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Abstract—This paper considers a class of scenarios where The edge weights represent the time it takes the correspgndi
targets emerge from some known location and move towards node to examine the task against a specific feature. The task
some unknown destinations in a weighted acyclic digraph. A de- ta1a556 controller must make a decision on the task type and,

cision maker with knowledge of the target positions must decide b d this decisi - it t Th i
when preparations should be made at any given destination for ased on tis decision, assigh It to Someone. e earlier a

their arrival. The decision maker faces a timing trade-off: early ~task is assigned, the higher the risk that it was assigned
decisions mean more time for preparation at the cost of higher incorrectly. Similarly, in supply chain management, tasgean
uncertainty in the target's true destination while later decisions pe thought of as customer demands that must be met by a
mean less uncertainty at the cost of having less time to prepare. gacific deadline. The supervisor must make decisions as to
We show how this problem can be. formglated as an optlmal h h v of diff t ducts t h head of
stopping problem on a Markov chain. This sets the basis for OW Much Supply or diiférent products to purchase ahead o
the introduction of the BEST INVESTMENT ALGORITHM which time to meet customer demand while overstocking as little
prescribes when investments must be made conditioned on theas possible. In this scenario, the earlier the purchase of a
target's motion along the digraph. We establish the optimality product is made, the lower the price of the product while the
of this prescription and examine its robustness against changes pigher the uncertainty in the demand. On the other hand, if
in the problem parameters, identifying sufficient conditions to . .
determine whether the solution computed by theBEST INVEST- the supervisor puts off placing orders_ to more accurateljgga
MENT ALGORITHM remains optimal. Based on this analysis, we Customer demand, the cost of rushing products to customers
develop the SELF-TRIGGERED ACQUISITION & DECISION ALGO - may have increased. This setup can again be modeled as a
RITHM that allows the depision maker, und(_er partial knowledge target moving through a graph where nodes represent differe
of the parameter dynamics, to schedule in advance when 10 o;stomer demands at a specific instances of time before the
phegk if the .control policy in its memory remains optlmal and, deadii d ed iaht t el d ti
if this test fails, when to recompute it. Finally, we obtain worst- 9€adlin€ and edge weighis represent elapsed time.
case lower bounds on the maximum time that can elapse under ~ Literature review: The subject matter of the problem con-
arbitrary parameter dynamics before the optimal solution must sidered here is optimal decision making under uncertainty,
be recomputed. Simulations illustrate our results. and has connections with Markov decision processes, optima
stopping, and dynamic programming. A discussion of current
techniques and challenges related to optimization prablem
under uncertainty is documented in [1]. Common to almost all
This paper considers a scenario where targets appear #ese problems is some sort of stochastic dynamic program-
known location and move through an acyclic directed graph #ing solution, see [2], [3], [4]. For a specific class of wili
some unknown destination, possibly different for eachetirg functions, simpler solutions can be found [5]. Interediing
The graph is an abstraction that represents connectioiiils auie problem we pose can be cast as an optimal stopping
able to the targets between points of interest in an envieatm problem on a rooted directed tree for which we can find an
A group of sensors deployed over the nodes of the netwaglgorithmic solution that scales with the size of the stagcs.
report the presence of targets to a decision maker. For artye works [6], [7], [8] present a broad exposition of opti-
given target, it is the job of the decision maker to idenmal stopping problems and their applications. For a specific
tify the target's potential destination and make prepereti family of optimal stopping problems on Markov chains, [9]
accordingly (for instance by committing some resources tablishes existence of solutions and [10] reviews method
the destination). The earlier these preparations are nthée, to solve them. We refer to [11], [12] for an exposition of the
less resources we need. The decision maker must balanceg@geral discrete time and space problem which also inteduc
desire to correctly identify the target's true destinatioith g technique called the Elimination Algorithm. This techréq
the amount of resources that must be committed. finds the optimal solution faster than standard methods by
This type of decision problem appears in a variety of scenafiminating states from the search that are guaranteedonot t
ios including supply chain management, resource allogatidelong to the optimal stopping set.
queuing, servicing problems, and pursuit-evasion games onn the context of sensor networks, [13] considers an opti-
road networks. For example, in queuing, targets can be titougnal stopping problem on a hidden Markov chain where the
of as heterogeneous tasks that travel through a network gjective is to detect the presence of a target on a line graph
nodes where different skills exist for identifying taskti@@s. with noisy sensor measurements. A variation is considered
, _ in [14], where an additional decision can be made at each
The authors are with the Department of Mechanical and Aenespa,. . .
Engineering, University of California, San Diego, CA 92098iSA, tmestep to pay for perfect information or not. In the comtex
{cnowzari, cortes}@csd. edu of optimal investments and task servicing, [15] considées t
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problem of finding optimal controls at each timestep giveavailability of this algorithm yields computational sags
stochastic observations whose objective is to steer tlgettarand immediate readiness to the decision maker. Finally, we
towards a desired goal; however, the algorithms that find thbtain worst-case lower bounds on the maximum time that can
optimal solutions are usually not scalable with the sizehef t elapse under arbitrary parameter dynamics before the aptim
problem. To this point, some papers such as [16], [17] studplution must be recomputed. Simulations illustrate osuits.
heuristic approaches to find suboptimal control policied an Organization: Section Il introduces preliminary concepts
reduce computation time. We also make a mention here aod notation. Section IIl introduces the investment deaisi
robust Markov decision problems, in which the probabilitproblem and Section IV reformulates it as an optimal stogpin
distributions themselves are uncertain [18]. The notion @foblem on a Markov chain. Section V presents our best
robustness that we consider in this paper is different frioat t investment decision policies and establishes their coress.
of robust stochastic programming problems in the liteeturSection VI analyzes the robustness of the optimal solution t
Normally, as presented in [18], robustness is a term atthch&hanging problem parameters and Section VIl builds on this
to an algorithm and conditions for which it can still findanalysis to design self-triggered control strategiesalfinwe
the optimal solution. In this paper, we instead analyze tlgather our conclusions in Section VIII.
robustness of solutions, i.e., once the optimal solutiothto
problem has been found, we determine conditions under which Il. PRELIMINARIES
the optimal solution does not change. Finally, our expositi  This section introduces basic but useful concepts fromtgrap
is also connected to the increasing body of work on seliheory and Markov chains. We start with some notational con-
triggered control, see e.g. [19], [20], [21], [22], that veds ventions. LefR, R, Z>( be the set of real, nonnegative real,
computation, decision making, and implementation effortgnd nonnegative integer numbers, respectively. The calitin
while still guaranteeing a desired level of performance. of a setX is denoted by X|. Let P(d) = {(a1,...,aq) €
Statement of contributionsWe begin by formulating the Rso | Zj:l «; = 1} be the space of probability vectorsikt.
decision problem under uncertainty described above over a
weighted acyclic digraph. We then specify a probabilistig_ Graph theory
model for t_arget motion on the set of pqths of the digraph usedA weighted directed graptor weighted digraph) is a triplet
by the decision maker and formally define the set of aIIowabE: — (V.E,A) consisting of a set vertices’, a set of
control policies. The decision problem then correspondiéo - g o Vx|V
optimization over the set of control policies of an objeetiVEdgesE cVxv gnd an adja_cency matrid € R,
function that encodes the expected net reward associathd ngitlsfylng Gij > 0 if and only if (vi,v;) € Ei Edges are.
investing in a destination at a particular time. Our conititns Irected, meaning thqt they are traver;able in one dinectio
on this problem are threefold. First, we show that the preposonly' The s_ets oin-neighborsand out-neighborsof v € V
scenario can be formulated as an optimal stopping problem A5 respectively
a Markov chain. We establish the equivalence of finding the Nw)={v' e V|(v',v) € E},
optimal <_:ontrq| policy Wlt_h that of finding the optimal stdpg NOU() = {o € V| (v,0/) € E}.
set of this optimal stopping problem. Second, we build o thi _
equivalence to design algorithms that find the optimal arvertexv is asourceif A'"(v) = () and asinkif N°*(v) = 0.
second-to-optimal investment policies and charactefiwsrt A Vvertex v is collapsibleif [N (v)| = [N(v)] = 1. We
correctness and time complexities. ThesT INVESTMENT let G denote thecollapsed digraph of G after performing
ALGORITHM and SECOND BEST INVESTMENT ALGORITHM the following operation until no collapsible vertex exists
are dynamic programming-based strategies that itergtivémove each collapsible vertex and replace the pair of edges
solve simple sub-problems until the desired policy is faundvi v;), (vj,vx) by an edge(v;, vi) with weighta; ; + a; k.
The knowledge of the second best control policy plays anA directed pathp, or in short path, is an ordered sequence
important role in our third contribution, which is the angily Of vertices such that any two consecutive verticep iform
of the robustness of the optimal solution against changif§ €dge inE. For a sources € V, we let P(s) denote all
parameters. Specifically, we obtain explicit bounds on t@ths that start at and end at a sink of the digraph. Given
change of value of the objective function caused by modifyir? € V, we let R(v) and R~'(v) be the set ofdescendants
the various parameters of the problem: edge weights, paifdancestorsof v, respectively. In other words there exists a
probabilities, and goal rewards. This allows us to identifpath fromo to all v* € R(v) and from allv’ € R™(v) to v.
a sufficient condition to determine if the optimal solutiof3iven a pathp = (v1,...,vm), let
of the problem remains optimal as the parameters change. &(p) = U o vg)
The condition we obtain only relies on knowledge of the T
new parameters and the optimal and second-to-optimalaontr ]
policies for the original parameters. Based on this anglysPe the set of all subpaths gf We define the mapast to
we develop theSELF-TRIGGERED ACQUISITIONG DECIsion  extract the last vertex of a path i.e., last(p) = v,,. The
ALGORITHM that allows the decision maker, under partid®ndth and weighted length gf are respectively
knowledge of the parameter dynamics, to schedule in advance m—1
when to check if the control policy in its memory remains  Igth(p) = |p|—1 and Igth“(p) = Z Qipigyr -
optimal (and if this test fails, when to recompute it). The k=1

ke{l,...,m}



Given a sinkg and a pathp, let Ingth®"“(p, g) denote the (1)

weighted length of the shortest path frdast(p) to g, /@\ (5)

Ingth®” (p, g) = min{lgth"(p’) |p’ path fromlast(p) to g}. (4 (5) 0
A path that starts and ends at the same node is caligdla O ®\

An acyclic digraphis a digraph with no cycles. An acyclic () (1)

digraph has a finite number of paths and at least one source
and sink. Arooted treeis an acyclic digraph with a root suchFig. 1.  Example network of roads modeled as a weighted acyigiaph.

: ; Il edge weights are equal tb There are8 paths starting at the source (node
that there exists a unique path from the root to each Vert‘%gand ending at a sink (either nodeor 10). The probabilities associated to

Each vertex but the the root has exactly one in-neighbor. these paths are given by the vector= [.05, .1,.15,.2,.05, .1, .15, .2).

B. Optimal stopping problems on Markov chains . _
A. Probabilistic model for target motion

Here we introduce optimal stopping problems on discrete )
|X|x|X| The exact way a targef’ chooses its path along the

Markov chains. LeX be a finite state space aftlc R di . - .

be a row-stochastic matrix. Markov chainstarting fromz igraphG IS .un_known to the d_eC|S|on maker, who instead uses

X is a sequence of random variablés, | k € Z-o}, where the probabilistic model dggcrlbed next. gt € P(s) denote

given stater;, at timek, the probability that the state 8,11 the (u_nknoyvn to the decision maker) path®in G._The set

at timek + 1 is Py, ., ,,. The optimal stopping problenis of trajectories that can be_observed by the decision maker as
T moves throughG is preciselyS(pr). Therefore, the set of

a triplet M = (X, P,Q), with X and P as above and) : ) ; i M .
X — R is a reward function. The valu@(z) is the reward all possible trajectories the decision maker may observe is

associated with stopping the Markov chain at state H(G) = U S(p).
Given anyz, € X, let E,, denote the expectation of pEP(s)

the sequence of random variablés, |k € Z>,} specified
by M and xzy. The goal of the problem is to characteriz
a set of halting state¥ C X that maximizesE,, [Q(z)],
where z,. is the first time the Markov chain entels, i.e.,
xr ¢ Y for k < 7. A maximizer of this function is an
optimal stopping set™ C X. Optimal stopping sets can be
alternatively characterized in terms of thielue functiony*,

Let n = |P(s)| and assign label$l,...,n} to the paths in
e73‘(3). Let o € IP(n) be a probability vector, where,, is the
probability that targetl” takes pathy, i.e., pr = p,. Such
probabilities can be computed in a number of ways, including
incorporating observations about trajectories from pagfets,
but we do not enter into this here. Note that this model is more
general than a Markov chain model on the graph (where the
Y*={r e X|Q(z) =V"(2)}, target’s motion only depends on its current state).
According to this model, the decision maker can infer a
target’s future actions as it moves through the network. In
Vi(xo) = et B, [Qxr)]- fact, given historyh € H, letInd(h) = {p € {1,...,n}|h €
N S(pu)} denote the set of indices corresponding to the paths
lll. PROBLEM STATEMENT that the target could possibly be on. Any pathlii(h) is
In this section we introduce the problem of interest. Wiadistinguishablei.e., consistent with having observed the his-
begin with an informal description of the basic elements angry 1. Then, the decision maker can compute the probability
modeling assumptions, then formally describe the problemthat p, = p,. given observatiorh,
Consider a network of roads described by a weighted acyclic o ]
digraphG = (V, E, A) with a single source and a set of sinks _ _ m, if 1€ Ind(h),
@(pT pu‘ h)

where

S. Assume targets appear at the source and head towards one 0, otherwise

.Of the goals inS, see Figure 1. The vvgght of an edge can bLFJ‘sing this model, the decision maker can compute the prob-

interpreted as a measure of the cost it takes a target taseave . . .

: . . - ability that the target will eventually go to a vertexc V' or

it (e.g., larger weights correspond to longer times or highe . ,

energy cost). Sensors deployed over the graph nodes tm”gﬂqpther histonyh” € #, as follows,

information about target positions to a decision maker who 2 (v|h) = Z P(pr = pulh),

must decide whether or not to start preparing for the arrival {pe{l,...,n}|vep,}

of the target at a goal by committing some resources to it. We Ny _

refer to this action as ‘making an investment.’ FW|h) = Z P b1 = pul ).
Since the destination of each target is unknown, the detisio {ue{l,n} [WESPL))

maker must decide when, if ever, to invest in any given goal Both notions will be used throughout the paper. Note thaehe

anticipation of a target's arrival. Our model Specifies et will evaluate tol if the target vertex or history is already in

larger the gap between the investment decision time and {h@nd0 if they are not reachable fror.

target’s arrival time, the less costly it is to make an inmresit

for that goal; however, if an investment is made and the tarde Allowable control policies

actually ends up at a different goal, the investment is véaste As targets move through the digraph, the decision maker

Once a decision to invest has been made, it cannot be retractaist decide at each timestep, for each goal, whether an in-

and thus the cost of investing is incurred immediately. vestment should be made or not. For simplicity of preseorati



and without loss of generality, the paper considers investm motion is Markov onMj,,, whereas in general is not for the
decisions for one specific goal(in the case of multiple goals, original investment problem. The optimal stopping forntigla
our policies can then be applied to each one of them). Veéso allows us to establish the existence of an optimal isolut
suppress the dependencegmhen it is clear from the context. and sets the basis for our algorithm design.

A control strategy is then a map

u:H — {i nvest ,not -i nvest } A. Optimal stopping problem

h fios f ith hi decisi According to the probability model for target motion dis-
that specities, for a target with history € #, a ecision t_o cussed in Section IlI-A, at any given time, the evolution of a
u(h) in goal g € S. The set of all allowable control p0I|C|esOEL

i d d b/, Th h h id arget alongG depends on the full history of vertices visited
IS enc_)te WA roug out the paper we consider contr the target prior to reaching the current vertex. For this
strategies that prescribe at most one investment along qé/g

. h. Th for this is th : son, we choose as the state space of the optimal stopping
given path. The reason for this is that once an Investmelityiem the seft = H(G) of all possible target trajectories
is made for a goal, it does not make sense to make furt a

investm_ents at tpe same goal. Formally, ;or eﬁCH f (5), tree with the source as root. Each node corresponds to a path
u(h) =i nvest for at most oneh € &(p). If such a history in G whose unique parent is the subpath obtained by removing

exists, we denote it by.,(p), otherwise we seb.(p) = 0. 1o |ast vertex. The cardinality of depends on the graph’s
We letInv, = U,cq,.. n3{hu(pu)} be the set of all possible adjacency matrix4 and is upper bounded by
investment histories for policy.

X[ <14 Y lgth(p),

C. Obijective function PEP(s)
Our next step is to define the objective function that th&here the summand corresponds to the history. In the

decision maker seeks to optimize. To this end, we presenfarst case, i.e., wherl is a strictly upper t‘r‘i/amgl]ular maitrix
model for the cost of investment and the reward obtained féPntaining nonzero elements, one hag = 2171~ .

G, rather than the set of verticés Note thatX is a rooted

making the investment. The cost of investing in godor a ~ We define the one-step transition mattxe Rg)lxlx‘,
target with historyh € H is .
’ g p_ ) Zlw). i 2 &(y)lgth(y) = lgth(x) + 1,
c(h) = f(m)y “Y o, otherwise

where f : R>¢ — R is a classK function, i.e., continuous, for z,y € X. With the definitions ofX and P, the target
monotonically increasing, and satisfié€)) = 0. Note that the motion now corresponds to a Markov chain on the space of
longer the weighted length of the shortest path frit(h) histories with initial conditions. Figure 2 shows the rooted
to g, the smaller the cost. The reward for correctly preparirigee X with edge weights given by for the weighted acyclic
for a target’s arrival ay is modeled by a parametgre R>(. digraph depicted in Figure 1.

The reward accrued using control poliayis then

Ru(pr) = B, if last(pr) =g andh,(pr) # 0, P
P 0, otherwise i
0.3 0.7 0.3 -
Since the target’s path is unknown a priori, this reward is n
known when the target is at histofy, (pr) € Inv,. Instead, .5,/ 7 % " A il l""’z\gxgm
we define an expected reward using the probabilistic mode i bzis Bzesl [fzsol [sssl Bspd  [Esgd X
1/ 1V *1 IV Vl ‘1
Eh ( )[Ru(pT)}:ﬁf@(,ﬂhu(pT)) 12487 [12587 [1 250910 (13587 [135 0910 [136 910
w(PT .

Now, maximizing £}, (o7) [Ru(pr)] — c(hy(pr)) is the job of Fig. 2. State spac& and transition matrix” of the optimal stopping problem
the decision maker uSince the path of the target is unkn ssociated to the problem in Figure 1. Each node represédrissoay h € H.

e ) o h ote that all the sinks of this tree correspond to a sink ofattiginal digraph.
objective functiorof the decision problem is then the expected . : .
. . . The last element of the optimal stopping problem is the
value of this expression over all possible paths,

reward function@ that we define by
J(u) = Es [Ehu(pT)[Ru(pT)] - C(hu(pT))] ) Qz) = BP(g|z) — c(). 2)
= > 2(hls)(BP(glh)—c(h). (D)

el The first term corresponds to the expected reward obtained

from investing in goaly at statex € X and the second term
IV. OPTIMAL STOPPING PROBLEM FORMULATION corresponds to the cost of making this investment.
With the optimal stopping problemVn, = (X,P,Q)

Here, we formulate an optimal stopping problem and e roperly defined, the next result follows from [7, Chapter 3
tablish its equivalence with the decision problem descriipe gndpthgfact that;( is finite. 7. P ]

Section 1ll. Specifically, for the goal of interegt e S, we
identify a corresponding optimal stopping problel,, = Lemma IV.1 (Existence of optimal stopping set)For
(X, P,Q). The advantage of the reformulation is that the targéti,, = (X, P, Q) constructed as above,



(i) there exists an optimal stopping Sgt C X, and Corollary V.3 (Random policies are not better) No ran-
(i) no randomized stopping rule can do better than stoppirdpmized control policy does better than an optimal control
the first time the state is i ™. policy u* : H — {i nvest ,not -i nvest }.

B. Equivalence with the decision problem C. State space reduction for the optimal stopping problem

Here, we establish the gquivale.nce of the .o.ptimal StopPINgyyjith the equivalence between the optimal stopping problem
problgm on a Markov chaid/;,, with the decision proplem M = (X, P,Q) and the decision problem af established,
described in Section Ill. To do so, we need a mapping thal, girateqy to determine the optimal control policy is to
relates a halting seét” for the optimal stopping problem 10 ang the optimal stopping sat*. Before proceeding with the
_control poll_cyu for th_e deC|S|_on problem and vice versa. Th'salgorithm design, it is advantageous to reduce the sizegf
is accomplished by introducing the notion reblucedhalting as this naturally results in lower algorithmic complexsti©ur

subset of a halting sét’ for a given initial conditionz, as approach proceeds by eliminating states that are guarhntee

Yo, ={r €Y NR(z) |y ¢Y fory e R7(x)}. not to belong to the optimal set. This is reminiscent of
) . techniques such as the Elimination Algorithm [11], [12]. We
This set is composed of all the statestirthat can be reachedstart by defining acluster C = (z4,...,2,,) as a maximal

first by a Markov chain starting from. In other words, the path in the state spac¥ such that\(z;,) = {z41} for
Markov chain cannot reach states¥n\ Y, without passing . . {1,...,m — 1}. Maximal here means thaf' is not
through a state irY;,,. This set has the property that contained in any other path with the same properties. We
By [Q(:)] = By [Qzr)], refer to.xl as theanchor of plusterQ. Intuitively, any statg

in X with only one out-neighbor is part of a cluster with
wherex, andz., are the first times the Markov chain enterghat neighbor. The next result guarantees that eliminaihg
Y andY;,, respectively. A halting set” is minimal fromz,  nodes belonging to clusters other than the anchor nodes does
if it satisfiesY,, = Y. To a halting sety” C X, we then not change the optimal stopping set.
associate the control policyy given by

Lemma V.4 (State space reduction)Consider the optimal

uy () = : nve§t ’ itz € }_/‘"" (3) stopping problemMin, = (X, P, Q). Let C',...,C? denote
not-invest, otherwise the set of all clusters oX. Then,
Conversely, to a control policy,, we associate the halting Y0 (Upeqr,...yC*\ {24}) = 0.

set Inv,,. Note thatInv, is minimal from s because of the
defining properties of allowable control policies. We camwno ~ Proof: The result follows by noting that, for any clus-
draw the connection between the optimal stopping probleier C, the reward obtained by investing at the anchor is
and the problem posed in Section IIl. higher than the one obtained at any other cluster node, i.e.,
Q(z1) > Q(z,) for r > 2, and thus it is not optimal to stop
Proposition 1V.2 (Equivalence with the investment deci- atz,. This fact can be established by noticing that, in (2), the
sion problem) Given an optimal stopping set* for the expected rewar@Z?(g|x) is the same for all: € C' and the
optimal stopping problem\/i,, the control policyuy - is COst functionc is nondecreasing along the path ]
optimal for the objective functiofil). Reciprocally, given an  As a consequence of Lemma IV.4, we define a new optimal
optimal control policyu* for the objective functior(1), the stopping problem\fi,, = (X, P, Q) with state space
setlnv,« is an optimal stopping set that is minimal fram X = X\ (Upeqrq O\ {2}

he transition matrixP is created by modifying the original
matrix P. We first replace, for eaclu € {1,...,q}, the

row corresponding tory € C* by the row corresponding
Jos(Y) = E4[Q(x,)], (4) to the last element of”#. Then, we remove all rows and

) o ) columns in P corresponding to the states removed from
wherexz, is the first time the Markov chain ente¥s We can Iiinally, the reward functiorQ is just the restriction of) to

Proof: We proceed by introducing an objective func:l.
tion J,s for the optimal stopping problem with initial condition
xo = s. Given a halting set’, let

rewrite this function as X. Lemma IV.4 guarantees that the optimal solution found on
Jos(Y) = E, [BZP(g| 27) — c(x,)] Miny is the same solution found akllj,,. Interestingly,
=Y P(2]5)[BP(g] 7) — ()] . H(G) = X UP(s),
€Y

i.e., the space of histories corresponding to the collapsed
With this expression in mind, it is easy to see that digraphG is the same as the reduced state-spagsus the set
_ _ of full paths to the sink$(s). A further simplification can be
Tos (V) = Jluy), J(w) = Jos(Inva), done by eliminating the sét: € X | g ¢ R(z)} containing the
from which the result follows. B states that do not have the ggah its set of descendants since
The following result is a consequence of Lemma IV.1 anitheir associated reward is trivially zero. Figure 3 illasés this
Proposition IV.2. discussion and the reduction from to X.



0 Algorithm 1 : BEST INVESTMENT ALGORITHM
OO OO

(o —(—() Initialization:
1: initialize V(z) =0 forall z € X
(a) (b) (© 2: initialize Solved=

3: initialize Y = 0
Fig. 3. The original state spacé with sources = z1 and sinkszg andzg  Perform:

is shown in (a). In this case there aje= 3 clusters,C' = {z1, 22,23},  1: while there existst ¢ Solved withR(z) C Solveddo
C? = {z4,25,26}, andC?® = {z7, x5, x9}. The state-space reduction gives 2:  if Q(x) > 2yenouy) V(y) Py then
rise to X in (b) with only 3 states. If the goal of interestais), the statery 3: addz to Y
can also be removed becausg is not reachable fronx,. This can further 4 setV(z) = Q(z)
reduce the state space to a size of two states as shown in (c). 5:  else
6 setV(z) = ZyeNom(z) V(y)Pe,y
V. OPTIMAL INVESTMENT DECISION POLICIES 71 end if

. addz to Solved
In this section, we design strategies to find the best amﬂ end while

second best control policies for the investment problem #9: computeuy

Section 1l using dynamic programming techniques on the

optimal stopping problem formulated in Section IV. The

determination of the second best control policy will be usefpolicy uy on the sub-problem with initial condition. Since

later in our robustness analysis. The algorithms can be nunwy is constructed fronl”, from the proof of Proposition V.2
either M = M, or M = va we know thatJ(uy) = Jos(Ys). Therefore, we deduce that

V(s) = J(uy). Since V*(s) is the maximum value of the
objective function (4), in order to show that- is a maximizer
of (1), all we need to do is establish thets) = V*(s).

Here, we present an algorithm to solve the optimal stoppingwe start by verifying thal” as determined by Algorithm 1
problemM (X P Q) with initial condition s. ACCOI’dIng satisfies the Bellman equann [2]

to Bellman’s principle of optimality [2], the decision atyan

given statez must be computed assuming that subsequent V(z) =max{Q(x), >  V(y)Puy}.

decisions constitute an optimal policy with respect to this yeN"“‘(»L)

stater and decisionu(z). This means before we can findThis property is enforced by thé condition in step2: of
the optimal decision for the source’(s), we must already Algorithm 1 for all z € X.

know the optimal solution at all other states. Our algorithm Let y € X be such thatR(y) = (. Then, it is trivial
thus starts at states for which the optimal solution can g see thatV(y) = max{Q(y),0} = V*(y) because no
computed with only one comparison: is it better to invesfther investment decisions will be made after statéNow,
or wait at this point? These sub-problems can be solved fet (z,...,z,,) be a path ending im,, = y. Then, using
any statexr;, once the sub-problems have been solved for &lackward induction and the Bellman equation, we deduce
x € R(z(). Our algorithm iteratively solves sub-problems for .

each initial conditionz(, and makes future decisions based on Vi(zg-1) = max{Q(zx-1), Ee,_, [V(z1)]} = V" (x1-1),

A. BEST INVESTMENT ALGORITHM

these solutions. The algorithm runs until the problem ised! for % ¢ {1,...,m}, which concludes the result. m
for s. We now describe the algorithm informally. Figure 4 shows the result of an execution of theEST
[Informal description]: Choosex € X such that INVESTMENT ALGORITHM.
the problem is unsolved for but solved for its
descendants. Compute the value obtained if the chain Qs
is stopped at: and compare it to the expected value 05 N
obtained by waiting one timestep. Save the best deci- il
sion, store the value, and markas solved. Proceed _os o7 s ¥
iteratively until the problem is solved far = s.
The strategy is presented formally in Algorithm 1. The o’ g 429 Nosn AR om\osn

next result shows that the output of tBEST INVESTMENT 574 @ ‘ ﬁ ‘ ‘1359‘ s & fa—

ALGORITHM is the control policyu*, whereu*(z) =i nvest
for all x € Y* andu*(z) = not -i nvest otherwise.

V V V
\12457\ \12587\ 125919 \13587\ 135919 136910

Proposition V.1 ,(Correcmess_ of the BE_ST INVESTMENT Fig. 4. Optimal solution to the problem described in Figureod the goal
ALGORITHM ) Given the optimal stopping problem/ = of interestg at Node 7, with3 = 20, and cost functionf(z) = 10z. The
(X7 P, Q) for goal g with initial condition s, the BEST opt@mal stopp@ng setv’* is depicted by the_5 ci(cular nodes and the_minimal
INVESTMENT ALGORITHM finds the optimal solutions* to optimal stopping set from the sourd&" giving rise to the control policy.*

.. . corresponds to the bold circles.
the decision problem and its valué*(s). . i
The time complexity of theBEST INVESTMENT ALGO-

Proof: With the notation of theBEST INVESTMENT RITHM is characterized by the following result. Its proof
ALGORITHM, given a stater, the valueV (x) corresponds to follows from the fact that the strategy solMe$| sub-problems
the value of the objective function obtained by running coint and each sub-problem is solved in time complexityl).



Lemma V.2 The time complexity of thBEST INVESTMENT
ALGORITHM to solveM is O(|X]).

Since this algorithm constructs and searches over theigslic
in U, we show here that for every # u*, there exista$ €

UC such thatJ(ul) > J(u).

Remarkably, for fixed parametess 3, and A, Algorithm 1
only needs to be called once to determine a set of rules
follow. Then, without further computations, the decisioakar
can make decisions depending on the target’s position.

B. SECOND BEST INVESTMENT ALGORITHM

Here, we make use of the solution computed by glEsT
INVESTMENT ALGORITHM to find the second best solution t
the optimal stopping problem/. Our strategy relies on the

(0]

Let z}; be the statee® € Inv, at which an investment is

I
ﬁPescribed by control policy. along pathp,,. If it exists, we

= Q(z};), otherwise we leQ);; = 0. Then, givenu,

o

u
14

T = J(w) =) au(@) —

pn=1

);

which is trivially nonnegative.
Take now anyv € {1,...,n} such thatz*" # z*. Note

observation that the optimal stopping set and the secorrd HE@! there exists at least one suetbecauseu # u”. If the

stopping set are similar. Given an optimal stopping}s&twe
createcandidate stopping sets

{Y* \ {z},
(V* U {z}) \ R} (),

Recalling that (3) relates halting sets to control policibese
sets are constructed such thaty - ,)(z) # uy-(z). For sim-
plicity, we letu$ = uc(y+,z)- 1he set of all candidate control
policies that we search over is then giverify = U, x {uS}.
We can now describe the algorithm informally.
[Informal description]: Given the optimal stopping
set, create a set of candidate control policies as
described above. Select the control policy in this set
that has the highest value of the objective function.

We refer to this strategy as tls=COND BEST INVESTMENT
ALGORITHM and formally present it in Algorithm 2. The next

if zeY),
otherwise

C(Y*, x)

control policyu prescribes an investment along pathlater
than the optimal investment policy, then we write

> @ (QY —QY)

nP\Ind(z2")

D

TENOU(gu™)

J(S,) — J(w)

.....

P (x| )V (x)

by

pEInd(zu™)

ay,

_QZ ’

which is greater than or equal @ The first sum is for all the
paths at which the optimal investment policy is used contgpare
to the policyu, and thus is easily shown to be nonnegative. The
second sum is for all paths going through state. Investing

at ¥ is optimal; howevery’ skips it and uses the optimal

policy from the next step onwards. It is also easy to see that

this is nonnegative becausé # % for all 41 € Ind(z ).
If the control policyu prescribes an investment along path

result shows that the output is the second best controlypoli@. €arlier than the optimal investment policy, then we write

Algorithm 2 : SECOND BEST INVESTMENT ALGORITHM

Initialization

1: initialize V€ = 0 for all z € X

2: execute theBEST INVESTMENT ALGORITHM

3: computeY* from Y*

Perform:

1. for z € Y do

20 etV = V*(s) — P(z] )V (2) — 2y e poua) [V (1) Pry]]

3:  while N"(z) # 0 do

4: sety = N'"(z)

5 setV =V(s) — 2(yls) V*(y) - Q)]
6: setr =y

7 end while

8: end for

9: computez = argmax, ¢ x V.
10: computeu$

Proposition V.3 (Correctness of the SECOND BEST IN-
VESTMENT ALGORITHM ) Given the optimal stopping prob-
lem M = (X, P,Q) for goal g with initial condition s, the
SECOND BEST INVESTMENT ALGORITHMfinds the second
best control policyu’ to the decision problem, i.e., for all
u different fromu* and o/,

J(w*) > J(') > J(u).

Proof: Note that the valu&# in Algorithm 2 is precisely
the value obtained by the control poliey, i.e., VF = J(uS).

x

>

pe{l,...,n}\Ind(z;;)

a;L (QZ* - QZ)a

which is simply the optimal solution along all paths that do

not go throughz* compared againsi, and again can easily

be shown to be nonnegative. ThuEuC.) > J(u). [ |
Figure 5 shows the result of an execution of the algorithm.
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Fig. 5. Second best solution to the problem described inrEidufor the
goal g at Node 7, with3 = 20, and cost functionf(z) = 10z. The set of
investment stateknv,,, for control policy«’ is depicted by the two circular
nodes. The values of the objective function for the optimal aecond best
control policies are given by (u*) = 4.0 and J(u') = 3.75, respectively.

Since theSECOND BEST INVESTMENT ALGORITHMtermi-
nates after computing at mogk | candidate values/(u),
where each computation has time complexityi ), we deduce
the following statement.



Lemma V.4 The time complexity of theecoND BEST IN Lemma VI.1 (Bounds on performance variation of a con-

VESTMENT ALGORITHM to solveM is O(|X]). trol policy under parameter changes)For 6 = (A, a, §),
0= (A a,p) ey, let

Remark V.5 (Problem reduction may not preserve the n

second best solution)Interestingly, although the optimal AT (0,0 = Z max {c(z)a, —(z)aj,

solutions oMM, and My, are the same (cf. Lemma IV.4), this u=1 €S @)

does not hold in general for the second best solution, he., t + o), P (gl z) — P (g )},

output of theSECOND BEST INVESTMENT ALGORITHMMay n

be different depending on whether it is executed fdf, or AT(0,0") = Z min {c(z)a, — ¢ (2)a,

M. This is because the reduction fram,, to M;,, removes =1 7€S ()

some solutions inVfj,, that are guaranteed not to be optimal + a;ﬁ'@/(9| z) — a,BP(g|x)}.

(possibly including the second best policy). As we showrlate

in Remark VII.6, this fact has positive implications on ouff nen, for anyk € {1,.... [},

analysis of the robustness of solutions. o A(0,0') < Jo(ub) — Jo(ub) < AT(0,6). (6)

VI. ROBUSTNESS OF THE OPTIMAL INVESTMENT POLICY Proof: This can be seen by expanding out

In this section we are interested in determining conditions ~ Jor(u§) = Y (x| 5)Qu ()
under which the optimal control policy remains optimal fer p zev
rameters other than the original ones. Specifically, weidens - 'l o /
changes in the edge weights of the digraph, the probability - Z (B Z (g]z) = (),
model for target motion, and the reward associated with the {nlwh€lnv, ;)
goal of interest. Our study is motivated by the idea that Emaind verifying that (6) follows. ™
changes in the parameters may not affect the optimal salutio Combining Lemma VI.1 with the ordering (5), we can
and thus it may be wasteful to constantly execute BEST deduce the following useful result.
INVESTMENT ALGORITHM. This analysis sets the basis for our

forthcoming design of policies that, under partial knovge®f Corollary VI.2 (Bounds on performance of different con-

the parameter dynamics, allows the decision maker to stbedyio| policies under parameter changes)For 6, # € Y and
in advance when future actions need to be taken. anyk e {1,...,|U|},

For convenience, denote by . ,
Jor(uf) < Jo(ug) + AT(0,0"), forz>k,  (7a)

Vx|V
0=(4,0,p) €Y =REV xP(n) x Rz To(uG) > Jo(ub) + A= (0,0), forz<k. (7b)

the triplet that consists of an adjacency matrixfor the Proof: We prove the first statement here. The proof of

graph G, a probability vectora on the set of path$>(s) the second statement is analogous. Note that, for alk,
that start ats and end at a sink, and a rewafdassociated

with correctly preparing for a target reaching the goal. When Jor (ug) < Jo(ug) + A (0,60") < Jo(ug) + A*(0,6),

necessary, we add a subindex to denote that an elemggt o \ve have used Lemma VI.1 in the first inequality and
corresponds to the parameters specifiedébyror instance, o orgering (5) in the second. Therefore, the right-hade si

Jy an_d My denote the ob_jective function (1) and .the optimqg an upper bound on the performance of at léat— & + 1
stopping problem associated ty respectively. Finally, we control policies. In other words, the inequality
denote byu% € U the kth best control policy for the problem

with datad. Therefore, Jor(u) > Jo(uf) + AT(6,6) (8)

Jo(ug) > Jg(ud) > --- > JG(UL“ ). (5) can only be true for at mogt— 1 control policiesu € U. To
show that (7a) holds, we now reason by contradiction. Suppos
According to this notation/y (u}) is the value of the objective there exists: > k such that/p (u3,) > Jo(ub) + A+(0,0").
function (1) associated t6' obtained by using théth best Then, because of the ordering (5), we deduce thatul, ) >
control policy for the problem with daté. Ideally, given the j,, (uz,) > Jo(ub) + AT(0,0") for all I € {1,...,z}. Since
problem with dated € Y, we would like to determine the set; > f, this contradicts the fact that the inequality (8) can only
of parameters with the same optimal control policy, i.e.,  pe true for at most: — 1 control policies. [
i T 1 The next result builds on Lemma VI.1 to provide an easy
V(0) = {0 € Y]up = ug}- test of whether the solution t&/, remains optimal forMy:.
Unfortunately, finding a general closed-form expression fo N o _ .
Y(9) is not possible. Instead, our strategy is to find a subdgfoposition V1.3 (Criterium for best solution to remain
of Y(#) which can be described explicitly. optimal) For § € Y, let
We start by stating a result that bounds the changes inthe ¥y — g/ c v [ .7, (ud) > Jo (2 LATO.00. (9
value of the objective function for thith best control policy yN( )= | Jor(ug) 2 Jo(up) 6,99} ©
in terms of the changes in the problem data. Then,Y(0) C Y(0).



_ Proof: To prove the result, we must show thatéf € here we turn our attention to the study of scenarios where
Y(0), thend’ € Y(0), i.e., uj, = uj. We begin by noting parameters have dynamics, and the decision maker has some
that, given the ordering of values (5) associated to therobnt(possibly partial) knowledge of it. We assume the decision
policiesuj, u2, ..., condition (9) implies that, for ang > 2, maker can obtain the true parameters at any point in time,
1 & o but that doing so has some associated cost. The objective is
Jor(ug) = Jo(ug) + A™(0,0"). then to determine how long the decision maker can go without
Combining this inequality with Lemma VI.1, we deduce thaknowing the exact values of the parameters while ensuriag th

its currently implemented control policy remains optimal.
o (ug) > Jo (ug),

implying that u} is better thanu’, k > 2, for the problem A. Information available to the decision maker
with data¢’, i.e., u} remains optimal. [ ] Here, we describe the information available to the decision

Proposition VI.3 provides a checkable condition to degnaker about the parameter dynamics. We assume that the
termine if the optimal control policy remains optimal aftetimescale of the target motion in the network is much faster
the problem parameters change. Observing (9), the role tHzan the timescale of the evolution of the parameters. Leet th
the second best solution plays in evaluating these conditigparameter evolutiodd(¢) | ¢ € Z>o} be described by
becomes clear.

For the problem described in Figures 1-2, we run glesT 6(E+1) = 0(6) + w(f) +~(0). (10)
INVESTMENT ALGORITHM to compute the optimal solutiag;  The model that describes the decision maker’'s knowledge is
and theSECOND BEST INVESTMENT ALGORITHMto find uZ.  as follows. The sequenceu(f) | £ € Zxo} is a priori known
We then randomly vary the data of the problére (A, «,3) by the decision maker, whereas the sequengé) | ¢ € Z>o}
by up to 3 percent of their previous value in subsequeist not. We assume that the magnitude of each component of
iterations. At each step, instead of running these algwosth v is upper bounded. Specifically, if the componentsyadre
again, we can check whether the new parameters beldng.i,---,v| v}, 71,7, 7s), then the decision maker is
to V(). If they do not, only then does this trigger a realso aware of a vectoy such that
execution of theBEST INVESTMENT ALGORITHM. Figure 6 - _ _
demonstrates the benefit of performing this additional test i OV < Fig (O] <5, and -y (O)] < 55, (11)
this case we see that the condition is satisfied until ients for all 4,5 € {1,...,|V|} and u € {1,...,n}. Therefore,
and thus the optimal solution does not need to be recomputgdany given timel/ € Z-,, the decision maker has some
until then. Corollary V1.2 implies that/y(u3) + A*(0,0") uncertainty about the exact value of the parametét’ (note
is an upper bound on the value obtained by any suboptinthit if 7 = 0, then there is no uncertainty at all). Finally, we
policy Jy (uf,) for k& > 2. Although uZ, does not need to assume that the decision maker has the ability to acquire the
be recomputed at each timestep, Figure 6 shows the vatuee values of the parameters but that this has an associated
Jor (u2,) to illustrate this upper bound on suboptimal policieszost that it would rather not pay. In the face of this uncetai

the objective of the decision maker is to determine for how
long it can operate without exact knowledge of the pararseter

and still guarantee that its last computed best investmaiayp
remains optimal. Our analysis starts by considering initia
I SR parameter value8(¢,) corresponding to the last timé. for
3’7f' A AR N which the decision maker computed the best and second best
J 3'6 "\ RAREPR - \‘ investment policies. Note that one can rewrite (10) as
adl . = .
35 9(4) = Q(f*) =+ U(f) + 5(5)
34r R .
Ll |~ bestinvestment policy wherev(f) = 34—} w(k) ands(f) = 33,_, ~(k). Note also
Ll | 7T 2nd best investment policy that (11) implies that is upper bounded linearly in time.
’ bound on suboptimal policies
31r
3 ‘ ‘ ‘ ‘ ‘ B. Rationale for algorithm design

5 10 15 20 25

lteration To simplify the exposition, in this section we reason for
generab and¢’ = §+v+4. One can readily draw the connec-

Fig. 6. lllustration of the application of Proposition VIf@r the problem de- tlon with the parameter dynamlcs described above by settlng
scribed in Figures 1-2. In each iteration, the problem pataraare randomly

changed by up to 3 percent. The curves correspond to the vataéned by 0= 0(¢.) and 0= 0(¢), for £ > ¢,. Given the uncertainty of
the optimal investment (solid), the second best investmersht, and the 6’ the decision maker cannot test the condition (9) directly.

upper bound on all suboptimal investment policies (dotted). Instead our approach |e\/erageS the partlal knowleﬁdgeu

aboutd’ by checking (9) ford and@ + v, i.e., whether
VIl. SELFTRIGGERED ACQUISITION& DECISION

ALGORITHM T3y, (ud) > J5(u2) + AT(0,0 + v) 12)

Having identified in Section VI conditions under whichholds. If this condition fails, we cannot make any guarantee
the best solution remains optimal under parameter changaisput the optimal solution corresponding&oand thus it is
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necessary for the decision maker to access the true pamameteith K, = diam,cg(p,) c(z)+28(n+1), forp € {1,...,n}.
However, if (12) holds, thené Y = uA To determine whether If m(0), m(0’) > d., then

1 .
ug, is the same policy as these, we utilize (9) to check if A*(8,8') — A=(8,6) < G(6,w).

S (ué\+ )= J@(Ul) 2> J9+U( 50T At +v,0) (13) Proof: Let diamu,cx(g(z)) = maxzexg(z) —
mingcx g(x) for any real-valued functiory. Two useful

holds. Unfortunately, since boté and “5 are unknown, properties of theliam function are that

we cannot evaluate either side of (13) dlrectly The follogvi
result is our first step towards solving this dilemma. diamgex eg(z) = [e| diamgex g(z),

diamgex [g1(7) + g2(z)] < diamgex g1(z) + diamge x g2(z),
Lemma VII.1 (Alternative criterium for best solution to

remain optimal) For fandd =0 +v+6, if for any e € R and real-valued functiong, and g». One can

R N write out AT (0,0") — A=(0,0") as
J§+v(u$) +AT(O+v,0+v+9)

> J5(ud) + AT0,0+v) + AT@O+v,0+v+0), (14) > diamges(p,)le(@) (o — o) + o, (c(z) — () (16)
p=1

then both(12) and (13) hold. + a2 (gl 2)(8 = ) + B0}, 2 (g] ) — 0, P (g] ).
Proof: The fact that (14) implies (12) readily follows Using the two properties above, (16) can be upper bounded by
by noting thatA*(0,6") — A~(0,0") > 0 for any ¢, ¢". To n
show (13), with the notation of Corollary V1.2, letting= 0, Z'O‘N — o, | diamgee(p,) (@)
0" =6, andk = 2, we can upper bound the RHS of (13) by e g :
J§+v(u§+ )+ A0 +v,0) +al, diam,eg p, ) (c(x) — ¢ (2))

Oé“ﬁ/ - 6| diamwe@(pu) c@/(g‘ Jf)
+ Bdiam,ce(p,,) (0, 2 (9] ) — . P (9] x)).
Given the statement of the result, we need to work on all

but the first term. Using the definition of the castand the
globally Lipschitz assumption od — f(é), we upper bound

< Jp(u) + AT (0,0 +v) + AT (O +0,0).

On the other hand, since (12) holds, we have t = u1
by Proposition VI.3. This fact, together with Lemma VI 1
allows us to lower bound the LHS of (13) by

Jg(ug, ) = Jg,,(ug) + A7(0 +v,0). 4
As a consequence, we deduce that (14) implies that (13) holds®), diamaeep, ) (c(z) — ¢ (z)) < ), D > |aj ; — a; 4.
- ij—=1

Lemma VII.1 provides an alternative condition to (13) thathe third term is readily upper bounded using that
is easier to check because it does not require knowledge. of diam,cg(,,) Z(g|2) < 1. Finally, the fourth term can
However, the presence of the unknown vedtatill makes it be dealt with as follows. Giverw, let Z(z) = {v €
uncheckable by the decision maker. Therefore, our next stepl(x) | last(p,) = g} denote the set of indices of the paths
consists of using the knowledge (11) available to the dewisithat containz and finish at the goaj. Note that

maker to upper bound the term
(> a0 Y o) (a2 le) - au2(glo))

A+(97 9/) - A~ (97 9/)’ (15) velnd(z) ve€lnd(z)
for = 6 +v and @ = 6 + v + 6. Given the result in =a, Z al, Z au—%z Qx Z oy,
Lemma VI.1, we refer to (15) as thsize of performance YeZ(z) wvelnd(z) X€Z(z) wvelnd(w)
variation betweend and ¢’. Before stating our next result, =a, Z a, Z (o — ary)
we need to introduce a piece of notation. Let(d) = velnd(z) x€Z(z)
min{lngth®*(z, g) | € X such thay ¢ =} be the minimum ,
shortest weighted length of all states that do not congain DD
XEZ(x) uEInd(r)
Lemma VII.2 (Bounds on size of performance variation) + Z Qy Z a — ).
Given # and ¢, let the magnitude of’ — # be bounded by X€Z(x) velnd(w)

some vectow component-wise. Assume there exists> 0 Denoting W (z) = Ind(z) \ Z(z), one can further simplify
such thatd — f(1/d) is globally Llpschltz ond.,00) With ;g expression as

Lipschitz constanD, i.e., |f (%) — f (4) | < D|d — d/|, for

all d, d’ > d.. For € Y, define a, Y ag Yy (@ —a)+al, Y ay Y (ag—a})
v N $EW(2) x€Z() XEZ(z) $EW (x)

G(G,w):wﬁ+DZwi_’j+ZKuwm + Z Qry Z (o), — ap).

i,j=1 n=1 XEZ(x) 1)6111(1(’1‘)
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Given thatInd(z) = Z(z)uW (z) and . € Ind(z), Algorithm 3 : SELFTRIGGERED ACQUISITION&DECISION
;o ALGORITHM
Iemg%z}f’")[aﬂ'@ (g| x) a a“'@(gl ‘T)] Information kept in memory:
, , 1: 6o = 0(¢x) {parameter vector at the last execution of #®sT and
ZXGZ(JU) |ax — ol + Z¢>EW(1) g — a¢\> SECOND BEST INVESTMENT ALGORITHM$

> . :
vEInd(x) ay,

S O[/ max ( L1 2 2
P oeG(p) 2:ul = U andu® = ug
At current time/:
1: acquire new parametebsew = 0(¢)

n
! ! A
+ oy, — ol < Z |, — | + ey, — al. 2: initialize Algeep= 0o and Aliest= 1

v=1 3: initialize v(¢) = Y0} w(k)
Similarly, —min,eep,)[a, 2 (9| v) — a, P (g] )] is upper Perform:
bounded by the same quantity, thus L2 if Jgpe () < Jon, (u?) + AT (Ooid, Onew) then
2:  execute the8EST INVESTMENT ALGORITHM and updates®
diamg e p,)la, ' (g9] ) — P (g] 2)] 3:  execute theSECOND BEST INVESTMENT ALGORITHMand update:?
Pu) b p " N 4:  setoq = Onew
, , 5: end if
< 2(|a;¢ - Oéu| + Z |au - aV')v 6: while Azsleep> Alest do

v=1 7 if J9new+U(e+Aetest) (Ul) < Jeold(UQ) + A+(90|d,9new + U(Z +

Altest)) + G(Onew + v(€ + Albtest), YA ltest) then

from which the result follows. " Al — AL
. . . ~ ~ . sleep test
Using Lemma VII.2 in (14) witth =0 +v, 0’ =0+v+5 9 endif
andw = ¢, we deduce 10: Aliest= Alrest+ 1
R N 11: end while
Jieo(ud) = J5(u2) + AT(0,0 +v) + GO +v,6).  (17)

Therefore, if this condition is satisfied, Lemma VII.1 ingdi
that (12) and (13) hold, which means;, = wul. Fortu-
nately, (17) can be checked by the decision maker with t
information it possesses. This sets the basis for the deﬂigq
self-triggered policies, which we address next.

guarantee that the control poligy in memory is the optimal
one for the parameter(¢) at time ¢. With the notation of
ction VII-B, letd = 6(¢.), where ¢, corresponds to the
ast time when theBEST and SECOND BEST INVESTMENT
ALGORITHMS were executed, and let= 0(¢) — 6(¢.) +v(¢')
ando = o6(¢'). Step7: ensures that (17) is satisfied where
C. SELF-TRIGGERED ACQUISITION& DECISION ALGORITHM G(§+v,6) is replaced b)G(§+vﬂ(€’ — ¢)) using the upper

This section presents a strategy that builds on the conditidoound ond(¢') induced by (11). ]
identified in Section VII-B to determine, with the informari Remarkably, if the decision maker has full knowledge
available to the decision maker about the parameter dysamié how parameters evolve, i.ey = 0, then the SELF

described in Section VII-A, the longest period of time foTRIGGERED ACQUISITION&DECISION ALGORITHM simply
which the best investment policy is guaranteed to remadonsists of checking the first time that (9) will be violated.
optimal. We refer to this strategy as tls&ELFTRIGGERED In particular, Figure 6 can be seen as an execution of the
ACQUISITION& DECISION ALGORITHM and present it for- SELF-TRIGGERED ACQUISITION& DECISION ALGORITHM for
mally in Algorithm 3. The term ‘self-triggered’ is meant tothis case.
emphasize the fact that the decision maker determines thigigure 7 shows another simple example of how e F
period of time autonomously. TRIGGERED ACQUISITION& DECISION ALGORITHM works
The output of the SELFTRIGGERED ACQUISITION&- Where three parameters are changed linearly in such a way
DECISION ALGORITHM is the number of timestep&/geepfor  that the initial second best control policy eventually bees
which the decision maker can ‘sleep’, i.e., starting frora thoptimal. When the parameter evolution is completely un-
time ¢ at which the strategy is executed, the current optimkhown, the strategy yields\lseep = 1. Instead, when the
solution is guaranteed to remain optimal for at leAdtee, Parameter evolution is completely known, the strategy threa
timesteps. improves to Algeep = 19 timesteps. This is a remarkable
match with the fact that the first time the optimal solution
Proposition VII.3 (Correctness of the SELF-TRIGGERED changes is afte20 timesteps. The monotonically increasing
ACQUISITION & DECISION ALGORITHM ) Under the model plot in Figure 7(c) corresponds to the fact that, as the plart o
for parameter evolution described in Section VII-A, Meteep,  the parameter dynamics that is known to the decision maker
andu! be as defined by th®@ELF-TRIGGERED ACQUISITION  becomes dominant, the periods of guaranteed optimalitiyeof t
& DECISION ALGORITHM executed at timé € Z>(. Then, the current best investment decision policy become larger.
control policy u! is guaranteed to be optimal for timesteps
00+1, .. 0+ Algeep— 1. Remark VII.4 ( SELF-TRIGGERED ACQUISITION & RE-
COMPUTATION ALGORITHM ) An alternative, simpler
Proof: ~We show that the SELFTRIGGERED \grsion of Algorithm 3 consists of eliminating the ‘if’
ACQUISITION& DECISION = ALGORITHM  ensures  that congition in stepsl: and5: so that, each time the strategy
condition (17) is satisfied fof, £ +1,..., £+ Alseep— 1 and  prescribes a ‘wake-up call, the best and second best
thusu' remains optimal. For’ > ¢, let v(¢') = Si—¢ w(k) control policies are recomputed with the newly acquired
and 6(¢') = Zf;:}ly(k). Steps 1: -5: of Algorithm 3 parameters. We refer to this policy as thELFTRIGGERED
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Fig. 7. lllustration of the application of theELFTRIGGERED ACQUISITION& DECISION ALGORITHM for the example problem displayed in (a) with

a = [.05,.1,.05,.8]. The goal of interest is Node 5. The corresponding optimgmta problem and optimal solution (black circles) are shawib). In
each iteration, the edge weight between Node 2 and Node Scieaked by).08, the probabilitya; is decreased b§.002, and as is increased by).002.
The result of thesSELFTRIGGERED ACQUISITION& DECISION ALGORITHM is shown in (c) for various levels of knowledge= lv‘&(fl‘ﬁ on the perturbations
in the parameters. The perfect-knowledge case is captured-byl corresponding toy = 0 and recovers condition (9). The no—Lnowledge case is ceghtur
by x = 0 corresponding ta)(¢) = 0 for all £. The red circle in the top right corner of (c) correspondshi® éxact time when the optimal solution changes.

ACQUISITION& RECOMPUTATION ALGORITHM. Instead, the
SELFTRIGGERED ACQUISITION&DECISION ALGORITHM
aims to save on executions of tiB&EST and SECOND BEST
INVESTMENT ALGORITHMS by checking whether the control
policy u! in memory remains optimal for the new parameters

before scheduling the next ‘wake-up call’. °
D. Worst-case performance guarantees AL — best investment policy
As a byproduct of our analysis, we provide explicit guaran- - -~ 2nd best investment policy
tees on how long the optimal solution remains optimal while - -+ bound on suboptimal policieg
the problem parameters change in the worst possible way.
%% 5 fo fs 20 55 éo
Corollary VII.5 (Worst-case performance guarantee) Let Iteration

the parameter e\_IOIUtlon be descrlbedaﬂ_‘—_l) = 0(0)+(0), Fig. 8. lllustration of the application of Corollary VII.50f the simple
where the magnitude of each component &f upper bounded example problem displayed in Figure 7. In each iteration, etige weight

by¥ asin(11). Givend(0) = 6, choosel, such that{f(¢) | ¢ €  between fc\jlodehZ a?d Ngd‘? 5d LS dhecrea_sedqul%. Theﬁﬁ(}ur(\i/]es in (‘2
i correspond to the value obtained by the optimal investmelitl{sthe secon

,ZZO} sausﬁem(@@)) > d,. for all £ € Z;ZO ar,]dd = f(l/d) best investment (dashed), and the upper bound on all subdptivestment

is globally Lipschitz on[d.,co) with Lipschitz constantD. poiicies (dotted). The optimal solution changes afiériterations, whereas

Then, the number of timesteps for which the control pality the worst-case lower bound given by Corollary VII.56is

remains optimal is lower bounded b I
P y the initial performance gap between the best and second best

Jo(uy) — Jo(ug) (18) control policies, the more ‘robust’ the optimal solution is
G(9,7) ' As noted in Remark V.5, the second best control pobk!%y

The proof of this result follows from the discussion ifnay_be different fordin, and Min. Since the state space

Section VII-B by using the fact that (11) induces a boun@f Minv iS contained in the state spa&eof Min, the allowable
for §(¢) = 2271 ~(k) linear in time and thaG is linear control policies forM;,, are a subset of the control policies
in its second ké_r%ument. In general, the bound provided ER;M"W. Therefore, the performance of the second best control

Corollary VII.5 is conservative because of our worst-caf®licy Of Min, can be no worse than that of the second best
considerations. We consider a simple example in Figure 8 §RNtrol policy of Min,, and thus we can make better guarantees

which only one parameter is changed linearly in such a way 38 Minv- *
to decrease the performance gap between the best and second
best policies. Applying the result of Corollary VII.5, wetain VIII. CONCLUSIONS
6 timesteps as a lower bound. Figure 8 shows that in fact itWe have considered a class of problems where targets
takes 31 iterations until the optimal solution changes. Thiemerge from some known location and move towards some
mismatch can be traced back to the proof of Lemma VIl@nknown destination in a weighted acyclic digraph. We have
where we bound the size of performance variation. designed th@EST INVESTMENT ALGORITHM and shown that

it is guaranteed to find the optimal control policy for denigli
Remark VII.6 (Connection between the robustness of the when to make preparations for the arrival of a target at
best solution and its performance gap with the second a specific destination. We have also designed $B€OND
best solution) From Corollary VII5 it is clear that the larger BEST INVESTMENT ALGORITHMtO find the second-to-optimal
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control policy and used it to investigate the robustnessef t[17] K. D. Glazebrook, P. S. Ansell, R. T. Dunn, and R. R. Luml&9n

optimal solution against changes in the problem parameters the opti_mal allocation of service to impatient task¥urnal of Applied
We h built th diti t btain | b d Probability, vol. 41, no. 1, pp. 51-72, 2004.
€ have bullt on these condiions 10 obtain Iower boundgg) a. Thiele, “Robust stochastic programming with uncertaiobabilities,”

under arbitrary dynamics of the problem parameters, on the IMA Journal of Management Mathematjosl. 19, pp. 289-321, 2008.

number of timesteps until the optimal solution changes. OUfl M. Velasco, P. Marti, and J. M. Fuertes, “The self triggr task model
for real-time control systems,” iffroceedings of the 24th |IEEE Real-

study has resulted in the synthesis of $ELF~TRIGGERED Time Systems Symposiugp. 6770, 2003,
ACQUISITION& DECISION ALGORITHM to schedule in ad- [20] X. Wang and M. D. Lemmon, “Self-triggered feedback cohsystems

vance when future actions should be taken. Future work will  With finite-gain Lo stability,” IEEE Transactions on Automatic Contyol
vol. 54, no. 3, pp. 452-467, 2009.

be devoted to studying the setup where the decision makgf A anta and P. Tabuada, “To sample or not to sample: sigéered
only has access to some nodes of the network of roads or control for nonlinear systemsfEEE Transactions on Automatic Contyol

the sensors are noisy and may therefore have an incomplet? vol. 55, no. 9, pp. 20302042, 2010. o .
K led f hi ies: th h h 1%2 C. Nowzari and J. Cogs, “Self-triggered coordination of robotic net-
nowledge of target histories; the case where the parameter works for optimal deployment,Automatica vol. 48, no. 6, pp. 1077—

of the problem are changing quickly as compared to how fast 1087, 2012.
the targets move through the network; and understanding how

the parameters of the problem must be selected in order to

make optimal an a priori chosen investment policy.
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