control, vol. 56, no. 10, pp. 2456–2461, 2011.

[9] M. Mazo Jr. and P. Tabuada, “On event-triggered and self-triggered
control over sensor/actuator networks,” inIEEE Conf. on Decision and
Control, (Cancun, Mexico), pp. 435–440, 2008.

[10] D. V. Dimarogonas and K. H. Johansson, “Event-triggeredcontrol
for multi-agent systems,” inIEEE Conf. on Decision and Control,
(Shanghai, China), pp. 7131–7136, 2009.

[11] D. V. Dimarogonas, E. Frazzoli, and K. H. Johansson, “Distributed
event-triggered control for multi-agent systems,”IEEE Transactions
on Automatic Control, vol. 57, no. 5, pp. 1291–1297, 2012.

[12] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic net-
works for optimal deployment,”Automatica, vol. 48, no. 6, pp. 1077–
1087, 2012.

[13] X. Wang and M. D. Lemmon, “Event-triggered broadcasting across
distributed networked control systems,” inAmerican Control Confer-
ence, (Seattle, WA), pp. 3139–3144, June 2008.

[14] E. Garcia and P. J. Antsaklis, “Decentralized model-based event-
triggered control of networked systems,” Tech. Rep. isis-2012-002,
University of Notre Dame, Feb. 2012.

[15] L. Krick, M. E. Broucke, and B. Francis, “Stabilizationof infinitesi-
mally rigid formations of multi-robot networks,”International Journal
of Control, vol. 82, no. 3, pp. 423–439, 2009.


