
Robust optimal decision policies for servicing targets in acyclic digraphs

Cameron Nowzari Jorge Cortés

Abstract— This paper considers a class of scenarios where tar-
gets emerge from some known location and move towards some
unknown destinations in a weighted acyclic digraph. A decision
maker with knowledge of the target positions must decide
when preparations should be made at any given destination
for their arrival. We show how this problem can be formulated
as an optimal stopping problem on a Markov chain, which
sets the basis for the introduction of theBEST INVESTMENT
ALGORITHM . Our strategy prescribes when investments must
be made conditioned on the target’s motion along the digraph.
We establish the optimality of this policy and examine its
robustness against changing conditions of the problem which
allows us to identify a sufficient condition that determines
whether the solution computed by the BEST INVESTMENT
ALGORITHM remains optimal under changes in the problem
data. Several simulations illustrate our results.

I. I NTRODUCTION

This paper studies a decision problem in which targets appear
at a known location and move through a weighted acyclic
digraph to some unknown destinations. The graph is an
abstraction to represent connections available to the targets
between points in an environment. Sensors deployed over
the nodes of the graph report the presence of a target to a
decision maker which identifies the target’s potential destina-
tion and prepares accordingly (for instance, by committing
some resources to the destination). Our model imposes a
timing trade-off on the decision maker: early decisions mean
more time for preparation at the cost of higher uncertainty in
the target’s true destination while later decisions mean less
uncertainty at the cost of having less time to prepare.
Literature review: Optimization problems under uncertainty
appear in a plethora of different scenarios including supply
management, resource allocation, queuing, and servicing
problems. A typical example of this is found in [1], where an
optimal control must be found given stochastic observations;
however, the algorithms are usually not scalable with the
size of the problem. To this point, some works such as [2]
are dedicated to studying heuristic approaches to find good
suboptimal control policies with reduced computation times.
A discussion of current techniques and challenges related to
these problems is documented in [3]. The problem we pose
can be cast as an optimal stopping problem on a directed tree
for which we are able to find a scalable algorithmic solution.
A broad exposition of optimal stopping problems and their
applications are presented in [4], [5], [6]. A general discrete
time and space optimal stopping problem is studied in [7],
where an elimination algorithm is proposed to speed up the
computation of the optimal solution. Versions of this problem

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, CA 92093, USA,
{cnowzari,cortes}@ucsd.edu

in which there are not only uncertainties in the dynamics, but
also in the observations, have also been studied [8]. These
problems are often solved using dynamic and stochastic
programming techniques [9], [10], [11]. Another related area
includes robust Markov decision problems, in which the
probability distributions themselves are uncertain, e.g.[12].
We point out here that the notion of robustness considered
here is different from conventional definitions. Normally,
robustness studies conditions for which an algorithm can still
find an optimal solution. In this paper, we instead analyze
the robustness of solutions, i.e., once the optimal solution to
the problem has been found, we are interested in how robust
it is to changing problem parameters. For reasons of space,
all proofs are omitted and will appear elsewhere.
Statement of contributions:We start by formalizing the
decision problem described above which corresponds to
the optimization of an objective function that encodes the
expected net reward associated with investing in a destination
at a particular time. Our contributions on this problem are
threefold. First, we show that the proposed scenario can be
formulated as an optimal stopping problem on a Markov
chain and establish the equivalence of finding the optimal
control policy with that of finding the optimal stopping
set. Second, we exploit this duality to design algorithms
that find the optimal and second-to-optimal investment poli-
cies and characterize their correctness and time complex-
ities. The BEST INVESTMENT ALGORITHM is a dynamic
programming-based strategy that feeds its solution to the
SECOND BEST INVESTMENT ALGORITHM to find the best
and second-to-best control policies. The knowledge of the
second best control policy plays an important role in our
third contribution, which is the analysis of the robustness
of the optimal solution against changing parameters. Several
simulations illustrate our results.

II. PRELIMINARIES

LetR, R≥0, N be the set of real, nonnegative real, and natural
numbers, respectively. The cardinality of a set is denoted| · |.

A. Graph theory

A weighted directed graph(or weighted digraph) is a triplet
G = (V,E,A) consisting of a set verticesV , a set of edges
E ⊂ V ×V and an adjacency matrixA ∈ R

|V |×|V |
≥0 satisfying

ai,j > 0 if and only if (vi, vj) ∈ E. Edges are directed,
meaning that they are traversable in one direction only. The
sets ofin-neighborsandout-neighborsof v ∈ V are

N in(v) = {v′ ∈ V | (v′, v) ∈ E},

N out(v) = {v′ ∈ V | (v, v′) ∈ E}.

A vertexv is asourceif N in(v) = ∅ and asink if N out(v) =
∅. A vertexv is collapsibleif |N in(v)| = |N out(v)| = 1. We
let Ĝ denote thecollapseddigraph ofG after performing the
following operation until no collapsible vertex exists: remove
each collapsible vertexvj and replace the pair of edges
(vi, vj), (vj , vk) by an edge(vi, vk) with weightai,j + aj,k.
A directed pathp, or in short path, is an ordered sequence
of vertices such that any two consecutive vertices inp form
an edge inE. For a sources ∈ V , we let P(s) denote all
paths that start ats and end at a sink of the digraph. Given
v ∈ V , we letR(v) andR−1(v) be the set ofdescendants
andancestorsof v, respectively. In other words there exists
a path fromv to all v′ ∈ R(v) and there exists a path from
all v′ ∈ R−1(v) to v. Given a pathp = (v1, . . . , vm), let

S(p) =
⋃

k∈{1,...,m}

(v1, . . . , vk)

be the set of all subpaths ofp. We define the maplast to
extract the last vertex of a pathp, i.e., last(p) = vm. The
length and weighted length ofp are lngth(p) = |p| − 1 and
lngthw(p) =

∑m−1
k=1 aikik+1

, respectively. Given a sinkg
and a pathp, let lngthsw(p, g) denote the weighted length
of the shortest path fromlast(p) to g,

lngthsw(p, g) = min{lngthw(p′) | p′ path fromlast(p) to g}.

A path that starts and ends at the same node is called acycle.
An acyclic digraphis a digraph with no cycles. An acyclic
digraph has a finite number of paths and at least one source
and sink. A rooted tree is an acyclic digraph with a root
v∗ such that there exists a unique path from the root to each
vertex. A useful property of a rooted tree is that every vertex
that is not the root has exactly one in-neighbor.

B. Optimal stopping problems on Markov chains

Here we introduce optimal stopping problems on discrete
Markov chains. LetX be a finite state space andP ∈
R

|X|×|X|
≥0 be a row-stochastic matrix. AMarkov chainstart-

ing fromx0 ∈ X is a sequence of random variables{xk | k ∈
N}, where given statexk at timek, the probability that the
state isxk+1 at timek+1 is Pxk,xk+1

. Theoptimal stopping
problemis a tripletM = (X,P,Q), with X andP as above
andQ : X → R. The valueQ(x) is the reward associated
with stopping the Markov chain at statex.
Given anyx0 ∈ X, let Ex0

denote the expectation of the se-
quence of random variables{xk | k ∈ N} specified byM and
x0. The goal of the problem is to find a set of halting states
Y ⊂ X that maximizes the functionEx0

[Q(xτ)], wherexτ

is the first time the Markov chain entersY . A maximizer of
this function is anoptimal stopping setY ∗ ⊂ X. Defining
the value functionV∗(x0) = maxk∈N Ex0

[Q(xk)], optimal
stopping sets can alternatively be defined by

Y ∗ = {x ∈ X |Q(x) = V∗(x)}.

III. PROBLEM STATEMENT

Consider a network of roads described by a weighted acyclic
digraph G = (V,E,A) with a single sources and a set
of sinks S. Assume targets appear at the source and head

towards one of the goals inS, see Figure 1. The weight of
an edge corresponds to the cost it takes to traverse it (e.g.,
larger weights correspond to longer times or higher energy
cost). Sensors that are able to detect the presence of a target
are deployed over the graph nodes and transmit information
to a decision maker. The decision maker must decide whether
or not to prepare for the arrival of the target at a goalg by
committing some resources to it. We refer to this action as
‘making an investment.’ Since the destination of each target

1

2 3

4 5 6

7

8 9

10

Fig. 1. Example network of roads modeled as a weighted acyclic
digraph. All edge weights are equal to1. There are|P(s)| = 8 paths
starting at the source (node1) and ending at a sink (either node7 or
10). The probabilities associated to these paths are given by the vector
αs = [.05, .1, .15, .2, .05, .1, .15, .2].

is unknown, the decision maker must decide when, if ever, to
invest in a goal in anticipation of a target’s arrival. Our model
specifies that the longer it takes the target to arrive, the less
costly it is to make an investment for that goal because there
is more time available to prepare; however, if an investmentis
made and the target does not arrive, the investment is wasted.
For instance, if resources must be sent to the goal, it will be
easier to do with more time available. Once a decision to
invest has been made, it cannot be retracted.

A. Probabilistic model for target motion

The path chosen by targetT along the digraphG is unknown
to the decision maker, who instead uses the following prob-
abilistic model. LetpT ∈ P(s) denote the path ofT . The
set of trajectories (or histories) that can be observed by the
decision maker asT moves isS(pT). The set of all possibly
observable trajectories is given byH(G) =

⋃
p∈P(s) S(p).

Let n = |P(s)| and assign labels{1, . . . , n} to the paths
in P(s). Let αs be a probability vector, whereαs

i is the
probability that targetT takes pathi. Such probabilities can
be computed in a number of ways, including incorporating
observations about trajectories from past targets, but we do
not enter into this here. Note that this model is more general
than a Markov chain model for the targets.
Using this model, the decision maker can infer a target’s
future actions as it moves through the digraph. Given history
h ∈ H, let Ind(h) = {i ∈ {1, . . . , n} |h ∈ S(pi)} denote
the set of indices that the target could possibly be on, or are
indistinguishableto the decision maker. Then, the decision
maker can compute the probability thatpT = pi as

P(pT = pi|h) =

{
αs

i∑
j∈Ind(h) α

s
j

, if i ∈ Ind(h),

0, otherwise.

The decision maker can also compute the probability that the
target will eventually go to a vertexv ∈ V ,

P(v|h) =
∑

{i∈{1,...,n} | v∈pi}

P(pT = pi|h).

This evaluates to1 if v is in h and0 if v is not inR(last(h)).

B. Allowable control policies

As targets move through the digraph, the decision maker
decides when an investment should be made for each goal,
if ever. For simplicity of presentation and without loss of
generality, the paper considers investment decisions for one
specific goalg (for multiple goals, our policy can be applied
to each one of them). We will suppress the dependence on
g when it is clear. A control strategy is a map

u : H → {invest,not-invest}

that specifies, for a target with historyh ∈ H, a decision
to u(h) in goal g ∈ S. Throughout the paper we consider
control strategies that prescribe at most one investment along
any given path because an investment only needs to be made
one time. Formally, for eachp ∈ P(s), u(h) = invest for
at most oneh ∈ S(p). If such a history exists, we denote
it by hu(p), otherwisehu(p) = ∅. The set of all possible
investment histories foru is Invu = ∪i∈{1,...,n}{hu(pi)}.

C. Objective function

We must now define the objective function for the decision
maker to optimize. We first present a model for the cost of
investing in goalg for a target with historyh ∈ H as

c(h) = f
(

1
lngthsw(h,g)

)
,

wheref : R≥0 → R≥0 is a continuous and monotonically
increasing function. Note that the longer the weighted length
of the shortest path fromlast(h) to g, the smaller the cost.
The reward for correctly preparing for a target’s arrival atg
is modeled byβ ∈ R≥0. The reward accrued usingu is then

Ru(pT) =

{
β, if last(pT) = g andhu(pT) 6= ∅,

0, otherwise.

Since the target’s path is unknown a priori, this reward is
unknown when the investment is made athu(pT) ∈ Invu.
Thus, we must instead define an expected reward as

Ehu(pT)[Ru(pT)] = P(g|hu(pT))β.

The decision maker seeks to maximizeEhu(pT)[Ru(pT)] −
c(hu(pT)). Since the path of the target is unknown, theob-
jective functionof the decision problem is then the expected
value of this expression over all possible paths,

J(u) = Es

[
Ehu(pT)[Ru(pT)]− c(hu(pT))

]
,

=
∑

h∈Invu

P(h| s) (βP(g|h)− c(h)) . (1)

IV. OPTIMAL STOPPING PROBLEM FORMULATION

In this section we introduce an optimal stopping problem and
establish its equivalence to the investment decision problem.

A. Optimal stopping problem

According to the motion model discussed in Section III-A,
at any given time, the evolution of a target alongG depends
on the full history of vertices visited by the target prior
to reaching the current vertex. For this reason, we choose
as the state space of the optimal stopping problem the set
X = H(G) of all possible target trajectories inG. Note
that X is a rooted tree with the sources as the root. Each
node corresponds to a path inG whose unique parent is the
subpath obtained by removing the last vertex. The cardinality
of X depends on the graph’s adjacency matrixA and is
upper bounded by|X| ≤ 1 +

∑
p∈P(s) lngth(p), where the

summand1 corresponds to the trivial historys. In the worst
case (ifA is strictly upper triangular containing only nonzero
elements), this size can get as large as|X| = 2|V |−1.

Next, we define the one-step transition matrixP ∈ R
|X|×|X|
≥0 ,

Px,y =

{
P(y|x), if x ∈ S(y), lngth(y) = lngth(x) + 1,

0, otherwise,

for x, y ∈ X. With X and P defined, the target motion
corresponds to a Markov chain with initial conditions.
Figure 2 shows the rooted treeX with edge weights given
by P for the weighted acyclic digraph in Figure 1.

 0.5
 0.5

 0.3 0.7 0.3
 0.7

 0.333
 0.667 0.429 0.571 0.333 0.667 0.429

 0.571

 1 1 1 1 1 1

1

1 2 1 3

1 2 4 1 2 5 1 3 5 1 3 6

1 2 4 7

1 2 4 8 1 2 5 8 1 2 5 9 1 3 5 8 1 3 5 9 1 3 6 9

1 3 6 10

1 2 4 8 7 1 2 5 8 7 1 2 5 9 10 1 3 5 8 7 1 3 5 9 10 1 3 6 9 10

Fig. 2. State spaceX and transition matrixP of the optimal stopping
problem associated to the problem in Figure 1. Each node represents a
history h ∈ H. Note that all the sinks of this tree correspond to a sink of
the original digraph.

Lastly, we define the reward function asQ(x) = βP(g|x)−
c(x), where the first and second terms correspond to the
expected reward obtained from investing in goalg at state
x ∈ X and the cost of making this investment, respectively.
With the problemMinv = (X,P,Q) defined, the next result
follows from [5, Chapter 3] and the fact thatX is finite.

Lemma IV.1 For Minv = (X,P,Q) constructed as above,

(i) there exists an optimal stopping setY ∗ ⊂ X, and
(ii) no randomized stopping rule can do better than stop-

ping the first time the state is inY ∗.

B. Equivalence with the decision problem

Here we establish the equivalence of the optimal stopping
problemMinv with the decision problem described in Sec-
tion III. To do so, we need a mapping that relates a halting
stateY for the optimal stopping problem to a control policy
u for the decision problem and vice versa. To this point,
we define thereducedhalting subset of a setY for a given

initial condition x0 as the set of all the states inY that can
be reached first by a Markov chain starting fromx0,

Yx0
= {x ∈ Y ∩R(x0) | y /∈ Y for y ∈ R−1(x)}.

In other words, the Markov chain cannot reach states inY \
Yx0

without passing through a state inYx0
. Interestingly,

Ex0
[Q(xτ)] = Ex0

[Q(xτ ′)], wherexτ andxτ ′ are the first
times the Markov chain entersY and Yx0

, respectively. A
halting setY is minimal fromx0 if it satisfiesYx0

= Y .
To a halting setY ⊂ X, we associate the control policy

uY (x) =

{
invest, if x ∈ Ys,

not-invest, otherwise.
(2)

Conversely, to a control policyu, we associate the halting
set Invu. Note thatInvu is minimal from s because of the
defining properties of allowable control policies. We can now
draw the connection to the problem posed in Section III.

Proposition IV.2 Given an optimal stopping setY ∗ for the
optimal stopping problemMinv, the control policyuY ∗ is
optimal for the objective function(1). Reciprocally, given an
optimal control policyu∗ for the objective function(1), the
set Invu∗ is an optimal stopping set that is minimal froms.

C. State space reduction for the optimal stopping problem

With the equivalence between the optimal stopping problem
Minv = (X,P,Q) and the decision problem onG estab-
lished, our strategy to determine the optimal control policy
is to find the optimal stopping setY ∗, cf. Section II-B. Before
proceeding with the design of algorithms to accomplish this,
it is advantageous to reduce the state space ofMinv, since
this naturally results in lower algorithmic complexities.
The approach is reminiscent of techniques like the Elim-
ination Algorithm [13] where states that trivially do not
belong to the optimal set are eliminated. We start by defining
a cluster C = (x1, . . . , xm) as a maximal path through
the state spaceX such thatN out(xk) = {xk+1} for k ∈
{1, . . . ,m−1}. Maximal here means thatC is not contained
in any other path with the same properties. We refer tox1

as theanchor of clusterC. Intuitively, any state inX with
only one out-neighbor is part of a cluster with that neighbor.
We can now state a result to reduce the problemMinv.

Lemma IV.3 Consider the problemMinv = (X,P,Q). Let
C1, . . . , Cq denote allq clusters inX. Then,

Y ∗ ∩ (∪j∈{1,...,q}C
j \ {xj

1}) = ∅.

As a consequence of Lemma IV.3, we define a new optimal
stopping problem̂Minv = (X̂, P̂ , Q̂) with state space

X̂ = X \ (∪j∈{1,...,q}C
j \ {xj

1}).

The transition matrixP̂ is constructed by removing all rows
and columns inP corresponding to the states removed
from X and replacing the rows corresponding toxj

1 with
the row corresponding toxj

m for all j ∈ {1, . . . , q}. Finally,
the reward functionQ̂ is just the restriction ofQ to X̂.
Lemma IV.3 guarantees that the optimal solutions onMinv

and M̂inv are the same. Note that both problems share
the objective functionJ as it measures the performance
of a control policy on the equivalent decision problem.
Interestingly, one can show that̂X = H(Ĝ) is the space
of histories corresponding to the collapsed digraphĜ.

V. OPTIMAL INVESTMENT DECISION POLICIES

In this section we design strategies to find the best and
second best control policies for the objective function iden-
tified in Section III using dynamic programming techniques
employed on the optimal stopping problem formulated in
Section IV. The second best control policy will be useful
later in our robustness analysis. The algorithms we present
next can be run on eitherM = Minv or M = M̂inv.

A. TheBEST INVESTMENT ALGORITHM

Let us consider the optimal stopping problemM =
(X,P,Q) with initial condition x0 = s and goal of interest
g. We will find the optimal policy to the decision problem
of Section III by finding the optimal stopping set toM .
Our algorithm, making use of Bellman’s principle of opti-
mality [9], begins by solving sub-problems of typeM but
with different initial conditionsx′

0 ∈ X where the optimal
solution can be easily computed. The sub-problem can be
solved forx′

0 once the sub-problems have been solved for
all x ∈ R(x′

0). This simplifies the problem for a chosenx′
0

to simply deciding whether it is optimal to stop or wait at
this state. We now describe the algorithm informally.

[Informal description]: Choose any nodex′
0 ∈

X such that the problem is unsolved forx′
0 but

solved for all of its descendants. Compute the value
obtained if the chain is stopped atx′

0 and compare
it to the expected value obtained by waiting one
timestep. Save the best decision, store the value,
and markx′

0 as solved. Proceed iteratively until
the problem is solved for the initial condition.

 0.5
 0.5

 0.3 0.7 0.3
 0.7

 0.333
 0.667 0.429

 0.571
 0.333

 0.667 0.429 0.571

 1 1
 1

 1
 1 1

1

1 2 1 3

1 2 4 1 2 5 1 3 5 1 3 6

1 2 4 7 1 2 4 8 1 2 5 8 1 2 5 9 1 3 5 8 1 3 5 9 1 3 6 9 1 3 6 10

1 2 4 8 7 1 2 5 8 7 1 2 5 9 10 1 3 5 8 7 1 3 5 9 10 1 3 6 9 10

Fig. 3. Optimal solution to the problem described in Figure 1 for the goal
g at Node 7, withβ = 20, and cost functionf(z) = 10z. The optimal
stopping setY ∗ is depicted by the 5 circular nodes and the setY ∗

s giving
rise to the control policyu∗ corresponds to the bold circles.

The BEST INVESTMENT ALGORITHM is presented formally
in Algorithm 1. The output of Algorithm 1 is the control
policy u∗, where u∗(x) = invest for all x ∈ Y ∗

s and
u∗(x) = not-invest otherwise. Figure 3 shows the result
of an execution ofBEST INVESTMENT ALGORITHM.

Algorithm 1 : BEST INVESTMENT ALGORITHM

Initialization:
1: setV∗(x) = 0 for all x ∈ X
2: setS = {x ∈ X | last(x) ∈ S}
3: setY ∗ = ∅

Perform:
1: while there existsx /∈ S such thaty ∈ S for all y ∈ R(x) do
2: if Q(x) ≥

∑
y∈N out(x) V

∗(y)Px,y then
3: addx to Y ∗

4: setV∗(x) = Q(x)
5: else
6: setV∗(x) =

∑
y∈N out(x) V

∗(y)Px,y

7: end if
8: addx to S
9: end while

10: computeu∗ = uY ∗

Proposition V.1 Given the optimal stopping problemM =
(X,P,Q) for goal g with initial conditionx0 = s, the BEST

INVESTMENT ALGORITHM finds the optimal stopping set
and control policyu∗ with time complexityO(|X|).

B. TheSECOND BEST INVESTMENT ALGORITHM

Here we make use of theBEST INVESTMENT ALGORITHM

to find the second best solution. Given an optimal stopping
setY ∗, we createcandidate stopping sets

Cx(Y
∗) =

{
Y ∗ \ {x}, if x ∈ Y ∗

x0
,

(Y ∗ ∪ {x}) \ R−1(x), otherwise.

These sets are constructed such thatuCx(Y ∗)(x) 6= uY ∗(x);
recall equation (2) to relate a stopping set to a control policy.
For simplicity, letuC

x = uCx(Y ∗). The set of control policies
that we search over is then given byUC = ∪x∈X{uC

x}. We
let VC

x = J(uC
x) be thecandidate valuewhich corresponds to

the value of the objective function (1) using the appropriate
control policy. We now describe the algorithm informally.

[Informal description]:Given the optimal stopping
set, create a set of candidate control policies. Select
a control policyu′ in this set that has the highest
value of the objective function.

 0.5
 0.5

 0.3 0.7
 0.3 0.7

 0.333
 0.667 0.429 0.571 0.333 0.667 0.429

 0.571

 1 1 1 1 1 1

1

1 2 1 3

1 2 4 1 2 5 1 3 5 1 3 6

1 2 4 7

1 2 4 8 1 2 5 8 1 2 5 9 1 3 5 8 1 3 5 9 1 3 6 9

1 3 6 10

1 2 4 8 7 1 2 5 8 7 1 2 5 9 10 1 3 5 8 7 1 3 5 9 10 1 3 6 9 10

Fig. 4. Second best solution to the problem described in Figure 1 for the
goal g at Node 7, withβ = 20, and cost functionf(z) = 10z. The set of
investment statesInvu′ for control policyu′ is depicted by the two circular
nodes. The values of the objective function for the optimal and second best
control policies are given byJ(u∗) = 4.0 andJ(u′) = 3.75, respectively.

The SECOND BEST INVESTMENT ALGORITHM is formally
presented in Algorithm 2. The output is the second best
control policyu′. An example execution is shown in Figure 4.

Algorithm 2 : SECOND BEST INVESTMENT ALGORITHM

Initialization
1: setVC

x = 0 for all x ∈ X
2: execute theBEST INVESTMENT ALGORITHM
3: computeY ∗

s from Y ∗

Perform:
1: for x ∈ Y ∗

s do
2: setVC

x = V∗(s)− P(x| s)[V∗(x)−
∑

y∈N out(x)[V
∗(y)Px,y]]

3: while N in(x) 6= ∅ do
4: sety = N in(x)
5: setVc

y = V∗(s)− P(y| s) [V∗(y)−Q(y)]
6: setx = y
7: end while
8: end for
9: computex̄ = argmaxx∈X Vc

x

10: setu′ = uC
x̄

Proposition V.2 Given the optimal stopping problemM =
(X,P,Q) for goal g with initial condition x0 = s, the
SECOND BEST INVESTMENT ALGORITHMfinds the second
best stopping set and its corresponding control policyu′ with
time complexityO(|X|), i.e., for all u 6= u′ 6= u∗,

J(u∗) ≥ J(u′) ≥ J(u).

Remark V.3 Interestingly, even though the optimal solu-
tions onMinv andM̂inv are the same (cf. Lemma IV.3), this
does not hold in general for the second best solution, i.e., the
output of theSECOND BEST INVESTMENT ALGORITHMmay
be different depending on whether it is executed forMinv or
M̂inv. As we show in Remark VI.3, this fact has positive
implications on our analysis of the robustness of solutions.•

VI. ROBUSTNESS OF THE BEST INVESTMENT DECISION

Here we are interested in determining conditions for which
the optimal solution remains optimal under changes to the
problem parameters; specifically, the edge weights of the
digraph, the probability model for target motion, and the
reward associated with goalg. This will be beneficial because
if one can easily determine that the control policy stays op-
timal, there is no need to re-execute theBEST INVESTMENT

ALGORITHM, yielding computational savings.
For convenience, denote byθ = (A,α, β) ∈ Y the triplet
that consists of an adjacency matrixA for G, a probability
vectorα on the set of pathsP(s), and a rewardβ associated
with correctly preparing for a target reachingg. Since the
objective function now depends on both the control policy
and the parametersθ, we let Jθ denote the objective func-
tion (1) associated withθ. Finally, we denote byuk

θ the kth
best control policy for the problem with dataθ. Therefore,

Jθ(u
1
θ) ≥ Jθ(u

2
θ) ≥ . . . (3)

Accordingly, Jθ′(uk
θ) is the value of the objective func-

tion (1) associated toθ′ obtained by using thekth best
control policy for the problem with dataθ. Ideally, given
the problem with dataθ ∈ Y, we would like to determine
the set of parameters with the same optimal control policy,
Y(θ) = {θ′ ∈ Y |u1

θ′ = u1
θ}. However, finding a general

closed-form expression forY(θ) is not possible. Instead, we

describe a subset ofY(θ) by first bounding the changes in
the value of the objective function for any control policy.

Lemma VI.1 For θ = (A,α, β) and θ′ = (A′, α′, β′), let

∆u(θ, θ′) =
n∑

i=1

max
x∈S(pi)

{c(x)αi − c′(x)α′
i

+ α′
iβ

′
P

′(g|x)− αiβP(g|x)}.

Then, for anyk ≥ 1,

Jθ′(uk
θ)− Jθ(u

k
θ) ≤ ∆u(θ, θ′). (4)

Proposition VI.2 For θ ∈ Y, let

Y+(θ) = {θ′ ∈ Y | Jθ′(u1
θ) ≥ Jθ(u

2
θ) + ∆u(θ, θ′)}, (5)

thenY+(θ) ⊂ Y(θ).

Proposition VI.2 provides a checkable condition to determine
if the optimal control policy remains optimal under param-
eters changes. Observing (5), the role that the second best
solution plays in evaluating this condition becomes clear.

Remark VI.3 The larger the gap between the best and
second best policies is, the larger the set of parametersY+(θ)
for which the optimal policy is guaranteed to remain the same
becomes. Although the second best control policyu2

θ may
be different forMinv and M̂inv, since the state spacêX of
M̂inv is contained in the state spaceX of Minv, the allowable
control policies forM̂inv are a subset of the policies forMinv.
Therefore, the performance of the second best control policy
of M̂inv can be no worse than that of the second best policy
of Minv, yielding better robustness guarantees on̂Minv. •

For the problem described in Figures 1-4, we run theBEST

INVESTMENT ALGORITHM to compute the optimal solution
u1
θ and the SECOND BEST INVESTMENT ALGORITHM to

find u2
θ. We then randomly vary the data of the problem

θ = (A,α, β) by up to 3 percent of their previous value
in subsequent iterations. At each step we can easily check
whether the new parameters belong toY+(θ). As long as
they do, the optimal solution does not need to be recomputed.
Figure 5 demonstrates the benefit of performing this check.
In this caseθ′ ∈ Y+(θ) until iteration 25 and thus the
optimal solution does not need to be recomputed until then.
Proposition VI.2 suggests thatJθ(u2

θ) + ∆u(θ, θ′) is an
upper bound on the value obtained by any suboptimal policy
Jθ′(uk

θ′) for k ≥ 2. Althoughu2
θ′ is not recomputed at each

timestep, Figure 5 showsJθ′(u2
θ′) to illustrate this bound.

VII. C ONCLUSIONS

We have considered a class of decision problems where
targets emerge from some known location and move towards
unknown destinations in a weighted acyclic digraph. We have
designed theBEST INVESTMENT ALGORITHM to find the
optimal control policy to the investment decision problem.
We have also designed theSECOND BEST INVESTMENT

ALGORITHM to find the second-to-optimal control policy and
used it to synthesize a sufficient condition to see whether the
solution computed before the parameters changed remains

5 10 15 20 25
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

best investment policy

bound on suboptimal policies

2nd best investment policy

J

Iteration

Fig. 5. Illustration of Proposition VI.2 applied to the example problem.
In each iteration, the problem parameters are randomly varied. The curves
correspond to the values of the optimal investment (solid), the second best
investment (dashed), and the upper bound on suboptimal policies (dotted).

optimal. Future work will be devoted to understanding how
the parameters of the problem must be selected to make
optimal an a priori chosen investment policy, studying sce-
narios where the decision maker does not have perfect target
location information, and extensions to cyclic digraphs.

ACKNOWLEDGMENTS

This research was supported by NSF award CCF-0917166.

REFERENCES

[1] D. Bernardinim, D. M. de la Pẽna, A. Bemporad, and E. Frazzoli,
“Simultaneous optimal control and discrete stochastic sensor selec-
tion,” in Hybrid Systems: Computation and Control(R. Majumdar and
P. Tabuada, eds.), vol. 5469 ofLecture Notes in Computer Science,
pp. 61–75, Springer Berlin, 2009.

[2] A. Bemporad, D. M. de la Pẽna, and P. Piazzesi, “Optimal control
of investments for quality of supply improvement in electricalenergy
distribution networks,”Automatica, vol. 42, no. 8, pp. 1331–1336,
2006.

[3] N. V. Sahinidis, “Optimization under uncertainty: State-of-the-art
and opportunities,”Computers and Chemical Engineering, vol. 28,
pp. 971–983, 2004.

[4] A. N. Shiryaev,Optimal Stopping Rules. Springer, 1978.
[5] T. S. Ferguson,Optimal Stopping and Applications. University of

California, Los Angeles, 2008.
[6] N. H. Bingham and G. Peskir, “Optimal stopping and dynamic

programming,” in Encyclopedia of Quantitative Risk Analysis and
Assessment(E. L. Melnick and B. Everitt, eds.), vol. 1, pp. 1236–
1243, Chichester, England: Wiley, 2008.

[7] I. Sonin, “The elimination algorithm and its applicationto the optimal
stopping problem,” inIEEE Conf. on Decision and Control, (San
Diego, CA), Dec. 1997.

[8] M. Huang and G. N. Nair, “Detection of random targets in sensor
networks with applications,” inIFAC World Congress, (Prague, CZ),
July 2005. Electronic proceedings.

[9] D. P. Bertsekas,Dynamic Programming and Optimal Control, Vol. 1.
Athena Scientific, 2 ed., 2001.

[10] M. L. Puterman,Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Series in Probability and Statistics,
New York: Wiley, 2008.

[11] J. R. Birge and F. Louveaux,Introduction to Stochastic Programming.
Springer Series in Operations Research, New York: Springer, 1997.

[12] A. Thiele, “Robust stochastic programming with uncertain probabili-
ties,” IMA Journal of Management Mathematics, vol. 19, pp. 289–321,
2008.

[13] I. Sonin, “The optimal stopping of Markov chain and recursive solution
of Poisson and Bellman equations,” inThe Shiryaev Festschrift: From
Stochastic Calculus to Mathematical Finance(Y. Kabanov, R. Lipster,
and J. Stoyanov, eds.), vol. XXXVIII, pp. 609–621, New York:
Springer, 2006.

