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Abstract— This paper considers a class of scenarios where tar- in which there are not only uncertainties in the dynamics, bu
gets emerge from some known location and move towards some a|so in the observations, have also been studied [8]. These
unknown destinations in a weighted acyclic digraph. A decision problems are often solved using dynamic and stochastic
maker with knowledge of the target positions must decide . .

when preparations should be made at any given destination ngramm'ng techniques [9], _[1_01' [11]. AnOthe_r relat?daa‘r
for their arrival. We show how this problem can be formulated  includes robust Markov decision problems, in which the
as an optimal stopping problem on a Markov chain, which probability distributions themselves are uncertain, €8].

sets the basis for the introduction of theBEST INVESTMENT We point out here that the notion of robustness considered
ALGORITHM . Our strategy prescribes when investments must phera s different from conventional definitions. Normally,

be made conditioned on the target's motion along the digraph. . " . . .
We establish the optimality of this policy and examine its robustness studies conditions for which an algorithm céfin st

robustness against changing conditions of the problem which find an optimal 30|Uti0f1- In FhiS paper, we in_Stead an?—'VZG
allows us to identify a sufficient condition that determines the robustness of solutions, i.e., once the optimal saiuto

whether the solution computed by the BEST INVESTMENT  the problem has been found, we are interested in how robust
ALGORITHM remains optimal under changes in the problem i is 't changing problem parameters. For reasons of space,
data. Several simulations illustrate our results. ) .

all proofs are omitted and will appear elsewhere.

. INTRODUCTION Statement of contributionsWe start by formalizing the

This paper studies a decision oroblem in which taraets a decision problem described above which corresponds to
pap ; P targ PP&Re optimization of an objective function that encodes the
at a known location and move through a weighted acycli

diaraph to some unknown destinations. The araph is agxpected net reward associated with investing in a destimat
graph X ’ grap i a particular time. Our contributions on this problem are
abstraction to represent connections available to theetsrg . .
. : X threefold. First, we show that the proposed scenario can be
between points in an environment. Sensors deployed OVEl ulated as an optimal stopping problem on a Markov
the nodes of the graph report the presence of a target to

- S e , L cRain and establish the equivalence of finding the optimal
decision maker which identifies the target's potential idest control policy with that of finding the optimal stopping

tion and prepares accordingly (for instance, by committinget_ Second, we exploit this duality to design algorithms

SOmE Tesources to the d_es_tlnatlon). .Our modgl MPOSESy; find the optimal and second-to-optimal investment-poli
timing trade-off on the decision maker: early decisions mea_. . . :
.cies and characterize their correctness and time complex-

more time for prepargtionl at the.cost of high.e'f uncertainty lities. The BEST INVESTMENT ALGORITHM is a dynamic
the targets true destination while later decisions meas Ieprogramming—based strategy that feeds its solution to the
uncertainty at the cost of having less time to prepare. SECOND BEST INVESTMENT ALGORITHMto find the best
Literatur_e review: Optimizz_ﬂion problems_ un(_jer un_certaintyand second-to-best control policies. The knowledge of the
appear in a plethora of different scenarios including Sj‘”OIOlsecond best control policy plays an important role in our

management, resource allocation, queuing, and SEVICIG g contribution, which is the analysis of the robustness

problems. A typical example of this is found in [1], where any i htimal solution against changing parameters. @éver
optimal control must be found given stochastic Observat'onsimulations illustrate our results

however, the algorithms are usually not scalable with the

size of the problem. To this point, some works such as [2] [l. PRELIMINARIES

are dedicated to studying heuristic approaches to find good )

suboptimal control policies with reduced computation me -6t R, R>o, N be the set of real, nonnegative real, and natural
A discussion of current techniques and challenges related RUMbers, respectively. The cardinality of a set is denftgd
these problems is documented in [3]. The problem we posg
can be cast as an optimal stopping problem on a directed treé
for which we are able to find a scalable algorithmic solutionA weighted directed grapfor weighted digraph) is a triplet

A broad exposition of optimal stopping problems and theifs = (V, £, A) consisting of a set verticels, a set of edges
applications are presented in [4], [5], [6]. A general diger E C V xV and an adjacency matrig € RLV()'X‘V' satisfying
time and space optimal stopping problem is studied in [7};,; > 0 if and only if (v;,v;) € E. Edges are directed,
where an elimination algorithm is proposed to speed up theeaning that they are traversable in one direction only. The
computation of the optimal solution. Versions of this peshl  sets ofin-neighborsand out-neighborsof v € V' are

Graph theory
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A vertexw is asourceif N (v) = () and asinkif N°U(v) = towards one of the goals if, see Figure 1. The weight of

0. A vertexw is collapsibleif INM(v)| = IN(v)| = 1. We  an edge corresponds to the cost it takes to traverse it (e.g.,
let G denote thecollapseddigraph ofG after performing the larger weights correspond to longer times or higher energy
following operation until no collapsible vertex existsnteve  cost). Sensors that are able to detect the presence of & targe
each collapsible vertex; and replace the pair of edgesare deployed over the graph nodes and transmit information
(vi,v5), (vj,vx) by an edggw;, vi,) with weighta; ; +a, . to adecision maker. The decision maker must decide whether
A directed pathp, or in short path, is an ordered sequenc®r not to prepare for the arrival of the target at a godly

of vertices such that any two consecutive verticep fiorm  committing some resources to it. We refer to this action as
an edge inE. For a sources € V, we letP(s) denote all ‘making an investment.” Since the destination of each targe
paths that start at and end at a sink of the digraph. Given

v eV, weletR(v) andR~1(v) be the set oflescendants

and ancestorsof v, respectively. In other words there exists /®\

a path fromo to all v’ € R(v) and there exists a path from
all v’ € R~1(v) to v. Given a pathp = (vy,...,v,,), let

S(p) = U (U1, ., 05)

ke{l,....,m}

be the set of all subpaths ¢f We define the mapast to

extract the last vertex of a pah i.e., last(p) = v, The Fig. 1.  Example network of roads modeled as a weighted acyclic

length and Weighte{j length @f arelngth(p) = |p| — 1 and digraph. All edge weights are equal to There are|P(s)| = 8 paths
Ingth® (p) — Z?:’l Qipig s respectively. Given a sinly  starting at the source (nodg) and ending at a sink (either node or

and a pathp, let Ingth®“(p, g) denote the weighted length 10). The probabilities associated to these paths are givenheyvector
: ; s =.05,.1,.15,.2,.05,.1,.15,.2].
of the shortest path frorast(p) to g, a® =[05,.1,.15, .2, ]

Ingth** (p, g) = min{Ingth” (p’) | p’ path fromlast(p) to g}. is unknown, the decision maker must decide when, if ever, to
invest in a goal in anticipation of a target’s arrival. Ourdeb
specifies that the longer it takes the target to arrive, ths le

X F costly it is to make an investment for that goal because there
digraph has a finite number of paths and at least one sourggsre time available to prepare; however, if an investrigent
and sink. Arooted treeis an acyclic digraph with a root 5 4e and the target does not arrive, the investment is wasted

v” such that there exists a unique path from the root t0 eagh, jnstance, if resources must be sent to the goal, it will be
vertex. A useful property of a rooted tree is that every vertegaqjer to do with more time available. Once a decision to

that is not the root has exactly one in-neighbor. invest has been made, it cannot be retracted.

A path that starts and ends at the same node is caltydla
An acyclic digraphis a digraph with no cycles. An acyclic

B. Optimal stopping problems on Markov chains

. . . . A. Probabilistic model for target motion
Here we introduce optimal stopping problems on discrete

Markov chains. LetX be a finite state space anél ¢ The path chosen by targétalong the digrapld- is unknown
Rg}lxlx‘ be a row-stochastic matrix. Markov chainstart- to the decision maker, who instead uses the fOIIOWing prOb-
ing fromx, € X is a sequence of random variables, |k € ~ abilistic model. Letpr € P(s) denote the path of". The
N}, where given state;, at time k, the probability that the Set of trajectories (or histories) that can be observed by th
state iszy1 attimek+1is Py, ., ., Theoptimal stopping decision maker a&' moves isS(pr). The set of all possibly
problemis a triplet M = (X, P,Q), with X and P as above Observable trajectories is given BY(G) = U,cp () S(p)-
and@ : X — R. The valueQ(z) is the reward associated Let n = |P(s)| and assign label$1,...,n} to the paths
with stopping the Markov chain at state in P(s). Let a® be a probability vector, where} is the
Given anyz, € X, let E,, denote the expectation of the se-probability that targefl” takes path. Such probabilities can
quence of random variablds:, | k € N} specified byM and be computed in a number of ways, including incorporating
zo. The goal of the problem is to find a set of halting stategbservations about trajectories from past targets, but eve d
Y c X that maximizes the functio,, [Q(x,)], wherez, ~ Not enter into this here. Note that this model is more general
is the first time the Markov chain ente¥s A maximizer of than a Markov chain model for the targets.
this function is anoptimal stopping set’* ¢ X. Defining Using this model, the decision maker can infer a target's
the value functionV*(zy) = maxgen Fy,[Q(zx)], optimal  future actions as it moves through the digraph. Given hystor
stopping sets can alternatively be defined by h € H, letInd(h) = {i € {1,...,n}|h € S(p;)} denote
. . the set of indices that the target could possibly be on, or are
Vi={r e X[Qx) =V ()} indistinguishableto the decision maker. Then, the decision

I1l. PROBLEM STATEMENT maker can compute the probability that = p; as
Cpnsider a network of roa_ds des.cribed by a weighted acyclic = o3 —, if i € Ind(h),
digraph G = (V, E, A) with a single sources and a set P (pr =pilh) = jemmd(n) %3 _
of sinks S. Assume targets appear at the source and head 0, otherwise



The decision maker can also compute the probability that the Optimal stopping problem

target will eventually go to a vertex € V, According to the motion model discussed in Section IlI-A,

P(v|h) = Z P(pr = pi| h). at any given time, the evolution of a target alofiglepends

on the full history of vertices visited by the target prior
to reaching the current vertex. For this reason, we choose
This evaluates ta if visin h and0 if vis notinR(last(h)).  as the state space of the optimal stopping problem the set
X = H(G) of all possible target trajectories i&. Note
that X is a rooted tree with the sourceas the root. Each
As targets move through the digraph, the decision makeiode corresponds to a path@whose unique parent is the
decides when an investment should be made for each goalibpath obtained by removing the last vertex. The cardynali
if ever. For simplicity of presentation and without loss ofof X depends on the graph’s adjacency matdxand is
generality, the paper considers investment decisionsrier oupper bounded byX| <1+ Zpe'P(s Ingth(p), where the
specific goaly (for multiple goals, our policy can be applied summandl corresponds to the trivia? history; In the worst
to each one of them). We will suppress the dependence @ase (ifA is strictly upper triangular containing only nonzero

{ie{l,...,n} | vEp;}

B. Allowable control policies

g when it is clear. A control strategy is a map elements), this size can get as large &$ = olVI-1

u:H — {i nvest ,not -i nvest } Next, we define the one-step transition matfix R'Z)E‘X‘X‘,
that specifies, for a target with history € H, a decision P(ylz), if 2 € &(y),Ingth(y) = Ingth(z) + 1,
to u(h) in goal g € S. Throughout the paper we consider’z.y = 0 otherwise

control strategies that prescribe at most one investmengal
any given path because an investment only needs to be mdge =,y € X. With X and P defined, the target motion
one time. Formally, for each € P(s), u(h) =i nvest for corresponds to a Markov chain with initial condition
at most oneh € G(p). If such a history exists, we denote Figure 2 shows the rooted tre€ with edge weights given
it by h.(p), otherwiseh, (p) = (). The set of all possible by P for the weighted acyclic digraph in Figure 1.
investment histories fou is Inv, = Ujeq1,... n} {hu(pi) }-

in}

C. Obijective function i
We must now define the objective function for the decisior ) o 0y 07
. . N .3 g -

maker to optimize. We first present a model for the cost o

investing in goalg for a target with historyh € ‘H as 0333 s oim/ gen vaw . "\Z\o_m
/1248 [1258 [12509 [1358 [13509] [1369

1 | | \ | \
c(h) = f(m) y y v 'y v §y EsEDm
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where f : R>¢o — R>( is a continuous and monotonically
increasing function. Note that the longer the weighted fleng Fig. 2.  State spac& and transition matrixP of the optimal stopping
of the shortest path frortust(h) to g, the smaller the cost problem associated to the problem in Figure 1. Each nodessepts a

. : , . " history h € H. Note that all the sinks of this tree correspond to a sink of
The reward for correctly preparing for a target's arrivagat the original digraph.

is modeled bys € Rx(. The reward accrued usingis then

I B Lastly, we define the reward function @8x) = 82 (g| z) —
Ru(pr) = {5’ it last(pr) = g andhu(pr) # 0, c(x), where the first and second terms correspond to the

expected reward obtained from investing in ggaht state
Since the target's path is unknown a priori, this reward i € X and the cost of making this investment, respectively.
unknown when the investment is made/at(pr) € Inv,. With the problemM,, = (X, P,Q) defined, the next result
Thus, we must instead define an expected reward as ~ follows from [5, Chapter 3] and the fact that is finite.

0, otherwise

By, (pr) [Bu(pr)] = 2 (9] hu(p1)) B Lemma IV.1 For M, = (X, P,Q) constructed as above,

The decision maker seeks to maximizg,, . [R.(pr)] — (i) there exists an optimal stopping 6t ¢ X, and
c(hy(pr)). Since the path of the target is unknown, tie (i) no randomized stopping rule can do better than stop-
jective functionof the decision problem is then the expected ping the first time the state is ™.

value of this expression over all possible paths,

J(u) = By [Ey, (o) [Ru(pr)] — c(ha(pr))] , B. Equivalence with the decision problem
= Z 2(h| s) (B2(g|h) — c(h)). (1) Here we establish the equivalence of the optimal stopping
heTn, problem M;,, with the decision problem described in Sec-

tion 1ll. To do so, we need a mapping that relates a halting
stateY for the optimal stopping problem to a control policy
In this section we introduce an optimal stopping problem and for the decision problem and vice versa. To this point,
establish its equivalence to the investment decision probl we define theeducedhalting subset of a sét for a given

IV. OPTIMAL STOPPING PROBLEM FORMULATION



initial condition 2y as the set of all the states i that can
be reached first by a Markov chain starting fram

Yo, ={x €Y NR(xo) |y g Y fory c R~ (z)}.

In other words, the Markov chain cannot reach stateg In
Y., without passing through a state i,,. Interestingly,
E.,[Q(z;)] = E.,[Q(x,/)], wherez, andz., are the first
times the Markov chain enters andY,,, respectively. A
halting setY” is minimal fromz, if it satisfiesY,, =Y.

To a halting sey” C X, we associate the control policy

i nvest,
uy (x) = {

if x €Yy,
otherwise

)

not -i nvest,

Conversely, to a control policy, we associate the halting

and M\im, are the same. Note that both problems share
the objective functionJ as it measures the performance
of a control policy on the equivalent decision problem.
Interestingly, one can show th& = #(G) is the space

of histories corresponding to the collapsed digrﬁ)h

V. OPTIMAL INVESTMENT DECISION POLICIES

In this section we design strategies to find the best and
second best control policies for the objective functiomide
tified in Section Il using dynamic programming techniques
employed on the optimal stopping problem formulated in
Section IV. The second best control policy will be useful
later in our robustness analysis. The algorithms we present
next can be run on eithe¥l = M, or M = Miny.

defining properties of allowable control policies. We camwno

draw the connection to the problem posed in Section Ill.

Proposition 1V.2 Given an optimal stopping sét* for the
optimal stopping problemV/;,,, the control policyuy« is
optimal for the objective functio(l). Reciprocally, given an
optimal control policyu* for the objective functiorfl), the
setlnv,~ is an optimal stopping set that is minimal fram

Let us consider the optimal stopping problem =
(X, P, @) with initial condition zy = s and goal of interest
g. We will find the optimal policy to the decision problem
of Section Il by finding the optimal stopping set id.

Our algorithm, making use of Bellman’s principle of opti-
mality [9], begins by solving sub-problems of tygd but
with different initial conditionsz(, € X where the optimal

C. State space reduction for the optimal stopping problemsolution can be easily computed. The sub-problem can be
solved forz{, once the sub-problems have been solved for

W ze R(z(). This simplifies the problem for a chosef
to simply deciding whether it is optimal to stop or wait at

With the equivalence between the optimal stopping proble
Min, = (X, P,Q) and the decision problem o@' estab-
lished, our strategy to determine the optimal control polic

is to find the optimal stopping s&t*, cf. Section II-B. Before

proceeding with the design of algorithms to accomplish, this

it is advantageous to reduce the state spacé/g§, since
this naturally results in lower algorithmic complexities.

The approach is reminiscent of techniques like the Elim-
ination Algorithm [13] where states that trivially do not
belong to the optimal set are eliminated. We start by defining
.,Z;) as a maximal path through

a cluster C = (x1,..
the state spac& such that\N°"(zy) = {zp11} for k €
{1,...,m—1}. Maximal here means that is not contained
in any other path with the same properties. We refes:to
as theanchor of clusterC. Intuitively, any state inX with

only one out-neighbor is part of a cluster with that neighbor

We can now state a result to reduce the problefy,.

Lemma IV.3 Consider the problem\Vfi,, = (X, P, Q). Let
C',...,C% denote allg clusters inX. Then,

Y* N (Ujeq,..yC7 \ {2]}) = 0.

this state. We now describe the algorithm informally.

[Informal description]: Choose any node:, <

X such that the problem is unsolved fof but
solved for all of its descendants. Compute the value
obtained if the chain is stopped &} and compare

it to the expected value obtained by waiting one
timestep. Save the best decision, store the value,
and markz(, as solved. Proceed iteratively until
the problem is solved for the initial condition.
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As a consequence of Lemma V.3, we define a new optimau

stopping problem??[im, = ()?, f’, @) with state space
X =X\ Ujeqr,...q ¢\ {2]}).

The transition matrix? is constructed by removing all rows

Fig. 3. Optimal solution to the problem described in Figuredthe goal
g at Node 7, with3 = 20, and cost functionf(z) = 10z. The optimal
stopping seft™* is depicted by the 5 circular nodes and the B¢t giving
rise to the control policyu™ corresponds to the bold circles.

and columns inP corresponding to the states removedrhe BEST INVESTMENT ALGORITHM is presented formally

from X and replacing the rows corresponding ¢ with
the row corresponding to/ forall j € {1,...,q}. Finally,
the reward function@ is just the restriction ofQ to X.
Lemma IV.3 guarantees that the optimal solutionsdp,

in Algorithm 1. The output of Algorithm 1 is the control
policy u*, whereu*(x) = i nvest for all z € Y; and
u*(x) = not - i nvest otherwise. Figure 3 shows the result
of an execution 0BEST INVESTMENT ALGORITHM.



Algorithm 1 : BEST INVESTMENT ALGORITHM Algorithm 2 : SECOND BEST INVESTMENT ALGORITHM

Initialization: Initialization
1 setV*(z) =0forallz € X 1: setV¢ =0 forallz € X
2: setS = {z € X| last(z) € S} 2: execute th@EST INVESTMENT ALGORITHM
3 setY* =0 3: computeY,* from Y*
Perform: Perform:
1: while there existse ¢ S such thaty € S for all y € R(x) do 1: for z € Y do
20 if Q(z) = 32, e pouy) V() Pr,y then 2 setVS = V*(s) — P(x|s)[V*(z) — 2 yenou(z) [V (¥) Pr,yl]
3 addz to Y™ 3. while N"(z) # 0 do
gi I setV*(z) = Q(x) 4: sety = N'(z)
: else 5 setVy = V*(s) — Z(yl|s) [V*(y) —
6: SetV* () = X, e jrout(a) V(1) Py . ety (s) (yls) V*(y) — Q)]
7. endif 7:  end while
8: addzto S 8: end for
9: end while 9: computer = argmax, o y Vg
10: computeu™ = uy = 10: setu’ = u€

z

Proposition V.1 Given the optimal stopping probled/ =

(X, P,Q) for goal g with initial conditionz, = s, theBEST

INVESTMENT ALGORITHM finds the optimal stopping set Proposition V.2 Given the optimal stopping probledy =
and control policyu* with time complexityO(|X|). (X, P,Q) for goal g with initial condition o = s, the
SECOND BEST INVESTMENT ALGORITHMfinds the second

best stopping set and its corresponding control policyvith
Here we make use of thBEST INVESTMENT ALGORITHM  time complexityO(|X|), i.e., for all u # v’ # u*,

to find the second best solution. Given an optimal stopping

B. TheSECOND BEST INVESTMENT ALGORITHM

setY*, we createcandidate stopping sets J(u*) > J(u') = J(u).
{Y*\{a:} if rcv* Remark V.3 Interestingly, even though the optimal solu-
C.(Y™) = . ’ . o’ tions on M., and Mj,, are the same (cf. Lemma IV.3), this
(Y*U{z}) \ R™(x), otherwise does not hold in general for the second best solution, he., t

These sets are constructed such thaty«)(z) # uy-(z); output of theSECOND BEST INVESTMENT ALGORITHMMay
recall equation (2) to relate a stopping set to a contrologoli be different depending on whether it is executed ¥gk, or
For simplicity, letu$ = uc, (y~). The set of control policies Min. As we show in Remark V1.3, this fact has positive
that we search over is then given bff = U,cx{u$}. We implications on our analysis of the robustness of solutiens
let Vi = J(u$) be thecandidate valuevhich corresponds to
the value of the objective function (1) using the appropriat
control policy. We now describe the algorithm informally. Here we are interested in determining conditions for which
[Informal description]: Given the optimal stopping the optimal solution .remair_ls_ optimal under cha_nges to the
set, create a set of candidate control policies. Select problem parameters; specifically, the edge weights of the

a control policyw’ in this set that has the highest digraph, the .probab_ility mode] f°F target mc.)t?on, and the
value of the objective function. reward assougted with gngIThls will be benef|C|§1I because
if one can easily determine that the control policy stays op-
timal, there is no need to re-execute #@©ST INVESTMENT
ALGORITHM, yielding computational savings.
. For convenience, denote iy = (4,«, ) € Y the triplet
Lal that consists of an adjacency matrixfor G, a probability
2 T vectora on the set of path®(s), and a reward@ associated
, 53 56 with correctly preparing for a target reachigg Since the
oser oms/ osn 0ss/  \oss? 0an. objective function now depends on both the control policy
VEn mh e o B EE N and the parameter we let.J, denote the objective func-
y y ¢ 3 ¢ ¢ tion (1) associated with. Finally, we denote by} the kth
Gz487 (2587 L25910 13567 135910 T36910 best control policy for the problem with data Therefore,

. . N Jo(ug) > Jo(ug) > ... )
Fig. 4. Second be_st solution to the problem described inrEigufor the
goal g at Node 7, with3 = 20, and cost functionf(z) = 10z. The set of Accordingly, Je,(u’g) is the value of the objective func-

{ OStIL! / .
ieSment ety (o Sonirl ol 1 depitea by the W0 SICURT ion (1) associated ta/ obtained by using theith best
control policies are given by (u*) = 4.0 andJ(u/) = 3.75, respectively. ~control policy for the problem with datd. Ideally, given
the problem with dat# < Y, we would like to determine
The SECOND BEST INVESTMENT ALGORITHMIs formally the set of parameters with the same optimal control policy,
presented in Algorithm 2. The output is the second best(d) = {0’ € Y|uj, = uj}. However, finding a general

control policyu’. An example execution is shown in Figure 4.closed-form expression f@v(6) is not possible. Instead, we

. ROBUSTNESS OF THE BEST INVESTMENT DECISION




describe a subset gP(6) by first bounding the changes in
the value of the objective function for any control policy.

Lemma VI.1 For 0 = (A,a,8) and ¢’ = (4', o/, '), let

n

AY(0,0") = Z max {c(z)a; — ' (z)a

i—1 €6 (pq) J
+ a2 (g]w) - B2 (9] 2)).
h f } —_— best investment policy
Then, for anyk > 1, B aaaan 2nd best investment policy
Jor (uf) — Jg(uf) < A“(6,6") (4) 2| ... bound on suboptimal policies
— ’ : 31f
3 ‘ ‘ ‘ ‘ ‘
Proposition VI.2 For § € Y, let 5 10 o» 20 2
Iteration

+ _ / , 1 > 2 u /
Y (9) {9 ey | Jo (uo) - JQ(U@) +A (9’ 0 )}’ (5) Fig. 5. lllustration of Proposition VI.2 applied to the exdmpproblem.

+ In each iteration, the problem parameters are randomly vafied curves
theny (9) = y(9). correspond to the values of the optimal investment (solid),stbcond best

.. . . . investment (dashed), and the upper bound on suboptimal dotted).
Proposition VI.2 provides a checkable condition to detemami ( ) PP P ek )

if the optimal control policy remains optimal under param-optimal. Future work will be devoted to understanding how
eters changes. Observing (5), the role that the second b&¥ parameters of the problem must be selected to make
solution plays in evaluating this condition becomes clear. optimal an a priori chosen investment policy, studying sce-
Remark VI.3 The larger the gap between the best an arios where the decision maker does not have perfect target

second best policies is, the larger the set of paramgtetd) ocation information, and extensions to cyclic digraphs.
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