
1

Self-triggered optimal servicing in dynamic
environments with acyclic structure

Cameron Nowzari Jorge Cortés

Abstract—This paper considers a class of scenarios where
targets emerge from some known location and move towards
some unknown destinations in a weighted acyclic digraph. A de-
cision maker with knowledge of the target positions must decide
when preparations should be made at any given destination for
their arrival. The decision maker faces a timing trade-off: early
decisions mean more time for preparation at the cost of higher
uncertainty in the target’s true destination while later decisions
mean less uncertainty at the cost of having less time to prepare.
We show how this problem can be formulated as an optimal
stopping problem on a Markov chain. This sets the basis for
the introduction of the BEST INVESTMENT ALGORITHM which
prescribes when investments must be made conditioned on the
target’s motion along the digraph. We establish the optimality
of this prescription and examine its robustness against changes
in the problem parameters, identifying sufficient conditions to
determine whether the solution computed by theBEST INVEST-
MENT ALGORITHM remains optimal. Based on this analysis, we
develop the SELF-TRIGGERED ACQUISITION & DECISION ALGO -
RITHM that allows the decision maker, under partial knowledge
of the parameter dynamics, to schedule in advance when to
check if the control policy in its memory remains optimal and,
if this test fails, when to recompute it. Finally, we obtain worst-
case lower bounds on the maximum time that can elapse under
arbitrary parameter dynamics before the optimal solution must
be recomputed. Simulations illustrate our results.

I. I NTRODUCTION

This paper considers a scenario where targets appear at a
known location and move through an acyclic directed graph to
some unknown destination, possibly different for each target.
The graph is an abstraction that represents connections avail-
able to the targets between points of interest in an environment.
A group of sensors deployed over the nodes of the network
report the presence of targets to a decision maker. For any
given target, it is the job of the decision maker to iden-
tify the target’s potential destination and make preparations
accordingly (for instance by committing some resources to
the destination). The earlier these preparations are made,the
less resources we need. The decision maker must balance the
desire to correctly identify the target’s true destinationwith
the amount of resources that must be committed.

This type of decision problem appears in a variety of scenar-
ios including supply chain management, resource allocation,
queuing, servicing problems, and pursuit-evasion games on
road networks. For example, in queuing, targets can be thought
of as heterogeneous tasks that travel through a network of
nodes where different skills exist for identifying task features.

The authors are with the Department of Mechanical and Aerospace
Engineering, University of California, San Diego, CA 92093, USA,
{cnowzari,cortes}@ucsd.edu

The edge weights represent the time it takes the corresponding
node to examine the task against a specific feature. The task
release controller must make a decision on the task type and,
based on this decision, assign it to someone. The earlier a
task is assigned, the higher the risk that it was assigned
incorrectly. Similarly, in supply chain management, targets can
be thought of as customer demands that must be met by a
specific deadline. The supervisor must make decisions as to
how much supply of different products to purchase ahead of
time to meet customer demand while overstocking as little
as possible. In this scenario, the earlier the purchase of a
product is made, the lower the price of the product while the
higher the uncertainty in the demand. On the other hand, if
the supervisor puts off placing orders to more accurately gauge
customer demand, the cost of rushing products to customers
may have increased. This setup can again be modeled as a
target moving through a graph where nodes represent different
customer demands at a specific instances of time before the
deadline and edge weights represent elapsed time.

Literature review: The subject matter of the problem con-
sidered here is optimal decision making under uncertainty,
and has connections with Markov decision processes, optimal
stopping, and dynamic programming. A discussion of current
techniques and challenges related to optimization problems
under uncertainty is documented in [1]. Common to almost all
these problems is some sort of stochastic dynamic program-
ming solution, see [2], [3], [4]. For a specific class of utility
functions, simpler solutions can be found [5]. Interestingly,
the problem we pose can be cast as an optimal stopping
problem on a rooted directed tree for which we can find an
algorithmic solution that scales with the size of the state space.
The works [6], [7], [8] present a broad exposition of opti-
mal stopping problems and their applications. For a specific
family of optimal stopping problems on Markov chains, [9]
establishes existence of solutions and [10] reviews methods
to solve them. We refer to [11], [12] for an exposition of the
general discrete time and space problem which also introduce
a technique called the Elimination Algorithm. This technique
finds the optimal solution faster than standard methods by
eliminating states from the search that are guaranteed not to
belong to the optimal stopping set.

In the context of sensor networks, [13] considers an opti-
mal stopping problem on a hidden Markov chain where the
objective is to detect the presence of a target on a line graph
with noisy sensor measurements. A variation is considered
in [14], where an additional decision can be made at each
timestep to pay for perfect information or not. In the context
of optimal investments and task servicing, [15] considers the

2

problem of finding optimal controls at each timestep given
stochastic observations whose objective is to steer the target
towards a desired goal; however, the algorithms that find the
optimal solutions are usually not scalable with the size of the
problem. To this point, some papers such as [16], [17] study
heuristic approaches to find suboptimal control policies and
reduce computation time. We also make a mention here to
robust Markov decision problems, in which the probability
distributions themselves are uncertain [18]. The notion of
robustness that we consider in this paper is different from that
of robust stochastic programming problems in the literature.
Normally, as presented in [18], robustness is a term attached
to an algorithm and conditions for which it can still find
the optimal solution. In this paper, we instead analyze the
robustness of solutions, i.e., once the optimal solution tothe
problem has been found, we determine conditions under which
the optimal solution does not change. Finally, our exposition
is also connected to the increasing body of work on self-
triggered control, see e.g. [19], [20], [21], [22], that reduces
computation, decision making, and implementation efforts
while still guaranteeing a desired level of performance.

Statement of contributions:We begin by formulating the
decision problem under uncertainty described above over a
weighted acyclic digraph. We then specify a probabilistic
model for target motion on the set of paths of the digraph used
by the decision maker and formally define the set of allowable
control policies. The decision problem then corresponds tothe
optimization over the set of control policies of an objective
function that encodes the expected net reward associated with
investing in a destination at a particular time. Our contributions
on this problem are threefold. First, we show that the proposed
scenario can be formulated as an optimal stopping problem on
a Markov chain. We establish the equivalence of finding the
optimal control policy with that of finding the optimal stopping
set of this optimal stopping problem. Second, we build on this
equivalence to design algorithms that find the optimal and
second-to-optimal investment policies and characterize their
correctness and time complexities. TheBEST INVESTMENT

ALGORITHM and SECOND BEST INVESTMENT ALGORITHM

are dynamic programming-based strategies that iteratively
solve simple sub-problems until the desired policy is found.
The knowledge of the second best control policy plays an
important role in our third contribution, which is the analysis
of the robustness of the optimal solution against changing
parameters. Specifically, we obtain explicit bounds on the
change of value of the objective function caused by modifying
the various parameters of the problem: edge weights, path
probabilities, and goal rewards. This allows us to identify
a sufficient condition to determine if the optimal solution
of the problem remains optimal as the parameters change.
The condition we obtain only relies on knowledge of the
new parameters and the optimal and second-to-optimal control
policies for the original parameters. Based on this analysis,
we develop theSELF-TRIGGERED ACQUISITION& DECISION

ALGORITHM that allows the decision maker, under partial
knowledge of the parameter dynamics, to schedule in advance
when to check if the control policy in its memory remains
optimal (and if this test fails, when to recompute it). The

availability of this algorithm yields computational savings
and immediate readiness to the decision maker. Finally, we
obtain worst-case lower bounds on the maximum time that can
elapse under arbitrary parameter dynamics before the optimal
solution must be recomputed. Simulations illustrate our results.

Organization: Section II introduces preliminary concepts
and notation. Section III introduces the investment decision
problem and Section IV reformulates it as an optimal stopping
problem on a Markov chain. Section V presents our best
investment decision policies and establishes their correctness.
Section VI analyzes the robustness of the optimal solution to
changing problem parameters and Section VII builds on this
analysis to design self-triggered control strategies. Finally, we
gather our conclusions in Section VIII.

II. PRELIMINARIES

This section introduces basic but useful concepts from graph
theory and Markov chains. We start with some notational con-
ventions. LetR, R≥0, Z≥0 be the set of real, nonnegative real,
and nonnegative integer numbers, respectively. The cardinality
of a setX is denoted by|X|. Let P(d) = {(α1, . . . , αd) ∈
R≥0 |

∑d
i=1 αi = 1} be the space of probability vectors inRd.

A. Graph theory

A weighted directed graph(or weighted digraph) is a triplet
G = (V,E,A) consisting of a set verticesV , a set of
edgesE ⊂ V × V and an adjacency matrixA ∈ R

|V |×|V |
≥0

satisfying ai,j > 0 if and only if (vi, vj) ∈ E. Edges are
directed, meaning that they are traversable in one direction
only. The sets ofin-neighborsand out-neighborsof v ∈ V
are respectively

N in(v) = {v′ ∈ V | (v′, v) ∈ E},

N out(v) = {v′ ∈ V | (v, v′) ∈ E}.

A vertexv is asourceif N in(v) = ∅ and asink if N out(v) = ∅.
A vertex v is collapsible if |N in(v)| = |N out(v)| = 1. We
let Ĝ denote thecollapsed digraph of G after performing
the following operation until no collapsible vertex exists:
remove each collapsible vertexvj and replace the pair of edges
(vi, vj), (vj , vk) by an edge(vi, vk) with weight ai,j + aj,k.

A directed pathp, or in short path, is an ordered sequence
of vertices such that any two consecutive vertices inp form
an edge inE. For a sources ∈ V , we let P(s) denote all
paths that start ats and end at a sink of the digraph. Given
v ∈ V , we let R(v) andR−1(v) be the set ofdescendants
andancestorsof v, respectively. In other words there exists a
path fromv to all v′ ∈ R(v) and from allv′ ∈ R−1(v) to v.
Given a pathp = (v1, . . . , vm), let

S(p) =
⋃

k∈{1,...,m}

(v1, . . . , vk)

be the set of all subpaths ofp. We define the maplast to
extract the last vertex of a pathp, i.e., last(p) = vm. The
length and weighted length ofp are respectively

lgth(p) = |p| − 1 and lgthw(p) =

m−1∑

k=1

aikik+1
.

3

Given a sinkg and a pathp, let lngthsw(p, g) denote the
weighted length of the shortest path fromlast(p) to g,

lngthsw(p, g) = min{lgthw(p′) | p′ path fromlast(p) to g}.

A path that starts and ends at the same node is called acycle.
An acyclic digraph is a digraph with no cycles. An acyclic
digraph has a finite number of paths and at least one source
and sink. Arooted treeis an acyclic digraph with a root such
that there exists a unique path from the root to each vertex.
Each vertex but the the root has exactly one in-neighbor.

B. Optimal stopping problems on Markov chains

Here we introduce optimal stopping problems on discrete
Markov chains. LetX be a finite state space andP ∈ R

|X|×|X|
≥0

be a row-stochastic matrix. AMarkov chainstarting fromx0 ∈
X is a sequence of random variables{xk | k ∈ Z≥0}, where
given statexk at timek, the probability that the state isxk+1

at time k + 1 is Pxk,xk+1
. The optimal stopping problemis

a triplet M = (X,P,Q), with X and P as above andQ :
X → R is a reward function. The valueQ(x) is the reward
associated with stopping the Markov chain at statex.

Given any x0 ∈ X, let Ex0
denote the expectation of

the sequence of random variables{xk | k ∈ Z≥0} specified
by M and x0. The goal of the problem is to characterize
a set of halting statesY ⊂ X that maximizesEx0

[Q(xτ)],
where xτ is the first time the Markov chain entersY , i.e.,
xk /∈ Y for k < τ . A maximizer of this function is an
optimal stopping setY ∗ ⊂ X. Optimal stopping sets can be
alternatively characterized in terms of thevalue functionV∗,

Y ∗ = {x ∈ X |Q(x) = V∗(x)},

where

V∗(x0) = max
k∈Z≥0

Ex0
[Q(xk)].

III. PROBLEM STATEMENT

In this section we introduce the problem of interest. We
begin with an informal description of the basic elements and
modeling assumptions, then formally describe the problem.

Consider a network of roads described by a weighted acyclic
digraphG = (V,E,A) with a single sources and a set of sinks
S. Assume targets appear at the source and head towards one
of the goals inS, see Figure 1. The weight of an edge can be
interpreted as a measure of the cost it takes a target to traverse
it (e.g., larger weights correspond to longer times or higher
energy cost). Sensors deployed over the graph nodes transmit
information about target positions to a decision maker who
must decide whether or not to start preparing for the arrival
of the target at a goal by committing some resources to it. We
refer to this action as ‘making an investment.’

Since the destination of each target is unknown, the decision
maker must decide when, if ever, to invest in any given goal in
anticipation of a target’s arrival. Our model specifies thatthe
larger the gap between the investment decision time and the
target’s arrival time, the less costly it is to make an investment
for that goal; however, if an investment is made and the target
actually ends up at a different goal, the investment is wasted.
Once a decision to invest has been made, it cannot be retracted
and thus the cost of investing is incurred immediately.

1

2 3

4 5 6

7

8 9

10

Fig. 1. Example network of roads modeled as a weighted acyclic digraph.
All edge weights are equal to1. There are8 paths starting at the source (node
1) and ending at a sink (either node7 or 10). The probabilities associated to
these paths are given by the vectorα = [.05, .1, .15, .2, .05, .1, .15, .2].

A. Probabilistic model for target motion

The exact way a targetT chooses its path along the
digraphG is unknown to the decision maker, who instead uses
the probabilistic model described next. LetpT ∈ P(s) denote
the (unknown to the decision maker) path ofT in G. The set
of trajectories that can be observed by the decision maker as
T moves throughG is preciselyS(pT). Therefore, the set of
all possible trajectories the decision maker may observe is

H(G) =
⋃

p∈P(s)

S(p).

Let n = |P(s)| and assign labels{1, . . . , n} to the paths in
P(s). Let α ∈ P(n) be a probability vector, whereαµ is the
probability that targetT takes pathµ, i.e., pT = pµ. Such
probabilities can be computed in a number of ways, including
incorporating observations about trajectories from past targets,
but we do not enter into this here. Note that this model is more
general than a Markov chain model on the graph (where the
target’s motion only depends on its current state).

According to this model, the decision maker can infer a
target’s future actions as it moves through the network. In
fact, given historyh ∈ H, let Ind(h) = {µ ∈ {1, . . . , n} |h ∈
S(pµ)} denote the set of indices corresponding to the paths
that the target could possibly be on. Any path inInd(h) is
indistinguishable, i.e., consistent with having observed the his-
tory h. Then, the decision maker can compute the probability
that pT = pµ given observationh,

P(pT = pµ|h) =

{
αµ∑

ν∈Ind(h) αν
, if µ ∈ Ind(h),

0, otherwise.

Using this model, the decision maker can compute the prob-
ability that the target will eventually go to a vertexv ∈ V or
another historyh′ ∈ H, as follows,

P(v|h) =
∑

{µ∈{1,...,n} | v∈pµ}

P(pT = pµ|h),

P(h′|h) =
∑

{µ∈{1,...,n} |h′∈S(pµ)}

P(pT = pµ|h).

Both notions will be used throughout the paper. Note that these
will evaluate to1 if the target vertex or history is already in
h and0 if they are not reachable fromh.

B. Allowable control policies

As targets move through the digraph, the decision maker
must decide at each timestep, for each goal, whether an in-
vestment should be made or not. For simplicity of presentation

4

and without loss of generality, the paper considers investment
decisions for one specific goalg (in the case of multiple goals,
our policies can then be applied to each one of them). We
suppress the dependence ong when it is clear from the context.
A control strategy is then a map

u : H → {invest,not-invest}

that specifies, for a target with historyh ∈ H, a decision to
u(h) in goal g ∈ S. The set of all allowable control policies
is denoted byU . Throughout the paper we consider control
strategies that prescribe at most one investment along any
given path. The reason for this is that once an investment
is made for a goal, it does not make sense to make further
investments at the same goal. Formally, for eachp ∈ P(s),
u(h) = invest for at most oneh ∈ S(p). If such a history
exists, we denote it byhu(p), otherwise we sethu(p) = ∅.
We let Invu = ∪µ∈{1,...,n}{hu(pµ)} be the set of all possible
investment histories for policyu.

C. Objective function

Our next step is to define the objective function that the
decision maker seeks to optimize. To this end, we present a
model for the cost of investment and the reward obtained for
making the investment. The cost of investing in goalg for a
target with historyh ∈ H is

c(h) = f
(

1
lngthsw(h,g)

)
,

wheref : R≥0 → R≥0 is a classK function, i.e., continuous,
monotonically increasing, and satisfiesf(0) = 0. Note that the
longer the weighted length of the shortest path fromlast(h)
to g, the smaller the cost. The reward for correctly preparing
for a target’s arrival atg is modeled by a parameterβ ∈ R≥0.
The reward accrued using control policyu is then

Ru(pT) =

{
β, if last(pT) = g andhu(pT) 6= ∅,

0, otherwise.

Since the target’s path is unknown a priori, this reward is not
known when the target is at historyhu(pT) ∈ Invu. Instead,
we define an expected reward using the probabilistic model,

Ehu(pT)[Ru(pT)] = βP(g|hu(pT)).

Now, maximizingEhu(pT)[Ru(pT)]− c(hu(pT)) is the job of
the decision maker. Since the path of the target is unknown, the
objective functionof the decision problem is then the expected
value of this expression over all possible paths,

J(u) = Es
[
Ehu(pT)[Ru(pT)]− c(hu(pT))

]
,

=
∑

h∈Invu

P(h| s) (βP(g|h)− c(h)) . (1)

IV. OPTIMAL STOPPING PROBLEM FORMULATION

Here, we formulate an optimal stopping problem and es-
tablish its equivalence with the decision problem described in
Section III. Specifically, for the goal of interestg ∈ S, we
identify a corresponding optimal stopping problemMinv =
(X,P,Q). The advantage of the reformulation is that the target

motion is Markov onMinv, whereas in general is not for the
original investment problem. The optimal stopping formulation
also allows us to establish the existence of an optimal solution
and sets the basis for our algorithm design.

A. Optimal stopping problem

According to the probability model for target motion dis-
cussed in Section III-A, at any given time, the evolution of a
target alongG depends on the full history of vertices visited
by the target prior to reaching the current vertex. For this
reason, we choose as the state space of the optimal stopping
problem the setX = H(G) of all possible target trajectories
in G, rather than the set of verticesV . Note thatX is a rooted
tree with the sources as root. Each node corresponds to a path
in G whose unique parent is the subpath obtained by removing
the last vertex. The cardinality ofX depends on the graph’s
adjacency matrixA and is upper bounded by

|X| ≤ 1 +
∑

p∈P(s)

lgth(p),

where the summand1 corresponds to the historys. In the
worst case, i.e., whenA is a strictly upper triangular matrix
containing nonzero elements, one has|X| = 2|V |−1.

We define the one-step transition matrixP ∈ R
|X|×|X|
≥0 ,

Px,y =

{
P(y|x), if x ∈ S(y), lgth(y) = lgth(x) + 1,

0, otherwise,

for x, y ∈ X. With the definitions ofX and P , the target
motion now corresponds to a Markov chain on the space of
histories with initial conditions. Figure 2 shows the rooted
treeX with edge weights given byP for the weighted acyclic
digraph depicted in Figure 1.

 0.5
 0.5

 0.3 0.7 0.3
 0.7

 0.333
 0.667 0.429 0.571 0.333 0.667 0.429

 0.571

 1 1 1 1 1 1

1

1 2 1 3

1 2 4 1 2 5 1 3 5 1 3 6

1 2 4 7

1 2 4 8 1 2 5 8 1 2 5 9 1 3 5 8 1 3 5 9 1 3 6 9

1 3 6 10

1 2 4 8 7 1 2 5 8 7 1 2 5 9 10 1 3 5 8 7 1 3 5 9 10 1 3 6 9 10

Fig. 2. State spaceX and transition matrixP of the optimal stopping problem
associated to the problem in Figure 1. Each node represents ahistoryh ∈ H.
Note that all the sinks of this tree correspond to a sink of theoriginal digraph.

The last element of the optimal stopping problem is the
reward functionQ that we define by

Q(x) = βP(g|x)− c(x). (2)

The first term corresponds to the expected reward obtained
from investing in goalg at statex ∈ X and the second term
corresponds to the cost of making this investment.

With the optimal stopping problemMinv = (X,P,Q)
properly defined, the next result follows from [7, Chapter 3]
and the fact thatX is finite.

Lemma IV.1 (Existence of optimal stopping set)For
Minv = (X,P,Q) constructed as above,

5

(i) there exists an optimal stopping setY ∗ ⊂ X, and
(ii) no randomized stopping rule can do better than stopping

the first time the state is inY ∗.

B. Equivalence with the decision problem

Here, we establish the equivalence of the optimal stopping
problem on a Markov chainMinv with the decision problem
described in Section III. To do so, we need a mapping that
relates a halting setY for the optimal stopping problem to a
control policyu for the decision problem and vice versa. This
is accomplished by introducing the notion ofreducedhalting
subset of a halting setY for a given initial conditionx0 as

Yx0
= {x ∈ Y ∩R(x0) | y /∈ Y for y ∈ R−1(x)}.

This set is composed of all the states inY that can be reached
first by a Markov chain starting fromx0. In other words, the
Markov chain cannot reach states inY \ Yx0

without passing
through a state inYx0

. This set has the property that

Ex0
[Q(xτ)] = Ex0

[Q(xτ ′)],

wherexτ andxτ ′ are the first times the Markov chain enters
Y andYx0

, respectively. A halting setY is minimal fromx0

if it satisfies Yx0
= Y . To a halting setY ⊂ X, we then

associate the control policyuY given by

uY (x) =

{
invest, if x ∈ Ys,

not-invest, otherwise.
(3)

Conversely, to a control policyu, we associate the halting
set Invu. Note thatInvu is minimal from s because of the
defining properties of allowable control policies. We can now
draw the connection between the optimal stopping problem
and the problem posed in Section III.

Proposition IV.2 (Equivalence with the investment deci-
sion problem) Given an optimal stopping setY ∗ for the
optimal stopping problemMinv, the control policyuY ∗ is
optimal for the objective function(1). Reciprocally, given an
optimal control policyu∗ for the objective function(1), the
set Invu∗ is an optimal stopping set that is minimal froms.

Proof: We proceed by introducing an objective func-
tion Jos for the optimal stopping problem with initial condition
x0 = s. Given a halting setY , let

Jos(Y) = Es[Q(xτ)], (4)

wherexτ is the first time the Markov chain entersY . We can
rewrite this function as

Jos(Y) = Es [βP(g|xτ)− c(xτ)]

=
∑

x∈Ys

P(x| s) [βP(g|x)− c(x)] .

With this expression in mind, it is easy to see that

Jos(Y) = J(uY), J(u) = Jos(Invu),

from which the result follows.
The following result is a consequence of Lemma IV.1 and

Proposition IV.2.

Corollary IV.3 (Random policies are not better) No ran-
domized control policy does better than an optimal control
policy u∗ : H → {invest,not-invest}.

C. State space reduction for the optimal stopping problem

With the equivalence between the optimal stopping problem
Minv = (X,P,Q) and the decision problem onG established,
our strategy to determine the optimal control policy is to
find the optimal stopping setY ∗. Before proceeding with the
algorithm design, it is advantageous to reduce the size ofMinv

as this naturally results in lower algorithmic complexities. Our
approach proceeds by eliminating states that are guaranteed
not to belong to the optimal set. This is reminiscent of
techniques such as the Elimination Algorithm [11], [12]. We
start by defining acluster C = (x1, . . . , xm) as a maximal
path in the state spaceX such thatN out(xk) = {xk+1} for
k ∈ {1, . . . ,m − 1}. Maximal here means thatC is not
contained in any other path with the same properties. We
refer to x1 as theanchor of clusterC. Intuitively, any state
in X with only one out-neighbor is part of a cluster with
that neighbor. The next result guarantees that eliminatingall
nodes belonging to clusters other than the anchor nodes does
not change the optimal stopping set.

Lemma IV.4 (State space reduction)Consider the optimal
stopping problemMinv = (X,P,Q). Let C1, . . . , Cq denote
the set of all clusters ofX. Then,

Y ∗ ∩ (∪µ∈{1,...,q}C
µ \ {xµ1}) = ∅.

Proof: The result follows by noting that, for any clus-
ter C, the reward obtained by investing at the anchor is
higher than the one obtained at any other cluster node, i.e.,
Q(x1) ≥ Q(xr) for r ≥ 2, and thus it is not optimal to stop
at xr. This fact can be established by noticing that, in (2), the
expected rewardβP(g|x) is the same for allx ∈ C and the
cost functionc is nondecreasing along the pathC.

As a consequence of Lemma IV.4, we define a new optimal
stopping problem̂Minv = (X̂, P̂ , Q̂) with state space

X̂ = X \ (∪µ∈{1,...,q}C
µ \ {xµ1}).

The transition matrixP̂ is created by modifying the original
matrix P . We first replace, for eachµ ∈ {1, . . . , q}, the
row corresponding toxµ1 ∈ Cµ by the row corresponding
to the last element ofCµ. Then, we remove all rows and
columns inP corresponding to the states removed fromX.
Finally, the reward function̂Q is just the restriction ofQ to
X̂. Lemma IV.4 guarantees that the optimal solution found on
Minv is the same solution found on̂Minv. Interestingly,

H(Ĝ) = X̂ ∪ P(s),

i.e., the space of histories corresponding to the collapsed
digraphĜ is the same as the reduced state-spaceX̂ plus the set
of full paths to the sinksP(s). A further simplification can be
done by eliminating the set{x ∈ X̂ | g /∈ R(x)} containing the
states that do not have the goalg in its set of descendants since
their associated reward is trivially zero. Figure 3 illustrates this
discussion and the reduction fromX to X̂.

6

x1 x2 x3

x7 x8 x9

x4 x5 x6

(a)

x1

x7

x4

(b)

x1 x7

(c)

Fig. 3. The original state spaceX with sources = x1 and sinksx6 andx9

is shown in (a). In this case there areq = 3 clusters,C1 = {x1, x2, x3},
C2 = {x4, x5, x6}, andC3 = {x7, x8, x9}. The state-space reduction gives
rise toX̂ in (b) with only 3 states. If the goal of interest isx9, the statex4

can also be removed becausex9 is not reachable fromx4. This can further
reduce the state space to a size of two states as shown in (c).

V. OPTIMAL INVESTMENT DECISION POLICIES

In this section, we design strategies to find the best and
second best control policies for the investment problem in
Section III using dynamic programming techniques on the
optimal stopping problem formulated in Section IV. The
determination of the second best control policy will be useful
later in our robustness analysis. The algorithms can be run on
eitherM = Minv or M = M̂inv.

A. BEST INVESTMENT ALGORITHM

Here, we present an algorithm to solve the optimal stopping
problemM = (X,P,Q) with initial condition s. According
to Bellman’s principle of optimality [2], the decision at any
given statex must be computed assuming that subsequent
decisions constitute an optimal policy with respect to this
statex and decisionu(x). This means before we can find
the optimal decision for the sourceu∗(s), we must already
know the optimal solution at all other states. Our algorithm
thus starts at states for which the optimal solution can be
computed with only one comparison: is it better to invest
or wait at this point? These sub-problems can be solved for
any statex′

0 once the sub-problems have been solved for all
x ∈ R(x′

0). Our algorithm iteratively solves sub-problems for
each initial conditionx′

0 and makes future decisions based on
these solutions. The algorithm runs until the problem is solved
for s. We now describe the algorithm informally.

[Informal description]: Choosex ∈ X such that
the problem is unsolved forx but solved for its
descendants. Compute the value obtained if the chain
is stopped atx and compare it to the expected value
obtained by waiting one timestep. Save the best deci-
sion, store the value, and markx as solved. Proceed
iteratively until the problem is solved forx = s.

The strategy is presented formally in Algorithm 1. The
next result shows that the output of theBEST INVESTMENT

ALGORITHM is the control policyu∗, whereu∗(x) = invest
for all x ∈ Y ∗

s andu∗(x) = not-invest otherwise.

Proposition V.1 (Correctness of the BEST INVESTMENT

ALGORITHM) Given the optimal stopping problemM =
(X,P,Q) for goal g with initial condition s, the BEST

INVESTMENT ALGORITHM finds the optimal solutionu∗ to
the decision problem and its valueV∗(s).

Proof: With the notation of theBEST INVESTMENT

ALGORITHM, given a statex, the valueV (x) corresponds to
the value of the objective function obtained by running control

Algorithm 1 : BEST INVESTMENT ALGORITHM

Initialization:
1: initialize V (x) = 0 for all x ∈ X
2: initialize Solved= ∅
3: initialize Y = ∅

Perform:
1: while there existsx /∈ Solved withR(x) ⊆ Solveddo
2: if Q(x) ≥

∑
y∈N out(x) V (y)Px,y then

3: addx to Y
4: setV (x) = Q(x)
5: else
6: setV (x) =

∑
y∈N out(x) V (y)Px,y

7: end if
8: addx to Solved
9: end while

10: computeuY

policy uY on the sub-problem with initial conditionx. Since
uY is constructed fromY , from the proof of Proposition IV.2
we know thatJ(uY) = Jos(Ys). Therefore, we deduce that
V (s) = J(uY). SinceV∗(s) is the maximum value of the
objective function (4), in order to show thatuY is a maximizer
of (1), all we need to do is establish thatV (s) = V∗(s).

We start by verifying thatV as determined by Algorithm 1
satisfies the Bellman equation [2],

V (x) = max{Q(x),
∑

y∈N out(x)

V (y)Px,y}.

This property is enforced by theif condition in step2: of
Algorithm 1 for all x ∈ X.

Let y ∈ X be such thatR(y) = ∅. Then, it is trivial
to see thatV (y) = max{Q(y), 0} = V∗(y) because no
other investment decisions will be made after statey. Now,
let (x0, . . . , xm) be a path ending inxm = y. Then, using
backward induction and the Bellman equation, we deduce

V (xk−1) = max{Q(xk−1), Exk−1
[V (xk)]} = V∗(xk−1),

for k ∈ {1, . . . ,m}, which concludes the result.
Figure 4 shows the result of an execution of theBEST

INVESTMENT ALGORITHM.

 0.5
 0.5

 0.3 0.7 0.3
 0.7

 0.333
 0.667 0.429

 0.571
 0.333

 0.667 0.429 0.571

 1 1
 1

 1
 1 1

1

1 2 1 3

1 2 4 1 2 5 1 3 5 1 3 6

1 2 4 7 1 2 4 8 1 2 5 8 1 2 5 9 1 3 5 8 1 3 5 9 1 3 6 9 1 3 6 10

1 2 4 8 7 1 2 5 8 7 1 2 5 9 10 1 3 5 8 7 1 3 5 9 10 1 3 6 9 10

Fig. 4. Optimal solution to the problem described in Figure 1 for the goal
of interestg at Node 7, withβ = 20, and cost functionf(z) = 10z. The
optimal stopping setY ∗ is depicted by the 5 circular nodes and the minimal
optimal stopping set from the sourceY ∗

s giving rise to the control policyu∗

corresponds to the bold circles.

The time complexity of theBEST INVESTMENT ALGO-
RITHM is characterized by the following result. Its proof
follows from the fact that the strategy solves|X| sub-problems
and each sub-problem is solved in time complexityO(1).

7

Lemma V.2 The time complexity of theBEST INVESTMENT

ALGORITHM to solveM is O(|X|).

Remarkably, for fixed parametersα, β, andA, Algorithm 1
only needs to be called once to determine a set of rules to
follow. Then, without further computations, the decision maker
can make decisions depending on the target’s position.

B. SECOND BEST INVESTMENT ALGORITHM

Here, we make use of the solution computed by theBEST

INVESTMENT ALGORITHM to find the second best solution to
the optimal stopping problemM . Our strategy relies on the
observation that the optimal stopping set and the second best
stopping set are similar. Given an optimal stopping setY ∗, we
createcandidate stopping sets

C(Y ∗, x) =

{
Y ∗ \ {x}, if x ∈ Y ∗

s ,

(Y ∗ ∪ {x}) \ R−1(x), otherwise.

Recalling that (3) relates halting sets to control policies, these
sets are constructed such thatuC(Y ∗,x)(x) 6= uY ∗(x). For sim-
plicity, we let uC

x = uC(Y ∗,x). The set of all candidate control
policies that we search over is then given byUC = ∪x∈X{uC

x}.
We can now describe the algorithm informally.

[Informal description]: Given the optimal stopping
set, create a set of candidate control policies as
described above. Select the control policy in this set
that has the highest value of the objective function.

We refer to this strategy as theSECOND BEST INVESTMENT

ALGORITHM and formally present it in Algorithm 2. The next
result shows that the output is the second best control policy.

Algorithm 2 : SECOND BEST INVESTMENT ALGORITHM

Initialization
1: initialize V C

x = 0 for all x ∈ X
2: execute theBEST INVESTMENT ALGORITHM

3: computeY ∗
s from Y ∗

Perform:
1: for x ∈ Y ∗

s do
2: setV C

x = V∗(s)− P(x| s)[V∗(x)−
∑

y∈N out(x)[V
∗(y)Px,y]]

3: while N in(x) 6= ∅ do
4: sety = N in(x)
5: setV C

y = V∗(s)− P(y| s) [V∗(y)−Q(y)]
6: setx = y
7: end while
8: end for
9: computex̄ = argmaxx∈X V C

x

10: computeuC
x̄

Proposition V.3 (Correctness of the SECOND BEST IN-
VESTMENT ALGORITHM) Given the optimal stopping prob-
lem M = (X,P,Q) for goal g with initial condition s, the
SECOND BEST INVESTMENT ALGORITHM finds the second
best control policyu′ to the decision problem, i.e., for all
u different fromu∗ and u′,

J(u∗) ≥ J(u′) ≥ J(u).

Proof: Note that the valueV x
C in Algorithm 2 is precisely

the value obtained by the control policyuC
x, i.e.,V x

C = J(uC
x).

Since this algorithm constructs and searches over the policies
in UC , we show here that for everyu 6= u∗, there existsuC

x ∈
UC such thatJ(uC

x) ≥ J(u).
Let xuµ be the statexuµ ∈ Invu at which an investment is

prescribed by control policyu along pathpµ. If it exists, we
let Qu

µ = Q(xuµ), otherwise we letQu
µ = 0. Then, givenu,

J(u∗)− J(u) =
n∑

µ=1

αµ(Q
u∗

µ −Qu
µ),

which is trivially nonnegative.
Take now anyν ∈ {1, . . . , n} such thatxu

∗

ν 6= xuν . Note
that there exists at least one suchν becauseu 6= u∗. If the
control policyu prescribes an investment along pathpν later
than the optimal investment policy, then we write

J(uC
xu
ν
)− J(u) =

∑

µ∈{1,...,n}\Ind(xu∗

ν)

αµ(Q
u∗

µ −Qu
µ)

+
∑

µ∈Ind(xu∗
ν)

αµ




 ∑

x∈N out(xu∗
ν)

P(x|xu
∗

ν)V∗(x)


−Qu

µ


 ,

which is greater than or equal to0. The first sum is for all the
paths at which the optimal investment policy is used compared
to the policyu, and thus is easily shown to be nonnegative. The
second sum is for all paths going through statexu

∗

ν . Investing
at xu

∗

ν is optimal; however,u′ skips it and uses the optimal
policy from the next step onwards. It is also easy to see that
this is nonnegative becausexuµ 6= xu

∗

ν for all µ ∈ Ind(xu
∗

ν).
If the control policyu prescribes an investment along path

pν earlier than the optimal investment policy, then we write

J(uC
xu
ν
)− J(u) =

∑

µ∈{1,...,n}\Ind(xu
ν)

αµ(Q
u∗

µ −Qu
µ),

which is simply the optimal solution along all paths that do
not go throughxuν compared againstu, and again can easily
be shown to be nonnegative. Thus,J(uC

xu
ν
) ≥ J(u).

Figure 5 shows the result of an execution of the algorithm.

 0.5
 0.5

 0.3 0.7
 0.3 0.7

 0.333
 0.667 0.429 0.571 0.333 0.667 0.429

 0.571

 1 1 1 1 1 1

1

1 2 1 3

1 2 4 1 2 5 1 3 5 1 3 6

1 2 4 7

1 2 4 8 1 2 5 8 1 2 5 9 1 3 5 8 1 3 5 9 1 3 6 9

1 3 6 10

1 2 4 8 7 1 2 5 8 7 1 2 5 9 10 1 3 5 8 7 1 3 5 9 10 1 3 6 9 10

Fig. 5. Second best solution to the problem described in Figure 1 for the
goal g at Node 7, withβ = 20, and cost functionf(z) = 10z. The set of
investment statesInvu′ for control policyu′ is depicted by the two circular
nodes. The values of the objective function for the optimal and second best
control policies are given byJ(u∗) = 4.0 andJ(u′) = 3.75, respectively.

Since theSECOND BEST INVESTMENT ALGORITHMtermi-
nates after computing at most|X| candidate valuesJ(uC

x),
where each computation has time complexityO(1), we deduce
the following statement.

8

Lemma V.4 The time complexity of theSECOND BEST IN-
VESTMENT ALGORITHM to solveM is O(|X|).

Remark V.5 (Problem reduction may not preserve the
second best solution)Interestingly, although the optimal
solutions onMinv andM̂inv are the same (cf. Lemma IV.4), this
does not hold in general for the second best solution, i.e., the
output of theSECOND BEST INVESTMENT ALGORITHMmay
be different depending on whether it is executed forMinv or
M̂inv. This is because the reduction fromMinv to M̂inv removes
some solutions inMinv that are guaranteed not to be optimal
(possibly including the second best policy). As we show later
in Remark VII.6, this fact has positive implications on our
analysis of the robustness of solutions. •

VI. ROBUSTNESS OF THE OPTIMAL INVESTMENT POLICY

In this section we are interested in determining conditions
under which the optimal control policy remains optimal for pa-
rameters other than the original ones. Specifically, we consider
changes in the edge weights of the digraph, the probability
model for target motion, and the reward associated with the
goal of interest. Our study is motivated by the idea that small
changes in the parameters may not affect the optimal solution,
and thus it may be wasteful to constantly execute theBEST

INVESTMENT ALGORITHM. This analysis sets the basis for our
forthcoming design of policies that, under partial knowledge of
the parameter dynamics, allows the decision maker to schedule
in advance when future actions need to be taken.

For convenience, denote by

θ = (A,α, β) ∈ Y = R
|V |×|V |
≥0 × P(n)× R≥0

the triplet that consists of an adjacency matrixA for the
graph G, a probability vectorα on the set of pathsP(s)
that start ats and end at a sink, and a rewardβ associated
with correctly preparing for a target reaching the goal. When
necessary, we add a subindex to denote that an element
corresponds to the parameters specified byθ. For instance,
Jθ andMθ denote the objective function (1) and the optimal
stopping problem associated toθ, respectively. Finally, we
denote byukθ ∈ U the kth best control policy for the problem
with dataθ. Therefore,

Jθ(u
1
θ) ≥ Jθ(u

2
θ) ≥ · · · ≥ Jθ(u

|U|
θ). (5)

According to this notation,Jθ′(ukθ) is the value of the objective
function (1) associated toθ′ obtained by using thekth best
control policy for the problem with dataθ. Ideally, given the
problem with dataθ ∈ Y, we would like to determine the set
of parameters with the same optimal control policy, i.e.,

Y(θ) = {θ′ ∈ Y |u1
θ′ = u1

θ}.

Unfortunately, finding a general closed-form expression for
Y(θ) is not possible. Instead, our strategy is to find a subset
of Y(θ) which can be described explicitly.

We start by stating a result that bounds the changes in the
value of the objective function for thekth best control policy
in terms of the changes in the problem data.

Lemma VI.1 (Bounds on performance variation of a con-
trol policy under parameter changes) For θ = (A,α, β),
θ′ = (A′, α′, β′) ∈ Y, let

∆+(θ, θ′) =
n∑

µ=1

max
x∈S(pµ)

{c(x)αµ − c′(x)α′
µ

+ α′
µβ

′
P

′(g|x)− αµβP(g|x)},

∆−(θ, θ′) =

n∑

µ=1

min
x∈S(pµ)

{c(x)αµ − c′(x)α′
µ

+ α′
µβ

′
P

′(g|x)− αµβP(g|x)}.

Then, for anyk ∈ {1, . . . , |U|},

∆−(θ, θ′) ≤ Jθ′(u
k
θ)− Jθ(u

k
θ) ≤ ∆+(θ, θ′). (6)

Proof: This can be seen by expanding out

Jθ′(u
k
θ) =

∑

x∈Inv
uk
θ

P
′(x| s)Qθ′(x)

=
∑

{µ | xk
µ∈Inv

uk
θ
}

α′
µ(β

′
P

′(g|x)− c′(x)),

and verifying that (6) follows.
Combining Lemma VI.1 with the ordering (5), we can

deduce the following useful result.

Corollary VI.2 (Bounds on performance of different con-
trol policies under parameter changes)For θ, θ′ ∈ Y and
any k ∈ {1, . . . , |U|},

Jθ′(u
z
θ′) ≤ Jθ(u

k
θ) + ∆+(θ, θ′), for z ≥ k, (7a)

Jθ′(u
z
θ′) ≥ Jθ(u

k
θ) + ∆−(θ, θ′), for z ≤ k. (7b)

Proof: We prove the first statement here. The proof of
the second statement is analogous. Note that, for allz ≥ k,

Jθ′(u
z
θ) ≤ Jθ(u

z
θ) + ∆+(θ, θ′) ≤ Jθ(u

k
θ) + ∆+(θ, θ′),

where we have used Lemma VI.1 in the first inequality and
the ordering (5) in the second. Therefore, the right-hand side
is an upper bound on the performance of at least|U| − k + 1
control policies. In other words, the inequality

Jθ′(u) > Jθ(u
k
θ) + ∆+(θ, θ′) (8)

can only be true for at mostk− 1 control policiesu ∈ U . To
show that (7a) holds, we now reason by contradiction. Suppose
there existsz ≥ k such thatJθ′(uzθ′) > Jθ(u

k
θ) + ∆+(θ, θ′).

Then, because of the ordering (5), we deduce thatJθ′(u
l
θ′) ≥

Jθ′(u
z
θ′) > Jθ(u

k
θ) + ∆+(θ, θ′) for all l ∈ {1, . . . , z}. Since

z ≥ k, this contradicts the fact that the inequality (8) can only
be true for at mostk − 1 control policies.

The next result builds on Lemma VI.1 to provide an easy
test of whether the solution toMθ remains optimal forMθ′ .

Proposition VI.3 (Criterium for best solution to remain
optimal) For θ ∈ Y, let

Ỹ(θ) = {θ′ ∈ Y | Jθ′(u
1
θ) ≥ Jθ(u

2
θ) + ∆+(θ, θ′)}. (9)

Then,Ỹ(θ) ⊂ Y(θ).

9

Proof: To prove the result, we must show that ifθ′ ∈
Ỹ(θ), then θ′ ∈ Y(θ), i.e., u1

θ′ = u1
θ. We begin by noting

that, given the ordering of values (5) associated to the control
policiesu1

θ, u
2
θ, . . . , condition (9) implies that, for anyk ≥ 2,

Jθ′(u
1
θ) ≥ Jθ(u

k
θ) + ∆+(θ, θ′).

Combining this inequality with Lemma VI.1, we deduce that

Jθ′(u
1
θ) ≥ Jθ′(u

k
θ),

implying that u1
θ is better thanukθ , k ≥ 2, for the problem

with dataθ′, i.e., u1
θ remains optimal.

Proposition VI.3 provides a checkable condition to de-
termine if the optimal control policy remains optimal after
the problem parameters change. Observing (9), the role that
the second best solution plays in evaluating these conditions
becomes clear.

For the problem described in Figures 1-2, we run theBEST

INVESTMENT ALGORITHM to compute the optimal solutionu1
θ

and theSECOND BEST INVESTMENT ALGORITHMto find u2
θ.

We then randomly vary the data of the problemθ = (A,α, β)
by up to 3 percent of their previous value in subsequent
iterations. At each step, instead of running these algorithms
again, we can check whether the new parameters belong
to Ỹ(θ). If they do not, only then does this trigger a re-
execution of theBEST INVESTMENT ALGORITHM. Figure 6
demonstrates the benefit of performing this additional test. In
this case we see that the condition is satisfied until iteration 25
and thus the optimal solution does not need to be recomputed
until then. Corollary VI.2 implies thatJθ(u2

θ) + ∆+(θ, θ′)
is an upper bound on the value obtained by any suboptimal
policy Jθ′(u

k
θ′) for k ≥ 2. Although u2

θ′ does not need to
be recomputed at each timestep, Figure 6 shows the value
Jθ′(u

2
θ′) to illustrate this upper bound on suboptimal policies.

5 10 15 20 25
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

best investment policy

bound on suboptimal policies

2nd best investment policy

J

Iteration

Fig. 6. Illustration of the application of Proposition VI.3for the problem de-
scribed in Figures 1-2. In each iteration, the problem parameters are randomly
changed by up to 3 percent. The curves correspond to the valueobtained by
the optimal investment (solid), the second best investment (dashed), and the
upper bound on all suboptimal investment policies (dotted).

VII. SELF-TRIGGERED ACQUISITION& DECISION

ALGORITHM

Having identified in Section VI conditions under which
the best solution remains optimal under parameter changes,

here we turn our attention to the study of scenarios where
parameters have dynamics, and the decision maker has some
(possibly partial) knowledge of it. We assume the decision
maker can obtain the true parameters at any point in time,
but that doing so has some associated cost. The objective is
then to determine how long the decision maker can go without
knowing the exact values of the parameters while ensuring that
its currently implemented control policy remains optimal.

A. Information available to the decision maker

Here, we describe the information available to the decision
maker about the parameter dynamics. We assume that the
timescale of the target motion in the network is much faster
than the timescale of the evolution of the parameters. Let the
parameter evolution{θ(ℓ) | ℓ ∈ Z≥0} be described by

θ(ℓ+ 1) = θ(ℓ) + w(ℓ) + γ(ℓ). (10)

The model that describes the decision maker’s knowledge is
as follows. The sequence{w(ℓ) | ℓ ∈ Z≥0} is a priori known
by the decision maker, whereas the sequence{γ(ℓ) | ℓ ∈ Z≥0}
is not. We assume that the magnitude of each component of
γ is upper bounded. Specifically, if the components ofγ are
(γ1,1, . . . , γ|V |,|V |, γ1, . . . , γn, γβ), then the decision maker is
also aware of a vector̄γ such that

|γi,j(ℓ)| ≤ γ̄i,j , |γµ(ℓ)| ≤ γ̄µ, and |γβ(ℓ)| ≤ γ̄β , (11)

for all i, j ∈ {1, . . . , |V |} and µ ∈ {1, . . . , n}. Therefore,
at any given timeℓ ∈ Z≥0, the decision maker has some
uncertainty about the exact value of the parametersθ(ℓ) (note
that if γ̄ = 0, then there is no uncertainty at all). Finally, we
assume that the decision maker has the ability to acquire the
true values of the parameters but that this has an associated
cost that it would rather not pay. In the face of this uncertainty,
the objective of the decision maker is to determine for how
long it can operate without exact knowledge of the parameters
and still guarantee that its last computed best investment policy
remains optimal. Our analysis starts by considering initial
parameter valuesθ(ℓ∗) corresponding to the last timeℓ∗ for
which the decision maker computed the best and second best
investment policies. Note that one can rewrite (10) as

θ(ℓ) = θ(ℓ∗) + v(ℓ) + δ(ℓ),

wherev(ℓ) =
∑ℓ−1
k=ℓ∗

w(k) andδ(ℓ) =
∑ℓ−1
k=ℓ∗

γ(k). Note also
that (11) implies thatδ is upper bounded linearly in time.

B. Rationale for algorithm design

To simplify the exposition, in this section we reason for
general̂θ andθ̂′ = θ̂+v+δ. One can readily draw the connec-
tion with the parameter dynamics described above by setting
θ̂ = θ(ℓ∗) and θ̂′ = θ(ℓ), for ℓ ≥ ℓ∗. Given the uncertainty of
θ̂′, the decision maker cannot test the condition (9) directly.
Instead, our approach leverages the partial knowledgeθ̂ + v
about θ̂′ by checking (9) forθ̂ and θ̂ + v, i.e., whether

J
θ̂+v(u

1
θ̂
) ≥ J

θ̂
(u2
θ̂
) + ∆+(θ̂, θ̂ + v) (12)

holds. If this condition fails, we cannot make any guarantee
about the optimal solution corresponding toθ̂′ and thus it is

10

necessary for the decision maker to access the true parameters.
However, if (12) holds, thenu1

θ̂+v
= u1

θ̂
. To determine whether

u1
θ̂′

is the same policy as these, we utilize (9) to check if

J
θ̂′
(u1
θ̂+v

) = J
θ̂′
(u1
θ̂
) ≥ J

θ̂+v(u
2
θ̂+v

) + ∆+(θ̂ + v, θ̂′) (13)

holds. Unfortunately, since botĥθ′ and u2
θ̂+v

are unknown,
we cannot evaluate either side of (13) directly. The following
result is our first step towards solving this dilemma.

Lemma VII.1 (Alternative criterium for best solution to
remain optimal) For θ̂ and θ̂′ = θ̂ + v + δ, if

J
θ̂+v(u

1
θ̂
) + ∆−(θ̂ + v, θ̂ + v + δ)

≥ J
θ̂
(u2
θ̂
) + ∆+(θ̂, θ̂ + v) + ∆+(θ̂ + v, θ̂ + v + δ), (14)

then both(12) and (13) hold.

Proof: The fact that (14) implies (12) readily follows
by noting that∆+(θ, θ′) − ∆−(θ, θ′) ≥ 0 for any θ, θ′. To
show (13), with the notation of Corollary VI.2, lettingθ = θ̂,
θ′ = θ̂′, andk = 2, we can upper bound the RHS of (13) by

J
θ̂+v(u

2
θ̂+v

) + ∆+(θ̂ + v, θ̂′)

≤ J
θ̂
(u2
θ̂
) + ∆+(θ̂, θ̂ + v) + ∆+(θ̂ + v, θ̂′).

On the other hand, since (12) holds, we have thatu1
θ̂+v

= u1
θ̂

by Proposition VI.3. This fact, together with Lemma VI.1,
allows us to lower bound the LHS of (13) by

J
θ̂′
(u1
θ̂+v

) ≥ J
θ̂+v(u

1
θ̂
) + ∆−(θ̂ + v, θ̂′).

As a consequence, we deduce that (14) implies that (13) holds.

Lemma VII.1 provides an alternative condition to (13) that
is easier to check because it does not require knowledge ofu2

θ̂
.

However, the presence of the unknown vectorδ still makes it
uncheckable by the decision maker. Therefore, our next step
consists of using the knowledge (11) available to the decision
maker to upper bound the term

∆+(θ, θ′)−∆−(θ, θ′), (15)

for θ = θ̂ + v and θ′ = θ̂ + v + δ. Given the result in
Lemma VI.1, we refer to (15) as thesize of performance
variation betweenθ and θ′. Before stating our next result,
we need to introduce a piece of notation. Letm(θ) =
min{lngthsw(x, g) |x ∈ X such thatg 6∈ x} be the minimum
shortest weighted length of all states that do not containg.

Lemma VII.2 (Bounds on size of performance variation)
Given θ and θ′, let the magnitude ofθ′ − θ be bounded by
some vectorω component-wise. Assume there existsd∗ > 0
such thatd 7→ f(1/d) is globally Lipschitz on[d∗,∞) with
Lipschitz constantD, i.e., |f

(
1
d

)
− f

(
1
d′

)
| ≤ D|d − d′|, for

all d, d′ ≥ d∗. For θ ∈ Y, define

G(θ, ω) = ωβ +D

|V |∑

i,j=1

ωi,j +
n∑

µ=1

Kµωµ,

with Kµ = diamx∈S(pµ) c(x)+2β(n+1), for µ ∈ {1, . . . , n}.
If m(θ),m(θ′) ≥ d∗, then

∆+(θ, θ′)−∆−(θ, θ′) ≤ G(θ, ω).

Proof: Let diamx∈X(g(x)) = maxx∈X g(x) −
minx∈X g(x) for any real-valued functiong. Two useful
properties of thediam function are that

diamx∈X eg(x) = |e| diamx∈X g(x),

diamx∈X [g1(x) + g2(x)] ≤ diamx∈X g1(x) + diamx∈X g2(x),

for any e ∈ R and real-valued functionsg1 and g2. One can
write out∆+(θ, θ′)−∆−(θ, θ′) as
n∑

µ=1

diamx∈S(pµ)[c(x)(αµ − α′
µ) + α′

µ(c(x)− c′(x)) (16)

+ α′
µP

′(g|x)(β′ − β) + β(α′
µP

′(g|x)− αµP(g|x))].

Using the two properties above, (16) can be upper bounded by
n∑

µ=1

|αµ − α′
µ| diamx∈S(pµ) c(x)

+ α′
µ diamx∈S(pµ)(c(x)− c′(x))

+ α′
µ|β

′ − β| diamx∈S(pµ) P
′(g|x)

+ β diamx∈S(pµ)(α
′
µP

′(g|x)− αµP(g|x)).

Given the statement of the result, we need to work on all
but the first term. Using the definition of the costc and the
globally Lipschitz assumption ond 7→ f(1

d
), we upper bound

α′
µ diamx∈S(pµ)(c(x)− c′(x)) ≤ α′

µD

|V |∑

i,j=1

|a′i,j − ai,j |.

The third term is readily upper bounded using that
diamx∈S(pµ) P(g|x) ≤ 1. Finally, the fourth term can
be dealt with as follows. Givenx, let Z(x) = {ν ∈
Ind(x) | last(pν) = g} denote the set of indices of the paths
that containx and finish at the goalg. Note that
(∑

ν∈Ind(x)

αν
∑

υ∈Ind(x)

α′
υ

)(
α′
µP

′(g|x)− αµP(g|x)
)

= α′
µ

∑

ψ∈Z(x)

α′
ψ

∑

ν∈Ind(x)

αν − αµ
∑

χ∈Z(x)

αχ
∑

υ∈Ind(x)

α′
υ

= α′
µ

∑

ν∈Ind(x)

αν
∑

χ∈Z(x)

(α′
χ − αχ)

+ α′
µ

∑

χ∈Z(x)

αχ
∑

ν∈Ind(x)

(αν − α′
ν)

+
∑

χ∈Z(x)

αχ
∑

υ∈Ind(x)

α′
υ(α

′
µ − αµ).

DenotingW (x) = Ind(x) \ Z(x), one can further simplify
this expression as

α′
µ

∑

φ∈W (x)

αφ
∑

χ∈Z(x)

(α′
χ − αχ) + α′

µ

∑

χ∈Z(x)

αχ
∑

φ∈W (x)

(αφ − α′
φ)

+
∑

χ∈Z(x)

αχ
∑

υ∈Ind(x)

α′
υ(α

′
µ − αµ).

11

Given thatInd(x) = Z(x) ·∪W (x) andµ ∈ Ind(x),

max
x∈S(pµ)

[α′
µP

′(g|x)− αµP(g|x)]

≤ α′
µ max
x∈S(pµ)

(∑
χ∈Z(x) |α

′
χ − αχ|+

∑
φ∈W (x) |αφ − α′

φ|∑
υ∈Ind(x) α

′
υ

)

+ |α′
µ − αµ| ≤

n∑

ν=1

|α′
ν − αν |+ |α′

µ − αµ|.

Similarly, −minx∈S(pµ)[α
′
µP

′(g|x) − αµP(g|x)] is upper
bounded by the same quantity, thus

diamx∈S(pµ)[α
′
µP

′(g|x)− αµP(g|x)]

≤ 2(|α′
µ − αµ|+

n∑

ν=1

|α′
ν − αν |),

from which the result follows.
Using Lemma VII.2 in (14) withθ = θ̂+ v, θ′ = θ̂+ v+ δ

andω = δ, we deduce

J
θ̂+v(u

1
θ̂
) ≥ J

θ̂
(u2
θ̂
) + ∆+(θ̂, θ̂ + v) +G(θ̂ + v, δ). (17)

Therefore, if this condition is satisfied, Lemma VII.1 implies
that (12) and (13) hold, which meansu1

θ̂′
= u1

θ̂
. Fortu-

nately, (17) can be checked by the decision maker with the
information it possesses. This sets the basis for the designof
self-triggered policies, which we address next.

C. SELF-TRIGGERED ACQUISITION& DECISION ALGORITHM

This section presents a strategy that builds on the conditions
identified in Section VII-B to determine, with the information
available to the decision maker about the parameter dynamics
described in Section VII-A, the longest period of time for
which the best investment policy is guaranteed to remain
optimal. We refer to this strategy as theSELF-TRIGGERED

ACQUISITION& DECISION ALGORITHM and present it for-
mally in Algorithm 3. The term ‘self-triggered’ is meant to
emphasize the fact that the decision maker determines this
period of time autonomously.

The output of the SELF-TRIGGERED ACQUISITION&-
DECISION ALGORITHM is the number of timesteps∆ℓsleep for
which the decision maker can ‘sleep’, i.e., starting from the
time ℓ at which the strategy is executed, the current optimal
solution is guaranteed to remain optimal for at least∆ℓsleep

timesteps.

Proposition VII.3 (Correctness of the SELF-TRIGGERED

ACQUISITION & DECISION ALGORITHM) Under the model
for parameter evolution described in Section VII-A, let∆ℓsleep

andu1 be as defined by theSELF-TRIGGERED ACQUISITION-
& DECISION ALGORITHM executed at timeℓ ∈ Z≥0. Then, the
control policy u1 is guaranteed to be optimal for timesteps
ℓ, ℓ+ 1, . . . , ℓ+∆ℓsleep− 1.

Proof: We show that the SELF-TRIGGERED

ACQUISITION& DECISION ALGORITHM ensures that
condition (17) is satisfied forℓ, ℓ+ 1, . . . , ℓ+∆ℓsleep− 1 and
thusu1 remains optimal. Forℓ′ ≥ ℓ, let v(ℓ′) =

∑ℓ′−1
k=ℓ w(k)

and δ(ℓ′) =
∑ℓ′−1
k=ℓ γ(k). Steps 1:-5: of Algorithm 3

Algorithm 3 : SELF-TRIGGERED ACQUISITION& DECISION

ALGORITHM

Information kept in memory:
1: θold = θ(ℓ∗) {parameter vector at the last execution of theBEST and

SECOND BEST INVESTMENT ALGORITHMS}
2: u1 = u1

θold
andu2 = u2

θold

At current timeℓ:
1: acquire new parametersθnew = θ(ℓ)
2: initialize ∆ℓsleep= ∞ and∆ℓtest = 1

3: initialize v(ℓ′) =
∑ℓ′−1

k=ℓ
w(k)

Perform:
1: if Jθnew(u

1) < Jθnew(u
2) + ∆+(θold, θnew) then

2: execute theBEST INVESTMENT ALGORITHM and updateu1

3: execute theSECOND BEST INVESTMENT ALGORITHMand updateu2

4: setθold = θnew
5: end if
6: while ∆ℓsleep> ∆ℓtest do
7: if Jθnew+v(ℓ+∆ℓtest)(u

1) < Jθold(u
2) + ∆+(θold, θnew + v(ℓ +

∆ℓtest)) +G(θnew+ v(ℓ+∆ℓtest), γ̄∆ℓtest) then
8: ∆ℓsleep= ∆ℓtest
9: end if

10: ∆ℓtest = ∆ℓtest+ 1
11: end while

guarantee that the control policyu1 in memory is the optimal
one for the parametersθ(ℓ) at time ℓ. With the notation of
Section VII-B, let θ̂ = θ(ℓ∗), where ℓ∗ corresponds to the
last time when theBEST and SECOND BEST INVESTMENT

ALGORITHMS were executed, and letv = θ(ℓ)−θ(ℓ∗)+v(ℓ′)
and δ = δ(ℓ′). Step7: ensures that (17) is satisfied where
G(θ̂+ v, δ) is replaced byG(θ̂+ v, γ̄(ℓ′− ℓ)) using the upper
bound onδ(ℓ′) induced by (11).

Remarkably, if the decision maker has full knowledge
of how parameters evolve, i.e.,̄γ = 0, then the SELF-
TRIGGERED ACQUISITION& DECISION ALGORITHM simply
consists of checking the first time that (9) will be violated.
In particular, Figure 6 can be seen as an execution of the
SELF-TRIGGERED ACQUISITION& DECISION ALGORITHM for
this case.

Figure 7 shows another simple example of how theSELF-
TRIGGERED ACQUISITION& DECISION ALGORITHM works
where three parameters are changed linearly in such a way
that the initial second best control policy eventually becomes
optimal. When the parameter evolution is completely un-
known, the strategy yields∆ℓsleep = 1. Instead, when the
parameter evolution is completely known, the strategy greatly
improves to∆ℓsleep = 19 timesteps. This is a remarkable
match with the fact that the first time the optimal solution
changes is after20 timesteps. The monotonically increasing
plot in Figure 7(c) corresponds to the fact that, as the part of
the parameter dynamics that is known to the decision maker
becomes dominant, the periods of guaranteed optimality of the
current best investment decision policy become larger.

Remark VII.4 (SELF-TRIGGERED ACQUISITION & RE-
COMPUTATION ALGORITHM) An alternative, simpler
version of Algorithm 3 consists of eliminating the ‘if’
condition in steps1: and 5: so that, each time the strategy
prescribes a ‘wake-up call’, the best and second best
control policies are recomputed with the newly acquired
parameters. We refer to this policy as theSELF-TRIGGERED

12

2

6

1

5

4

3

(a)

 0.05 0.15 0.8

 1 0.667 0.333 1

1

1 2 1 3 1 4

1 2 5 1 3 5 1 3 6 1 4 6

(b)

4

8

12

16

20

0
0 0.2 0.4 0.6 0.8 1

(c)

κ

∆ℓsleep

Fig. 7. Illustration of the application of theSELF-TRIGGERED ACQUISITION& DECISION ALGORITHM for the example problem displayed in (a) with
α = [.05, .1, .05, .8]. The goal of interest is Node 5. The corresponding optimal stopping problem and optimal solution (black circles) are shownin (b). In
each iteration, the edge weight between Node 2 and Node 5 is decreased by0.08, the probabilityα1 is decreased by0.002, andα2 is increased by0.002.
The result of theSELF-TRIGGERED ACQUISITION& DECISION ALGORITHM is shown in (c) for various levels of knowledgeκ =

|v(ℓ)|
|v(ℓ)|+γ̄

on the perturbations
in the parameters. The perfect-knowledge case is captured byκ = 1 corresponding tōγ = 0 and recovers condition (9). The no-knowledge case is captured
by κ = 0 corresponding tov(ℓ) = 0 for all ℓ. The red circle in the top right corner of (c) corresponds to the exact time when the optimal solution changes.

ACQUISITION& RECOMPUTATION ALGORITHM. Instead, the
SELF-TRIGGERED ACQUISITION& DECISION ALGORITHM

aims to save on executions of theBEST and SECOND BEST

INVESTMENT ALGORITHMS by checking whether the control
policy u1 in memory remains optimal for the new parameters
before scheduling the next ‘wake-up call’. •

D. Worst-case performance guarantees

As a byproduct of our analysis, we provide explicit guaran-
tees on how long the optimal solution remains optimal while
the problem parameters change in the worst possible way.

Corollary VII.5 (Worst-case performance guarantee) Let
the parameter evolution be described byθ(ℓ+1) = θ(ℓ)+γ(ℓ),
where the magnitude of each component ofγ is upper bounded
by γ̄ as in(11). Givenθ(0) = θ, choosed∗ such that{θ(ℓ) | ℓ ∈
Z≥0} satisfiesm(θ(ℓ)) ≥ d∗ for all ℓ ∈ Z≥0 andd 7→ f(1/d)
is globally Lipschitz on[d∗,∞) with Lipschitz constantD.
Then, the number of timesteps for which the control policyu1

θ

remains optimal is lower bounded by

Jθ(u
1
θ)− Jθ(u

2
θ)

G(θ, γ̄)
. (18)

The proof of this result follows from the discussion in
Section VII-B by using the fact that (11) induces a bound
for δ(ℓ) =

∑ℓ−1
k=0 γ(k) linear in time and thatG is linear

in its second argument. In general, the bound provided by
Corollary VII.5 is conservative because of our worst-case
considerations. We consider a simple example in Figure 8 in
which only one parameter is changed linearly in such a way as
to decrease the performance gap between the best and second
best policies. Applying the result of Corollary VII.5, we obtain
6 timesteps as a lower bound. Figure 8 shows that in fact it
takes31 iterations until the optimal solution changes. This
mismatch can be traced back to the proof of Lemma VII.2
where we bound the size of performance variation.

Remark VII.6 (Connection between the robustness of the
best solution and its performance gap with the second
best solution)From Corollary VII.5 it is clear that the larger

0 5 10 15 20 25 30
0.5

1

1.5

2

best investment policy

bound on suboptimal policies
2nd best investment policy

Iteration

Fig. 8. Illustration of the application of Corollary VII.5 for the simple
example problem displayed in Figure 7. In each iteration, theedge weight
between Node 2 and Node 5 is decreased by0.05. The curves in (c)
correspond to the value obtained by the optimal investment (solid), the second
best investment (dashed), and the upper bound on all suboptimal investment
policies (dotted). The optimal solution changes after31 iterations, whereas
the worst-case lower bound given by Corollary VII.5 is6.

the initial performance gap between the best and second best
control policies, the more ‘robust’ the optimal solution is.
As noted in Remark V.5, the second best control policyu2

θ

may be different forMinv and M̂inv. Since the state spacêX
of M̂inv is contained in the state spaceX of Minv, the allowable
control policies forM̂inv are a subset of the control policies
for Minv. Therefore, the performance of the second best control
policy of M̂inv can be no worse than that of the second best
control policy ofMinv, and thus we can make better guarantees
on M̂inv. •

VIII. C ONCLUSIONS

We have considered a class of problems where targets
emerge from some known location and move towards some
unknown destination in a weighted acyclic digraph. We have
designed theBEST INVESTMENT ALGORITHM and shown that
it is guaranteed to find the optimal control policy for deciding
when to make preparations for the arrival of a target at
a specific destination. We have also designed theSECOND

BEST INVESTMENT ALGORITHM to find the second-to-optimal

13

control policy and used it to investigate the robustness of the
optimal solution against changes in the problem parameters.
We have built on these conditions to obtain lower bounds,
under arbitrary dynamics of the problem parameters, on the
number of timesteps until the optimal solution changes. Our
study has resulted in the synthesis of theSELF-TRIGGERED

ACQUISITION& DECISION ALGORITHM to schedule in ad-
vance when future actions should be taken. Future work will
be devoted to studying the setup where the decision maker
only has access to some nodes of the network of roads or
the sensors are noisy and may therefore have an incomplete
knowledge of target histories; the case where the parameters
of the problem are changing quickly as compared to how fast
the targets move through the network; and understanding how
the parameters of the problem must be selected in order to
make optimal an a priori chosen investment policy.

ACKNOWLEDGMENTS

This research was partially supported by NSF award CCF-
0917166.

REFERENCES

[1] N. V. Sahinidis, “Optimization under uncertainty: State-of-the-art and
opportunities,”Computers and Chemical Engineering, vol. 28, pp. 971–
983, 2004.

[2] D. P. Bertsekas,Dynamic Programming and Optimal Control, Vol. 1.
Athena Scientific, 2 ed., 2001.

[3] M. L. Puterman,Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Statistics, New
York: Wiley, 2008.

[4] J. R. Birge and F. Louveaux,Introduction to Stochastic Programming.
Springer Series in Operations Research, New York: Springer, 1997.

[5] Y. Kadota, M. Kurano, and M. Yasuda, “Utility-optimal stopping in a
denumerable Markov chain,”Bulletin of informatics and cybernetics,
vol. 28, no. 1, pp. 15–21, 1996.

[6] A. N. Shiryaev,Optimal Stopping Rules. Springer, 1978.
[7] T. S. Ferguson,Optimal Stopping and Applications. University of

California, Los Angeles, 2008.
[8] N. H. Bingham and G. Peskir, “Optimal stopping and dynamic program-

ming,” in Encyclopedia of Quantitative Risk Analysis and Assessment
(E. L. Melnick and B. Everitt, eds.), vol. 1, pp. 1236–1243, Chichester,
England: Wiley, 2008.

[9] A. Ruiz-Moncayo, “Optimal stopping for functions of Markov chains,”
The Annals of Mathematical Statistics, vol. 39, no. 6, pp. 1905–1912,
1968.

[10] H. J. Kushner, “Computational procedures for optimal stopping problems
for Markov chains,”Journal of Mathematical Analysis and Applications,
vol. 25, no. 3, pp. 607–615, 1969.

[11] I. Sonin, “The elimination algorithm and its application to the optimal
stopping problem,” inIEEE Conf. on Decision and Control, (San Diego,
CA), Dec. 1997.

[12] I. Sonin, “The optimal stopping of Markov chain and recursive solution
of Poisson and Bellman equations,” inThe Shiryaev Festschrift: From
Stochastic Calculus to Mathematical Finance(Y. Kabanov, R. Lipster,
and J. Stoyanov, eds.), vol. XXXVIII, pp. 609–621, New York:Springer,
2006.

[13] M. Huang and G. N. Nair, “Detection of random targets in sensor
networks with applications,” inIFAC World Congress, (Prague, CZ),
July 2005. Electronic proceedings.

[14] G. E. Monahan, “Optimal stopping in a partially observable binary-
valued Markov chain with costly perfect information,”Journal of
Applied Probability, vol. 19, no. 1, pp. 72–81, 1982.

[15] M. L. Liu and N. V. Sahindis, “Optimization in process planning under
uncertainty,” Industrial & Engineering Chemistry Research, vol. 35,
no. 11, pp. 4154–4165, 1996.

[16] A. Bemporad, D. M. de la Peña, and P. Piazzesi, “Optimal control
of investments for quality of supply improvement in electricalenergy
distribution networks,”Automatica, vol. 42, no. 8, pp. 1331–1336, 2006.

[17] K. D. Glazebrook, P. S. Ansell, R. T. Dunn, and R. R. Lumley, “On
the optimal allocation of service to impatient tasks,”Journal of Applied
Probability, vol. 41, no. 1, pp. 51–72, 2004.

[18] A. Thiele, “Robust stochastic programming with uncertain probabilities,”
IMA Journal of Management Mathematics, vol. 19, pp. 289–321, 2008.

[19] M. Velasco, P. Marti, and J. M. Fuertes, “The self triggered task model
for real-time control systems,” inProceedings of the 24th IEEE Real-
Time Systems Symposium, pp. 67–70, 2003.

[20] X. Wang and M. D. Lemmon, “Self-triggered feedback control systems
with finite-gain L2 stability,” IEEE Transactions on Automatic Control,
vol. 54, no. 3, pp. 452–467, 2009.

[21] A. Anta and P. Tabuada, “To sample or not to sample: self-triggered
control for nonlinear systems,”IEEE Transactions on Automatic Control,
vol. 55, no. 9, pp. 2030–2042, 2010.

[22] C. Nowzari and J. Cortés, “Self-triggered coordination of robotic net-
works for optimal deployment,”Automatica, vol. 48, no. 6, pp. 1077–
1087, 2012.

